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Abstract: This study presents hybrid particle swarm optimization with quasi-Newton (HPSO-QN),
a hybrid optimization method for accurately identifying mechanical parameters in two-mass model
(2MM) systems. These systems are commonly used to model and control high-performance electric
drive systems with elastic joints, which are prevalent in modern industrial production. The proposed
method combines the global exploration capabilities of particle swarm optimization (PSO) with
the local exploitation abilities of the quasi-Newton (QN) method to precisely estimate the motor
and load inertias, shaft stiffness, and friction coefficients of the 2MM system. By integrating these
two optimization techniques, the HPSO-QN method exhibits superior accuracy and performance
compared to standard PSO algorithms. Experimental validation using a 2MM system demonstrates
the effectiveness of the proposed method in accurately identifying and improving the mechanical
parameters of these complex systems. The HPSO-QN method offers significant implications for
enhancing the modeling, performance, and stability of 2MM systems and can be extended to other
systems with flexible shafts and couplings. This study contributes to the development of accurate
and effective parameter identification methods for complex systems, emphasizing the crucial role of
precise parameter estimation in achieving optimal control performance and stability.

Keywords: parameter identification; two-mass model; electric drive systems; particle swarm optimization;
quasi-Newton method; hybrid optimization; stochastic algorithms; mechanical parameters; optimal
control performance; elastic joints

1. Introduction

Drive systems play a crucial role in modern industries, such as steel mills, wind
turbines, and industrial robots. Many of these systems can be represented as a model,
where the motor and load inertia are connected by a shaft. In such applications, low
mechanical resonance can occur due to the flexible shaft between the actuator and the load
inertia. This can cause undesirable problems in the mechanical coupling of the system
and decrease its performance [1–4]. To address these issues, the dynamics of these flexible
systems must be modeled as a two-mass or multi-mass system when designing the control
laws. However, incorrect calculations and assumptions of the parameters in these models
can be problematic when relying solely on the information provided in the manufacturer’s
datasheets [5–7]. Without knowledge of the inertia and shaft stiffness, it is difficult to
effectively suppress mechanical resonance. Identifying these parameters can help suppress
mechanical resonance, improve system response, and reduce tracking errors. Additionally,
these mechanical parameters may not be constant over time in some practical applications.
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A mechanical system with inertia disks distributed on the actuating motor and its load
side, connected by a flexible shaft between them, can be considered a 2MM system. A typi-
cal 2MM drive system exhibits resonant and anti-resonant frequencies when the system’s
frequency response is measured from the applied electromagnetic torque to the measured
speeds of the actuating motor. Over the years, numerous methods and approaches have
been developed and applied to extract the modal parameters of the system. The 2MM
model has been used to describe the mechanics of various systems, including rolling
mills [8], wind turbines [9], industrial robots [10], paper machines [11], and elevators [12].
Furthermore, the 2MM model has been employed in designing control laws to mitigate
harmful resonances in mechanical systems and improve dynamic accuracy.

Recent years have seen a rise in the application of artificial intelligence (AI), machine
learning (ML), and deep learning (DL) within the engineering and industrial electronics
sectors [13–15]. These methodologies are now commonly used for complex tasks such as
system identification, control, optimization, and fault diagnostics. For example, in power
electronics, AI is utilized in system design, control, and maintenance [13]. Deep learning,
a subset of ML, is making strides in fault diagnostics in electrical applications, contribut-
ing to improved system reliability [14]. Additionally, deep learning methods, such as
sparse autoencoders, have been successfully employed in improving the reconstruction
of fingerprint images, further expanding the scope of AI applications [16]. In fact, AI
and ML technologies hold promising prospects, but their wider adoption in industry and
society faces several challenges from both internal and external perspectives [15]. However,
solutions are being sought, and these techniques are being incorporated into traditional
engineering methods, such as model-based multivariable control systems [17]. In drive
systems, AI and ML offer advanced techniques for parameter identification and system
modeling, with applications like the use of dynamic neural networks for estimating nonlin-
ear friction [18]. The intersection of AI, ML, DL, and engineering indicates a new era in
industrial electronics, characterized by increased efficiency, robustness, and performance.

Parameter identification methods in the literature can be roughly divided into paramet-
ric and non-parametric methods. Parametric methods involve estimating the parameters of
the 2MM system’s transfer function polynomials in the time domain. On the other hand,
non-parametric methods utilize frequency response function (FRF) methods to estimate the
resonant frequencies, i.e., the modal parameters of the system. Many approaches have been
successfully applied for the parameter identification of 2MM systems. In [19], the authors
proposed an identification method that involves solving a weighted least squares problem
for an over-determined linear system derived from sampling the dynamic model along a
closed-loop tracking trajectory. An experimental study was conducted on a mechanical
system to validate the effectiveness of the proposed method. In [20], the authors proposed
a non-linear modeling approach based on the Hammerstein structure and used recursive
least squares to identify the mechanical parameters of the system, including Coulomb
friction and dead zones. They found that the non-linear approach performed better than
the linear approach for low-speed operation, where the non-linearities in the system had a
significant impact, resulting in a reduction in the identification error.

The following examples highlight some more identification methods, emphasizing
the similarities and differences amongst them. In [21], the authors studied closed-loop
identification procedures for multi-mass systems by comparing different identification
models, sampling periods, and model orders. Simulation and experimental results showed
that reducing the sampling time can limit high-frequency noise, improve the ratio of useful
signal to noise, and accurately localize the crucial points in the spectrum by limiting the
sampling frequency. In [4], Ke et al. proposed an identification method that combines
a Luenberger observer and the variable forgetting factor recursive least squares method
to accurately estimate the mechanical parameters of a 2MM system. This method was
compared with the standard forgetting factor recursive least squares method and found to
achieve good results with high identification accuracy in a short amount of time. In a study
by [22], a disturbance observer (DOB) method was proposed to identify the mechanical
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parameters of series elastic actuators (SEAs) modeled as 2MM systems. The identification
process was performed with two closed-loop motor position-tracking experiments, one for
identifying the motor-side parameters and spring stiffness, and one for the load-side param-
eters. Experimental results were provided to validate the proposed method, but the authors
noted that further investigation is needed due to non-negligible errors in the Coulomb
friction coefficient caused by high nonlinear frictions affecting the device. In [23], Villwock
and Pacas developed an identification method in the frequency domain that combines
the Welch method with the Levenberg–Marquardt algorithm to identify the parameters of
2MM and three-mass (3MM) systems. The results of this method were found to be effective
for the parameter identification of 2MM and 3MM systems, as well as more complex me-
chanical systems. In a study by Dhaouadi and Kubo [7], a technique was presented that
involves the repeated integration of data and the use of the recursive least squares method
to identify the mechanical parameters of a 2MM system. Numerical results demonstrated
that the estimated parameters converged to the actual transfer function parameters with
high accuracy.

An intriguing method was introduced by Nowopolski and Wicher [24], where they
used the standard particle swarm optimization (PSO) method to determine the mechanical
parameters of a 2MM system with backlash. The PSO is an optimization technique inspired
by the social behavior of birds flocking or fish schooling. It is a population-based stochastic
optimization algorithm designed to find the global optimum in a problem space. In the
context of parameter identification, the PSO algorithm is used to optimize a cost function
to determine the best system parameters. The authors compared the results obtained
using two different cost functions, and the experimental setup was excited using three
different excitation signals for the identification process. However, the cost functions used
resulted in relatively large errors, and the experimental results did not match the simulated
responses perfectly.

There are various hybrid techniques that incorporate PSO with other optimization
algorithms, with the aim of improving global search ability and convergence speed. This
has been demonstrated in hybrids that involve PSO with genetic algorithms (GAs), ant
colony optimization, and differential evolution. Each of these hybrids showed superior
performance compared to the standard PSO, finding wide applications in fields such as
engineering, finance, and image processing [25,26]. Specific strategies have been adopted
to enhance the social and cooperative aspects of PSO. For instance, the integration of GA
with PSO has been implemented in a few distinct ways. One approach involves using GA
and PSO either sequentially or in parallel, while another strategy involves the exchange
of the fittest particles between GA and PSO when run concurrently [27,28]. Some studies
have even employed a two-phase mechanism, where PSO accelerates evolution, and GA
ensures diversity [29]. Several innovative hybrid approaches have also been proposed.
These include a fuzzy approach that utilizes simple rules for decision making [30], a hy-
brid algorithm known as FAPSO that combines PSO with the firefly algorithm [31], and a
heuristic based on PSO and simulated annealing for resolving multi-objective problems
in network-based models [32]. A unique hybrid PSO method focuses specifically on esti-
mating the parameters of photovoltaic (PV) cells. This comes in response to the escalating
demand for renewable energy and the need for accurate PV cell models [33]. In a similar
vein, an adaptive simulated annealing-parallel particle swarm optimization (ASA-PPSO)
approach was developed, incorporating PSO with an infix condition that applies simulated
annealing (SA). Moreover, hybridizing differential evolution (DE) with PSO has been ex-
plored in various ways, one of which involves using DE to maneuver particles and thereby
enhance the convergence rate of PSO [26,34].

Hybrid optimization techniques that combine the strengths of gradient-based and
evolutionary algorithms have demonstrated excellent performance in finding satisfactory
solutions. One such method is the PSO-descent hybrid, developed by Coelho and Mari-
ani [35], which combines the global search ability of particle swarm optimization (PSO)
with the local search capability of the quasi-Newton method. The PSO algorithm runs until
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convergence, and then the quasi-Newton method is applied to the best solution found. This
hybrid approach has proven highly effective in solving the economic dispatch problem.
Another hybrid approach, GRPSO, developed by Wang et al. [36], merges the quasi-Newton
method and PSO to leverage the strengths of both algorithms. The hybrid begins by run-
ning the quasi-Newton method from a random starting point until a local minimum is
achieved, then initiates a population of random particles, and runs the PSO algorithm until
the global best particle surpasses the quasi-Newton method result. The PSO algorithm
is then stopped, and the global best particle is used to restart the quasi-Newton method.
This hybrid approach benefits from the local search capability of the quasi-Newton method
and the global search ability of the PSO algorithm, enabling it to escape local minima and
explore different regions of the search space. Results show that GRPSO is more efficient
and reliable than other methods compared to it [36].

While global search methods, such as PSO, are effective at finding the global optimum
in large search spaces, they can be less efficient when applied to local search. Gradient-
based methods, on the other hand, can be faster and more efficient in finding the optimal
solution in a local search space. However, gradient-based methods can struggle when
there are multiple local minima or the function being optimized is non-convex. As a re-
sult, finding the global optimum using only gradient-based methods can be challenging.
To address these issues, a hybrid approach that combines the strengths of both global
and local search methods is often employed. In this study, a hybrid approach combining
PSO and quasi-Newton was chosen because of the PSO algorithm’s ability to explore a
large search space and quasi-Newton’s efficiency in finding the optimal solution in a local
search space. Additionally, quasi-Newton methods are capable of handling non-linear
optimization problems and can converge to the global minimum, even when the function
being optimized is non-convex. Furthermore, quasi-Newton methods do not require the
computation of second-order partial derivatives, making them computationally more effi-
cient than traditional Newton methods. This is particularly important when dealing with
optimization problems involving large-scale systems.

Therefore, this paper presents a novel hybrid optimization method called HPSO-QN
for identifying the mechanical parameters of a 2MM system. The method combines PSO for
global exploration with quasi-Newton for local exploitation and estimates the mechanical
parameters, such as motor and load inertias, shaft stiffness, and viscous and Coulomb
friction coefficients on both the motor and load sides of the system. This work represents
a significant step forward from previous studies [2,3] that used various variants of PSO
for the parameter identification of a 2MM simulation. The most effective variant of PSO
was carefully selected and incorporated into the hybrid framework. We then explored
different versions of local search with the quasi-Newton method to reach the globally
optimal solution. The proposed method was validated using experimental results from
a 2MM system, and its estimated results were compared with those identified using the
frequency response function (FRF) method presented in [1].

The remainder of this paper is organized as follows. Section 2 presents the mathe-
matical model of the 2MM system. Section 3 presents the proposed identification method.
Section 4 describes the detailed experimental setup of the study. Section 5 focuses on the
analysis and discussion of the results obtained. Finally, conclusions are drawn in Section 6.

2. System Modeling

The 2MM system represents an actuating motor coupled to a mechanical system
with two lumped inertias connected by a low-stiffness shaft and couplings [7,18,37–40].
The block diagram in Figure 1 shows the 2MM system with its equivalent current control
loop. In this diagram, ire f is the reference current (A), Kt is the torque constant (N·m/A),
J1 is the equivalent motor-side inertia (kg·m2), and J2 is the equivalent load-side inertia
(kg·m2). The motor-side and load-side angular velocities are represented by ω1 and ω2,
respectively (rad/s). The inertias are coupled through a low-stiffness shaft Ks, which is
subjected to torsional torque τs (N·m). Here, the Coulomb friction on both sides is taken
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into account, while external forces are neglected, as the system is considered to move freely.
The following describes the mechanical dynamics of the 2MM system.

Figure 1. Open-loop control structure of two-mass model (2MM) system.

The mathematical model of the 2MM system is described by the following dynamic
equations:

J1
dω1

dt
= τm − B1ω1 − τs − C1sign(ω1) (1)

J2
dω2

dt
= τs − τl − B2ω2 − C2sign(ω2) (2)

τs = K(θ1 − θ2) (3)

To aid in the identification of system parameters using the proposed method, these
equations are normalized with respect to the rated speed and torque. Normalizing pa-
rameters is crucial in optimization methods, ensuring faster convergence, preventing
numerical instability, and enabling the consistent comparison of system performance. It
eliminates scale differences, improves interpretability, robustness, and result consistency.
Additionally, normalization facilitates uniform distribution in the search space, reducing
the likelihood of encountering local optima and enhancing optimization efficiency and
robustness [41,42]. The normalized parameters for the motor and load side inertias are
calculated as J1n = J1(ωrated/τrated) and J2n = J2(ωrated/τrated), respectively. The normal-
ized shaft stiffness is calculated as Kn = Kn/ωrated. The normalized Coulomb and viscous
friction coefficients for both the motor and load sides are calculated as C1n = C1/τrated,
C2n = C2/τrated, B1n = B1(ωrated/τrated), and B2n = B2(ωrated/τrated). The motor and load
speeds are normalized using ω1n = ω1/ωrated and ω2n = ω2/ωrated. The normalized equa-
tions are denoted with a subscript ‘n’ to indicate that they are normalized with respect to the
rated speed and torque of the actuator. This includes variables and parameters, such as the
normalized angular velocities (Ω1, Ω2), normalized angular positions (Θ1, Θ2), normalized
inertias (J1n, J2n), and normalized viscous damping and Coulomb friction coefficients (B1n,
B2n, C1n, C2n). Additionally, the normalized motor and load torques are represented by τmn
and τln, respectively, and the normalized shaft torsional torque is represented by τsn.

To analyze the system behavior, the transfer functions of the 2MM system can be
obtained by linearizing the system equations and assuming that the Coulomb friction is
small and can be neglected. The transfer functions of the system are given by

G1(s) =
Ω1(s)
τmn(s)

=
1

J2ns

[ B2n
J1n

s + Kn
J1n

s2 + B1n+B2n
J1n J2n

s + Kn
J1n J2n

]
(4)

G2(s) =
Ω2(s)
τmn(s)

=
1

J1ns

[ B1n
J2n

s + Kn
J2n

s2 + B1n+B2n
J1n J2n

s + Kn
J1n J2n

]
(5)

The parameters to be identified in the 2MM system include the normalized motor and
load inertias (J1n, J2n), the normalized torsional stiffness (Kn), the normalized Coulomb
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friction coefficients (C1n, C2n) and the normalized viscous damping coefficients (B1n, B2n).
These parameters can be represented in vector notation as given below:

θ = [J1n, J2n, Kn, C1n, C2n, B1n, B2n] (6)

The goal of parameter identification is to estimate the values of these parameters in
order to accurately model the 2MM system.

3. Proposed Identification Methods

This section presents our proposed parameter identification process for the 2MM
system, which involves the use of swept-sine signal excitation and error minimization
through a cost function. Each step of the process is described in the following subsections.

3.1. Excitation Signal

The 2MM system is excited using a swept-sine signal, also known as a periodic chirp,
with a duration Tf . The signal has a starting frequency f1, a final frequency f2, and an
amplitude A. The equation for the swept sine signal is given by

x(t) = A sin

(
2π

(
1
2
( f2 − f1)

t2

Tf
+ f1t

))
(7)

where t ranges from T0 to Tf .

3.2. Cost Function

The objective of the parameter identification process is to minimize the mean square
error between the actual and estimated angular velocities of the 2MM system. This is
achieved through a cost function (Fcost) defined as follows:

Fcost =
1
N

N

∑
i=1

(
(Ω1 − Ω̂1)

2 + (Ω2 − Ω̂2)
2
)

(8)

where Ω̂1 and Ω̂2 represent the estimated normalized motor and load angular velocities,
respectively. N denotes the number of data samples used for parameter identification.

3.3. Particle Swarm Optimization

Particle swarm optimization (PSO) is a meta-heuristic optimization algorithm that was
developed by Kennedy and Eberhart in 1995 [43]. It is a population-based algorithm that
simulates the social behavior observed in swarms of biological individuals, such as flocking
birds and insects searching for food sources [44]. The PSO algorithm is easy to implement
and has been applied to a wide range of scientific and engineering problems [44,45].

In the PSO algorithm, a swarm of particles (NPSO) is initialized randomly within
a search space defined by upper (xmax) and lower (xmin) bound limits. Each particle is
evaluated against a pre-defined cost function (Fcost) to search for an optimal solution.
The particles update their velocity vectors, which control their movement in the next itera-
tion [43–46]. The velocity updates are influenced by two key factors: personal best (pBest)
and global best (gBest). The pBest represents the best solution found by an individual
particle, indicating its optimal position within the search space. The gBest refers to the best
solution discovered by any particle in the entire swarm, representing the overall optimal
position identified by the collective behavior of the swarm. The velocity and position of
each particle are updated as follows [45,46]:

vk+1(i) = vk(i) + c1r1(pBestk(i)− xk(i)) + c2r2(gBestk − xk(i)) (9)

xk+1(i) = xk(i) + vk+1(i) (10)
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where i denotes the current particle; c1 and c2 are the acceleration coefficients for pBest and
gBest terms; and r1 and r2 are random numbers generated by uniform distribution in the
interval [0, 1] [45,46]. The PSO offers several advantages that make it suitable for various
optimization problems. It excels at quickly finding solutions, even in high-dimensional
search spaces, and is capable of handling complex and noisy optimization problems [45].
Additionally, the PSO has the ability to adapt to changes in the optimization landscape,
allowing it to continue searching for better solutions, even when the search space becomes
more challenging [47]. However, the PSO also has some limitations. One of the main
drawbacks of the PSO is its tendency to get attracted to sub-optimal solutions that are not
globally optimal [48]. This can result in premature convergence, where the particles get
trapped in a locally optimal solution and continue to search within reduced and limited
regions of the search space. Moreover, the performance of the PSO algorithm is sensitive to
the selection of control parameters, such as the inertia weight and acceleration constants.
Inappropriate parameter choices can lead to poor performance and potential convergence
to sub-optimal solutions [49].

To enhance the performance of PSO and address its limitations, various PSO variants
have been developed, such as constriction PSO, adaptive inertia weight PSO, and hybrid
PSO [50,51]. These variants incorporate additional strategies like dynamic control of the
inertia weight, self-adaptive acceleration constants, and hybridization with other opti-
mization methods. Some prior studies have explored variants such as constricted PSO
with linearly decreasing inertia weight, adaptive weight factor PSO, and chaos initialized
PSO for the identification of 2MM systems [2,3]. Among these, constricted PSO with a
linearly decreasing inertia weight showed particularly promising performance, making it
our selected base PSO variant for the hybrid framework. For more detailed information
on these PSO variants and their application in 2MM system identification, readers are
encouraged to refer to [2,3].

3.3.1. Linearly Decreasing Inertia Weight

The inertia weight plays a crucial role in guiding the exploration and exploitation
processes in the PSO algorithm. One method for dynamically adjusting the inertia weight
is the linearly decreasing time-varying inertia weight [52]. This method iteratively adjusts
the inertia weight using Equation (11) as follows:

wk =
wmax − wmin

kmax
(kmax − k) + wmax (11)

Here, the suggested values for wmax and wmin are 0.9 and 0.4, respectively. Empirical
studies have shown that this method can produce good results when the inertia weight is
decreased from a high initial value (e.g., 0.9) to a lower value (e.g., 0.4) as the optimization
progresses [52]. However, it is important to note that selecting an unsuitable value for the
inertia weight can impede convergence or result in sub-optimal solutions.

3.3.2. Constriction Factor

The constriction factor method, also known as the constriction coefficient method,
was introduced by Clerc et al. [53] to improve the convergence and stability of the PSO
algorithm. It involves the use of factor ℵ, which can be calculated using Equation (12)
as follows:

ℵ =
2∣∣∣2− ϕ−
√

ϕ2 − 4ϕ
∣∣∣ (12)

where ϕ = c1 + c2, ϕ > 4. The constriction factor is inversely proportional to ϕ, so when ϕ
is set to 4.1, for example, the constriction factor becomes 0.73. This value is then multiplied
by the three terms in Equation (9): the velocity, pBest, and gBest. Empirical studies have
shown that the constriction factor method can improve the performance of PSO compared
to the original algorithm. However, it does not offer a mechanism for preventing premature
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convergence, which can occur when the optimization process reaches a satisfactory solution
before fully exploring the search space.

The updated velocity equation incorporating the inertia weight and the constriction
factor is as follows:

vk+1(i) = ℵ(wkvk(i) + c1r1(pBestk(i)− xk(i)) + c2r2(gBestk − xk(i))) (13)

In this research, the selected variant of PSO is referred to as the standard PSO (SPSO)
for comparison with the hybrid methods. The SPSO will be integrated with the QN method
to create a hybrid approach. The pseudo-code of the SPSO algorithm is presented in
Algorithm 1. The algorithm will terminate when the maximum number of iterations (kmax)
is reached.

Algorithm 1 SPSO.

Require: N, kmax, xmin, xmax, wmin, wmax, ϕ, c1, and c2
1: Set k = 0, randomly initialize particles’ positions xi(k) and velocities vi(k)
2: for each particle Pi(k), i = 1, 2, . . . , N do
3: Set pBesti(0) = xi(0), gBest(0) = pBest1(0)
4: end for
5: repeat
6: set k = k + 1
7: for each particle Pi(k), i = 1, 2, . . . , N do
8: Evaluate Fcost(xi(k)) using Equation (8)
9: if Fcost(xi(k)) < Fcost(pBesti(k)) then

10: pBesti(k) = xi(k)
11: end if
12: if Fcost(pBesti(k)) < Fcost(gBest(k)) then
13: gBest(k) = pBesti(k)
14: end if
15: Update velocity vi(k + 1) and position xi(k + 1) using Equations (13) and (10)
16: end for
17: until SPSO termination criterion is satisfied

3.4. Quasi-Newton Method

The quasi-Newton (QN) method is a powerful gradient-based optimization algorithm
that leverages information about the curvature of a cost function to iteratively find its
minimum value. It approximates the Hessian matrix at each iteration and performs a cubic
line search procedure to enhance the solution obtained. The QN method is particularly
useful when the direct calculation of the Hessian matrix is difficult or impractical [54–57].
By incorporating the QN method into the optimization process, the algorithm benefits
from improved local optimization capabilities, increasing the likelihood of finding an
optimal solution.

At each iteration, the QN method constructs a quadratic model using curvature
information. The optimal solution of this quadratic model denoted as x∗ can be represented
as follows:

x∗ = −H−1 · ∇ fk (14)

where H is a positive definite symmetric matrix (the Hessian), and ∇ fk is the gradient of f
at the point xk [55,56]. To update the Hessian matrix H, the QN method uses the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method, which gives the following formula [55]:

Hk+1 = Hk +
ykyT

k
yT

k sk
−

HksksT
k HT

k
sT

k Hksk
(15)

where sk and yk are calculated as follows:
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sk = xk+1 − xk

yk = ∇ fk+1 −∇ fk
(16)

Here, sk represents the change in the independent variable x, and yk represents the
change in the gradient. The Hessian matrix H can be initialized as any symmetric positive
definite matrix, such as the identity matrix I. To avoid inverting H, the BFGS method and
the Davidon–Fletcher–Powell (DFP) method use formulas that approximate the inverse
Hessian at each update rather than inverting H directly. The BFGS method uses the updat-
ing formula shown above to approximate the Hessian matrix H, while the DFP method uses
the same updating formula but substitutes yk for sk to calculate the approximate inverse
Hessian H−1 [55]. The inverse Hessian matrix H−1

k+1 can be calculated as follows:

H−1
k+1 = H−1

k +
sksT

k
sT

k yk
−

H−1
k ykyT

k H−1
k

yT
k H−1

k yk
(17)

Equation (17) approximates the inverse Hessian matrix in the DFP method. The BFGS
method uses a similar updating formula but substitutes yk for sk in the equation. Both the
BFGS and DFP methods avoid directly inverting the Hessian matrix H by employing these
formulas to approximate the inverse Hessian at each iteration [55,56].

At each k-th iteration, a line search is performed in the direction dk, which is calculated
as follows [55,56]:

dk = −H−1
k · ∇ f (xk) (18)

The next solution xk+1 is calculated as follows:

xk+1 = xk + αkdk (19)

where xk represents the current iterate, dk is the search direction, and αk is a scalar step
length parameter chosen to satisfy the Wolfe conditions [55,56].

The pseudo-code of the QN (BFGS) method is presented in the method in Algorithm 2.
It utilizes the BFGS updating formula to approximate the Hessian matrix H, and the
convergence tolerance ε is used to check the stopping criteria. The line search procedure
determines the step size αk at each iteration. It is worth noting that QN methods exhibit a
fast convergence rate and are relatively easy to implement. However, they require a good
initial guess and are limited to finding the local minima in multimodal problems [55,56].

Algorithm 2 QN (BFGS).

Require: Given starting point x0, convergence tolerance ε > 0
1: set k = 0, H0 = I
2: while ||∇ fk|| > ε do
3: Compute search direction, dk = −Hk · ∇ fk
4: Compute next solution, xk+1 = xk + αkdk using line search
5: Define sk = xk+1 − xk, yk = ∇ fk+1 −∇ fk
6: Compute Hk+1 using Equation (15)
7: set k = k + 1.
8: end while

The built-in MATLAB function ‘fminunc’ is commonly utilized for solving optimiza-
tion problems [58,59]. It utilizes the QN method as the default optimization algorithm and
is designed to be robust and efficient. ‘fminunc’ can handle various optimization problems,
including non-smooth and non-convex functions, providing flexibility for solving different
types of optimization problems [58,59].
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3.5. Proposed Hybrid Methods

To overcome the limitations of the PSO method and enhance its solution refinement
capabilities, we introduce a new hybrid approach, the HPSO-QN method. This method
merges the global search capability of PSO with the fast convergence and local search
proficiency of the quasi-Newton method. While PSO is known for its global search capabil-
ity, it can be slow to converge and prone to getting trapped in locally optimal solutions.
Conversely, the quasi-Newton method offers fast convergence but is limited to the local
minima on multi-modal problems and is sensitive to initial conditions.

Drawing inspiration from the successes of previous hybrid techniques [35,36,60,61],
our proposed hybrid approach employs both the PSO and QN algorithms to identify the
mechanical parameters of the 2MM. Unlike standard PSO algorithms, this hybrid method
leverages the PSO algorithm’s strength for global search and the QN method’s efficiency
in local search. Initially, the PSO identifies a potential global optimal region in the search
space, after which the algorithm switches to the QN method for more rapid convergence
and solution refinement. This approach combines the benefits of both global and local
search methods, incorporating a stopping criterion to avoid being trapped in local minima.

Diversifying the approach further, we introduce three variations of the HPSO-QN
method. Each variant begins with the PSO to find an initial gBest solution, which then
serves as the starting point for the QN method. The key difference between these methods
lies in their strategies to select particles for a second run of the PSO algorithm after the QN
method has identified a minimum. These strategies provide new approaches to hybridizing
the PSO and QN methods, leveraging the strengths of each, while mitigating their limitations.
The following bullet points provide a brief outline of these proposed methods:

1. HPSO-QN Sequential Method: PSO finds the gBest solution, which is then improved
by QN.

2. HPSO-QN Single Local Search Method: PSO uses a stopping criterion to find the
gBest solution, which is then refined by the QN method.

3. HPSO-QN Multi Local Search Method: SPSO is used until a stopping criterion is met,
then a percentage of the best particles are selected and improved using the QN method.

3.5.1. HPSO-QN Sequential Method

In the HPSO-QN sequential method (SM), PSO is utilized to find the gBest solution.
The pseudo-code of the HPSO-QN SM algorithm is presented in Algorithm 3. In the same
iteration, this solution serves as the starting point for the QN method. If the QN method’s
solution is better than that of the PSO, the gBest solution from PSO is replaced with the
solution from the QN method. This method improves the gBest solution obtained from the
PSO algorithm with each iteration by balancing the exploration of the search space by PSO
and the exploitation of the local minima by the QN method, thus enhancing both the local
and global searches in each iteration.

3.5.2. HPSO-QN Single Local Search Method

In the second method, the HPSO-QN single local search method (SLSM), a stopping
criterion is introduced to enhance the exploration of the search space by the PSO algorithm.
This criterion allows the PSO algorithm to discover the gBest solution. Once this criterion
is met, the gBest solution serves as the starting point for the QN method before moving on
to the next PSO iteration. The QN method then performs a local search on this solution to
further improve it. The stopping criterion is defined as follows:

∆Fcost =

∣∣∣∣∣ (Fcost(gBestk)− Fcost(gBestk−1)

Fcost(gBestk−1)

∣∣∣∣∣× 100, ∆Fcost < Fth (20)

Here, Fth represents the user-defined threshold limit. This stopping criterion ensures
a balance between exploration and exploitation, facilitating faster convergence and more
precise solutions. By refining the PSO-found solution with QN, the chances of discovering
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the true global minimum are increased, resulting in more efficient search space exploration.
The pseudo-code of the HPSO-QN SLSM algorithm is presented in Algorithm 4.

Algorithm 3 HPSO-QN Sequential Method.

Require: NPSO, kmax, xmin, xmax, wmin, wmax, ϕ, c1, and c2
1: Set k = 0, randomly initialize particles’ positions xi(k) and velocities vi(k)
2: repeat
3: set k = k + 1.
4: for each particle Pk(i), i = 1, 2, ..NPSO do
5: Evaluate Fcost(xk(i)) using Equation (8)
6: Update pBestk(i) and gBestk as shown in Algorithm 1
7: Calculate vk+1(i) and xk+1(i) using Equations (13) and (10)
8: end for
9: x0 = gBestk

10: QN = f minunc(Fcost(x), x0, ‘Algorithm’, ‘quasi-newton’)
11: if Fcost(QN) < Fcost(gBestk) then gBestk = QN
12: end if
13: until the termination criterion is met

Algorithm 4 HPSO-QN single local search method.

Require: NPSO, kmax, xmin, xmax, wmin, wmax, ϕ, c1, c2 and Fth
1: Set k = 0, randomly initialize particles’ positions xi(k) and velocities vi(k)
2: repeat
3: set k = k + 1.
4: for each particle Pk(i), i = 1, 2, ..NP do
5: Evaluate Fcost(xk(i)) using Equation (8)
6: Update pBestk(i) and gBestk as shown in Algorithm 1
7: Calculate vk+1(i) and xk+1(i) using Equations (13) and (10)
8: end for
9: if ∆Fcost < Fth then

10: x0 = gBestk
11: QN = f minunc(Fcost(x), x0, ’Algorithm’, ’quasi-newton’)
12: if Fcost(QN) < Fcost(gBestk) then gBestk = QN
13: end if
14: end if
15: until the termination criterion is met

3.5.3. HPSO-QN Multi Local Search Method

The third method, the HPSO-QN multi local search method (MLSM), improves upon
the previous HPSO-QN SLSM by incorporating a new approach for balancing global and
local search. The algorithm begins with the SPSO algorithm until a predefined stopping
criterion is reached. Then, a specified percentage of the best particles is selected for the QN
method, allowing the algorithm to focus on multiple promising solutions. The selected
particles are determined by

NQN = NPSO × B (21)

where B represents the percentage of selected best particles and NPSO denotes the total
number of particles in the PSO algorithm. The QN method is then applied to each selected
particle, and the gBest solution is replaced by the best solution found among the selected
particles. This hybrid approach achieves a balance between global and local search by
utilizing PSO to explore the search space and identify promising solutions, while QN fine
tunes these solutions, increasing the likelihood of finding the global minimum. The pseudo-
code of the HPSO-QN MLSM algorithm is presented in Algorithm 5.
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Algorithm 5 HPSO-QN Multi Local Search Method.

Require: NPSO, NQN , kmax, xmin, xmax, wmin, wmax, ϕ, c1, c2 and Fth
1: Set k = 0, randomly initialize particles’ positions xi(k) and velocities vi(k)
2: repeat
3: set k = k + 1.
4: for each particle Pk(i), i = 1, 2, ..NPSO do
5: Evaluate Fcost(xk(i)) using Equation (8)
6: Update pBestk(i) and gBestk as shown in Algorithm 1
7: Calculate vk+1(i) and xk+1(i) using Equations (13) and (10)
8: end for
9: Select NQN particles for QN local search

10: for each particle Q(j), j = 1, 2, ..NQN do
11: x0(j) = pBestk(j)
12: QN(j) = f minunc(Fcost(x), x0(j), ‘Algorithm’, ‘quasi-newton’)
13: if Fcost(QN(j)) < Fcost(gBestk) then gBestk = QN(j)
14: end if
15: end for
16: until the termination criterion is met

The proposed methods were implemented and evaluated on a computer system with
the following specifications: 16 GB of RAM, a 64-bit operating system, and an Intel(R)
Xeon(R) E-2124 CPU @ 3.30GHz processor. The simulations were conducted using Matlab
2023a software [58].

4. Experimental Setup

The experimental setup for the 2MM Flexible Drive System is illustrated in Figure 2.
It includes two incremental encoders for measuring the motor and load speeds, as well
as a current sensor for measuring the armature current. Real-time control is achieved
using the dSPACE DS1401/1512/1513 MicroAutobox II controller, which interfaces with
MATLAB/Simulink and Control-Desk.

The system comprises an actuating motor on the left side, connected to an inertia
disk, a flexible coupling, an encoder, and another inertia disk, forming the first mass.
On the right side, there is the second mass, an inertia load connected to a load motor.
The actuating motor used in this research is a Buhler DC Motor of model 1.13.075.214.
High-resolution encoders with 40,000 PPR are used to measure the angular speeds of the
masses. The inertias are supported by ball bearings and interconnected by a torsional shaft.

Actuator Encoder

Motor-side Inertia Load-side Inertia

EncoderShaft

Figure 2. The two-mass model (2MM) experimental platform.

To facilitate the identification process, an open-loop current controller with hysteresis
current control was implemented in MATLAB/Simulink and later deployed to the dSPACE
controller. The hysteresis current controller is sampled at a rate of 20 µs, while the speed
measurements are sampled every 1 ms. Figure 3 shows the overall system block diagram,
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including the hysteresis current controller implementation. In current control mode, the dy-
namic equation does not explicitly include electrical components like resistance Ra and
inductance La. The current controller effectively handles these parameters to account for
their impact on system dynamics.

dSPACE MicroAutobox II

H-Bridge

Figure 3. Block diagram illustrating the overall system configuration of the two-mass model (2MM).

The 2MM system was excited by periodic chirp input current signals with frequencies
ranging from f1 = 1 Hz to f2 = 40 Hz, an amplitude current of A = 3 A, and a time
duration ranging from T0 = 0 s to Tf = 3 s. Previous research was conducted to iden-
tify the parameters of the system. These analyses involved identifying the inertias and
stiffness of the system through frequency domain analysis, as well as determining the
friction coefficients through time domain analysis [1,2]. In the time domain identification,
the friction coefficients for both the motor and load sides were estimated individually.
The approach described in [62] was utilized, which involved using a ramp function as the
torque input and performing numerical analysis on speed and torque data to estimate the
viscous friction coefficient and Coulomb friction coefficient. For more detailed information
on the identification techniques used, interested readers are encouraged to refer to the
mentioned papers [1,2,62]. The parameters identified in our previous research serve as
benchmarks for comparing the results obtained from the proposed methods. In this study,
we normalized these parameters using the rated values of the DC motor provided in the
datasheet. This normalization improves the interpretability, robustness, and consistency
of the results, as well as the numerical stability of the simulation models. The identified
benchmark parameters of the 2MM system are presented in Table 1, both in their SI units
and normalized units.

Table 1. Benchmark parameters of the two-mass model (2MM).

Parameter SI Units Normalized Units

Motor Inertia (J1) 1.5602× 10−3 kg·m2 0.8713 s
Load Inertia (J2) 1.3966× 10−3 kg·m2 0.7799 s

Shaft stiffness (K) 19.4840 N·m/rad 10,881.9233 p.u.
Motor Coulomb Friction (C1) 0.0182 N·m 0.0304 p.u.
Load Coulomb Friction (C2) 0.0162 N·m 0.0271 p.u.
Motor Viscous Friction (B1) 3.7167× 10−3 N·m/rad·s 2.0759 p.u.
Load Viscous Friction (B2) 3.5530× 10−3 N·m/rad·s 1.9844 p.u.

5. Results and Discussion

To evaluate the effectiveness of the proposed hybrid PSO methods, we conducted a
series of simulation runs in this study. Four different algorithms were employed: SPSO,
HPSO-QN SM, HPSO-QN SLSM, and HPSO-QN MLSM. Each algorithm was tested inde-
pendently five times, with randomized initial positions. The proposed algorithms utilized
a particle count (NPSO) of 50 and a maximum iteration count (kmax) of 300. The choice of
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300 iterations as the maximum value was determined by monitoring the convergence of
the algorithm, specifically through the Fcost plot analysis.

To define the search space bounds, the following upper and lower bounds for the
position and velocity vectors were assigned:

~xmin(k) =
[
0 0 0 0 0 0 0

]
~xmax(k) =

[
4 4 40000 0.5 0.5 5 5

] (22)

These bounds correspond to the following parameters:

~x(k) =
[

J1n J2n Kn C1n C2n B1n B2n
]

(23)

To assess the effectiveness of the switching criteria for the local search methods (HPSO-
QN SLSM and HPSO-QN MLSM), we evaluated different values of Fth: specifically, 5%,
10%, and 20%. Our findings showed that HPSO-QN SLSM achieved the lowest cost
function and standard deviation of the cost function when Fth was set to 5%. Furthermore,
we investigated the impact of different values of B in the HPSO-QN MLSM method. We
tested two scenarios: selecting either the 5 or 10 best particles for the QN local search with
B set to 5% and 10%, respectively. After evaluating the results, we observed that the lowest
standard deviation of the cost function and parameters, as well as the lowest absolute
percentage error (APE) of the parameters, were achieved when Fth was set to 5% and B was
set to 5%. The results of the lowest cost function (Fcost) using Fth = 5% and BP = 5% are
presented in Table 2.

Table 2. Selected identified parameters of the 2MM system using the proposed methods with the
lowest cost function.

PSO Methods
Parameters

Fcost (×10−6)
J1n (s) J2n (s) Kn (s−1) C1n (p.u) C2n (p.u) B1n (p.u) B2n (p.u)

SPSO 0.9211 1.1142 13,323.9963 0.0093 0.0353 1.6971 4.5508 3.3859
HPSO-QN SM 0.8642 1.0453 12,497.3021 0.0299 0.0261 0.7666 3.9063 2.9167
HPSO-QN SLSM 0.7718 0.8310 10,532.9554 0.0197 0.0303 3.6192 1.4733 2.4787
HPSO-QN MLSM 0.7987 0.8983 11,169.0221 0.0272 0.0325 0.3083 3.7556 2.3200

Based on these results and compared with the benchmark parameters in Table 1, the
proposed HPSO-QN methods demonstrated their effectiveness in estimating the mechanical
parameters of the 2MM system. The HPSO-QN MLSM method achieved the lowest cost
function value of 2.32 × 10−6 with a high degree of speed response accuracy. Table 3
compares the standard deviation values of the identified parameters using four different
PSO methods. The HPSO-QN MLSM method consistently exhibits the lowest standard
deviation values, highlighting its robustness. In contrast, the SPSO method demonstrates
relatively higher standard deviation values compared to the HPSO-QN methods.

Table 3. A comparison of the standard deviation of the identified parameters across five independent
runs using the proposed methods.

PSO Methods
Parameters

Fcost (×10−6)
J1n (s) J2n (s) Kn (s−1) C1n (p.u) C2n (p.u) B1n (p.u) B2n (p.u)

SPSO 0.4199 0.3198 4356.4730 0.0142 0.0152 1.3070 1.6753 3.7320
HPSO-QN SM 0.1714 0.2817 2137.6343 0.0119 0.0146 0.9651 1.0390 2.0512
HPSO-QN SLSM 0.1927 0.3636 3548.1141 0.0171 0.0082 1.2920 1.2398 1.2274
HPSO-QN MLSM 0.0218 0.0512 461.0188 0.0052 0.0028 1.2008 1.4837 0.0787
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The improvement ratios of the HPSO-QN MLSM method over other methods for
each identified parameter are summarized in Table 4. The HPSO-QN MLSM method
consistently yields substantially lower standard deviation values across all parameters
compared to the other methods. For example, the standard deviation of J1n using the
HPSO-QN MLSM is reduced by a factor of 19.26 compared to SPSO, 7.86 compared to
HPSO-QN SM, and 8.84 compared to HPSO-QN SLSM. Other parameters also experience
notable improvements. The standard deviation of J2n is reduced by factors of 6.25, 5.50,
and 7.10 compared to SPSO, HPSO-QN SM, and HPSO-QN SLSM, respectively, when
using the HPSO-QN MLSM method. Similarly, the Kn parameter sees reduction factors
of 9.45, 4.63, and 7.70. Similar improvements are observed for C1n, C2n, B1n, and B2n.
It is important to note that for B1n and B2n, HPSO-QN SM demonstrates slightly lower
standard deviation values compared to HPSO-QN MLSM. However, HPSO-QN MLSM
still outperforms the other PSO methods in terms of identifying parameters with lower
standard deviation values for the majority of parameters. While the HPSO-QN SM method
also shows lower standard deviation values for B1n and B2n, HPSO-QN MLSM surpasses it
for most parameters. Consequently, the HPSO-QN MLSM method proves to be a promising
approach for parameter identification problems in similar systems.

Table 4. Improvement ratio of the standard deviation of the HPSO-QN MLSM method compared to
other methods.

PSO Methods
Parameters

Fcost (×10−6)
J1n (s) J2n (s) Kn (s−1) C1n (p.u) C2n (p.u) B1n (p.u) B2n (p.u)

SPSO 19.26 6.25 9.45 2.73 5.43 1.09 1.13 48.06
HPSO-QN SM 7.86 5.50 4.63 2.29 5.21 0.80 0.70 26.06
HPSO-QN SLSM 8.84 7.10 7.70 3.29 2.92 1.06 0.83 15.60

The results in Table 5 offer a comparison of the proposed methods based on the
average identified parameters across five independent runs. The HPSO-QN MLSM method
achieved the lowest Fcost value of 2.4341× 10−6, indicating its effectiveness in accurately
estimating the mechanical parameters of the 2MM system. When comparing the average
parameters obtained from HPSO-QN SM with those obtained from SPSO, the percentage
difference for J1n is around 15.77%, while for J2n, it is around 15.10%. The percentage
difference obtained for Kn is around 15.22%, and for C1n and C2n, they are 33.54% and
5.86%, respectively. As for B1n and B2n, the percentage differences are 18.33% and 9.97%,
respectively. Regarding Fcost, the percentage difference obtained is 31.41% lower compared
to SPSO.

Table 5. Performance comparison of the proposed method: average of identified parameters across
five independent runs.

PSO Methods
Parameters

Fcost (×10−6)
J1n (s) J2n (s) Kn (s−1) C1n (p.u) C2n (p.u) B1n (p.u) B2n (p.u)

SPSO 1.2457 1.3193 16,554.7629 0.0158 0.0256 2.5953 3.0403 7.1430
HPSO-QN SM 1.0492 1.1201 14,035.9131 0.0211 0.0271 2.1197 2.7372 4.8995
HPSO-QN SLSM 0.8393 0.9980 11,961.5283 0.0289 0.0316 2.5762 1.4984 3.9044
HPSO-QN MLSM 0.8151 0.8974 11,265.7222 0.0287 0.0332 1.6844 1.7908 2.4341

When comparing HPSO-QN SLSM with HPSO-QN SM, percentage differences were
around 20.01% for J1n, 10.90% for J2n, and 14.78% for Kn. The friction coefficients (C1n, C2n,
B1n, and B2n) estimated by HPSO-QN SLSM showed percentage differences ranging from
20% to 45% compared to HPSO-QN SM. The percentage difference in Fcost between HPSO-
QN SM and HPSO-QN SLSM was around 20.31%, with HPSO-QN SLSM providing a lower
value. Comparing HPSO-QN MLSM with HPSO-QN SLSM, the percentage differences
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obtained for J1n, J2n, and Kn were 2.88%, 10.08%, and 5.82%, respectively. For the friction
coefficients (C1n and C2n), the average parameter differences between HPSO-QN MLSM
and HPSO-QN SLSM were 0.69% and 5.06%, respectively. The average differences for B1n
and B2n were 34.62% and 19.51%, respectively. The average Fcost estimated by HPSO-QN
MLSM was 37.66% lower than that estimated by HPSO-QN SLSM. Finally, comparing
the average parameters obtained from HPSO-QN MLSM to the SPSO method, HPSO-QN
MLSM achieved a significant improvement in Fcost, with a decrease of 63.92%. The per-
centage differences obtained for J1n and J2n were around 34.57% and 31.98%, respectively.
For Kn, the percentage difference obtained was approximately 31.95%. The percentage
differences obtained for C1n and C2n were 81.65% and 29.69%, respectively. For B1n and B2n,
the percentage differences obtained were 35.10% and 41.10%, respectively. These results
suggest that HPSO-QN MLSM outperforms SPSO in identifying the 2MM parameters and
minimizing Fcost.

Table 6 presents the accuracy of the estimated parameters compared to the benchmark
parameters, measured by the absolute percentage error (APE). The APE is used as a measure
of the deviation between the estimated and benchmark parameters, and it is defined as

APE =
|Estimated− Benchmark|

Benchmark
× 100 (24)

Table 6. Performance comparison of the proposed method: absolute percentage error comparison of
estimated and actual parameters.

PSO Methods J1n (%) J2n (%) Kn (%) C1n (%) C2n (%) B1n (%) B2n (%)

SPSO 42.95 69.13 52.13 48.03 5.73 25.02 53.21
HPSO-QN SM 20.40 43.62 28.98 30.59 0.18 2.11 37.93
HPSO-QN SLSM 3.68 27.95 9.92 4.93 16.82 24.10 24.50
HPSO-QN MLSM 6.46 15.05 3.53 5.59 22.74 18.86 9.76

The HPSO-QN SM method shows the lowest error for C2n (APE of 0.18%) and performs
well for B1n (APE of 2.11%). The HPSO-QN SLSM method exhibits the lowest error for
J1n (APE of 3.68%) and performs well for C1n (APE of 4.93%). In terms of motor-side
and load-side inertias (J1n and J2n) and shaft stiffness (Kn), the HPSO-QN MLSM method
achieves the lowest error, with APE values ranging from 3.53% to 15.05%. Additionally, it
performs well for B2n with an APE of 9.76%.

These results highlight the effectiveness of the HPSO-QN method in accurately identi-
fying mechanical parameters, providing more reliable results compared to other methods.
However, it is important to note that there is still a significant discrepancy between the
estimated and actual values for the friction coefficients. This discrepancy may be attributed
to factors such as measurement noise and the potential variability of these coefficients over
time. Despite this limitation, the HPSO-QN method yields lower errors for the friction
coefficients compared to the SPSO method.

The convergence of the proposed methods is demonstrated in Figure 4, showing
the Fcost versus the number of iterations for each algorithm. The plot highlights the
effectiveness of the implemented switching criteria and particle selection in the hybrid
method. Compared to the SPSO algorithm, which often gets trapped in the local optima,
the HPSO-QN methods demonstrate faster convergence to a low-cost function in the
initial stages and continue to search within that region. Moreover, the SPSO algorithm
demonstrates a slower convergence speed when compared to the HPSO-QN methods.
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Figure 4. Cost function (Fcost) analysis of the proposed methods with the best performance.

Figure 5 compares the Fcost of solutions obtained using the Hybrid PSO-QN MLSM
optimization process for both exploration and exploitation processes. This graph demon-
strates the effect of both methods at each iteration. It is evident that the QN method aids in
escaping from the local optima and finding superior solutions during both exploration and
exploitation phases, while the PSO method tends to remain stable in the optimum for a
period of iterations.
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Figure 5. Comparison of Fcost values obtained using the HPSO-QN MLSM optimization process.

The accuracy of the estimated speeds was evaluated using performance measures,
such as the IAE, ISE, and ITAE metrics as shown in Figure 6. These metrics provide a quan-
titative measure of the difference between simulated and experimental speed responses.
The IAE, ISE, and ITAE are defined as

IAE =
∫ Tf

T0

|e(t)|dt (25)
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ISE =
∫ Tf

T0

e2(t)dt (26)

ITAE =
∫ Tf

T0

t|e(t)|dt (27)

The error e(t) between the estimated and measured motor speeds is given by
Ω1(t) − Ω̂2(t), and the error between the estimated and measured load speeds is
Ω2(t)− Ω̂2(t). The performance of the estimated model in accurately capturing the speed
responses is indicated by smaller values of these measures.

The plot indicates that the hybrid PSO-QN MLSM method achieved lower error
values compared to SPSO. This demonstrates a higher degree of precision and a significant
reduction in error using the hybrid PSO-QN MLSM method. The comparison highlights
the accuracy and effectiveness of the hybrid PSO algorithm in estimating the mechanical
parameters of the 2MM system.
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(a) IAE of the motor speed response
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(b) ISE of the motor speed response
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(c) ITAE of the motor speed response
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(d) IAE of the load speed response
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Figure 6. Comparison of integral absolute error (IAE), integral squared error (ISE), and integral
time absolute error (ITAE) values between the simulated and experimental motor and load speed
responses obtained using HPSO-QN MLSM and SPSO.

Figure 7 compares the simulation results of the motor and load speeds obtained from
the algorithm with the lowest Fcost value to the corresponding experimental measurements
for the same excitation signals. It can be observed that the speed responses of the estimated
model match the measured speed.

Finally, Table 7 presents the computation time for the PSO algorithm and its variants.
The HPSO-QN SM method has a longer computation time compared to SPSO due to the
QN process at each PSO iteration. The HPSO-QN SLSM method introduces a stopping
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criterion to enhance the search for an optimal region, which increases the computation
time but improves the parameter quality and performance compared to SLSM and SPSO.
The HPSO-QN MLSM method selects multiple particles for QN local search, resulting in
increased computation time. However, it provides optimal and consistent parameters with
the lowest Fcost values, indicating superior performance. Therefore, HPSO-QN MLSM is a
promising approach for accurate and consistent parameter identification.

Table 7. Computation time for the proposed methods.

PSO Methods Time (minutes)

SPSO 30.22
HPSO-QN SM 161.31

HPSO-QN SLSM 175.65
HPSO-QN MLSM 468.59
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Figure 7. Simulation response using estimated parameters compared with measured speeds (motor
and load side).

6. Conclusions

In this study, a hybrid optimization method called HPSO-QN was proposed to ac-
curately identify the mechanical parameters of flexible 2MM drive systems using PSO
methods. The research consisted of the following key aspects:

• Literature review: A comprehensive review of existing methods for parameter identi-
fication in two-mass drive systems was conducted to establish the background for the
proposed research.

• System modeling and control: An accurate dynamic model of the two-mass drive
system was developed, and a hysteresis current controller was implemented to aid in
the mechanical identification process.

• Hybrid optimization method: The proposed hybrid PSO method, known as HPSO-
QN, was implemented to identify the mechanical parameters of the 2MM drive system.
Its effectiveness was evaluated using experimental data, and the HPSO-QN MLSM
method exhibited the best performance in terms of accuracy and efficiency.

The following conclusions can be drawn from the results:

• The HPSO-QN MLSM method achieved the lowest cost function value of 2.32× 10−6

with five independent runs.
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• The standard deviation values demonstrated the robustness of the HPSO-QN methods,
with the HPSO-QN MLSM method having the lowest values for most parameters.
The motor-side Coulomb friction parameter showed the lowest standard deviation of
0.0028 among all identified parameters.

• Comparing the proposed methods, the HPSO-QN MLSM method proved to be the
most effective in terms of Fcost, indicating its accuracy in parameter estimation.
The HPSO-QN SM method achieved the lowest cost function value of 0.18% for
load-side Coulomb friction.

• The absolute percentage error (APE) values indicated that the HPSO-QN methods,
particularly MLSM, exhibited low errors in estimating mechanical parameters and
friction coefficients compared to the standard method.

Possible future directions include the following:

• Exploring more realistic friction models, such as the Dahl and LuGre models, to im-
prove the estimation of viscous friction coefficients with higher APE values.

• Applying the HPSO-QN method for parameter estimation in other dynamic systems,
such as battery and supercapacitor models. This could help in improving the accuracy
of models used in energy systems and electric vehicles.

• Evaluating the impact of the HPSO-QN methods on the performance of control sys-
tems in real-world applications, such as robotics and automotive systems.

• Extending the HPSO-QN method to incorporate global optimization techniques, specif-
ically multi-objective optimization, to optimize multiple objectives simultaneously.

• Extending the HPSO-QN method to estimate parameters in more complex systems,
such as three-mass model systems, to capture additional dynamics.

• Utilizing the HPSO-QN method in problems of machine learning and deep learning,
where high-dimensional parameter space is prevalent, which could enhance the
efficiency of hyperparameter tuning.

• Investigating the potential of integrating deep learning methods with the HPSO-QN
approach to enhance parameter estimation accuracy and developing hybrid models
that combine data-driven and physics-based approaches.

In conclusion, the proposed HPSO-QN methods offer a promising solution for ac-
curately estimating the mechanical parameters of 2MM systems, providing reliable and
consistent results compared to other methods. Moreover, the general optimization capabili-
ties of the HPSO-QN method indicate its potential applicability in a wide range of fields
beyond mechanical systems, including energy systems, machine learning, and more. The
results of this study demonstrate the effectiveness of this method in improving simulation
models and optimizing control systems.
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Abbreviations
The following abbreviations are used in this manuscript:

2MM Two Mass Model
APE Absolute Percentage Error
DC Direct Current
FRF Frequency Response Function
HPSO-QN Hybrid Particle Swarm Optimization Quasi-Newton
IAE Integral Absolute Error
ITAE Integral Time Absolute Error
ISE Integral Squared Error
MLSM Multi Local Search Method
PSO Particle Swarm Optimization
QN Quasi-Newton
SM Sequential Method
SLSM Single Local Search Method
SPSO Standard Particle Swarm Optimization
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