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Abstract: Grammatical Evolution is a Genetic Programming variant which evolves problems in
any arbitrary language that is BNF compliant. Since its inception, Grammatical Evolution has been
used to solve real-world problems in different domains such as bio-informatics, architecture design,
financial modelling, music, software testing, game artificial intelligence and parallel programming.
Multi-output problems deal with predicting numerous output variables simultaneously, a notoriously
difficult problem. We present a Multi-Genome Grammatical Evolution better suited for tackling multi-
output problems, specifically digital circuits. The Multi-Genome consists of multiple genomes, each
evolving a solution to a single unique output variable. Each genome is mapped to create its executable
object. The mapping mechanism, genetic, selection, and replacement operators have been adapted
to make them well-suited for the Multi-Genome representation and the implementation of a new
wrapping operator. Additionally, custom grammar syntax rules and a cyclic dependency-checking
algorithm have been presented to facilitate the evolution of inter-output dependencies which may
exist in multi-output problems. Multi-Genome Grammatical Evolution is tested on combinational
digital circuit benchmark problems. Results show Multi-Genome Grammatical Evolution performs
significantly better than standard Grammatical Evolution on these benchmark problems.

Keywords: Grammatical Evolution; Multi-Genome; Evolvable Hardware; digital circuit design;
Hardware Description Languages; SystemVerilog; combinational circuits

1. Introduction

Evolvable Hardware (EWH) encompasses the application of evolutionary algorithms
(EAs) to the design of re-configurable hardware and conventional circuits. Since its incep-
tion, circuits such as adders and multipliers have been evolved. Some EAs used in EHW
include Genetic Algorithms, Genetic Programming (GP), Cartesian Genetic Programming,
and Grammatical Evolution (GE). Confronting the field are two significant challenges:
scalability of fitness evaluation and representation. The former deals with the required
testing as circuit inputs increase (complex circuits). The latter, which is also a consequence
of increasing inputs, requires longer chromosomes to represent individuals. Hence, due to
the destructive nature of search operators (crossover and mutation), evolving circuits of
such complexity is non-trivial.

Some existing approaches proposed to address the issue of representation scalability
are decomposition [1,2] and more efficient genetic operators [3]. Existing decomposition
approaches break complex circuits down into evolvable sub-circuits either via inputs [2]
or outputs [1] and merge them into a complete circuit using varying strategies. Other
research efforts have also been directed toward efficiently reducing the computational
cost of circuit evaluation. Some of these include parallel implementations of EAs, using
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different representations for evaluation and, more recently, corner case testing, a well-
known technique used in industry to reduce the amount of testing, combined with a
uniform sampling of training/testing cases [4].

A major benefit of GE’s mapping process is the separation of the genotypic space from
the phenotypic space, which facilitates an unconstrained evolutionary search [5]. While
there has been some suggestion that the low locality, i.e., the measure of the correlation
between neighbouring genotypes and their corresponding neighbouring phenotypes brings
about an issue [6], other works [7–9] suggest genetic operations at the beginning regions of
GE’s genome are destructive but may serve as a good region for genetic operations.

Generally, a multi-output problem requires modeling complex input-output rela-
tionships and/or inter-output dependencies. Multi-output problems requiring the simul-
taneous modeling of these relationships are very challenging to deal with [10]. Hence,
decomposing such problems into single-output problems and solving each using a single-
output algorithm of choice may prove very challenging as such approaches do not consider
inter-output correlations [10]. This paper proposes a Multi-Genome GE (MG-GE) for
solving multi-output or multi-target problems, such as circuit problems, efficiently. Each
genome encodes a solution to a single and unique output. Second, custom grammar syntax
rules are introduced to facilitate the evolution of inter-output correlations by evolution.
Third, we speculate that using Multi-Genome (MG) reduces the destructive effect of genetic
operators by using a genome per output variable while benefiting from their ability to
escape local optima. Fourth, MG-GE keeps track and stops the search for a solved output
variable which is made available to all individuals in the population, thereby reducing
the overall computational cost as evolution progresses. Finally, MG-GE is better suited
for multi-output circuit problems than approaches that decompose such problems into
single-output circuit problems using various decomposition techniques before merging the
evolved sub-circuits into a complete circuit.

The contributions of this work are summarised as follows:

• We present a multi-genome implementation of GE better suited for tackling multi-
output problems;

• We adapt genetic operators, initialisation routine, and mapping mechanism and
implement a wrapping operator well-suited for MG-GE;

• We introduce custom grammar syntax rules and a cyclic dependency-checking algo-
rithm that facilitates the evolution of inter-output dependencies;

• We investigate the performance of MG-GE with and without using our custom gram-
mar syntax rules on multi-output combinational circuit problems.

2. Background
2.1. Grammatical Evolution

GE is a GP variant that evolves programs in any arbitrary Backus–Naur form (BNF)
compliant language. GE has been used in different application domains such as game
content design [11], architecture design [12], financial modelling [13], music [14] and
software testing [15].Standard GE uses a single linear genome. The genome is a sequence
of codons (usually 8-bit unsigned numbers) that encode the genetic information of an
individual. The corresponding phenotype is derived from a genome using a mapper. The
mapper requires a grammar, usually a subset of the target language, sufficient to evolve
an optimal solution to a problem potentially. A valid phenotype is derived only when all
non-terminal symbols have been re-written regarding terminal symbols (any term without
angle brackets). To expand a non-terminal into a string of terminals only, a derivation
formula (codon%num of productions) is applied. Each phenotype is evaluated using the
defined fitness function. The fitness score returned by the fitness function is assigned as the
individual’s fitness.

BNF is a meta-syntax notation used for expressing grammars of formal languages,
such as Context-Free Grammars (CFG). Grammars most commonly used within GE are
CFGs. A CFG denoted by G is defined by a quadrupled tuple {N, T, P, S}. N represents the
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set of non-terminal symbols which are enclosed within <>. For example, 〈expr〉 is a non-
terminal symbol. Non-terminal symbols are placeholders and replaced by another symbol
according to production rules. Production rules appear after the replacement symbol ::= on
the right-hand side. All non-terminal symbols are replaced, or expanded, until they become
terminal symbols. T represents the set of terminal symbols which are not enclosed within
<>. For example, variable names and operators (e.g., +, −) of a programming language
are considered terminals. P represents production rules which are alternatives or choices
to replace a non-terminal and are separated by | symbol. S represents the start symbol
which is part of N and serves as the initial symbol from which a legal sentence in the target
language can be derived.

2.2. Multi-Output Problems

Multiple output or target variables characterise multi-output (also known as multi-
target or multi-variate) problems. Multi-variate regression and multi-label classification are
categories of multi-output problems. Multi-variate regression deals with the estimation of a
single regression model which models how multiple independent and dependent variables
are linearly related. Multi-variate regression is used in different domains such as economics
and finance, health care, social sciences, environmental studies and market research. For
example, in economics and finance multi-variate regression is used to investigate the factors
that affect inflation rates, stock prices, housing prices and GDP growth rate. In multi-
label classification, zero or multiple labels are required as output per input sample [16].
Gene classification in bio-informatics, text categorisation and image classification are real-
world applications of Multi-label classification. These problems are challenging to deal
with, mainly due to their multi-variate nature and possible dependencies between target
variables [17].

Methodologies designed for tackling multi-output regression problems are categorised
into two groups: problem transformation and algorithm adaptation methods [17]. Problem
transformation methods transform multi-output problems into single-output problems,
each uniquely solving one of the target variables using any single regression algorithm
of choice [17]. Algorithm adaptation methods adapt existing single-target algorithms to
handle multi-target problems [17]. Some advantages of the latter approach are better
performance, better representation & interpretability, and computationally more efficiency
compared to single-target methods [17].

2.3. Hardware Description Languages

Hardware Description Languages (HDLs) such as Verilog and VHDL are the de facto
standard for circuit design in the industry due to several benefits [18]. Notable among these
are the design of circuits at higher abstraction—Register Transfer Level (RTL), other than
gate level [19]. Additionally, RTL designs are more interpretable, require less time to modify
and easier to verify [20]. RTL designs employ programming constructs such as conditional
statements, synthesisable for-loops, proceedural blocks, case statements, asynchronous and
synchronous constructs to provide a human readable description of a circuit’s behaviour.
As a result, RTL designs must undergo logic synthesis where these high level descriptions
of circuits are converted to basic building blocks such as logic gates (AND, NOT, NAND,
NOR and XOR)and flip-flops (or storage elements). GE has successfully evolved complex
and accurate multiplier, adder, and parity using SystemVerilog [4].

2.4. Related Work

Digital circuit designs like adders and multipliers require multiple output signals to be
correct for their output to be accurate. Some of these output signals can be independent of
one another, meaning that only a sub-section of an individual needs to be modified. These
sub-modifications can be difficult for a classical GA with a single chromosome to perform as
the genetic operators do not know how the modifications will affect the candidate design.
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Multiple chromosomes have been used in various evolutionary hardware problems to
tackle this problem. Cartesian Genetic Programming (CGP) is often used with gate-level
evolutionary hardware problems as its column and row structure is ideal for connecting
Boolean logic gates. Multiple codons in the chromosome are consumed when choosing a
gate and its connections, which can lead to issues when performing crossover, as different
gates can have a different number of connections. Slowik and Bialko [21] address this by
using a multi-chromosome genome that groups the logic gates with their input connections.
This allows for the crossover method only select crossover points that would not produce
an unconnected input and thus produce only valid individuals.

Walker et al. [22] introduced a method called Multi-Chromosome CGP (MC-CGP) for
Evolutionary Hardware. This approach uses a multi-chromosome where each chromosome
is used in a separate CGP evolution to evolve a partial solution for a single output. When
a solution is found for each output, they are then combined to produce the final solution.
This approach allows the evolution to be performed in parallel but can produce redundant
circuitry. To address this problem, Coimbra and Lamar [23] used a hybrid approach of
running an MC-CGP followed by a standard CGP where the multi-chromosome is treated
as a single chromosome. This approach allowed them to reduce the gate count of the
evolved individuals significantly.

CGP is generally only employed at the gate-level and thus cannot enjoy the benefit of
HDLs. Work that has looked at higher-level problems includes a multi-objective approach
that was taken to evolve a Proportional-Plus-Derivative fuzzy logic controller. In this
work, Baine [24] used four separate chromosomes to describe the input and output fuzzy
sets for both the proportional and derivative parts of the controller. He found that the
multi-chromosome approach converged around 20% faster than a single-chromosome
approach.

In [25], standard Gene Expression Programming (GEP) is adapted to directly handle
multi-target regression problems without resorting to any transformation or decomposition
approaches. A multi-gene chromosome representation is adopted. An N-target regression
problem requires a chromosome with N genes. Each gene codes a solution to a single
and unique target variable. Hence, the number of genes contained in a chromosome is
problem-dependent. Individual initialisation remains the same as in standard GEP but
is subject to a metric that ensures an individual is only added to the initial population if
its similarity compared to other individuals in the population is below a threshold. Three
different transposition operators are used to transpose gene fragments within the same gene,
between two genes (of the same chromosome), and move a gene to the beginning of the
chromosome. Also, three recombination operators are used to create offspring. Tested on
eight multi-target regression datasets in comparison to two other methods, Gene Expression
Programming for Multi-target Regression (GEPMTR) significantly outperformed the two
state-of-the-art methods in seven of the eight multi-target datasets employed.

These works show that using a multi-chromosome approach for multi-target problems
can significantly help find solutions. In addition, it helps address the issue of locality that
Grammatical Evolution can experience.

3. Proposed Approach: Multi-Genome GE
3.1. Problem Description

GE mapping process starts from a start symbol. Usually, the first rule’s non-terminal
is designated as the start symbol. For example in Figure 1, 〈expr〉 is the start symbol.
GE iteratively expands or rewrites all non-terminals by using a modulus rule to select a
production each time a choice needs to be made. This process continues until the sentence
consists solely of terminals. In Figure 1, using the sample genome provided, the sentence
x + 5 is obtained.

Assuming a mutation event affects the first codon, changing its value from 151 to 150,
this means the first production 〈var〉 gets chosen after applying the mod rule (150%3 = 0).
As a result, the resultant sentence is now x after the mutation event. As described, a totally
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different phenotype is obtained after a simple codon alteration in GE’s genome, with all
potentially evolved building blocks lost after genetic operations. This phenomenon is
referred to as ripple effect.

As mentioned earlier, multi-output problems require all outputs to be simultaneously
evolved. Assuming a standard GE individual (single genome representation) solves two
of the three output variables due to the ripple effect caused by genetic operators, solving
the remaining output variable may be challenging. It is also computationally expensive as
there is no mechanism in place to stop searching for output variables that other individuals
in the population have successfully evolved. Furthermore, standard GE does not have the
necessary functionality to evolve inter-target dependencies properly.

〈expr〉 ::= 〈var〉 (0) | 〈var〉〈op〉〈var〉 (1) | 〈var〉〈op〉〈expr〉 (2)

〈var〉 ::= x (0) | y (1) | constant (2)

〈op〉 ::= + (0) | - (1) | × (2) | / (3)

〈constant〉 ::= 0 (0) | 1 (1) | 2 (2) | 3 (3) | 4 (4) | 5 (5) | 6 (6) | 7 (7)

| 8 (8) | 9 (9)

151 9 88 68 205 37 〈expr〉

〈var〉 〈op〉 〈var〉
x 〈op〉 〈var〉
x + 〈var〉
x + 〈constant〉
x + 5

151%3 = 1

9%3 = 0

88%4 = 0

68%3 = 2

205%10 = 5

Figure 1. Grammatical Evolution Mapping Mechanism. The numbers enclosed in parenthesis after
each production do not form part of the grammar but instead are shown for ease of interpretation
and represent the production choice value.

3.2. Problem Formulation

Assuming a combinational circuit denoted as C has multiple inputs and outputs, the
training/testing vectors for C can be denoted as {X1 · · ·Xm} and {Y1 · · ·Yn} representing
inputs and expected outputs respectively. Each circuit output in {Y1 · · ·Yn} can depend
on one to m input variables ({X1 · · ·Xm}) as well as from zero to n − 1 circuit outputs
{Y1 · · ·Yn}; as far as no cyclic dependencies are formed between output variables in the
case of combinational circuits. In certain instances, a circuit output may depend on one or
more outputs as inputs.

Given that multi-output circuit problems (and multi-output problems in general)
generally exhibit a more complex behaviour compared to a single-output circuit problem,
evolving such circuits, especially at a low level of design—gate-level, using standard GE is
intractable. To help cope with the challenges associated with evolving multi-output circuit
problems using standard GE, a novel Multi-Genome GE is proposed.

3.3. Multi-Genome GE

MG-GE uses a multiple genome representation consisting of n genomes, where n
represents the number of outputs or targets. Each genome evolves a circuit functionality
that satisfies a single and unique circuit output. An example of a multi-genome for a
multi-output problem with three output variables or target variables is shown in Figure 2.
An output or target variable is a variable to be predicted by other variables.

A new genome representation requires suitable initialisation routines, mapping mech-
anisms, selection, replacement, wrapping mechanisms, and genetic operators. Furthermore,
we introduce grammar design specifications which must be adhered to for proper parsing
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of the grammar to ensure the adapted initialisation routine and mapper algorithms work
properly. These adapted, and new operators are described in detail in subsequent sections.

234 32 112

37 65 43 189 222

17 105 243 149

Figure 2. A Multi-genome representation for an multi-output problem with three output variables.

3.4. Grammar Design

In MG-GE, each genome is mapped to its output expression or subprogram to model
and predict its corresponding output variable. MG-GE requires a single grammar, just like
standard GE. However, custom grammar rules have been introduced and must be adhered
to. There are two main custom rules: output rule and output variable rule. These rules are
illustrated by a sample grammar in Figure 3. These custom rules allow for grammar rules
to be annotated with required details which are parsed and used by the mapper, wrapper,
selection, initialisation and genetic operators.

<stmts> ::= <tr1-output-1> <tr1-output-2> <tr1-output-3> <tr1-output-4>
<tr1-output-1> ::= output_1 "=" <expr>;
<tr1-output-2> ::= output_2 "=" <expr>;
<tr2-output-3> ::= output_3 "=" <expr>;
<tr2-output-4> ::= output_4 "=" <expr>;
<tv1-outputs> ::= output_1 | output_2
<tv2-outputs> ::= output_3 | output_4

<expr> ::= <terminal> | <terminal> <op> <expr>
<terminal> ::= a | b | <tv1-ouputs> | <tv2-outputs>

<op> ::= & | ^ | ~^

Figure 3. MG-GE Sample Grammar.

An output rule (or target rule) is a rule that codes a solution to one of the output variables
in a multi-output problem. To define an output rule, the rule’s name must be preceded by
tr followed by an output group number. During the mapping process, whenever such a
rule is encountered, a sub-mapping process is spawned. For example, in Figure 3, there are
four output rules: 〈tr1-output-1〉, 〈tr1-output-2〉, 〈tr1-output-3〉 and 〈tr1-output-4〉. Also,
in Figure 3, there are two groups of output variables: 1 and 2. In other words, there should
be an output variable rule for each output group number as illustrated in Figure 3.

The purpose of the group numbers is to facilitate modelling dependencies between
output variables while avoiding cyclic dependencies, which is very key for the evolution
of combinational circuit designs. Recall in Section 3.2, we stated there might exist de-
pendencies between outputs in some multi-output problems; hence, the group number
allows outputs (represented by the output variable names as productions of output variable
rules) to be grouped to allow evolution to evolve the potential dependencies which may
exist between outputs belonging to the same group. For example, in combinational circuit
problems, there may exist dependencies between outputs, but we need to ensure there
exist no cyclic dependencies between these outputs. Failing to do so will result in circuit
synthesis tools synthesising memory elements to store past/present output values, which
render such a sequential circuit.

Illustrated in Listing 1 is an example of a program with an existing cyclic dependency.
Assuming the program in Listing 1 is a combinational circuit design in SystemVerilog, both
outputs depend on each other, which will cause memory elements to be synthesised by
circuit synthesis tools rendering the circuit a sequential circuit instead of a combinational
circuit. The cyclic dependency checker in Algorithm 3 is used to ensure that during the
initialisation and mapping processes, such cyclic dependencies do not occur.
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Listing 1. A sample program with cyclic dependency.

. . .
output_1 = a + output_2;
output_2 = output_1 + b

. . .

An output variable rule is defined by preceding the outputs group name by tv followed
by the output group number (e.g., 〈tv1-outputs〉 and 〈tv2-outputs〉). Essentially, an output
variable rule’s productions are output variables (e.g., output_1 and output_2) as shown
in Figure 3. Also, note that the exact order in which output rules are defined for each
corresponding output variable must be followed when defining an output variable rule as
observed in Figure 3. For implementation purposes, extra attributes (corresponding output
rule) are used to differentiate these outputs (e.g., output_1 and output_2), which are
terminals from other terminals in the grammar during initialisation and mapping processes.
An output variable rule is how evolution evolves dependencies that may potentially exist
between outputs. During the initialisation and mapping process of each output rule (in
other words, when an output variable is being modelled), the cyclic dependency checker
algorithm ensures only choices of output variables that do not cause cyclic dependency
can be chosen whenever an output variable rule non-terminal is encountered. The cyclic
dependency checker algorithm is described in Section 3.7.

3.5. Initialisation

The initialisation of the multi-genome representation is dependent on the type of ini-
tialisation scheme required. In the case of random initialisation, each genome is randomly
initialised. In other words, n number ( n equals the number of outputs) of random initial-
isation events. However, sensible initialisation (SI) is preferred, as it creates diverse and
valid individuals. SI is an adaptation of the ramped half-and-half GP initialisation scheme
introduced by Koza [26]. To benefit from SI’s desirable properties, we adapt sensible initial-
isation for use with the multi-genome representation. First, SI requires the grammar to be
labelled. Each production of a rule is required to be labelled with the minimum depth to
expand all non-terminals to terminals fully and whether or not the production is recursive
or not. Each rule is then labelled recursive if any of its productions is recursive and the
rule’s minimum depth equals the minimum of the minimum depth of its productions.
During initialisation, SI applies grow and full methods when constructing the derivation
tree. When applying the Grow method, any production with a minimum depth less than
the remaining depth is eligible for selection. The remaining depth is obtained by subtracting
the current depth from the specified maximum depth. The full method behaves similarly,
except recursive productions are preferable if the remaining depth can accommodate it.

During MG-GE SI, n genomes in the multi-genome will require n SI events. The start
symbol for each SI event is an output rule. The order of definition of the output rules
in the grammar determine which genome to use during initialisation. The first genome
is initialised by fully mapping the first output rule encountered, including any other
rules occurring before the first output rule. The (n− 1)th genome is initialised when the
(n− 1)th rule is encountered. The nth genome is initialised with codons used to completely
map the nth output rule encountered and any remaining rules appearing after the nth
output rule. However, during the initialisation of an output rule, if an output variable
rule is encountered, its corresponding dependency graph must be checked using the cyclic
dependency checking algorithm to ensure only production choices not resulting in cyclic
dependency are valid for selection. Recall from Section 3.4 productions of output variable
rules are essentially output variable names.
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3.6. Multi-Genome Mapping

MG consists of n genomes, where n equals the number of output variables that must be
simultaneously predicted. Given that there are n genomes, the mapping process involves n
sub-mapping processes. Each genome encodes a solution to a single and unique output or
output variable. As mentioned in Section 3.4, the MG mapper requires a rule to be defined
for each output variable termed output rule. Output rule non-terminals serve as the start
symbols for the sub-mapping processes. The order of output rule definitions dictates which
genome to use during the sub-mapping process. The MG-GE mapping algorithm is shown
in Algorithm 1.

The algorithm uses the first genome in MG to map the first output rule encountered
during the mapping process. In other words, the order of definition of the output rules
dictates which genome in MG to use. In addition, if non-terminals exist before the first and
last output rules during the mapping process, codons are consumed from the first genome.
Also, ideally, an output rule non-terminal must be used only once in the grammar.

MG-GE mapping process starts off by using the first genome, as can be seen on Line 6
in Algorithm 1. Lines 7–10 check if the genome contains any codons and terminates
the mapping process if empty, as this indicates an invalid individual. Otherwise, if the
genome contains codons, the mapping process continues as normal. The sub-mapping
process is spawned as shown on line 16 in Algorithm 1, which maps the first output rule
encountered, including all prior non-terminals, as stated in the previous paragraph. The
sub-mapping process algorithm is shown in Algorithm 2. The sub-mapping algorithm
is the same as the standard GE mapping process, with additional logic to accommodate
the MG representation. The algorithm is recursive as it spawns a sub-mapping process
whenever it encounters an unmapped output rule non-terminal by checking the set of
mapped_output_rules. Otherwise, it continues the mapping process consuming codons
from the first genome (lines 13–18 in Algorithm 2). Lines 21–55 remain the same as standard
GE mapping where symbols belonging to selected rule production are placed on a stack for
subsequent derivation steps. Wrapping events are checked and applied accordingly.

Algorithm 1: Multi-Genome GE Mapper
1 Require genome, grammar, wrap_operator, max_wraps;
2 Ensure multi_genome.size() > 1;
3 Function Map (multi_genome, grammar, wrap_operator, max_wraps)
4 genome.phenotype_valid← true ;
5 genome_index← 0;
6 genome← multi_genome.genomeAt(index) ;
7 if genome is empty then
8 genome.phenotype← empty string;
9 genome.phenotype_valid← false;

10 genome.effective_size← 0;

11 mapped_output_rules← declare set;
12 //stores target rules that have been mapped;
13 phenotype← empty string;
14 start_symbol← grammar.getStartSymbol();
15 dependency_manager← instantiate dependency_manager object ;
16 SubMap(start_symbol, mapped_output_rules, multi_genome, genome_index, phenotype,

dependency_manager) ;
17 multi_genome.phenotype← phenotype;
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Algorithm 2: Output Rule Sub-Mapping
1 Function SubMap (start_symbol, mapped_outputs_rules, multi_genome, genome_index, phenotype,

dependency_manager)
2 genome←multi_genome[index];
3 {derivation_stack, is_wrapping }← {stack, false} ;
4 {codon_index, effective_size}← {0, 0} ;
5 if genome is empty then
6 return

7 derivation_stack← push start_symbol ;
8 while derivation_stack not empty do
9 current_symbol← derivation_stack.top();

10 derivation_stack.pop();
11 if current_symbol is TERMINAL then
12 phenotype← append symbol ;

13 else if rule is OUTPUT_RULE and rule 6∈ mapped_output_rules then
14 mapped_output_rules← insert output_rule;
15 if mapped_output_rules.size() > 1 then
16 SubMap(current_symbol, mapped_output_rules, genome, mapped_outputs.size()-1,

phenotype, dependency_manager) ;
17 else
18 goto Continue_Mapping_Process from line 20;

19 else
20 Continue_Mapping_Process:
21 rule← grammar.GetRule(current_symbol);
22 production_choice← 0;
23 if rule.productions.size() > 1 then
24 if codon_index == genome.length()-1 then
25 codon_index← 0;
26 is_wrapping← true

27 eligible_prods← create vector to hold eligible productions
28 if not is_wrapping then
29 if current_rule == OUTPUT_RULE_VAR then
30 check if a dependency graph exists for this rule group else create one
31 eligible_prods← retrieve valid output vars from dm
32 prod_choice← genome[codon_index] % current_rule.prods.size();
33 if prod_choice not in eligible_prods then
34 randomly choose a prod from eligible_prods && modify codon value accordingly

35 update the dependency graph to reflect chosen output variable
36 else
37 for prod ∈ rule.prods do
38 if prod contains an output_var then
39 if output_var has prods valid for selection then
40 eligible_prods← prod

41 else
42 eligible_prods← prod

43 prod_choice← codon % rule.prods.size() ;
44 logic here same as from lines line 33 to line 34 highlighted in red

45 else
46 if current_rule == OUTPUT_RULE_VAR then
47 eligible_prods← valid OUTPUT_RULE_VAR.prods
48 else
49 logic is the same as from line 37 to line 42 highlighted in blue

50 prod_choice← invoke perfect wrapping operator;

51 if current_rule == OUTPUT_RULE_VAR then
52 update the dependency graph with chosen prod

53 selected_prod← rule.prods[prod_choice];
54 for sym ∈ reverse(selected_prod.symbols) do
55 push prod_symbol onto derivation_stack;

56 {genome.phenotype, genome.effective_size}← {phenotype,effective_size}
genome.phenotype_validity← true;
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3.7. Cyclic Dependency Checking Algorithm

Algorithm 3 shows the pseudo-code for the cyclic dependency checking. A 2D matrix
is used as a graph to model the dependencies between each group of output variables. For
each position i, j of matrix A, if A[i, j] = 1, it means that the output variable represented at
position i depends on the output variable at position j. The function UpdateGraphMatrix is
a recursive function, which has the inputs M, a square matrix with shape n× n, and pos, the
respective position to be updated. This function assigns 0 to the position pos in the matrix
M, but this assignment triggers subsequent updates in its consequence. Subsequent calls of
this function are recursive to ensure the necessary updates are made to prevent cyclic de-
pendencies between output variables. For example, if output variable a depends on output
variable b, then output variable b cannot depend on output variable a. Subsequently, any
output variable which depends on output variable b cannot depend on output variable a.

Algorithm 3: Cyclic Dependency Checking

1 Function UpdateGraphMatrix (M, posx,y)
2 M[posx, posy]← 0;
3 while i < n do
4 if M[i, posy] = 1 then
5 M← UpdateGraphMatrix(M, [posx, i]);

6 i++;

7 return M;

8 Function FillMatrix (n, dependencies)
9 M← Initialise matrix;

10 M[i,j]← 0, where i = j;
11 M[i,j]← 6, where i 6= j;
12 for pos in dependencies do
13 if M[posx, posy] = 0 then
14 raise error;
15 else
16 M[posx, posy] = 1;
17 M = UpdateGraphMatrix(M, [posy, posx]);
18 while i < n do
19 if M[i, posy] = 0 then
20 M = UpdateGraphMatrix(M, [i, posx]);

21 i++;

22 return M;

The main function FillMatrix initialises an empty matrix M with shape n× n. Since
the variables cannot depend on themselves, the positions i, j, where i = j, are initialised
with 0. The input dependencies is a list with the respective dependencies to be filled
in the matrix. In the next step, the positions regarding each dependency are filled with
1 (if possible), and the updates in consequence of that are made by calling the function
UpdateGraphMatrix.

3.8. Perfect Wrapping

Given that multiple output variables are evolving simultaneously, a partially mapped
output rule will render the entire individual invalid, negatively impacting the evolutionary
performance. This means performing genetic operations in MG-GE will record higher
invalid individuals than standard GE. In other words, the higher the number of output
variables in a multi-output problem, the higher the number of invalid individuals created
by genetic operations.

To mitigate this effect, we implement a new wrapping operator called perfect wrapping.
Perfect wrapping requires the grammar rules and productions to be labelled with the
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minimal number of codons required to map fully. The perfect wrapping operator requires
a list of eligible productions as input. If the derived rule is an output variable rule, its
corresponding dependency graph must be checked to determine its eligible productions.
First, the list is populated with eligible productions which are non-recursive and require the
minimum number of codons to expand fully. If the list is empty, then recursive productions
requiring the minimum number of codons to expand are considered. Second, the mod rule
is applied to determine if the chosen production is part of the list of eligible productions. If
not, one of the productions in the list is uniformly selected at random, and Equation (1)
is used to generate a new codon to replace the current codon, which, when used with the
mod rule, dictates the same choice. This process continues while codons are reused from
the genome until a valid sentence is attained.

new_codon = random_number %
(

max_codon_value + 1
choices

)
× choices + chosen_prod (1)

3.9. Selection

The selection operator implemented for MG-GE does not rely on the total aggregated
fitness of all genomes in MG. This is because it is possible the worst-performing parent
might have completely solved one of the output variables but will rarely or never be
selected as a parent. Instead, a pseudo-parent is created by performing n number of selection
events, where the best-performing genome per output variable is selected from the pool of
potential parents. Any selection operator, such as tournament, lexicase, and roulette-wheel
selections, can be used to select each genome.

For example, in a standard crossover event, two pseudo-parents are created and used
to create two offspring. The selection process is illustrated in Figure 4.
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Figure 4. Multi-Genome Selection.



Algorithms 2023, 16, 365 12 of 22

3.10. Well-formed Crossover and Mutation

Each genome in MG evolves a solution to a single and unique target variable. As a
result, crossover operations occur between genomes that evolve the same output variable.
Mutation operations are applied per genome in MG.

These genetic operations can be performed in several ways. Three types of events
are currently implemented for genetic operation purposes. These include: random single-
event, binary mask-event and all-event. In a random single event, only a single genome is
randomly chosen for crossover and mutation. For a random single event, a binary mask
of bit size equal to the number of genomes is randomly generated. All genomes in MG
with bit positions in the binary mask whose bit values are one are chosen for mutation and
crossover. In all-event, all genomes undergo genetic operations subject to the specified
probability of these events occurring by the user.

3.11. Substitution Operator

In solving multi-output problems, there may exist inter-output dependencies as noted
in Section 1. To facilitate the evolution of these dependencies, we introduced custom
grammar rules as described in Section 3.4. Also, recall each genome in MG is meant to
evolve a solution to a single unique output. Evolution is creative and can potentially
exploit the inter-output dependency feature by using other sub-optimal output variable
expressions as building blocks to solve another output perfectly. However, before extracting
the solved output from an individual, if there exists a dependency on sub-optimal or
optimal output variables, it is necessary to rewrite/substitute such output variables with
their corresponding expression to obtain the final perfect expression for the solved output.

From Listing 2, assuming output variable output_1 has completely been solved.
Recall the best-evolved solution is a combination of the best-performing genome per
output variable. Given that output_1 is dependent on output_2 and output_2 is, in turn,
dependent on output_3, if we extract output_1 without recursively substituting output
variables with their corresponding expressions to obtain an expression devoid of output
variables, output_1 will no longer be regarded as solved, as output_2 and output_3
are very likely to be different in the created best individual. Applying the substitution
operator, we will obtain the solved expression devoid of any output variables as shown
in Listing 3. Hence, the importance of the cyclic dependency checking algorithm is to
ensure the substitution operator does not get stuck in a non-terminating loop as a result of
cyclic dependency existing between output variables.

Listing 2. An individual that completely evolves the solution to output_ 1 (50 out of 50 total cases).

. . .
output_1 = cos(x) + output_2 + output_2; (50/50)
output_2 = output_3 + sin(y); (5/50)
output_3 = 2^3 + 3; (1/50)

. . .

Listing 3. Final perfect output_ 1 statement after applying the substitution operator.

. . .
1. output_1 = cos(x) + output_2 + output_2;
2. output_1 = cos(x) + (output_3 + sin(y)) + (output_3 + sin(y));
3. output_1 = cos(x) + ((23 + 3) + sin(y)) + ((23 + 3) + sin(y));

. . .

In Listing 3, a typical iteration of the substitution operator to rewrite the solved
output_1 variable before it is extracted. As can be observed from Listing 3, output variable



Algorithms 2023, 16, 365 13 of 22

output_1 used output variable output_2 twice which were replaced by the same expression
at the end of the substitution operation. That is, in cases where an output variable uses
another output variable multiple times will result in an increase in the size of the phenotype.
In the case of digital circuits, such a scenario will increase the total number of gates required
to realise the gate-level design of the circuit. However, this is a post-processing issue and is
not addressed in this work.

3.12. Evolutionary Cycle

A steady-state EA is used to run the benchmark problems in this work. Unlike
standard GE, where the best-performing individual is returned as the best-evolved solution,
MG-GE creates its best individual by combining the best-performing genome for each
output variable. However, when an output variable solution has been evolved, we perform
substitution operations at the phenotype level described in Section 3.11. The function of
the substitution operator is to rewrite an expression in terms of variables other than the
output variables.

Once an output variable has been solved, its solution is made available to all individu-
als in the population, and evolution no longer searches for it. However, this functionality
can be modified if required for evolution to continue the search but for solutions with
additional desirable properties, such as shorter expressions.

4. Experiments

Two combinational benchmark problems are used in this work: ripple carry adder and
hamming code encoder. Two instances of each problem are considered based on the number
of inputs and outputs, Hamming Code (7,4) and (15,11) Encoders, and 5-bit + 5-bit and
10-bit + 10-bit Adders.

Experiments are conducted to investigate the performance of standard GE versus
MG-GE on these benchmark problems. For each experiment, we design two grammars.
The first grammar variant, which we refer to as Grammar with Output Variable Sharing,
allows output variables to use other output variables as building blocks as long as no cyclic
dependency between output variables is formed. This is achieved by the definition of
Output Variable Rules as described in Section 3.4. In other words, Output Variable Rules,
together with the cyclic dependency algorithm, are how MG-GE evolves inter-output
dependencies that may exist. This feature is modelled in the grammar by adding the
Output Variable Rule non-terminal to the 〈expr-i〉 rules as the last production (highlighted
in both grammars). The second version of the grammar, which we refer to as Grammar
with No-Output Variable Sharing, follows the same structure as the previous grammar
but simply omits the Output Variable Rule. Hence, with this grammar variant, if inter-
output dependency exists between two output variables, evolution will have to evolve the
expression/functionality of the independent output variable.

We speculate that for problems with inter-output dependencies, the Grammar with
Output Variable Sharing will perform better than the Grammar with No-Output Variable
Sharing and vice versa.

4.1. Ripple Carry Adder

Adder circuits perform addition in digital electronic devices. There are several types
of digital adders, such as ripple-carry, carry-save and carry-lookahead adders. In this work,
we use the ripple-carry adder, as its operation follows elementary addition, which is ideal
for exploiting the concept of output variable sharing.

Illustrated in Figure 5 is the elementary addition of two numbers. The addition
operation starts from the last column (or the least significant numbers) and propagates
any carry to the next least significant numbers up until the most significant numbers (first
column). As can be observed, the (n)th column addition depends/requires the carry from
the (n− 1)th column addition. This problem can be modelled as an 8-output problem: four
carry and four sum digits. Each sum digit (in other words, output) will require/depend on
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the carry from the previous addition stage as input. Without the inter-output dependency
feature, each column addition to obtaining a sum digit will additionally require evolving the
expression to generate the appropriate carry, taking into account all the carries propagated
starting from the addition of the least significant digits of the addends.

+

1 1 1

8 2 3
9 8 9

1 8 1 2

Figure 5. Example of elementary addition.

4.2. Hamming Code Encoder

Hamming codes belong to the family of Linear Block Codes [27]. They are linear
error-correcting codes capable of detecting a single error and, at most, two errors but can
only correct one. For example, Hamming Code (7,4) Encoder encodes a 4-bit data word
into a 7-bit code word before transmission. It does so by generating and adding three
parity bits to the data word. Hamming Codes can be grouped into two categories based
on the structure of the code words. These are systematic and non-systematic encodings. In
systematic encoding, the data word and code word are separated while in non-systematic
encoding, the data word and parity bits are interspersed. We adopt systematic encoding, as
its structure is easier—data-word followed by the parity bits to obtain the code-word.

For example, the Hamming Code (7,4) Encoder can be modelled as a 3-output problem;
each output represents the redundant bit generated and added to the data word to obtain
the code word. Each redundant bit is generated by applying bit operations to a unique set
of specific bits in the data word. Therefore, no dependency exists between the outputs of
the hamming code encoder. Hence, it is an ideal problem to explain the no-output variable
sharing concept as well as the performance of MG-GE on such problems.

4.3. Grammars

The grammars for the adder and hamming code encoder problems are shown in
Listings 4 and 5, respectively. Both grammars are shown in a compressed form to save
space, with certain repetitive rules, production choices and symbols compressed. By
repetitive, we mean rules with very similar, but not identical, definitions.

A repetitive rule with a similar definition has been compressed using the syntax
〈tr1-sum-i〉i=[1..n] as shown in Listing 4. The same compression syntax has been applied to
repetitive production choices and symbols and enclosed with curly braces where appropri-
ate.

Both grammars have been designed to use bitwise operators (i.e., gate-level design),
which makes the circuit problems more challenging to evolve from scratch. Each grammar
is divided into two: upper and lower sections, separated by dashed lines. The upper section
of the grammar contains the rules that need to be expanded. The lower section contains
rules that define the fixed part of the circuit problem, such as the circuit interface. An
expanded form of the grammar for the 5-bit + 5-bit Adder with Output and No-Output
sharing are shown in Listings A1 and A2 respectively in the Appendix A.
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Listing 4. N-bit + N-bit Adder Grammar.

<stmts> ::= {<tr1-sum-i><tr1-cout-i>}n=5
{<tr1-sum-i+1><tr1-cout-i+1>}
· · ·
{<tr1-sum-i=n><tr1-cout-i=n>}

<tr1-sum-i>i=[1..n] ::= sum[i] "=" <expr-i>; <nextline>
<tr1-cout-i>i=[1..n] ::= in_cout[i] "=" <expr-i>; <nextline>

<expr-i>i=[1..n] ::= a[i] | b[i] | c_in
| (<expr-i><bitwise-op><expr-i>)
| <expr-i> <bitwise-op> <expr-i>
| <tv1-input>

<bitwise-op> ::= "&" | "|" | "^" | "~^"
<tv1-input> ::= {sum[i = 1] | in_cout[i = 1]}

| {sum[i = i + 1] | in_cout[i = i + 1]} | · · ·
| {sum[i = n] | in_cout[i = n]}n=5

<output-stmt> ::= codeword " = {dataword,parity_bit};"<nextline>
<nextline> ::= "\n"

Listing 5. Hamming Code (N,M) Encoder.

<stmts> ::= <tr1-syndbit-i><tr1-syndbit-{i + 1}> · · ·
<tr1-syndbit-i = m>

<tr1-syndbit-i>i=[1..m] ::= parity_bit[i] " = " <expr>";" <nextline>
<tv1-input> ::= parity_bit[1] | parity_bit[2] | parity_bit[3]

| parity_bit[4]
<expr> ::= <input> | <input><bitwise-op><expr>

| <bitwise-neg>(<expr>)

<input> ::= dataword[ <index> ] | <tv1-input>

<index> ::= i | i + 1 | · · · | k− 1 | k = 2m −m− 1
<bitwise-op> ::= & | "|" | ^

<bitwise-neg> ::= ~

<output-stmt> ::= codeword " = {dataword,parity_bit};"<nextline>
<nextline> ::= "\n"

4.4. Experimental Parameters

The experimental parameters for conducting the experiment are shown in Table 1.
Preliminary experiments were conducted to tune these parameters. A population size of
1000 is used for all other experiments except the 10-bit + 10-bit Adder, which is a more
challenging circuit to evolve. Down-sampled lexicase selection is used for each selection
event. Down-sampled lexicase sub-samples training cases during the selection event,
thereby reducing the total number of evaluations [28].
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Table 1. Evolutionary Run Parameters. In bold are the default population sizes used for the actual
experiments.

Parameter Value

Initialization Sensible Initialization
Selection Down-sampled Lexicase Selection
Crossover Rate 0.8
Mutation Rate 0.01
Replacement Rate 0.05
Number of Runs 30
Generations 100
Mutation All-events Well-formed Crossover
Crossover All-events Well-formed Crossover
Wrapping Operator Perfect Wrapping

Population Size 1000 All other problems
2000 10-bit + 10-bit Adder

Termination Condition

When mean, minimum and
maximum fitness equals the
maximum fitness or genera-
tion number equal specified
generation number

5. Results and Discussions

Figures 6, 7, 8 and 9 show the evolutionary performance for Hamming Code (7,4)
Encoder, Hamming Code (15,11) Encoder, 5-bit and 10-bit adders using both grammar
versions, respectively. The solid red line, dashed red line, solid black line, and dashed black
line, are the mean best fitness across 30 independent runs for MG-GE using the Grammar
with Output Variable Sharing, MG-GE using grammar with No-Output Variable Sharing,
GE using Grammar with Output Variable Sharing, GE using grammar with No-Output
Variable Sharing respectively. In Table 2, we summarise the number of independent runs
for each experimental setup.
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Figure 6. Mean average best across 30 independent runs for Hamming Code (7,4) using MG-GE and
standard GE.
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Figure 7. Mean average best across 30 independent runs for Hamming Code (15,11) using MG-GE
and standard GE.
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Figure 8. Mean average best across 30 independent runs for 5-bit + 5-bit Adder using MG-GE and
standard GE.



Algorithms 2023, 16, 365 18 of 22

0 20 40 60 80 100

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Generation

F
itn

es
s

MGE + Grammar with Output Variable Sharing 
MGE + Grammar with No−Output Variable Sharing
GE + Grammar with Output Variable Sharing 
GE + Grammar No−Output Variable Sharing

Figure 9. Mean average best across 30 independent runs for 10-bit + 10-bit Adder using MG-GE and
standard GE.

Table 2. Success Rate On Benchmark Problems Out of 30 Independent Runs.

Problem

Standard GE MG-GE
Output
Variable
Sharing

No-Output
Variable
Sharing

Output
Variable
Sharing

No-Output
Variable
Sharing

5-bit + 5-bit Adder 0 0 16 0
10-bit + 10-bit Adder 0 0 21 0
Hamming Code (7,4)
Encoder

18 24 30 30

Hamming Code (15,11)
Encoder

0 0 0 27

The benefits of the new genome representation can be observed from Figures 6–9.
The experimental setups using MG-GE outperform GE when the same grammar variants
are used except for the 5-bit + 5-bit adder in Figure 8, where both MG-GE and GE using
Grammar with No-Output Variable Sharing converge to similar final mean best fitness.
However, MG-GE Grammar with No-Output Variable Sharing attains the final mean best
fitness after a few generations. We also observe both MG-GE setups for the Hamming
Code (7,4) Encoder in Figure 6 attain their final mean best fitness after a few generations.
This suggests evolution can perform quite well on relatively easier problems with no inter-
output dependencies when the least appropriate grammar is used (Grammar with Output
Variable Sharing). Furthermore, MG-GE outperforms GE on all problems using the most
appropriate grammar variant.

We observe the experimental setup for MG-GE using the Grammar with Output-
Variable Sharing for the 5-bit + 5-bit and 10-bit + 10-bit adders recorded a success rate of
16/30 and 21/30, respectively, while all other setups recorded zero successful runs. This is
because the ripple-carry adder, which operates like elementary addition, propagates the
carry bits from the previous bit addition stages to the last stage of bit addition. Hence,
designing the grammar to allow output variable sharing while ensuring no cyclic depen-
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dency between output variables is formed ensures correct carry outputs are available for
the summation stages to use. As a result, the Grammars without Output Variable Sharing
will require evolution to evolve the carry-out bit from the previous summation stage for
the current summation stage, rendering the problem more challenging to deal with.

On the Hamming Code (7,4) and Hamming Code (15,11) Encoder problems, MG-GE
with the Grammar with No-Output Variable Sharing obtained a success rate of 30/30 and
27/30, respectively. Using the Grammar with Output Variable Sharing, MG-GE obtained
zero successful runs. This is due to the fact that for the hamming code encoders, there exist
no dependencies between the output variables. Therefore, using the grammar with Output
Variable Sharing for a problem with non-existing inter-output dependencies impedes
evolutionary performance.

5.1. Limitations and Drawbacks of The Proposed Approach

Though MG-GE outperforms GE on multi-output problems, it is not without some
limitations and drawbacks. Firstly, the Substitution Operator described in Section 3.11 may
not be universally applicable. Therefore, depending on the problem at hand, a new or a
modification of the substitution operator may be required. Secondly, the current output
variable dependency feature (also known as output variable sharing) is very strict. The
output variables are only useful as dependencies to other output variables only when they
completely solve their respective objective. In other words, an output variable is not used
as input by another output variable if it has not attained the maximum fitness value. This
may not be so beneficial for certain problems such as symbolic regression problems. Lastly,
the custom grammar syntax rules introduced require strict adherence and consequently
some minor errors may result in semantic errors which may be challenging to deal with.

6. Conclusions and Future Work

In this work, we presented a Multi-Genome Grammatical Evolution implementation
and demonstrated that it is better suited for solving multi-output (or multi-target) problems
than standard Grammatical Evolution. Genetic operators, mappers and initialisation
routines have been adapted to work with the new genome representation. Custom grammar
syntax rules, together with a cyclic dependency-checking algorithm, have been developed
to facilitate the evolution of inter-output dependencies. A new wrapping operator called
Perfect Wrapping has been developed to ensure every single Multi-Genome Grammatical
Evolution mapping event creates a valid executable object.

Despite the success of Multi-Genome Grammatical Evolution on the benchmark circuit
problems used, there are several open questions and further experiments that need to be
conducted. For example, the best mutation and crossover events for the genetic operators
adapted for Multi-Genome Grammatical Evolution need to be investigated. We need
to develop more intelligent algorithms to help Multi-Genome Grammatical Evolution
evolve very complex-output dependencies that may exist in other multi-output benchmark
problems.

Furthermore, the limitations of output variable dependency feature mentioned in
Section 5.1 needs to be improved to allow output variables that, when used by other output
variables, contribute to increasing their fitness value.

Finally, Multi-Genome Grammatical Evolution has the potential to be applied to appli-
cation domains other than the digital circuit domain. First, Multi-Genome Grammatical
Evolution can be used to evolve the single dependent variable and several independent
variables before performing multiple regression analysis to combine these variables to
predict the target variable. Second, Multi-Genome Grammatical Evolution can be applied
to multi-output classification problems. Finally, Multi-Genome Grammatical Evolution
was applied to single-output problems that can be decomposed, however, Multi-Genome
Grammatical Evolution should be applicable to multi-output problems. However, certain
application domains may require several features of Multi-Genome Grammatical Evolution
to be customised, such as the substitution operator and mapping mechanism.
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Appendix A

Listing A1. 5-bit + 5-bit Adder Grammar with Output Variable Sharing. Output variable sharing is
enabled by making an output variable rule non-terminal a production of 〈expr-*〉 rules as highlighted
in the grammar.

<stmts> ::= <tr1-sum-1> <tr1-cout-1> <tr1-sum-2> <tr1-cout-2>
<tr1-sum-3><tr1-cout-3> <tr1-sum-4> <tr1-cout-4>
<tr1-sum-5> <tr1-cout-5>

<tr1-sum-1> ::= sum[0] "=" <expr-1>";" <nextline>
<tr1-cout-1> ::= in_cout[0] "=" <expr-1>";" <nextline>
<tr1-sum-2> ::= sum[1] "=" <expr-2>";" <nextline>

<tr1-cout-2> ::= in_cout[1] "=" <expr-2>";" <nextline>
<tr1-sum-3> ::= sum[2] "=" <expr-3>";" <nextline>

<tr1-cout-3> ::= in_cout[2] "=" <expr-3>";" <nextline>
<tr1-sum-4> ::= sum[3] "=" <expr-4>";" <nextline>

<tr1-cout-4> ::= in_cout[3] "=" <expr-4>";" <nextline>
<tr1-sum-5> ::= sum[4] "=" <expr-5>";" <nextline>

<tr1-cout-5> ::= in_cout[4] "=" <expr-5>";" <nextline>
<expr-1> ::= a[0] | b[0] | c_in | <expr-1><bitwise-op><expr-1>

| <expr-1><bitwise-op>(<expr-1>) | <tv1-input>
<expr-2> ::= a[1] | b[1] | c_in | <expr-2><bitwise-op><expr-2>

| <expr-2><bitwise-op>(<expr-2>) | <tv1-input>
<expr-3> ::= a[2] | b[2] | c_in | <expr-3><bitwise-op><expr-3>

| <expr-3><bitwise-op>(<expr-3>) | <tv1-input>
<expr-4> ::= a[3] | b[3] | c_in | <expr-4><bitwise-op><expr-4>

| <expr-4><bitwise-op>(<expr-4>) | <tv1-input>
<expr-5> ::= a[4] | b[4] | c_in | <expr-5><bitwise-op><expr-5>

| <expr-5><bitwise-op> (<expr-5>) | <tv1-input>
<bitwise-op> ::= & | "|" | ^ | ~^
<addend-idx> ::= 0 | 1 | 2 | 3 | 4
<tv1-input> ::= sum[0] | in_cout[0] | sum[1] | in_cout[1] | sum[2]

| in_cout[2] | sum[3] | in_cout[3] | sum[4]
| in_cout[4]

<begin-module> ::= "module adder(input logic [4:0] a, b, input
logic c_in, output logic [4:0] in_cout, output
logic [4:0] sum);" <nextline>
always @(*) begin <nextline><stmts><nextline>
end <nextline> <endmodule>

<endmodule> ::= endmodule
<nextline> ::= "\n"
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Listing A2. 5-bit + 5-bit Adder Grammar without Output Variable Sharing.

<stmts> ::= <tr1-sum-1> <tr1-cout-1> <tr1-sum-2> <tr1-cout-2>
<tr1-sum-3><tr1-cout-3> <tr1-sum-4> <tr1-cout-4>
<tr1-sum-5> <tr1-cout-5>

<tr1-sum-1> ::= sum[0] "=" <expr-1>";" <nextline>
<tr1-cout-1> ::= in_cout[0] "=" <expr-1>";" <nextline>
<tr1-sum-2> ::= sum[1] "=" <expr-2>";" <nextline>

<tr1-cout-2> ::= in_cout[1] "=" <expr-2>";" <nextline>
<tr1-sum-3> ::= sum[2] "=" <expr-3>";" <nextline>

<tr1-cout-3> ::= in_cout[2] "=" <expr-3>";" <nextline>
<tr1-sum-4> ::= sum[3] "=" <expr-4>";" <nextline>

<tr1-cout-4> ::= in_cout[3] "=" <expr-4>";" <nextline>
<tr1-sum-5> ::= sum[4] "=" <expr-5>";" <nextline>

<tr1-cout-5> ::= in_cout[4] "=" <expr-5>";" <nextline>
<expr-1> ::= a[0] | b[0] | c_in | <expr-1><bitwise-op><expr-1>

| <expr-1><bitwise-op>(<expr-1>)
<expr-2> ::= a[1] | b[1] | c_in | <expr-2><bitwise-op><expr-2>

| <expr-2><bitwise-op>(<expr-2>)
<expr-3> ::= a[2] | b[2] | c_in | <expr-3><bitwise-op><expr-3>

| <expr-3><bitwise-op>(<expr-3>)
<expr-4> ::= a[3] | b[3] | c_in | <expr-4><bitwise-op><expr-4>

| <expr-4><bitwise-op>(<expr-4>)
<expr-5> ::= a[4] | b[4] | c_in | <expr-5><bitwise-op><expr-5>

| <expr-5><bitwise-op> (<expr-5>)
<bitwise-op> ::= & | "|" | ^ | ~^
<addend-idx> ::= 0 | 1 | 2 | 3 | 4
<tv1-input> ::= sum[0] | in_cout[0] | sum[1] | in_cout[1] | sum[2]

| in_cout[2] | sum[3] | in_cout[3] | sum[4]
| in_cout[4]

<begin-module> ::= "module adder(input logic [4:0] a, b, input
logic c_in, output logic [4:0] in_cout, output
logic [4:0] sum);" <nextline>
always @(*) begin <nextline><stmts><nextline>
end <nextline> <endmodule>

<endmodule> ::= endmodule
<nextline> ::= "\n"
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