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Abstract: This paper focuses on the joint estimation of parameters and time delays for multi-input
systems that contain unknown input delays and colored noise. A greedy pursuit hierarchical iteration
algorithm is proposed, which can reduce the estimation cost. Firstly, an over-parameterized approach
is employed to construct a sparse system model of multi-input systems even in the absence of prior
knowledge of time delays. Secondly, the hierarchical principle is applied to replace the unknown true
noise items with their estimation values, and a greedy pursuit search based on compressed sensing
is employed to find key parameters using limited sampled data. The greedy pursuit search can
effectively reduce the scale of the system model and improve the identification efficiency. Then, the
parameters and time delays can be estimated simultaneously while considering the known orders and
found locations of key parameters by utilizing iterative methods with limited sampled data. Finally,
some simulations are provided to illustrate the effectiveness of the presented algorithm in this paper.

Keywords: large-scale systems; time delays; parameter estimation; system identification;
hierarchical algorithm

1. Introduction

System identification is a crucial process in modern control theory that involves deter-
mining the mathematical model of a system based on its input–output measurement data.
The system identification is summarized and extended in references [1,2]. This modeling
and estimation technique help engineers to estimate parameters that characterize system
behavior, which can be used to design controllers for various applications. An efficient
identification method is very important. The performance analysis of some algorithms
for system identification is presented in [3], and some new identification methods based
on multi-innovation theory are presented in [4]. Moreover, this technique has numerous
practical applications across different fields such as aerospace engineering, robotics, and
chemical processing plants. With the development of modern science and technology,
the objects faced by system identification become increasingly complex. Those system
models are defined as large-scale systems such as complex networks, neural networks, and
artificial intelligence [5,6]. The parameter estimation of large-scale systems is an important
research direction in system identification, where the reduced-order and decomposition
are effective methods for identification of large-scale systems [7,8]. For instance, the neural
network or artificial intelligence, which can be regarded as a class of typical large-scale
systems, typically employ millions of interconnected neurons to simulate the brain. Simi-
larly, the complex dynamic network control systems, characterized by a significant number
of nodes and links, can also be considered as large-scale systems [9,10]. In conclusion,
system identification plays an essential role in modern control theory by providing accurate
mathematical models for complex systems. It allows us to predict outputs accurately while
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improving overall performance and efficiency across various systems. However, the diffi-
culty of identification will increase with the increasingly dimensionality of the large-scale
systems, which is a challenge that has to be faced in the future [11].

Large-scale systems usually contain a large number of variables. When these systems
have unknown input time delays, the model used to describe them often includes redun-
dant information. The identification problem for large-scale systems is typically divided
into two stages: first, test measures are taken to estimate the orders and time delays; second,
some identification algorithms are used to estimate the parameters. Therefore, traditional
methods require prior knowledge such as system orders and time delays before estimating
parameters. For example, the expectation maximization approach is used to estimate the
parameters when the system orders and time-delay are known [12], the Bayesian method is
used to estimate the system when the time-delay is known [13], and so does reference [14].
The least squares (LS) algorithms are widely used in large-scale system identification due
to their fast parameter convergence rate and high estimation accuracy. The hierarchical
LS iterative method is used to estimate the input nonlinear system [15,16], and the re-
cursive LS estimation method is applied to identify the output nonlinear systems [17].
However, it should be noted that applying these methods directly can be difficult because
there may be coupling items within large-scale systems. It is necessary to decouple the
system before parameter estimation. A common approach is to decompose large-scale
systems into some multi-variable subsystems; among these subsystems, multiple-input
multiple-output (MIMO) systems are a typical class of multi-variable system. The MIMO
systems can be decomposed into several single-input single-output (SISO) subsystems
using decomposition techniques. Then, each of those subsystems can be identified one by
one with enough sampled data [18], which comes with a huge computational cost. Another
alternative approach for decomposing MIMO systems is to break them down into several
multiple-input single-output (MISO) systems.

The identification problem of MISO systems has been extensively studied, and a
large number of effective research results are given. Along with the emergence of com-
pressed sensing (CS) in recent years, reference [19] gives the relevant basic of CS theory,
reference [20] mainly introduces the principle and application of CS, and reference [21]
presents the convergence of an interesting orthogonal matching pursuit (OMP) algorithm.
The CS theory provides a new idea and some useful methods for system identification.
For MISO systems that contain unknown input time delays, the parameter vector to be
identified of the system that is over-parameterized has high dimension and sparse charac-
teristics since the information vector contains unknown input delays. The CS is an effective
idea to solve the parameter estimation for sparse systems. Many scholars have carried out
research in related fields and achieved a series of results. Inspired by the greedy search
idea of the CS, some parameter identification algorithms for output error models were
designed by combining the auxiliary model and the hierarchical identification principle.
For MISO output error systems with unknown time-delays, reference [22] combines a high
dimensional and sparse estimation model with an auxiliary identification model to present
the auxiliary model iterative algorithm, which has less computational cost compared with
the auxiliary model least squires iterative, and reference [23] gives an auxiliary gradient
pursuit iterative algorithm using the gradient search principle to further reduce the amount
of computation. An iterative algorithm has been applied to achieve the estimation of time
delays and parameters for multivariate systems output error systems by combining basis
pursuit and auxiliary models in [24]. For MISO finite impulse response systems with input
time delays, reference [25] combines the gradient search and matching pursuit method
to give a gradient pursuit iterative algorithm and realize the parameters and time-delay
estimation, and the gradient pursuit iterative algorithm can reduce the computational
complexity compared with the traditional method. For nonlinear systems, a block-oriented
nonlinear system was parameterized into a linear identification model including a sparse
parameter vector, and the parameter estimation algorithm was presented by combining
the matching pursuit idea based on CS, the auxiliary model, and key variable separation
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technology in [26]. For nonlinear systems containing colored noise in general, an OMP
iterative method was presented to obtain the true parameters and time delays of an input
Hammerstein nonlinear system in [27].

In this article, the kernel matrix is constructed to normalize the information matrix
and satisfy the application conditions of compressed sensing, and a hierarchical iterative
algorithm based on a greedy pursuit search idea is investigated to realize the parameters
and time-delay estimation effectively at the same time [28]. The main innovations in this
article are listed as follows.

• The multi-variable systems model is recast based on the framework of CS by using
the hierarchical identification principle.

• The unknown true internal noise items of the recast sparse model in the presented al-
gorithm are replaced by their estimation values according to the hierarchical principle.

• The presented algorithm constructs a kernel matrix to find the locations of key param-
eters and reduce the estimated dimension and computational cost by using greedy
pursuit search, in which only limited sampled data are used.

• The parameters and time delays are estimated simultaneously by using the pre-
sented algorithm.

The remaining of this article is organized as follows. Section 2 introduces the multi-
input system model with unknown input delays and colored noise. In Section 3, a greedy
pursuit hierarchical iterative algorithm is given based on the over-parameterized sparse sys-
tem model. In Section 4, some simulation experiments are given to show the effectiveness
of the proposed method. Finally, Section 5 gives a summary of the content.

2. Systems Model

Consider the following systems shown in Figure 1.

u1(d)- t−τ1 - B1(t)
A(t)

?i+u2(d)- t−τ2 - B2(t)
A(t)

-

...
...

ur(d)- t−τr - Br(t)
A(t)

6

- i+
?
e(d)

F (t)
C(t)A(t)

?
-y(d)

Figure 1. The multi-input systems with input time delays and colored noise.

The systems can be depicted as

A(t)y(d) =
r

∑
i=1

t−τiBi(t)ui(d) +
F (t)
C(t) e(d), (1)

where ui(d)and y(d) are the available input and output sampled data, and e(d) is the noise
satisfying e(d) ∼ N(0, σ2), respectively. A(t),Bi(t), C(t),F (t) are

A(t) := 1 +
na

∑
j=1

ajt−j,Bi(t) :=
nbi

∑
j=1

bijt−j, C(t) := 1 +
nc

∑
j=1

cjt−j,F (t) := 1 +
n f

∑
j=1

f jt−j.

where na, nbi, nc, and n f are the system known orders and where the input time delay τi of
each channel is unknown.

Introduce the internal noise item w(d)

w(d) :=
F (t)
C(t) e(d) = −

nc

∑
j=1

cjw(d− j) +
n f

∑
j=1

f je(d− j) + e(d)
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= ϕT
n(d)θn + e(d), (2)

where

ϕn(d) := [−w(d− 1),−w(d− 2), · · · ,−w(d− nc), e(d− 1), e(d− 2), · · · , e(d− n f )]
T ∈ Rnc+n f , (3)

θn := [c1, c2, · · · , cnc , f1, f2, · · · , fn f ]
T ∈ Rnc+n f . (4)

The subscript n denotes noise.
Then, system model (1) can be rewritten as

y(d) = [1− A(t)]y(d) +
r

∑
i=1

t−τiBi(t)ui(d) + w(d). (5)

Since the time delay of each input channel is unknown, define the data regression
length l, which is large enough to satisfy l > max(τi + nbi). Define the over-parameterized
vector ϕs(t) and θs as

ϕs(d) := [ϕT
a(d),ϕ

T
b(d)]

T ∈ Rna+lr, (6)

θs := [θT
a, θT

b]
T ∈ Rna+lr, (7)

where

ϕa(d) := [−y(d− 1),−y(d− 2), · · · ,−y(d− na)]T ∈ Rna ,
ϕb(d) := [ϕT

b1(x),ϕT
b2(x), · · · ,ϕT

br(x)]T ∈ Rlr,
ϕbi(d) := [ui(d− 1), · · · , ui(d− τi), ui(d− τi − 1), · · · , ui(d− τi − nbi

), · · · , ui(d− l)]T ∈ Rl .
θa := [a1, a2, · · · , ana ]

T ∈ Rna ,
θb := [θT

b1, θT
b2, · · · , θT

br]
T ∈ Rlr, θbi := [0τi , bi1, bi2, · · · , binbi , 0l−τi−nbi

]T ∈ Rl , i = 1, 2, · · · , r.

The subscript s denotes the system, and 0x denotes the zero block where the subscript
means the number of zero elements.

Then, the following over-parameterized model can be indicated from Equation (5)

y(d) = ϕT
s(d)θs + w(d) = ϕT

s(d)θs +ϕT
n(d)θn + e(d)

= ϕT(d)θ+ e(d),
(8)

where
ϕ(d) := [ϕT

s(d),ϕ
T
n(d)]

T ∈ RN , N := na + lr + nc + n f ,
θ := [θT

s, θT
n]

T ∈ RN .

Consider the sampled data from d = 1 to d = L and define Y , Φ, E as

Y := [y(1), y(2), · · · , y(L)]T ∈ RL,
Φ := [ϕ(1),ϕ(2), · · · ,ϕ(L)]T ∈ RL×N ,
E := [e(1), e(2), · · · , e(L)]T ∈ RL.

The over-parameterized system model can be wrote as

Y = Φθ+ E. (9)

Minimize the following cost function

J(θ) :=
L

∑
j=1

[y(j)−ϕT(j)θ]2 = ETE,

and the LS estimation value of the parameter vector will be obtained by using the LS principle

θ̂ = (ΦTΦ)−1ΦTY . (10)
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Remark 1. It is worth noting that Equation (10) cannot estimate the parameter directly as ϕn(d)
contains unmeasurable internal noise items w(d) and e(d). In addition, the over-parameterized
sparse system model has a large dimension N. Directly adopting the least squares method requires the
sampled data to be much larger than the dimension N of the system model to achieve the satisfactory
estimation accuracy. In some extreme cases, it will lead to matrix S = [Φ̂

T
Φ̂]−1 singularity when

sufficient sampled data cannot be obtained. A large number of samples and high-dimensional matrix
operations will increase the estimation cost.

In order to achieve high efficiency of parameters and time-delay estimation, this paper
drives a greedy pursuit hierarchical iterative algorithm for system model (1) using limited
sampled data according to the sparse property of the over-parameterized system model.

3. Greedy Pursuit Hierarchical Iterative Parameter Estimation Algorithm

The sparsity property of the over-parameterized system model makes it possible to
identify the multi-input system with limited sampled data according to the compressed
sensing idea. System model (9) can be rewrote as

Y =
N

∑
j=1

φjθj + E, (11)

where φj and θj are the j-th column of Φ and the corresponding parameter in θ. According
to Equation (7), θ is sparse with a large number of zero elements and only contains a
small number of non-zero key parameters. When the locations of the key parameters are
found, the goal of reducing the dimensionality of the over-parameterized system model
can be achieved. This provides the possibility of using limited sampling data to realize the
parameters and time-delay estimation.

In order to meet the sparse recovery conditions, the information matrix Φ should be
normalized. Define the normalized transformation matrix T as

T :=


Φ(1) 0 · · · 0

0 Φ(2) · · · 0
... 0 . . . ...
0 0 · · ·Φ(N)


−1

∈ RN×N (12)

where Φ(j) =
√

∑L
i=1 Φ2

ij denotes the modulus of the jth column of Φ. Introducing T to
Equation (9), the following can be obtained:

Y = Ψϑ + E, (13)

where Ψ = ΦT , ϑ = T−1θ.
Let q be the inner iteration variable. Define the residual output as

rq := Y −ΨΛq ϑΛq . (14)

where Λq is an index set that is composed of the locations of the found key nonzero
parameters, ΨΛq is a sub-matrix of matrix Ψ, and ϑΛq is a non-zero parameter vector. Both
ΨΛq and ϑΛq are indexed by Λq. The sub-matrix ΨΛq is composed of the indexed columns
of the information matrix Ψ.

At the next internal iteration, define the following cost function and minimize it to
find location of one key parameter.

J(j) := ‖rq −ψjϑj‖2, (15)
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which lead to ϑj = ψjrq/‖ψj‖2
2. Plugged back ϑj into Equation (15), then we have

J(j) = minϑj ‖ψjϑj − rq‖2
2 = ‖

ψT
j rq

‖ψj‖
2
2
ψj − rq‖2

2

= ‖rq‖2
2 −

(ψT
j rq)2

‖ψi‖
2
2

= ‖rq‖2
2 − (ψT

j rq)2.
(16)

where ψj(j = 1, 2, · · · , N) is the column of the normalized matrix Ψ. From Equation (16),
the column most relevant to the last iteration residual rq can be found at next iteration.
That is, the minimum problem is equivalent to the largest inner product (in absolute
value) between the columns of Ψ and rq. The location of found column can be indicated
by the index

λq+1 = arg max
j=1,2,··· ,N

|〈rq, ψj〉|. (17)

Then, the index set and the index matrix can be updated according to Λq+1 := Λq ∪ λq+1.

Remark 2. Because w(d) and e(d) in the matrix Φ are unknown noise items. The above steps
from Equations (12)–(17) cannot be directly implemented since Φ contains some unknown items
according to Equation (2).

Replace the true unmeasurable values w(d) and e(d) with their last iteration estimate
by using the hierarchical principle [29]. Let k be the external iteration variable. θ̂k, θ̂k,s, θ̂k,n
are iteration estimates of θ, θs, θn, respectively. By replacing d with d− j in Equations (2)
and (8), the following results can be obtained:

w(d− j) = ϕT
n(d− j)θn + e(d− j), (18)

y(d− j) = ϕT
s(d− j)θs + w(d− j). (19)

Then, the unknown noise items w(d− j), e(d− j) can be replaced by their last estimate
ŵk−1(d− j), êk−1(d− j) based on Equation (3) and the hierarchical principle,

ϕ̂k,n(d) = [−ŵk−1(d− 1),−ŵk−1(d− 2), · · · ,−ŵk−1(d− nc),
êk−1(d− 1), êk−1(d− 2), · · · , êk−1(d− n f )]

T ∈ Rnc+n f .
(20)

Replace ϕT
n(d − j), θn, θs with their iteration estimates ϕ̂T

k,n(d − j), θ̂k,n, θ̂k,s in Equa-
tions (18) and (19); the estimation values of w(d− j) and e(d− j) at k-th iteration can be
achieved by

ŵk(d− j) = y(d− j)−ϕT
k,s(d− j)θ̂k,s, (21)

êk(d− j) = ŵk(d− j)− ϕ̂T
k,n(d− j)θ̂k,n. (22)

According to Equation (20), the estimation of information matrix Φ̂k can be denoted at
the k-th external iteration, where ϕ̂k(d) = [ϕT

s(d),ϕ̂
T
k,n(d)]

T.
Use Φ̂k to replace Φ in Equation (9). Construct the normalized transformation matrix

T̂ using Φ̂k based on Equation (12), and construct Ψ̂k according to Φ̂k and T̂ .
Then, Equations (14) and (15) can be expressed as

rk,q = Y − Ψ̂k,Λq ϑ̂k,Λq , (23)

λk,q = arg max
j=1,2,··· ,N

|〈rk,q−1, ψ̂j〉|, (24)
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where the double subscripts k, q denote that the key index at q inner iteration can be found
using the kth external iteration updated data.

Applying the index set to update the normalization sub-matrix, we have

Ψ̂k,Λq = Ψ̂k,Λq−1 ∪ ψ̂k,λq
, Λq = Λq−1 ∪ λq. (25)

Define a cost function as follows at the qth inner iteration to find the best parameter
estimation value

J(ϑk,Λq) = ‖rk,q‖2 = ‖Y − Ψ̂k,Λq ϑk,Λq‖
2. (26)

Minimize Equation (26), and the LS estimate can be obtained

ϑ̂k,Λq = [Ψ̂
T

k,Λq Ψ̂k,Λq ]
−1Ψ̂

T

k,Λq Y . (27)

Note that ϑ̂k,Λq ∈ Rq, using Λk,q and the transformation matrix T̂, the over-parameterized
sparse parameter vector can be obtained.

Then, the steps of the greedy pursuit hierarchical iterative (GPHI) algorithm are listed
as follows.

1. Define l and collect sampled data {ui(d), y(d): d = 1, 2, . . . , L} to form Y .
2. To initialize external iteration: let k = 1, θ̂ = 1N/p0, p0 = 106, ŵ0(d), ê0(d) be a

random number, and give allowable error ε and ε.
3. Form ϕ̂k,n(d) by Equation (20), and ϕ̂k(d) by

ϕ̂k(d) = [ϕT
s(d),ϕ̂

T
k,n(d)]

T. (28)

Using Equation (29), update Φ̂k, and using Equation (12) based on Φ̂k, construct T̂.
Then, construct Ψ̂k by using Φ̂k and T̂ .

4. Begin the internal iteration. Let q = 1, rk,0 = Y , and Λ0 = ∅, Ψ̂k,Λ0 = ∅.

(a) Find λq by Equation (24).
(b) Update Λq and Ψ̂k,Λq by Equation (25).
(c) Compute the parameter estimate ϑ̂k,Λq by Equation (27). Update residual rq by Equa-

tion (23).
(d) If ‖ϑ̂k,Λq − ϑ̂k,Λq−1‖ 6 ε, obtain ϑ̂k,Λq ; otherwise, increase q by 1 and go to step (a).

5. Recover parameter estimate θ̂k by

ϑ̂k,Λq ∈ Rp Λq
=⇒ ϑ̂k ∈ RN , θ̂k = T̂ ϑ̂k. (29)

Update noise estimates ŵk(d− j), êk(d− j) by Equations (21) and (22), and update the
noise estimation vectors ϕ̂k,n(d),ϕ̂k(d) using Equations (20) and (29), Φ̂k and Ψ̂k by

Φ̂k = [ϕ̂k(1),ϕ̂k(2), · · · ,ϕ̂k(L)]T, Ψ̂k = Φ̂kT̂ . (30)

6. If ‖θ̂k − θ̂k−1‖ 6 ε, complete the iteration stage and receive the final estimate θ̂;
otherwise, let k = k + 1 and turn to step 4.

The recovered parameter vector θ̂ has r + 1 zero blocks. With prior knowledge l and
orders na, nbi, nc, n f , time-delay estimates will be received by

τ̂1 = n1,
τ̂i = nj − (l − τ̂i−1 − nbj),

(31)

where nj(j = 2, 3, · · · , r) is the number of zero items in each zero block.
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4. Simulation Experiments

Experiment 1. Consider a multi-input system as follows:

A(t)y(d) =
5

∑
i=1

tτiBi(t)ui(d) +
F (t)
C(t) e(d),

A(t) = 1 + a1t−1 + a2t−2 = 1− 0.80t−1 + 0.60t−2,

B1(t) = b11t−1 + b12t−2 = 2.00t−1 − 1.20t−2,

B2(t) = b21t−1 + b22t−2 = −1.80t−1 − 0.90t−2,

B3(t) = b31t−1 + b32t−2 = 1.00t−1 + 0.50t−2,

C(t) = 1 + c1t−1 = 1 + 0.80t−1,

F (t) = 1 + f1t−1 = 1− 0.40t−1.

τ1 = 6, τ2 = 15, τ3 = 20.

Let l = 30; the true value of the parameter vector to be estimated is

θ = [−0.80, 0.60, 06, 2.00,−1.20, 037,−1.80,−0.90, 033, 1.00, 0.50, 08, 0.80,−0.40]T ∈ RN .

The {ui(d)} and {y(d)} are measurable. The e(d) ∼ N (0, σ2) is noise, and the noise
variances are taken to be σ2 = 0.502 and σ2 = 1.002, respectively. Take the sampled data
length L = 1000. The dimension of θ is N := na + lr + nc + n f = 94, where the sparsity is

K := na +
5
∑

i=1
nbi + nc + n f = 10.

Use the first 200 sampled data to estimate this experiment by applying the GPHI
algorithm, and the data from d = 200 to d = 500 are taken to verify the effectiveness of the
obtained results. Define parameter estimation error as δ := ‖θ̂k − θ‖/θ× 100%.

Noise variance is a commonly utilized metric for quantifying noise in measurement
data, with higher values indicating reduced accuracy and reliability of the measurements.
The impact of noise variance on parameter estimation accuracy cannot be overlooked. To
evaluate the robustness of the GPHI algorithm against noise interference, the different
noise variances σ2 = 0.502 and σ2 = 1.002 are applied.

The parameter estimates and estimation error δ versus iterative times k are shown
in Table 1 and Figure 2. From Figure 2, it can be seen that the estimation errors tend to
decrease as the iterative times increase under different noise variances. The parameter
estimates versus iterative times k are shown in Figures 3–6.

Table 1. The estimated parameter values and estimation errors of Experiment 1 with L = 200
(σ2 = 0.502, σ2 = 1.002).

σ2 k a1 a2 b11 b12 b21 b22 b31 b32 c1 f1 δ%

0.502

1 −0.7107 0.5090 1.9694 −1.0090 −1.8753 −1.0219 1.0790 0.5366 0.0000 0.0000 27.7831
2 −0.8717 0.6218 1.9681 −1.3473 −1.8160 −0.7010 1.0268 0.3843 0.9248 0.0000 15.8395
3 −0.7982 0.5895 1.9816 −1.1991 −1.7996 −0.8780 1.0396 0.4889 0.8053 0.0000 12.1355
5 −0.8052 0.5905 1.9772 −1.2174 −1.7890 −0.8756 1.0339 0.4876 0.7704 −0.2763 3.9074
8 −0.7905 0.5818 1.9615 −1.1770 −1.7950 −0.9001 1.0299 0.4972 0.7374 −0.4265 2.5213

1.002

1 −0.5319 0.3512 1.9279 −0.6311 −1.9520 −1.3414 1.1347 0.6812 0.0000 0.0000 40.4417
2 −1.1028 0.6513 1.9611 −1.7779 −1.8306 −0.1742 1.0516 0.0000 1.1758 0.0000 42.0247
3 −0.7517 0.6354 1.9523 −1.1405 −1.8269 −0.9556 1.1100 0.5334 0.6873 0.0000 16.0285
5 −0.8796 0.6296 1.9260 −1.3454 −1.8156 −0.7463 1.0452 0.4368 0.9477 0.0000 17.9049
8 −0.8218 0.5847 1.9238 −1.2333 −1.7917 −0.8439 1.0565 0.4663 0.7521 −0.4519 4.0108

True values −0.8000 0.6000 2.0000 −1.2000 −1.8000 −0.9000 1.0000 0.5000 0.8000 −0.4000

From Figures 3–6, it can be concluded that the estimated values gradually approach
the true values with the increase in iterative times under different noise variances.
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When noise variances are σ2 = 0.502 and σ2 = 1.002, the true outputs and estimated
outputs versus iterative times k are given in Figures 7 and 8, and a comparison of δ and the
different sampled data length is shown in Table 2. When the system is disturbed by different
noises, the estimated outputs can better match the true outputs and the bias of them is small—see
Figures 7 and 8.

With σ2 = 0.502 and L = 200, the locations of the estimated key non-zero parameters
are shown in Table 3.
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Figure 2. The estimation errors δ versus k of Experiment 1 with L = 200 (σ2 = 0.502, σ2 = 1.002).
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Figure 3. The estimated parameter values â1, â2, ĉ1, f̂1 versus k of Experiment 1 with L = 200
and σ2 = 0.502.
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Figure 4. The estimated parameter values b̂11, b̂12, b̂21, b̂22, b̂31, b̂32 versus k of Experiment 1 with
L = 200 and σ2 = 0.502.
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Figure 5. The estimated parameter values â1, â2, ĉ1, f̂1 versus k of Experiment 1 with L = 200
and σ2 = 1.002.
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Figure 6. The estimated parameter values b̂11, b̂12, b̂21, b̂22, b̂31, b̂32 versus k of Experiment 1 with
L = 200 and σ2 = 1.002.
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Figure 7. The true outputs, estimated outputs, and their bias of Experiment 1 with σ2 = 0.502.
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Figure 8. The true outputs, estimated outputs, and their bias of Experiment 1 with σ2 = 1.002.

Table 2. The estimation errors with different L and σ2.

Sampled Data Length L 400 500 600 700 800 1000

Estimation error δ(%)(σ2 = 0.502) 2.3931 2.591 2.0535 1.6165 1.9868 2.2789
Estimation error δ(%)(σ2 = 1.002) 6.1781 5.9393 4.1059 4.3916 3.6913 4.5132

Table 3. The locations of the estimated key non-zero parameters of Experiment 1 with L = 200
and σ2 = 0.502.

Parameter â1 â2 b̂11 b̂12 b̂21 b̂22 b̂31 b̂32 ĉ1 f̂1

Location 1 2 9 10 48 49 83 84 93 94

According to Table 3 and Equation (31), the time delays can be estimated

τ̂1 = n1 = 6,
τ̂2 = n2 − (l − τ̂1 − nb2) = 37− (30− 6− 2) = 15,
τ̂3 = n3 − (l − τ̂2 − nb3) = 33− (30− 15− 2) = 20.

(32)

Experiment 2. Consider the other multi-input system,

A(t)y(d) =
5

∑
i=1

tτi Bi(t)ui(d) +
F(t)
C(t)

e(d),

A(t) = 1 + a1t−1 + a2t−2 = 1 + 0.60t−1 + 0.4t−2,

B1(t) = b11t−1 + b12t−2 = 2.0t−1 − 1.3t−2,

B2(t) = b21t−1 + b22t−2 = 1.5t−1 − 0.9t−2,

B3(t) = b31t−1 + b32t−2 = −1.0t−1 + 0.5th−2,

B4(t) = b41t−1 + b42t−2 = −1.2t−1 + 0.6t−2,

B5(t) = b51t−1 + b52t−2 = 1.0t−1 − 0.8t−2,

C(t) = 1 + c1t−1 = 1 + 0.7t−1,

F(t) = 1 + f1t−1 = 1− 0.4t−1.

τ1 = 9, τ2 = 23, τ3 = 15, τ4 = 30, τ5 = 17.

Let the data regression length l = 50. The true parameter vector to be identified is

θ = [0.60, 0.40, 09, 2.00,−1.30, 062, 1.50,−0.90, 040,−1.00, 0.50, 063,−1.20, 0.60,
035, 1.00,−0.80, 031, 0.70,−0.40]T ∈ RN .
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The dimension of sparse parameter vector is N := na + lr + nc + n f = 254, where the

number of key non-zero parameters is K := na +
5
∑

i=1
nbi + nc + n f = 14. In this simulation,

take the length of measurable input and output data L = 1000. The data from d = 1 to
d = 250 are used to realize the parameters and time-delay estimation. The remaining
data from d = 250 to d = 500 are used to contrast the bias between the true outputs and
estimated outputs. The other constraints are similar with those in Experiment 1.

To show the advantages of the GPHI algorithm, the errors δ of the LSI and GPHI
algorithms versus the iteration times k are depicted in Figure 9, where sampled data length
L is 250 and noise variance is σ2 = 0.502. From Figure 9, it can be found that the GPHI
algorithm can achieve higher parameter estimation accuracy with limited sampled data.

When the noise variances are σ2 = 0.502, σ2 = 1.002, apply the GPHI algorithm.
The errors δ versus k are shown in Table 4 and Figure 10, and the parameter estimates
versus k are given in Figures 11–14. Under different noise variances, the algorithm can
achieve effective estimation accuracy of parameter estimation, and the parameter estimates
approach the true values with the increase in the iterative times. This shows that the GPHI
algorithm has certain robustness from Figures 10–14.

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5
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0.7

0.8

0.9

       k

  
  
 δ

LSI

GPHI

Figure 9. The estimation errors of the LSI and GPHI algorithms versus k of Experiment 2
(L = 250, σ2 = 0.502).

Table 4. The estimated parameter values of parameter and errors of Experiment 2 with L = 250
(σ2 = 0.502, σ2 = 1.002).

σ2 k a1 a2 b11 b12 b21 b22 b31 b32 b41 b42 b51 b52 c1 f1 δ%

0.502

1 0.7043 0.4193 1.9900 −1.1505 1.4756 −0.7222 −0.9542 0.3833 −1.2275 0.5137 0.9985 −0.6643 0.0000 0.0000 24.0379
2 0.5958 0.3868 1.9909 −1.3471 1.4534 −0.8632 −0.9999 0.4732 −1.1926 0.5949 1.0018 −0.7892 0.8209 0.0000 11.8417
3 0.5702 0.3731 1.9940 −1.4102 1.4709 −0.9009 −1.0007 0.5398 −1.1864 0.6208 0.9846 −0.8065 0.6720 −0.3408 3.8284
5 0.5937 0.3974 1.9985 −1.3644 1.4680 −0.8740 −1.0119 0.5066 −1.1964 0.5860 0.9948 −0.7824 0.6427 −0.4213 2.6627
8 0.5971 0.3944 1.9958 −1.3538 1.4675 −0.8662 −1.0131 0.5092 −1.1959 0.5802 0.9964 −0.7793 0.6478 −0.4059 2.4836

1.002

1 1.1487 0.5378 1.9923 −0.3923 1.5176 0.0000 −0.9743 0.0000 −1.1962 0.0000 0.9823 0.0000 0.0000 0.0000 68.7931
2 0.6610 0.3569 1.9489 −1.2599 1.4150 −0.7717 −1.0095 0.3747 −1.2543 0.5356 0.9832 −0.7020 0.7977 0.0000 15.6424
3 0.5342 0.3111 1.9775 −1.5040 1.4303 −0.9078 −0.9906 0.5777 −1.1896 0.6985 1.0027 −0.8310 0.7349 −0.2909 7.8178
5 0.5616 0.3767 2.0078 −1.4832 1.4422 −0.9073 −1.0159 0.5403 −1.2081 0.6244 0.9810 −0.8144 0.6377 −0.4610 5.8361
8 0.6041 0.3931 1.9989 −1.3938 1.4410 −0.8344 −1.0317 0.5114 −1.2076 0.5711 0.9894 −0.7675 0.6391 −0.4123 4.0277

True values 0.6000 0.4000 2.0000 −1.3000 1.5000 −0.9000 −1.0000 0.5000 −1.2000 0.6000 1.0000 −0.8000 0.7000 −0.4000

Apply the data from d = 250 to d = 500 to verify the outputs with different noise vari-
ances. The true outputs, estimated outputs, and their bias are shown in Figures 15 and 16,
respectively. Figures 15 and 16 show that the estimated output values can match the true
values of the system well with different noise variances.

The errors δ versus different sampled data length L are shown in Table 5 to verify the
validity of estimation accuracy under limited sampled data length. With σ2 = 0.502 and
L = 250, the key non-zero parameter location estimationsare given in Table 6.
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Figure 10. The estimation errors δ versus k of Experiment 2 with L = 250 and (σ2 = 0.502, σ2 = 1.002).
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Figure 11. The estimated parameter values â1, â2, b̂11, b̂12, b̂21, b̂22, ĉ1, f̂1 versus k of Experiment 2 with
L = 250 and σ2 = 0.502.
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Figure 12. The estimated parameter values b̂31, b̂32, b̂41, b̂42, b̂51, b̂52 versus k of Experiment 2 with
L = 250 and σ2 = 0.502.
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ĉ1

f̂1

b11

b12

b21

b22

a1
a2

c1

f1

 

 

estimated value

true value

Figure 13. The estimated parameter values â1, â2, b̂11, b̂12, b̂21, b̂22, ĉ1, f̂1 versus k of Experiment 2 with
L = 250 and σ2 = 1.002.
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Figure 14. The estimated parameter values b̂31, b̂32, b̂41, b̂42, b̂51, b̂52 versus k of Experiment 2 with
L = 250 and σ2 = 1.002.
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Figure 15. The true outputs, estimated outputs, and their bias of Experiment 2 with σ2 = 0.502.
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Figure 16. The true outputs, estimated outputs, and their bias of Experiment 2 with σ2 = 1.002.

Table 5. The parameter estimation errors with different L and σ2.

Sampled Data Length L 300 400 500 600 700 800 1000

Estimation error δ(%)(σ2 = 0.502) 2.3844 1.7831 1.9832 2.5122 2.4627 2.388 1.8807
Estimation error δ(%)(σ2 = 1.002) 3.641 3.2164 4.055 4.7375 4.5741 4.1934 3.2887

Table 6. The locations of the estimated key non-zero parameters of Experiment 2 with σ2 = 0.502

and L = 250.

Parameter â1 â2 b̂11 b̂12 b̂21 b̂22 b̂31 b̂32 b̂41 b̂42 b̂51 b̂52 ĉ1 f̂1

Location 1 2 12 13 76 77 118 119 183 184 220 221 253 254

According to Table 6 and Equation (31), the time delays of Experiment 2 can be estimated

τ̂1 = n1 = 9,

τ̂2 = n2 − (l − τ̂1 − nb2) = 62− (50− 9− 2) = 23,

τ̂3 = n3 − (l − τ̂2 − nb3) = 40− (50− 23− 2) = 15, (33)

τ̂4 = n4 − (l − τ̂3 − nb4) = 63− (50− 15− 2) = 30,

τ̂5 = n5 − (l − τ̂4 − nb5) = 35− (50− 30− 2) = 17.

Some results can be obtained from Figures 2–16 and Tables 1–6.

• With the increase in noise variance, the error of estimated parameter vector becomes
bigger, but the estimation accuracy is still higher. This shows that the GPHI algorithm
has certain robustness—see Figures 2 and 9 and Tables 1 and 4.

• Compared with the traditional LSI algorithm, the GPHI algorithm can use the limited
sampled data to achieve higher parameter estimation accuracy—see Figure 9.

• With different noise variances, the parameter estimates converge near the true val-
ues as the iterative times increase, which shows that GPHI algorithm has certain
robustness—see Figures 3–6 and 11–14.

• The estimation accuracy of using limited sampled data is close to that of using large
sampled data. This shows that the GPHI algorithm can realize parameter estimation
using limited sampled data—see Tables 2 and 5.

• The estimated outputs can match the true outputs well—see Figures 7, 8, 15 and 16.
• The GPHI algorithm can accurately find the locations of key non-zero parameters,

which shows that the GPHI algorithm can estimate the parameters and time delays
simultaneously—see Tables 3 and 6 and Equations (32) and (33).
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5. Conclusions

This paper solves the problem of the joint estimation of parameters and time delays
of a class of multi-input systems with colored noise by using limited sampled data. A
hierarchical compressed sensing framework is established, and an efficient greedy pursuit
hierarchical iterative algorithm is provided. Since the over-parameterized system model is
sparse, the locations of key non-zero parameters can be found by using the greedy search
method to reduce estimation cost, and the parameter estimates can be identified by using
the iterative method. The time delays can be estimated based on prior knowledge combined
with the structure of parameter estimates. Simulation examples demonstrate that the given
algorithm can efficiently estimate parameters and time delays simultaneously.
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