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Abstract: Hub-and-Spoke (H&S) network modeling is a form of transport topology optimization
in which network joins are connected through intermediate hub nodes. The Short Sea Shipping
(SSS) problem aims to efficiently disperse passenger flows involving multiple vessel routes and
intermediary hubs through which passengers are transferred to their final destination. The problem
contains elements of the Hub-and-Spoke and Travelling Salesman, with different levels of passenger
flows among islands, making it more demanding than the typical H&S one, as the hub selection
within nodes and the shortest routes among islands are internal optimization goals. This work
introduces a multi-objective tri-level optimization algorithm for the General Network of Short Sea
Shipping (GNSSS) problem to reduce travel distances and transportation costs while improving travel
quality and user satisfaction, mainly by minimizing passenger hours spent on board. The analysis is
performed at three levels of decisions: (a) the hub node assignment, (b) the island-to-line assignment,
and (c) the island service sequence within each line. Due to the magnitude and complexity of the
problem, a genetic algorithm is employed for the implementation. The algorithm performance has
been tested and evaluated through several real and simulated case studies of different sizes and
operational scenarios. The results indicate that the algorithm provides rational solutions in accordance
with the desired sub-objectives. The multi-objective consideration leads to solutions that are quite
scattered in the solution space, indicating the necessity of employing formal optimization methods.
Typical Pareto diagrams present non-dominated solutions varying at a range of 30 percent in terms
of the total distance traveled and more than 50 percent in relation to the cumulative passenger
hours. Evaluation results further indicate satisfactory algorithm performance in terms of result
stability (repeatability) and computational time requirements. In conclusion, the work provides a
tool for assisting network operation and transport planning decisions by shipping companies in the
directions of cost reduction and traveler service upgrade. In addition, the model can be adapted to
other applications in transportation and in the supply chain.

Keywords: Hub-and-Spoke network; marine transportation; Short Sea Shipping; optimization;
genetic algorithms

1. Introduction

Hub-and-Spoke (H&S) network modeling is a special case of the vehicle routing
problem (VRP), which refers to determining the most efficient routes of various types of
fleets for moving passengers and cargo. This problem is widely applied in numerous
fields of operational research, such as transportation, telecommunications, and logistics. In
conventional “Point to Point (P2P) transit” systems, vehicles travel directly from each node
to any other. In contrast, a Hub-and-Spoke network system is an alternative route-planning
method consisting of primary nodes and peripheral radial connections. This structure is
referred to as a series of “spokes” that connect outlying points to a central hub. The H&S
structure is the dominant transportation practice nowadays as it provides several benefits,
including reduced route lengths and transit times, effective use of fleet assets, comfortable
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journeys for travelers, and a lower carbon footprint due to reduced fuel consumption
and emissions.

The H&S model was first introduced by Delta Airlines in 1955 at the Atlanta airport
to compete with Eastern Air Lines. In this innovative (in those days) system, airplane
routes were planned to carry passengers to Delta’s hub airport in Atlanta, connecting them
to other Delta flights. After the Airline Deregulation Act in 1978, several other airlines
adopted Delta’s H&S structure. Later, distribution and logistics companies successfully
implemented the H&S model to gain a competitive business advantage. They found that
this method reduces transportation costs and inventories while improving delivery cycle
times. Nowadays, the H&S model is widely applied to other transportation systems such
as sea shipping, freight rail transport, industrial distribution, telecommunications, etc.

Short Sea Shipping (SSS) route planning is a field in transportation to which H&S
modeling can be applied. SSS is the maritime transport of passengers and goods over
relatively short distances, as opposed to intercontinental cross-ocean deep-sea shipping.
According to the EU (COM1999 317 final) [1], SSS is defined as “the movement of cargo
and passengers by sea, between ports situated in geographical Europe or between those
ports and ports situated in non-European countries having a coastline on the enclosed seas
bordering.” SSS is promoted within the European Union in the framework of sustainable
and safe mobility as it is much more energy efficient and relatively safer compared to
other transport modes. Additionally, SSS strengthens community cohesion, facilitating
connections between the Member States and European regions and, along with other
modern trends such as autonomous technologies [2], increases transport efficiency to meet
current and future demands arising from economic growth.

Most existing research efforts target logistics and aviation-related applications and
focus mostly on economic parameters, approaching the problem from the operator’s per-
spective of increasing profitability. The present study considers the problem from a more
global perspective and within a more generalized framework, in which additional parame-
ters are considered related to passenger hours spent on board, individually or cumulatively.
In addition, several constraints and preferences (technical, operational, or comfortability-
related) are included to make the problem as practical as possible. The research study aims
at developing a multi-objective tri-level optimization model for optimizing the H&S net-
work operation adopted within the General Network of Short Sea Shipping (GNSSS) needs.

2. Background

The H&S design problem is widely known as the hub location problem (HLP) and
refers to determining the location of hub facilities and allocating the radial spoke nodes
within a network. Depending on the problem formulation, H&S models can be classified in
different respects as follows. Initially, the problem can be classed as either single-hub, where
only one hub node is to be allocated, or multiple-hub, if more than one hub node exists.
Another classification refers to the cases in which a spoke is connected to only one hub
(single-allocation) or many hubs (multiple-allocation). An additional categorization is made
on how the number of hubs is set, either as a predetermined planning decision (exogenous
model) or as a result of the analysis process (endogenous model). In the former case, the
problem is known as the p-hub location problem, where p is the predetermined number
of hubs. A particular case is the p-hub median problem, in which the hub nodes are fully
interconnected, and the traveling cost across the interhub link is assumed to be zero to drop
out the quadratic term. Another parameter that differentiates the analysis is related to the
capacity level of hub nodes serving incoming and outgoing flows. If a capacity limitation is
in effect, the H&S problem is referred to as capacitated; otherwise, it is called uncapacitated.
Finally, the H&S formulation can be classified based on the analysis objectives. In particular,
the general p-hub location problem aims to minimize the cumulative cost of the transport
carrier among all origin-destination pairs. A typical competing objective, which leads
to a denser cluster, is to minimize the maximum distance (or cost) among all individual
origin-destination pairs, and, in this case, the problem falls within the hub-center location
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category. An extension to the cumulative cost objective formulation is the hub-covering
location problem, in which a constraint for the maximum allowable distance/cost is set for
any (or specific) origin–destination pair.

In the early research development phase for this problem, researchers have primarily
focused on developing mathematical model formulations for the basic H&S problem.
Within the next phase, studies have emphasized enriching and optimizing the models to
reduce the complexity and reflect some realistic aspects of the scheme. As computational
capabilities grew, several algorithms and techniques were proposed for solving large-scale
H&S optimization problems. Nowadays, research goes on unabated considering additional
parameters and directions, such as uncertainty, congestion limitations, and environmental
aspects. A detailed presentation of existing studies is provided below.

O’Kelly was the pioneer in hub-location network structure research [3–5], proposing a
quadratic integer programming approach for the hub-median problem along with intro-
ducing fixed costs for defining the number of hubs as one of the decision parameters [6].
Since then, the topic has attracted the scientific community’s interest because of its high
added value in real-life implementation, and numerous studies have been conducted to
tackle different aspects of the problem.

Campbell [7] presented an early linear integer programming formulation for the
single allocation p-hub median problem and later [8] proposed integer programming
methodologies for four different hub location problems. Skorin-Kapov et al. [9] tested
Campbell’s model and stated that the LP relaxation results in highly fractional solutions.

Ernst and Krishnamoorthy [10] presented a linear programming formulation for the
single-allocation p-hub median problem and a heuristic algorithm based on simulated
annealing for solving the problem, and later [11], they extended their work on the scheme
by proposing several mixed-integer linear programming (MILP) formulations based on
the shortest paths. The same researchers [12] also introduced a heuristic algorithm based
on simulated annealing (SA) and random descent (RDH) to solve the capacitated single-
allocation hub location problem. Ebery [13] developed an MILP formulation for the single-
allocation p-hub median problem that required fewer variables than previous formulations,
while Kratica et al. [14], focusing on the uncapacitated single-allocation p-hub median
problem, presented two efficient genetic algorithms.

Kara et al. [15] illustrated a combinatorial formulation for the p-hub center problem
and established its NP-hardness. Ernst et al. [16] developed an MILP formulation for
the uncapacitated single or multiple allocation hub center problems and presented a
branch-and-bound approach for the multiple allocation case. Meyer et al. [17] illustrated
a two-phase algorithm for efficiently solving larger-scale uncapacitated single allocation
p-hub center problems. Furthermore, Ilic et al. [18] presented a variable neighborhood
search approach for considering the uncapacitated single allocation p-hub median problem.
In the hub-covering problem framework, Kara et al. [19] studied the single allocation case
presenting an integer programming formulation and three different linearization methods,
and later, Ernst et al. [20] presented an improved MILP model.

The literature further includes research efforts that incorporate stochastic modeling.
Contreras et al. [21] considered stochastic uncapacitated hub location problems under mixed
uncertainty related to demand levels and transportation costs. Two MILP formulations
were proposed and evaluated by Correia et al. [22] for the capacitated single allocation hub
location problem incorporating decisions concerning the capacity level at which each hub
should operate.

Among recent research efforts, an H&S model incorporating backup hubs and alterna-
tive routes to handle hub disruptions proactively was presented by An et al. [23]. Rabbani
and Kazemi [24] implemented simulated annealing (SA) and genetic algorithms (GA),
merged with Dijkstra’s algorithm, for solving the multiple allocation p-hub center problem.
Ghaffari-Nasab et al. [25] addressed both the capacitated single and multiple hub allocation
problems with stochastic considerations related to the flow quantities between pairs of
nodes in the network.



Algorithms 2023, 16, 379 4 of 27

Azizi et al. [26] studied the single allocation p-hub median problem incorporating hub
unavailability, while Zetina et al. [27] illustrated robust counterparts for uncapacitated hub
location problems, considering uncertainty in demand and costs. Moreover, an intermodal
H&S model with uncertainties in both transportation cost and travel time was proposed
by Yang et al. [28], and a modified Benders decomposition was introduced by Mokhtar
et al. [29] for large-scale applications of the two-allocation p-hub median problem. More-
over, Persa et al. [30] introduced a multi-objective MILP formulation for designing an air
transportation H&S network incorporating environmental concerns.

Another factor that can critically affect the performance of an H&S network concerns
potential delays and congestion; hence, many recent research efforts incorporate this
parameter in the analysis. Tran et al. [31] proposed an MILP formulation for uncapacitated
hub location problems assuming that each hub can fail with a site-specific probability,
while Azizi et al. [32] presented a trade-off model between cost savings and congestion
costs due to flow variability in hub facilities. A nonlinear MILP model, including inter-
hub economies-of-scale and hub congestion, was introduced by Alkaabneh et al. [33].
Moreover, a bi-objective nonlinear MILP model for the single allocation multi-commodity
H&S network design under hub congestion was illustrated by Karimi-Mamaghan et al. [34].

Focusing on marine transportation, a few studies addressed the H&S strategy mainly
on liner shipping network design. Karlaftis et al. [35] implemented a genetic algorithm
for containership route scheduling incorporating pickups, deliveries and time deadlines,
validating the model efficiency through a small container fleet case study in the Aegean
Sea, Greece. Imai et al. [36] compared multi-port-calling (MPC) and H&S strategies for
containerships and concluded that H&S benefits the European shipping environment more.
Wang et al. [37] investigated the spatial pattern of the worldwide container shipping net-
work and stated its transformation from a multi-port calling system to a multiple regional
H&S system, especially for the northern hemisphere. Gelareh et al. [38] proposed an MILP
formulation for solving the liner shipping network hub-location problem in a highly com-
petitive environment. At the same time, Gelareh and Pisinger [39] developed an MILP
model design of network and fleet deployment of a deep-sea liner service provider incor-
porating several constraints commonly met in practice. Zheng et al. [40] introduced the
concept of a main port and several container-shipment-related constants, conjoining a non-
convex multi-linear MIP model with genetic algorithms for implementation. Wei et al. [41]
established a two-stage logistical gravity model for the H&S logistics network that connects
the Chinese insular regions with dry ports in the Belt and Road Initiative context, and Bai
and Fan [42] illustrated an MILP model for the H&S network and liner ship fleet planning
and applied a Lagrange Heuristic Algorithm to solve the case.

Regarding other similar studies in marine transportation, an H&S Roll-on Roll-off
freight transport methodology was developed by Fadda et al. [43] for interconnecting the
shores of the Mediterranean Basin. In a similar direction, Martinez-Lopez [44] presented
a mathematical formulation for intermodal chains for handling multiple or conflicting
objectives adapted to sea transportation particularities in Chile. Finally, Medbøen et al. [45]
proposed an integrated MIP methodology for the short-sea feeder network design based
on the concept of transhipping cargo between main (mother) and secondary (daughter)
vessels adapted to the Norwegian sea transportation conditions and needs. Finally, other
studies have provided insight for different types of maritime transport operations, such as
Arctic Ocean Transportation route planning [46,47].

Most previous research efforts deal with the conventional H&S problem, adapted
mainly to the aviation or cargo transportation fields with the primary characteristic of
movement of passengers or cargo between pairs of nodes. In previous works, the opti-
mization goal is typically to minimize the carrier transportation cost, while no specific
reference to passenger time and comfort is made. The Short Sea Shipping transportation
problem presents specific structural differences from the conventional H&S structure and
still remains unexplored. In this problem, serial routes must be designed to serve several
nodes (islands) and passenger flows. Passenger-related characteristics like travel time and
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comfort are considered equally important to transportation costs. This work includes all
these elements in a multi-objective optimization approach for the SSS H&S problem.

Short Sea Shipping transportation is adapted mainly to the passenger movement
particularities of scatter-distributed island regions, such as the Aegean Sea, the Caribbean,
Indonesia, the Baltic Sea, etc. Such an SSS network involves short irregular-shaped routes
with several intermediate stops prioritizing popular destinations. This network develop-
ment is similar in principle but different in application from the corresponding one for
Artic waterways, which refers mainly to liner shipping networks involving long-distance
and rather linear routes within limited navigable waters due to ice.

3. Problem Description

This research aims to develop an optimization methodology and design an H&S
transportation system to regulate passenger flows within a cluster of quite sparsely located
islands (or any other similar kinds of transport terminals) with a small number of carriages.
In such types of problems, the passenger flows typically initiate from central ferry terminals,
placed on the mainland, and distributed to the cluster islands. Such clusters involve mostly
small-sized islands or tourist destinations; thus, the problem emphasizes passenger flows
rather than vehicle and cargo transport. In these cases, it is not efficient to interconnect all
islands directly to central ports. Instead, it is preferable to transfer passengers to a central
node of the cluster (hub island) and then split the flows by routing additional lines (usually
lower capacity and speed vessels) to different destinations in order to reduce carrier costs
and passenger travel times. This problem structure differentiates from the typical H&S
problem (Figure 1), as islands are not directly connected to hub nodes. However, the
algorithmic structure and computational approach fall within the same class of problems.
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Short Sea Shipping transportation in a scatterly distributed islands constitutes a multi-
parameter optimization problem in which decisions should be made regarding the number
of vessels deployed, the hub selection, the route development, and the island service prior-
ity, subject to certain constraints and preferences. SSS is mainly adapted to the passenger
movement particularities of scatter-distributed island regions, such as the Caribbean, In-
donesia, the Baltic Sea, etc. Such an SSS network involves short irregular-shaped routes
with several intermediate stops prioritizing popular destinations. This network develop-
ment is similar in principle but different in application from the corresponding one for
Artic waterways, which refers mainly to liner shipping networks involving long-distance
and rather linear routes within limited navigable waters due to ice.

In this problem formulation, one or more main lines originate from the central ports
and reach hub node islands where passengers may either continue their journey or transfer
to other vessels toward their destination. The optimization model that is developed aims
to provide proposals referring to the following:

1. the islands that are assigned as hub nodes within several potential alternatives;



Algorithms 2023, 16, 379 6 of 27

2. the islands that are to be served by each route (vessel) originating either at a central
port or at a hub node;

3. the island service priority within each route.

The problem formulation contains elements of the Hub-and-Spoke and Travelling
Salesman structures, making it more demanding than the typical H&S one, as the hub
selection within nodes and the shortest routes among islands are internal optimization
goals. Considering, in addition, that the passenger flows change along route nodes, the use
of formal optimization seems rather imperative to provide efficient routing solutions.

A 3-D tensor is employed to represent the solution structure for the proposed H&S
model (Figure 2a). In this formulation, the number of blocks along the X-axis indicates the
islands to be served, while the number of blocks along the Y and Z axes reflects the number
of lines (vessels) and the ports—potential origins (central ports or hub nodes), respectively.
If the number of ports involved is equal to the number of lines (vessels), the problem is
downgraded to a two-dimensional problem (island-to-line allocation and prioritization),
and each solution can be represented by a 2-D permutation matrix, as shown in Figure 2b.
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A number of tensor blocks (as many as the islands) are numbered with a sequence of
integers indicating the order of island service, and all others have no value. Every block set
in the Y–Z plane corresponds to an island, and assuming each island is visited once, only
one block is numbered. The numbered blocks are distributed in a series of block strings
along the X–Z plane, indicating the islands to be served by each line.

Figure 2a depicts a representative solution for the H&S routing problem where
two lines, one departing from the central port (Line 1) and one from a hub node (Line 2), are
employed to serve a number of islands. The main port is predefined, while the hub node
can be selected between two alternatives (A or B) among the islands. In this solution, the
vessel employed for Line 1 departs from the central port and consecutively sails through
islands 3, 4, A, . . ., B, . . . (with the potential hubs to be included). As island A is selected
as the hub, the second vessel is routed from there, and passengers with final destinations
islands 2, 1 . . ., and N transfer to Line 2 to complete their journey.

To further explain the chromosome (solution structure), an example is provided with
reference to Figure 3. The solution includes the general service priority of islands, the
line by which each island is served and the hub(s) island(s). In this example, a cluster of
fifteen islands (A to O) is considered to be served either directly from the central port or by
transferring to a second vessel originating from a hub established in one of two alternatives
(islands H and I). The “general service priority” part of the solution consists of fifteen unique
integers (1–15) indicating the whole service priority of islands (Figure 3a). The values in
the next row mark the vessel line that will serve each island (1 and 2 correspond to vessels
departing from the central port and the hub node, respectively). The value in the last
assigns the hub node island to one among the predefined alternatives (Island I). Based
on this information, the algorithm uses the general service priority to arrange islands to
vessels and develop the service priority within separate lines (Figure 3b).
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4. Proposed Model

The proposed multi-objective tri-level optimization algorithm considers vessel-related
cost parameters (transportation cost, also called ‘economic’ parameters) and user-related
impacts, mainly referring to passenger journey times. Vessel costs are primarily related
to traveling distances, while user impacts accumulate the time spent on board or during
vessel transferring for all passengers. The optimization model further includes constraints
resulting from operational limitations, such as the capability of a port to be used as a
hub, the necessary times for embarkation–disembarkation, and vessel transfer. The model
can additionally handle planning preferences for avoiding inefficient solutions/schedules,
e.g., short vessel routes or long-lasting passenger trips.

Matrix algebra is employed to structure the mathematical representation of the prob-
lem. In particular, three permutation matrices are developed (Figure 4). The first is a square
binary doubly stochastic matrix (with exactly one entry of 1 in each row and column and
zeros elsewhere) for the one-to-one correlation of islands and general service priority. The
second matrix is an orthogonal binary stochastic one (with exactly one entry of one in each
row and zeros elsewhere) for assigning islands to the available routes, while the third is
an orthogonal stochastic one (with the sum of all entries to be equal to 1 in each row and
equal or less than 1 in each column) for assigning each vessel route to one of the alternative
ports. Based on these initial matrices, which represent a solution, the algorithm initially
rearranges the given input data to develop corresponding matrices with the physical island
service sequence in each line (Figure 3b). After that, it calculates the necessary output
(e.g., arrival times, distances, passenger hours) for each node and link of the network and,
finally, the fitness value for the whole network.
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Figure 4. Permutation matrices of the problem structure.

4.1. Model Assumptions

The Hub-and-Spoke model for Short Sea Shipment transportation considered in this
study is described in detail with the following characteristics:

• All passengers initiate their trips from a central port on the mainland.
• Two types of routes are considered, direct connection from a central port or transit

travel through a hub node connection.
• Hub islands are served directly from a central port.
• All islands are served once.
• Several alternatives for placing hub nodes can be considered.
• Ships serving different routes can have different velocities.
• Time-varied intermediate stops are considered.

The generalized objective function evaluates the fitness of each solution (hub node
selection and line routing) in terms of a weighted sum of economic and non-economic
components as follows:

min(F) = w1 × (D) + w2 × (PH) + w3 × (P) (1)

where D represents the total distance traveled by all vessels, PH is the total passenger hours
spent in all journeys, and P represents any desirable preferences, while w1, w2, and w3 are
weight coefficients of the sub-objective functions. The first component closely relates to
the traveling cost, while the second considers the number of passengers by destination,
the average vessel speed, and the necessary time interval for passenger boarding and
disembarking. These components are calculated as follows:

4.2. Parameters
I set of islands to be served
i island index of an initial (random) island list, ∀ i ∈ {1, 2, . . ., I}
j island index associated with the island service sequence, ∀ j ∈ {1, 2, . . ., I}
K set of routes (lines)
k route (line) index, k ∈ {1, 2, . . ., K}
L set of alternative ports for route initiation (L ≥ K)
l port index of route initiation, l ∈ {1, 2, . . ., L}
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4.3. Data
[Vl]1×L vessel speed of journey initiating at port l, ∀ l ∈ {1, 2, . . ., L}[
X0,l
]

1×L X coordinate of the port where vessel l initiates, ∀ l ∈ {1, 2, . . ., L}[
Y0,l
]

1×L Y coordinate of the port where vessel l initiates, ∀ l ∈ {1, 2, . . ., L}
[Pi]I×1 number of passengers disembarking in island I, ∀ i ∈ {1, 2, . . ., I}
[Ti]I×1 passenger transfer time in island I, ∀ i ∈ {1, 2, . . ., I}
[Xi]I×1 X coordinate of island i port, ∀ I ∈ {1, 2, . . ., I}
[Yi]I×1 Y coordinate of island i port, ∀ i ∈ {1, 2, . . ., I}

4.4. Decision Variables[
δj,i
]

I×I
sequence permutation matrix for assigning island i to priority sequence j, ∀ i,
j ∈ {1, 2, . . ., I}[

εi,k
]

I×K
island-to-route assignment matrix for assigning island i to route k, ∀ i ∈ {1, 2, . . ., I},
k ∈ {1, 2, . . ., K}[

ζk,l
]

K×L
route-to-origin node assignment matrix for assigning route k at initiation node l,
∀ k ∈ {1, 2, . . ., K}, l ∈ {1, 2, . . ., L}

subject to:
δj,i = 0, 1 i = 1, 2, 3, . . . , I and j = 1, 2, 3, . . . , I (2)

I

∑
i=1
δj,i = 1, ∀ j = 1, 2, 3, . . . , I (3)

I

∑
j=1
δj,i = 1, ∀ i = 1, 2, 3, . . . , I (4)

εi,k = 0, 1 i = 1, 2, 3, . . . , I and k = 1, 2, 3, . . . , K (5)

K

∑
k=1

εi,k = 1, ∀ i = 1, 2, 3, . . . , I (6)

ζk,l = 0, 1 k = 1, 2, 3, . . . , K and l = 1, 2, 3, . . . , L (7)

K

∑
k=1

ζk,l = 1, ∀ l = 1, 2, 3, . . . , L (8)

L

∑
l=1
ζk,l ≤ 1, ∀ k = 1, 2, 3, . . . , K (9)

Equations (2)–(4) refer to the sequence permutation matrix ensuring that each vessel
occupies a unique position in service priority order, (5) and (6) are related to the island-
to-route assignment matrix allocating each vessel to exactly one route, and (7)–(9) are
associated with route-to-port assignment matrix ensuring that each route is mapped to
exactly one initiation node. If the number of routes is lower than the number of potential
initiation nodes, some nodes will not be engaged, and relationship (9) holds as an inequality.

The following calculations aim to rearrange the rows of matrices and arrays described
above based on the island service sequence that are associated with the specific chromo-
some/solution examined and, furthermore, assign islands and passengers to routes. Due
to this row rearrangement, the previously employed index i becomes now index j.[

ηj,l

]
I×L

=
[
δj,i
]

I×I × [εi,k]I×K × [ζk,l]K×L (10)

[
Pj,l

]
I×L

=
([
δj,i
]

I×I × [Pi]I×1

)
·
([
ηj,l

]
I×L

)
(11)
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[
Tj
]

I×1 =
[
δj,i
]

I×I × [Ti]I×1 (12)

[
Xj
]

I×1 =
[
δj,i
]

I×I × [Xi]I×1 (13)

[
Yj
]

I×1 =
[
δj,i
]

I×I × [Yi]I×1 (14)

The above calculations generate new matrices representing the routing matrix (10)
and the corresponding to each route passenger matrix (11).

4.5. Auxiliary Matrix[
θi,k
]

I×K
Island-to-Hub Node Assignment Matrix for assigning island i as hub node of route
k, ∀ i ∈ {1, 2, . . ., I}, k ∈ {1, 2, . . ., K}

subject to:
θi,k = 0, 1 (15)

θi,k = 1 if island i can be assigned as the hub port of route k; 0 otherwise. (16)

4.6. Calculations
4.6.1. Distances[

Dj,l

]
I×L

the distance traveled between successive islands j − 1 and j of the vessel journey
originating at port l, ∀ j ∈ {1, 2, . . ., I}, ∀ l ∈ {1, 2, . . ., L}[

Dj,l

]
I×L

=

[√(
Xj,l − Xj−1,l

)2
+
(

Yj,l − Yj−1,l

)2
]

I×L

(17)

where [
Xj,l

]
I×L

=
[(
ηj,l × Xj +

(
1− ηj,l

)
× Xj−1

)]
I×L

(18)

[
Yj,l

]
I×L

=
[(
ηj,l × Yj +

(
1− ηj,l

)
× Yj−1

)]
I×L

(19)

D =
I

∑
j=1

L

∑
l=1

Dj,l (20)

4.6.2. Passenger Hours[
ADj,l

]
I×L

the cumulative distance of the vessel journey originating at port l up to island j,
∀ j ∈ {1, 2, . . ., I}, ∀ l ∈ {1, 2, . . ., L}[

TTj,l

]
I×L

the travel time between successive islands j − 1 and j of the vessel journey
originating at port l, ∀ j ∈ {1, 2, . . ., I}, ∀ l ∈ {1, 2, . . ., L}.[

AT0,l
]

1×L
the arrival time at hub node connection l of vessel journey originating at a central
port, ∀ l ∈ {1, 2, . . ., L}[

ATj,l

]
I×L

the arrival time at port j of the vessel journey departing from node port l,
∀ j ∈ {1, 2, . . ., I}, ∀ l ∈ {1, 2, . . ., L}[

DTj,l

]
I×L

the departure time from port j of the vessel journey originating at port l,
∀ j ∈ {1, 2, . . ., I}, ∀ l ∈ {1, 2, . . ., L}[

PHj,l

]
I×L

the passenger hours spent on board by passengers in vessel departing from port l
and disembarking at island j, ∀ j ∈ {1, 2, . . ., I},∀ l ∈ {1, 2, . . ., L}[

ADj,l

]
I×L

=

[
j

∑
1

√(
Xj,l − Xj−1,l

)2
+
(

Yj,l − Yj−1,l

)2
]

I×L

(21)

[
TTj,l

]
I×L

=

[Dj,l

Vl

]
I×L

(22)
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[
DT j,l

]
I×L

=

[
j

∑
1

(
TT j,l + ηj,l × Tj

)]
I×L

(23)

[ATi,0]I×1 =

[
L

∑
1

((
[θι,k]I×K[ζk,l]K×L

)
·
([
δj,i
]−1

I×I ×
([

DTj,l

]
I×L
·
[
ηj,l

]
I×L

))
·
)]

I×L

(24)

where ATi,0 is the arrival time of vessel departing from a central port to island i and
ATi,0=AT0,l in the case that island i is assigned as the hub node l.

[
ATj,l

]
I×L

=

[
AT0,l +

j

∑
1

(
TTj,l + ηj,l × Tj

)
− ηj,l × Tj

]
I×L

(25)

[
PHj,l

]
I×L

=
[
ATj,l × Pj,l

]
I×L

(26)

PH =
I

∑
j=1

L

∑
l=1

ATj,l × Pj,l (27)

4.7. Constraints and Preferences

Several constraints and preferences can be incorporated into the model to simulate
some realistic aspects of the problem. The most important are:

• the travel time of each vessel does not exceed a specified value;
• the passenger travel time does not exceed a specified value;
• the service time of a particular island does not exceed a specified value;
• a desired priority for serving a particular island can be set;
• a specific island may be served directly from the central port;
• a minimum and/or maximum number of islands served by a single vessel can

be set;
• constraints regarding islands’ (operational) capability to serve as hub nodes can

be set.

4.8. Model Structure

Figure 5 graphically illustrates the optimization model structure. The fitness value is
computed for the specific route plan based on the routes developed by a candidate solution
and the constraints and preferences adopted. In particular, the total carrier cost, resulting
from traveling distances of individual routes and unit costs, is calculated as the economic
component of the problem. Further, the total number of passenger hours in all routes is
accumulated to develop the second part of the objective function. These two parameters
are appropriately tuned (based on the maximum value found running the algorithm as a
single objective) depending on the desirable impact of each one on the objective function.
All the examined solutions undergo constraint and preference satisfaction checks before
they are compared to each other to develop the optimal routing plan. Indicative (hard)
constraints and (soft) preferences include the island service priority, upper and lower
bounds for vessel traveling distance or number of served islands, maximum allowable
journey time for passengers, avoiding long- or short-lasting trips and giving service
priority to more popular destinations. Model economic and non-economic parameters
are fine-tuned following normalization based on their mean values before applying the
weighting process.
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Figure 5. Optimization model structure for short-sea passenger transport.

The H&S network design problem is a complex combinatorial optimization problem
and belongs to the NP-hard class of problems, which means that the problem complexity
and the computational resource requirements grow significantly as the numbers of nodes
and constraints increase. Genetic algorithms (GAs) have been extensively used in recent
years to solve large and complex combinatorial optimization problems due to their capabil-
ity to provide acceptable (near-optimal) solutions within a reasonable computational time
for typical problem cases. Figure 6 schematically depicts the optimization structure and
methodology. The system is initially fed with all necessary inputs, such as island distances,
vessel speeds and unit costs, the number of passengers per destination, etc. Following the
typical GA evolutionary process, the algorithm develops a population of initial solutions
using random values to optimize the three fundamental parameters, i.e., hub node selection,
island assignment to vessels, and island service priority. Individual solutions undergo
reproduction through crossover and mutation operations within the population, and new
solutions are generated. The solutions are initially checked for validity (constraint and
preference fulfillment) and then evaluated in terms of their fitness value. The process ter-
minates when a predefined number of iterations are made without considerably improving
the fitness score.
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More specifically, the genetic algorithm is parameterized with a 50-chromosome initial
population with the crossover and mutation rates being 0.5 and 0.1, respectively, in all test
cases and following a relevant analysis. The termination criterion involves the performance
of 20,000 trials without substantial improvement (less than 0.01%) of the fitness value. The
problem has been built in the MS Excel environment for easiness in data handling and
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model implementation. Optimization is performed using the commercial GA software
Evolver v8.4.0 of the Palisade Company (now named Lumivero), which runs as an Excel
add-in component.

5. Case Study Applications

Two case studies have been developed to analyze and evaluate the proposed H&S
transportation system’s effectiveness in regulating vessel routes and passenger flows
moving from mainland Greece to the Aegean Islands. The first includes 17 ports, and the
second includes 51 ones. The Aegean Islands cluster includes more than 150 inhabited
islands, many of them being within the top tourist attraction destinations. Two central
ports on the mainland (Piraeus and Rafina, next to Athens) connect to the Aegean Islands,
serving more than 3 million visitors yearly. Piraeus Port (one of the busiest ports in the
Mediterranean and Europe) is located 12 km southwest of Athens and constitutes the
Aegean Islands central getaway. Rafina is located 50 km northeast of Athens, is the second
gateway port for the Aegean Islands, and has presented significant growth in recent years.
Figure 7 presents the location of the two central ports and the traveling flows to the Aegean
Sea islands.
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Several cases and operational scenarios have been developed for model testing and
evaluation based on the Network of Short Sea Shipping in the Aegean area. The island
cluster that is considered in the case study consists of 15 islands, rather sparsely and
unevenly located on the map to facilitate result justification. Table 1 illustrates the necessary
data for the case study application. They include the distances between islands, the number
of passengers by destination, and the vessel’s average speed. The time for boarding and
disembarkation is assumed to be ten minutes on every island.
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Table 1. Case study data.

SHIPS
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Hub Nodes 10.80

PIRAEUS 170 131 180 156 125 141 120 155 145 114 169 179 145 225 217
RAFINA 135 100 149 133 119 103 86 124 125 81 152 165 115 193 184 Passengers
LESVOS 170 135 51 67 93 97 98 51 63 116 85 137 151 41 118 82 LESVOS 400
CHIOS 131 100 51 98 56 49 54 25 81 70 76 97 111 12 157 133 CHIOS 250

LIMNOS 180 149 67 98 152 147 155 84 27 168 72 196 208 99 54 39 LIMNOS 85
SAMOS 156 133 93 56 152 32 20 78 137 27 129 46 59 54 206 174 SAMOS 165
IKARIA 125 119 97 49 147 32 16 64 127 25 109 54 68 56 200 175 IKARIA 40

FOYRNOI 141 103 98 54 155 20 16 74 136 16 122 43 55 56 205 176 FOYRNOI 20
PSARA 120 86 51 25 84 78 64 74 62 87 53 116 130 32 132 111 PSARA 15

AG. EYSTRATIOS 155 124 63 81 27 137 127 136 62 151 43 179 194 85 71 60 AG. EYSTRATIOS 10
PATMOS 145 125 116 70 168 27 25 16 87 151 133 29 43 71 219 192 PATMOS 80
SKIROS 114 81 85 76 72 129 109 122 53 43 133 162 178 73 109 106 SKIROS 40

KALYMNOS 169 152 137 97 196 46 54 43 116 179 29 162 14 89 151 121 KALYMNOS 80
KOS 179 165 151 111 208 59 68 55 130 194 43 178 14 111 159 230 KOS 170

INOUSES 145 115 41 12 99 54 56 56 32 85 71 73 89 111 149 120 INOUSES 20
THASSOS 225 193 118 157 54 206 200 205 132 71 219 109 151 159 149 46 THASSOS 65

SAMOTHRAKI 217 184 82 133 39 174 175 176 111 60 192 106 121 230 120 46 SAMOTHRAKI 20

Starting points (central ports)—Network points (islands).
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Vessels can depart from two central ports (Piraeus or Rafina), while three islands
(Chios, Limnos, Ikaria) have been set as potential Hub nodes. Two vessel types with
different characteristics (speed) are considered depending on their route origin. The
following scenarios are examined to evaluate the model’s capability to effectively and
realistically assess optimal route planning:

• C1: One vessel departs from a central port (Piraeus) and serves all islands without
hub nodes.

• C2: Two vessels depart from central ports (one from Piraeus and one from Rafina) and
serve all islands without hub nodes.

• C3: One vessel departs from a central port (Piraeus) with one hub connector.
• C4: Two vessels depart from central ports (Piraeus and Rafina) with one hub connector

to be assigned by the algorithm.

The optimization is performed upon single or combined objectives referring to the total
distance traveled (D) and the cumulative passenger hours (PH) while two more parameters
are recorded and evaluated in each case, the total travel time (T) of all vessels and the
maximum trip length (Tmax-trip) among all passengers.

The simplest case, C1, where one vessel serves all islands, imitates the classic Travel
Salesman Problem (TSP). Three alternatives are presented to emphasize the scope of the
proposed methodology. C1a aims to minimize the traveling distance (and consequently the
routing cost). C1b attempts to reduce the total passenger time spent on board. C1c provides
a trade-off solution between the above (into some extent) competing goals. The results in
Figure 8 indicate that C1a provides the shortest route but at a considerable expense of the
total passenger time on board. InsteadC1b recommends a relatively lower total passenger
time solution compared to C1a but with increased traveling distance. This happens because
small islands with fewer passengers are left to be served last without special attention
to proximity criteria. Further, several alternative solutions can be found following the
trade-off between the two goals. An indicative such solution (C1c) achieves an almost
minimum passenger-hour solution and a competitive traveling distance one.
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achieves very competitive figures in total vessel traveling distance and time as well as in 

Figure 8. Optimization results for case study C1 (single vessel scenario). (a) C1a: D = 645 nm,
T = 26:13 h, PH = 21,574 h, Tmax-trip = 26:13 h. (b) C1b: D = 705 nm, T = 28:26 h, PH = 17,032 h,
Tmax-trip = 28:26 h. (c) C1c: D = 684 nm, T = 27:40 h, PH = 17,121 h, Tmax-trip = 27:40 h.

In Case 2, two vessels depart from central ports (one from Pireaus and one from
Rafina) to serve the whole island cluster. As anticipated, the proposed solutions in every
case develop the routes in geographically separated sub-regions (northern and southern
islands). The results in Figure 9 indicate that C2a provides the shortest vessel routes in total,
C2b the minimum cumulative passenger-hour solution, and C2c a more comprehensive
solution that aims to facilitate both objectives. In general, the latter solution achieves very
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competitive figures in total vessel traveling distance and time as well as in cumulative
passenger time spent on board. Compared to case C1, the total distance has marginally
been extended, but the passenger hours have been sizably cut down.
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the numbers below correspond to those of the lines in the maps). (a) C2a: D1/D2/Dtot = 315/
339/654 nm, T1/T2/Ttot = 13:00/13:23/26:23 h, PH = 12,265 h, Tmax-trip = 13:23 h. (b) C2b:
D1/D2/Dtot =370/421/791nm, T1/T2/Ttot = 14:52/16:35/31:27 h, PH = 10,369 h, Tmax-trip = 16:35 h.
(c) C2c:D1/D2/Dtot =427/231/658nm, T1/T2/Ttot =17:08/9:23/26:31 h, PH = 10,732 h,
Tmax-trip = 17:08 h.

In scenario C3, one vessel departs from Piraeus central port and another from a hub
node, the latter being alternatively set in one of three large islands (Chios, Limnos, or Ikaria)
that can serve as hub connectors. Three solutions have been developed corresponding to
each of the alternative connectors (C3a, C3b, C3c). A fourth case strives for an optimal
solution by demanding the algorithm to automatically assign the hub node among the
three islands (C3d). The evaluation is made upon trade-off solutions including the total
vessel route distance (D) and the cumulative passenger time (PH), with indicative results
presented in Figure 10. All solutions present comparable traveling distance values (within
a 4% deviation range), while C3c outperforms in terms of passenger time. This is because
Ikaria is closer to Piraeus port and in the core of the islands with high travel demand. In
C3d, the algorithm has selected Chios as a hub and provided a competitive solution even
though the algorithm complexity rises significantly in the case that the algorithm needs
to determine the hub-node location internally. This capability may be highly effective in
large-scale problems or sparsely positioned island nodes. In the latter case, a full algorithm
implementation can initially provide almost-best hub node selection, while a downgraded
algorithm application (with known hubs) can provide improved routing solutions.

In a broader problem structure, case C4 considers up to two ships departing from
central ports (Piraeus and Rafina) and one from a hub node to be assigned by the model
among Chios, Limnos, or Ikaria islands. When optimizing the total traveling distance (C4a),
the model proposes a solution involving one vessel from Piraeus Central Port, covering
the southern part of the islands, and another from the hub node of Chios with a northern
direction. Although reducing the total traveling distance, the employment of two vessels
results in high passenger hours spent on board and extensive trip times. Optimizing
the total passenger hours on board (C4b) leads to a three-vessel solution with almost
half the total passenger and individual trip time (in comparison to C4a), at the expense,
however, of the total traveling distance, which increases by a factor of approximately 25%
(Figure 11). The multi-objective approach (C4c) provides a balanced solution in terms of
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traveling distance and total passenger hours (with three vessels in operation). However,
the generated solution is not entirely satisfactory in terms of the max trip time (26:16 h),
which results from the fact that a slow-speed vessel has been assigned to serve the distant
islands. To reduce this prolonged journey, a constraint is set in case C4d to avoid solutions
that exceed a fifteen-hour trip limit. In such a case, the algorithm provides a quite different
route planning solution that provides competitive performance values in regard to the
main evaluation parameters but with a significant reduction in the maximum trip time. The
comparison of the last two cases indicates that the problem holds a large solution space and
that quite different routing solutions may lead to comparable fitness values demonstrating
the potential of several local optima in such kinds of problems.
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sel from the central port and one from a hub node) (the colours in the numbers below cor-
respond to those of the lines in the maps). (a) C3a: D1/D2/Dtot = 443/160/603 nm, T1/T2/
Ttot = 17:44/15:38/33:22 h, PH = 16,627 h, Tmax-trip = 20:40 h. (b) C3b: D1/D2/Dtot = 500/85/585 nm,
T1/T2/Ttot = 20:31/15:21/35:52 h, PH = 19,852 h, Tmax-trip = 20:31 h. (c) C3c: D1/D2/
Dtot =486/106/592 nm, T1/T2/Ttot =19:30/15:16/34:46 h, PH = 15,438 h, Tmax-trip = 19:30 h.
(d) C3d: D1/D2/Dtot =441/170/611 nm, T1/T2/Ttot =17:30/16:44/34:14 h, PH = 16,894 h,
Tmax-trip = 21:45 h.

To gain a better insight into the multi-objective optimization outcomes, several iter-
ations with varying sub-objective weights were conducted for case C3, and the results
are depicted in Figure 12. It is interesting to note that in every case, a well-shaped Pareto
front is developed with a main characteristic that there is an almost sharp (rather than
gradual) adjustment to the ultimately lowest level of each objective parameter. In fact, it
appears that each Pareto curve closely fits into two straight lines, indicating the lowest total
traveling distance and the lowest cumulative passenger time, respectively. Depending on
the hub selection, these lines may be shifted at different levels of performance. For instance,
selecting Limnos as the hub island (C3b), despite the efficiency concerning traveling dis-
tance, it cannot compete with other solutions in terms of total passenger hours spent on
board. The reason is that the island is located well in the northern part of the cluster, and
many passengers directed to the south have to make a wide deviation of the straight-line
pathway. The automatic hub assignment in C3d has provided comparable results to those
of the manual hub selection in the whole parameter range.
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Figure 11. Optimization results for case study C4 (up to two vessels from central ports and
one from a hub node) (the colours in the numbers below correspond to those of the lines in the
maps). (a) C4a: D1/D2/D3/Dtot = 0/347/228/575 nm, T1/T2/T3/Ttot = 0:00/14:11/21:56/36:07 h,
PH = 18,683 h, Tmax-trip = 29:33 h. (b) C4b: D1/D2/D3/Dtot = 390/233/97/720 nm, T1/T2/T3/
Ttot = 15:18/9:23/9:18/34:09 h, PH = 9863 h, Tmax-trip = 15:18 h. (c) C4c: D1/D2/D3/
Dtot =153/233/261/617 nm, T1/T2/T3/Ttot =6:00/9:23/22:24/37:47 h, PH = 12,012 h,
Tmax-trip = 26:16 h. (d) C4d: (max trip time ≤ 15h), D1/D2/D3/Dtot =290/22/53/615 nm,
T1/T2/T3/Ttot =11:34/11:04/5:04/27:48 h, PH = 12,138 h, Tmax-trip = 11:34 h.

Algorithms 2023, 16, x FOR PEER REVIEW 18 of 28 
 

    
(a) C4a—Optimize D (b) C4b—Optimize PH (c) C4c—Optimize D and PH (d) C4d—Optimize D and PH 

Figure 11. Optimization results for case study C4 (up to two vessels from central ports and one 
from a hub node) (the colours in the numbers below correspond to those of the lines in the maps). 
(a) C4a: D1/D2/D3/Dtot = 0/347/228/575 nm, T1/T2/T3/Ttot = 0:00/14:11/21:56/36:07 h, PH = 18,683 h, 
Tmax-trip = 29:33 h. (b) C4b: D1/D2/D3/Dtot = 390/233/97/720 nm, T1/T2/T3/Ttot = 15:18/9:23/9:18/34:09 h, 
PH = 9863 h, Tmax-trip = 15:18 h. (c) C4c: D1/D2/D3/Dtot = 153/233/261/617 nm, T1/T2/T3/Ttot = 
6:00/9:23/22:24/37:47 h, PH = 12,012 h, Tmax-trip = 26:16 h. (d) C4d: (max trip time ≤ 15h), D1/D2/D3/Dtot 
= 290/22/53/615 nm, T1/T2/T3/Ttot = 11:34/11:04/5:04/27:48 h, PH = 12,138 h, Tmax-trip = 11:34 h. 

To gain a be er insight into the multi-objective optimization outcomes, several iter-
ations with varying sub-objective weights were conducted for case C3, and the results are 
depicted in Figure 12. It is interesting to note that in every case, a well-shaped Pareto 
front is developed with a main characteristic that there is an almost sharp (rather than 
gradual) adjustment to the ultimately lowest level of each objective parameter. In fact, it 
appears that each Pareto curve closely fits into two straight lines, indicating the lowest 
total traveling distance and the lowest cumulative passenger time, respectively. De-
pending on the hub selection, these lines may be shifted at different levels of perfor-
mance. For instance, selecting Limnos as the hub island (C3b), despite the efficiency 
concerning traveling distance, it cannot compete with other solutions in terms of total 
passenger hours spent on board. The reason is that the island is located well in the 
northern part of the cluster, and many passengers directed to the south have to make a 
wide deviation of the straight-line pathway. The automatic hub assignment in C3d has 
provided comparable results to those of the manual hub selection in the whole parameter 
range. 

 

500

600

700

800

900

1000

12,000 17,000 22,000 27,000

To
ta

l d
is

ta
nc

e 
(n

m
)

Total passenger time (hours)
C3a C3b C3c C3d

Figure 12. Distance and passenger time trade-off diagram for case C3.

In case C4, when minimizing the traveling distance (C4a), the algorithm results in a
solution with only two vessels in use and the passengers spending a significant amount of
time on board. On the other end, minimizing the total passenger hours (C4b) leads to a
rather extended traveling distance plan. Several solutions exist between these two extreme
cases that follow the trade-off between the two objectives (Figure 13), which can be devel-
oped by adjusting the relative weights in the objective function. A number of solutions
almost retain the minimum distance value to the left of the diagram; however, beyond
a point, an inclined and rather linear point pattern is developed along the Pareto front
describing the relation between traveling distance and passenger hours. The developed
solutions in C4c and C4d lie close to the turning point of the Pareto front. It is concluded
then that a full weight-related sensitivity analysis is necessary to fully understand the
solution’s effectiveness.
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Figure 13. Pareto front for scenario C4.

Figure 14 presents the Pareto curves developed after several runs of all scenarios
examined in the case study. The results indicate that routing only one vessel from the
central port to all island nodes (case C1) takes too long (in terms of both distance and time
spent on board) to serve the whole cluster. Instead, routing two vessels originating from
the central ports and without any intermediate hub (case C2) can better allocate island
service with a significant impact on passenger cumulative time but not on the traveling
distance. The introduction of a hub line along with a mainline from the central port (Case
C3) leads to observably improved solutions (compared to those of C1) in terms of both
decision parameters. Finally, the employment of additional vessels (case C4) can improve
the effectiveness but not in all regards. In particular, the total passenger time is reduced but
not the total distance traveled (compared to C3). In fact, if the goal is distance minimization,
this can be equally well facilitated by a two- or three-vessel configuration. The decision,
though on the appropriate number of vessels, does not solely rest on the optimization result
but is also related to constraints regarding ship availability and capacity in conjunction
with the travel demand.
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Figure 14. Pareto fronts for different case scenarios.

To obtain a wider picture of the solution space between the two main decision parame-
ters (i.e., total distance traveled D and cumulative passenger hours PH), Figure 14 presents
the point clouds of all solutions from the execution of the algorithm at different levels of
parameter weighting. Solving a particular weighting case study leads to a footprint-like
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point cloud between D and PH, indicating a roughly linear relationship between them. As
the weights w1 and w2 of Equation (1) are altered (after scalarizing the two parameters),
the produced point clouds are moved to an up-left and down-right direction (Figure 15a).
A full-range Pareto front is formed based on individual points corresponding to different
decision parameter weighting (Figure 15b).
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Figure 15. Traveled distance–cumulative passenger-hours point cloud across different runs: (a) full
set of values; (b) subset of best values embodied in the circle of (a).

Regarding computational requirements, the time needed for algorithm convergence
increases with the magnitude and complexity of the problem. Figure 16 depicts the typical
convergence curves for the four cases examined (C1 to C4). In general, the problem
complexity increases with the number of vessels and the potential hub nodes. This is why
the convergence speed drops from the simplest case (C1) to the most demanding one (C4).
Accordingly, the convergence time in a PC with common characteristics (Intel® Core ™
i7-7500, CPU 2.90 GHz, RAM 8.00 Gb) progressively increases and ranges from about a
minute (case C1) up to seven minutes for the most demanding case (C4).

Algorithms 2023, 16, x FOR PEER REVIEW 21 of 28 
 

™ i7-7500, CPU 2.90 GHz, RAM 8.00 Gb) progressively increases and ranges from about a 
minute (case C1) up to seven minutes for the most demanding case (C4).  

 
Figure 16. Convergence curves for optimizing traveling distance in cases C1 to C4. 

To examine the scalability of the proposed methodology, evaluating the 
Hub-and-Spoke modeling effect in SSS transportation and the algorithms’ robustness in 
providing efficient solutions for larger applications, an extension of the previous case 
study consisting of 49 ports of the same island cluster has been considered. The appro-
priate number of vessels for transferring passengers from the mainland to the cluster is 
four; thus, three alternative scenarios employing four, five and six vessels were tested. 
These scenarios are as follows: 
 C5: Four vessels depart from central ports (three from Piraeus and one from Rafina); 
 C6: Four vessels depart from central ports and one from a hub connector (selected by 

algorithm among several alternatives); 
 C7: Four vessels depart from central ports and two from hub connectors (selected by 

algorithm among several alternatives). 
In case C5, the optimal traveling distance is 1666 nm while the optimal passenger 

hours is 26,347. Due to the limited number of vessels, the longest route facilitates 18 ves-
sels. As the number of vessels increases, adding ferries from hub nodes (cases C6 and C7) 
decreases the traveling distance and passenger hours, resulting from the gradual split up 
of the flows after the passengers transfer deeply into the cluster. To avoid long-lasting 
trips, a constraint on the maximum number of intermediate stops is set at 20, 12, and 12 
stops for cases C5, C6, and C7, respectively. From the results presented in Table 2, it is 
concluded that by employing ferry boats from hub nodes, both the traveling distance and 
passenger hours decrease, providing a more comfortable journey to the passengers and 
reducing the traveling costs (fewer miles and partly involvement of smaller ferries with 
lower cost). An indicative travel plan for case C7b is schematically illustrated in Figure 
17. 

  

500

600

700

800

900

1000

1100

1200

1300

1400

00:00 03:00 06:00 09:00 12:00

Fi
tn

es
s 

va
lu

e 
(n

au
tic

al
 m

ile
s)

Running time (mm:ss)

C1

C2

C3

C4

Figure 16. Convergence curves for optimizing traveling distance in cases C1 to C4.



Algorithms 2023, 16, 379 21 of 27

To examine the scalability of the proposed methodology, evaluating the Hub-and-
Spoke modeling effect in SSS transportation and the algorithms’ robustness in providing
efficient solutions for larger applications, an extension of the previous case study consisting
of 49 ports of the same island cluster has been considered. The appropriate number of
vessels for transferring passengers from the mainland to the cluster is four; thus, three al-
ternative scenarios employing four, five and six vessels were tested. These scenarios are
as follows:

• C5: Four vessels depart from central ports (three from Piraeus and one from Rafina);
• C6: Four vessels depart from central ports and one from a hub connector (selected by

algorithm among several alternatives);
• C7: Four vessels depart from central ports and two from hub connectors (selected by

algorithm among several alternatives).

In case C5, the optimal traveling distance is 1666 nm while the optimal passenger
hours is 26,347. Due to the limited number of vessels, the longest route facilitates 18 vessels.
As the number of vessels increases, adding ferries from hub nodes (cases C6 and C7)
decreases the traveling distance and passenger hours, resulting from the gradual split up
of the flows after the passengers transfer deeply into the cluster. To avoid long-lasting trips,
a constraint on the maximum number of intermediate stops is set at 20, 12, and 12 stops for
cases C5, C6, and C7, respectively. From the results presented in Table 2, it is concluded
that by employing ferry boats from hub nodes, both the traveling distance and passenger
hours decrease, providing a more comfortable journey to the passengers and reducing the
traveling costs (fewer miles and partly involvement of smaller ferries with lower cost). An
indicative travel plan for case C7b is schematically illustrated in Figure 17.

Table 2. Results of case studies C5–C7.

MODEL

Case Performance
Measure

Traveling Distance (nm)
Passengers’

Hours
(hh:mm)

Vessels Travel Time
(hh:mm)

Islands per
Vessel

Islands/Routes/
Potential

Hub-Ports
Total Min Max Total Min Max Min Max

49/4/0

C5a D 1666 158 564 29,399 7:00 23:44 73:30 9 17

C5b PH 1823 179 669 26,347 7:46 26:37 81:40 8 18

C5c D–PH 1733 272 565 27,437 12:05 22:45 75:01 10 15

49/5/1

C6a D 1508 133 543 28,379 6:14 21:56 70:34 7 12

C6b PH 1617 98 586 22,920 8:11 23:31 72:41 6 12

C6c D–PH 1552 95 685 25,134 7:00 22:45 70:05 8 11

49/6/2

C7a D 1383 60 425 26,070 5:52 17:04 69:44 3 10

C7b PH 1731 60 518 22,591 5:52 20:30 81:30 3 11

C7c D–PH 1462 60 554 23,097 5:52 21:51 74:22 3 11

The selection of the appropriate number of vessels, in accordance with the number
of islands and passengers served, is important in optimizing the set goals. Conversely,
an ineffective solution may lead to a dramatic increase in the goal parameter values. To
account for such discrepancies, the special case of one vessel, corresponding to the simple
traveling salesman problem, is considered for the latter case of the 49 island cluster. The
total distance is not much increased since, when several vessels depart from the central
port, they travel in parallel for some distance before diverging to different directions. In
contrast, the cumulative passenger hours on board are three to five times larger than those
in Table 2, as indicated in Figure 18. In this extreme case, a trade-off analysis with different
sub-goal weights results in notable solution deviations and a well-structured Pareto front.
Indicatively, the total distance and passenger hours at the edges of the three point clouds
of solutions, derived by different weights of the optimization sub-goals, are (1912–67,210),
(1523–76,460), and (1415–108,710), respectively.
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Figure 18. Traveled distance–cumulative passenger hours point clouds at different weights of the
objective function (1) (w1 >> w2 in blue, w1 ≈ w2 in orange, w1 << w2 in green) (a) full set of values;
(b) subset of best values embodied in the circle of (a).

To further elaborate on the model effectiveness, three randomly generated instances
(not related to the previous case study with actual islands) with a gradually increased degree
of difficulty are tested to evaluate the algorithm performance in small-, medium-, and large-
scale problems. The small instance includes 15 islands to be served by 2 lines (routes) that
can be initiated from 3 alternative ports, the medium instance includes 50 islands and 6 lines
that can be initiated from 8 ports, and the large instance includes 100 islands and 12 lines
that can be initiated from 15 ports. The algorithm evaluation is performed at three distinct
optimization objectives of minimizing the traveling distance (D), the passenger hours (PH),
and the combination of them, respectively. Due to the stochastic process of the optimization
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search, three iterations for each scenario have been performed to provide an indication of
the solution variability.

The results shown in Table 3 indicate the algorithm’s robustness in solving small
instances as, in all cases, the optimization results rapidly and closely converge to specific
values. As the magnitude and complexity of the problem increase (medium and large-scale
instances), although the solution quality in terms of convergence is slightly reduced, the
algorithm remains capable of providing acceptable solutions. On the other hand, the
required computational time is substantially increased and is in the order of 20 and 80 min,
respectively. It is noted, however, that part of the required time is spent on the calculations
within the Excel environment.

Table 3. Algorithm evaluation results of randomly generated instances.

MODEL

Run Performance
Measure

Fitness
Function

Traveling
Distance

(nm)

Passenger
Hours

(hh:mm)

Number of
Trials Until

Best

Time until
Best Trial
(h:mm:ss)

Size
(Islands/Routes/

Potential
Hub-Ports)

Small (15/2/3)

1

D 378 378 6141:58 5191 0:01:26

PH 4080:00 441 4080:00 20,371 0:05:47

D–PH 2.11 383 4406:20 6905 0:02:24

2

D 375 375 5382:42 14,574 0:04:13

PH 4078:36 398 4078:36 4291 0:01:16

D–PH 2.12 408 4132:21 10,193 0:03:00

3

D 375 375 5382:42 4202 0:01:16

PH 4096:25 471 4096:25 25,868 0:06:56

D–PH 2.12 408 4132:21 19,055 0:05:10

Medium
(50/6/8)

1

D 897 897 37,126:24 41,568 0:18:59

PH 23,249:44 1435 23,249:44 56,717 0:21:25

D–PH 1.99 927 24,264:18 39,187 0:21:52

2

D 848 848 36,485:48 37,992 0:15:41

PH 24,435:08 1384 24,435:08 49,749 0:18:06

D–PH 2.09 1055 23,350:57 46,157 0:18:14

3

D 796 796 31,020:57 100,776 0:38:45

PH 24,844:08 1488 24,844:08 66,203 0:24:32

D–PH 1.99 998 22,566:19 49,420 0:18:50

Large
(100/12/15)

1

D 2669 2669 108,844:36 47,855 0:58:45

PH 53,924:45 3488 53,924:45 87,502 1:17:49

D–PH 2.07 2983 52,702:46 85,832 1:14:09

2

D 2365 2365 72,932:05 76,791 1:09:58

PH 53,416:51 3881 53,416:51 66,742 1:00:31

D–PH 2.25 3199 58,120:33 113,030 1:41:45

3

D 2775 2775 117,085:35 41,820 0:36:30

PH 50,638:18 3442 50,638:18 108,163 1:41:49

D–PH 2.23 3040 60,926:07 55,112 0:47:36

In terms of the variation in time requirement for obtaining the solution at different
application sizes (number of islands in the cluster), the time increase results from two fac-
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tors: the larger problem size and the larger solution space. Since the main operation in the
optimization process is ordering ports to be served by the vessels, the time requirement
appears to follow a slight exponential growth with the problem size. The results of Table 3
indicate average run times in the order of 4, 20, and 60 min for the cases of 15, 50, and
100 islands, respectively.

The current work has been developed upon certain assumptions that may be relaxed
in a later stage. In particular, it is assumed that passengers initiate their trips exclusively
from the mainland (which is effectively the case during the summer touristic period). In a
more general case, inclusion of internal passenger flows among cluster islands as well as
the consideration of vessel roundtrips with different passenger demand levels on return can
be considered. Both extensions can be inserted rather straightforwardly to the model along
with vessel capacity considerations (capacitated problem). Another research direction is to
introduce a fourth level of decision-making, allowing the algorithm to inherently optimize
the number and the type of the required vessels. Finally, the unavoidable uncertainties
in the input parameter values (e.g., demand fluctuation, delayed arrivals, etc.) may be
considered as part of a stochastic analysis.

As a final comment, although the proposed algorithm is designed and adapted to Short
Sea Shipment transportation particularities, it can find broader application in problems
where the objective is to efficiently regulate people or product flows (e.g., in the supply
chain and, more specifically, in the distribution of goods from the production lines to the
customers through either direct shipping or intermediate cross-dock terminals).

6. Conclusions

The Short Sea Shipping (SSS) problem for passenger transport involves multiple vessel
routes originating at a central port or at intermediary hubs through which passengers are
transferred to their final destination. The problem formulation contains elements of the
Hub-and-Spoke and Travelling Salesman structures, making it more demanding than the
typical H&S one, as the hub selection within nodes and the shortest routes among islands
are internal optimization goals. Considering, in addition, that the passenger flows change
along route nodes, the use of formal optimization seems rather imperative to provide
efficient routing solutions.

This work introduces a multi-objective trilevel optimization algorithm for the pas-
sengers’ Short Sea Shipping (SSS) problem, incorporating economic and non-economic
considerations. Besides the travel cost associated with the travel distance, the cumulative
passenger hours spent on board, the trip time for each passenger, the vessel route length,
and related constraints or preferences (e.g., service priority of specific islands) are con-
sidered to make the model as applicable to actual practice as possible. The optimization
outcome refers to the selection of hubs, the island groups that are served by each line, and
the corresponding service sequence. The mathematical formulation of the optimization
model has been structured in the form of matrix computations to simplify the internal
calculations and minimize the oversights in algorithm implementation.

The algorithm efficiency is demonstrated through several case studies of variable
size and operational scenarios based on a Short Sea Shipping network of the Aegean Sea
(Greece) and their connection with the mainland. The results indicate that the algorithm
provides rational and stable (repeatable) solutions in accordance with the desired objective,
the decision parameters and problem constraints. In particular, when the total distance
is to be minimized, the algorithm attempts to geographically divide the service region
and accordingly allocate the vessel routes within each region on the basis of the minimum
travel length. If the main objective is the minimization of the cumulative passenger hours
on board, islands with heavier traveler flows tend to be served in priority and with high-
speed vessels while islands with light flows are facilitated via intermediate hub nodes
and smaller ferries. The multi-objective consideration leads to solutions that are quite
scattered in the solution space, indicating the necessity of employing formal optimization
methods. In particular, the solution range in a typical Pareto diagram presents a variation
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in terms of the distance traveled in the order of 30 percent and more than 50 percent in
relation to the cumulative passenger hours. Evaluation results further indicate a satisfactory
algorithm performance in terms of result stability and computational time requirements.
More specifically, for small-sized problems, the algorithm convergence in general to the
same optimum solution in less than a few minutes. In larger-scale cases, the results are
adequately repeatable (all independent runs converge within 2% away from the best-found
values) while the computation time is in the order of 20 to 60 min.

Besides the application to the heavy passenger traffic of Greek islands, the proposed
formulation can also be applied in other island regions of the world, such as the Caribbean,
Indonesia, or the Baltic Sea. These networks have increased complexity, including densely
populated islands, sovereignty scattering across many nations, and dependencies that may
raise particular constraints and additional challenges in implementation. Furthermore,
although the algorithm focuses on passenger transportation, it presents sufficient flexibility
to facilitate cargo transportation in similar cases.

The proposed model is a special case of the H&S problem with emphasis on island
clusters that are served partly sequentially and partly through intermediate hubs. The
real-life case study indicates that the model may be applicable in practice. Further, the
matrix-based model formulation developed in the study facilitates the design and imple-
mentation of the corresponding algorithm not only in this particular application but also
(with appropriate modifications) in a number of applications, especially in other trans-
portation systems (e.g., interurban or long-distance bus transport from a large city to the
inland area) or in the supply chain (e.g., distributing goods from the production lines to the
customers through direct shipping or intermediate cross-docking terminals).

The current study focuses mainly on model development for handling the specific
problem. To develop a fully operational tool for practical use, additional parameters and
problem requirements should be considered. These enhancements have to do with the full
demand pattern that includes passenger traveling among islands, the availability of carriage
in number and capacities along with their cost, and the uncertainties associated with all
parameters involved. Another research direction is the evaluation of other evolutionary
types of algorithms (e.g., particle swarm, harmony search, simulated annealing, etc.)
coupled with algorithms for Pareto front development associated with evolutionary search
algorithms (e.g., NSGA-II).
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