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Abstract: Freight forwarding and transportation are the backbone of the modern economy. There
are thousands of transportation companies on the market whose sole purpose is to deliver ordered
goods from pickup to delivery. Transportation can be carried out by two types of fleets. A company
can have its own trucks, or it can use third-party companies. This transportation can be carried out in
a variety of formulas, with full truckload being the most common for long routes. The shipper must
be aware of the potential cost of such a service during the process of selecting a particular transport.
The presented solution addresses this exact issue. There are many approaches, ranging from detailed
cost calculators to machine learning solutions. The present study uses a dedicated hybrid algorithm
that combines different techniques, spanning clustering algorithms, regression and kNN (k Nearest
Neighbors) estimators. The resulting solution was tested on real shipping data covering multi-year
contract data from several shipping companies operating in the European market. The obtained
results proved so successful that they were implemented in a commercial solution used by freight
forwarding companies on a daily basis.

Keywords: kNN; clustering; regression; cost estimation; goods shipping; full truckloads

1. Introduction

Truck logistics and cargo shipments make our economy move forward [1]. Full
truckload (FTL) constitutes one of the most popular shipping methods, in which the
shipment takes up an entire truck. It is ideally suited for large shipments where a freight
load to be delivered occupies the whole space on a truck. FTL is perfect for shipping large,
delicate, high-risk, hazardous or non-stackable cargo.

There exists an alternative method called less than truckload (LTL). In such cases, a
truck delivers partial loads to different locations within a single travel period. It is used
in cases of relatively small freights. LTL carriers take care of small freights from several
companies by sharing space.

FTL is less exposed to the risk of damage, as the load stays on the same truck for
the entire route from the pickup to the final destination. It is secure and more reliable
than LTL. Moreover, it is expected to be faster, as it eliminates all the additional stops and
steps, making the delivery faster. Furthermore, it makes it easier to guarantee the delivery
time and minimizes delays. FTL shipping contracts can be fulfilled with a company’s
own fleet, using vehicles from regular suppliers, or using external companies offering
transportation services. Each of these approaches is based on a different estimate of the
cost of such transportation. The own-fleet approach is the simplest. As the owner, we know
precisely all our costs, which, in the case of FTL shipping, include shipping time, fuel, road
or transportation fees (ferries, trains, highways, bridges, tunnels), the driver’s wages, truck
leasing or depreciation expenses, eventual taxation fees, overheads, etc. Regular carriers
(denoted the leased carriers) are often directly linked to us with clearly predefined contract
rules, which accurately define the aggregate cost of transporting goods on specific routes.
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They also use the dynamic pricing approach, but in a different way. These carriers also
need to be taken into account, though their estimation differs.

The greatest latitude, a potentially huge spread of possible prices, and thus the greatest
risk in the decision-making process regarding the possible decision to undertake a given
transport order, occurs when using an external fleet. In such a situation, we may be dealing
with a classic market game, where the price of a given order does not take into account only
direct well-known costs, but may depend on various temporal, geographic, economic or
competitive conditions. In such a situation, the forwarder can use either their knowledge
and experience, or the support of an external decision-making system.

The above strategy uses the dynamic pricing model, which poses serious challenges
independently on the business and market [2-4]. Thus, our research focuses on the subject
of the dynamic pricing estimation of FTL shipping.

The literature shows various approaches that cope with the external-fleet cost-estimation
task. In general, we can distinguish between two extreme approaches. Advanced calculators
mostly use analytical methods and historical databases. This is a wide market, and similar
general freight-cost calculators can be found on many Internet shipping platforms or stock
exchanges [5,6]. On the other hand, we can find a wide spectrum of solutions using artificial
intelligence (Al) tools in the form of various machine learning (ML) approaches and black
box, mostly neural-network-based models [7-10].

The developed estimation method is based on the density-based spatial clustering of
applications with noise algorithm (DBSCAN) and the K nearest neighbors (kNN) algorithm.
The loading and unloading locations of contracts from the training set are grouped into
clusters based on their density of occurrence on the map. When a prediction is obtained,
a new contract is assigned loading and unloading clusters based on the distance of the
location from the already established clusters. Next, all historical contracts along the same
route (the same loading cluster and unloading cluster) are found, and the kNN algorithm
is run on this subset, which further prioritizes the most recent examples. Finally, the costs
assigned to the neighbors found are scaled by an inflation factor. This approach has yielded
more accurate predictions, in particular for contracts on routes that have been frequently
executed in the past.

This paper starts with a review in Section 2 that summarizes the current research in
the area of FTL dynamic pricing-estimation models. The research review is followed by a
presentation of the main contributions, included in Section 3. Section 4 presents the results
that were obtained for a real data case study. The paper concludes in Section 5 with a
discussion and a presentation of open research issues.

2. FTL Cost-Estimation Models

The FTL freight cost-estimation model is needed, as external fleets mostly use dy-
namic pricing strategies [11]. Therefore, the knowledge about influential dynamic cost
factors should help in the model’s development. Next, a review of the subject literature is
required to identify and indicate the most appropriate approaches that could fit the project
assumptions. These two subjects should allow one to decide upon the target external-fleet
FTL cost-estimation procedure. It is assumed that the obtained algorithm should be able to
incorporate as much of the process knowledge as possible, which is practically available in
quite a large range.

2.1. Dynamic Pricing for FTL Freights

Dynamic pricing strategies take into account a variety of objective and purely subjec-
tive market and non-market factors [12-14] that actually affect or can potentially (at least in
the opinion of the decision-maker) affect the offered current cost of transporting a given
commodity along a defined route over a certain period of time. Dynamic pricing from
one side reflects increasing dynamics in the shipping business [15], while simultaneously
affecting them as well [16].
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Knowledge about these factors allows for better design of the cost-estimating procedure [17],
eliminating unnecessary, albeit medial and often artificially introduced, Al and ML solu-
tions. Such an ignorant approach is strongly abused, although the knowledge possessed
allows for a given issue to be solved with simple and known methods. The goal of the solu-
tion is to use the most knowledge we have about the problem, match adequate solutions
and develop the simplest, computationally efficient and accurate algorithm possible.

Figure 1 presents influential factors divided into main groups: contract-dependent,
economic, regulatory, general and purely discretionary.
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Figure 1. Dynamic pricing influential factors.

Contract-dependent factors are formulated within the order request and define the
main limiting parameters of FTL shipping. The commodity type defines the type of truck
and its associated special equipment, ADR (I’Accord européen relatif au transport inter-
national des marchandises Dangereuses par Route—transport with hazardous materials)
or eventual driver-specific requirements or certification. The shipping origin and desti-
nation determines the route, which directly impacts the travel kilometers, time and the
auxiliary costs dependent on the selected route. This aspect is closely interconnected with
the required special equipment, as, for instance, in some locations the truck must include
its own forklift.

The dates and the time-frame for the pickup and unloading may affect the decision
of which truck/driver can undertake the assignment. A similar impact is connected
with travel dates, because the driver cost may differ between certain periods of the year
(weekends, holidays, forbidden truck shipping dates, etc.). Finally, the contract defines the
payment terms that may generate risks, which have to be mitigated by the shipping cost.

Each carrier company has its own fixed costs, such as the driver’s wages and all
the truck costs, like its maintenance, leasing or the depreciation rates and its insurance.
Apart from the company’s fixed business costs, there are always some overheads and the
expected/desired profit percentage, which has to be included in the pricing model.
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The shipping business operates in the general environment. Trucks use fuel, which
has a certain price, and which may significantly differ between countries and locations.
Transporting goods is affected by road costs, such as highway fees, ferries and intermodal
costs. Furthermore, the weather or road conditions may impact the route and the associated
cost, as, for instance, the shortest road may be closed due to bridge maintenance and the
detour might be much longer. Additional general economic conditions such as the inflation
or unemployment rate influence the dynamic price model as well.

Quite similar are the regulatory factors, like the mobility package, which has dramati-
cally changed the European shipping market [18,19]. Specific country-related regulations,
taxation models, custom rates and all regulatory limitations and additional costs contribute
to the price formulation.

Quite interesting and highly varying are purely discretionary contributors. They are
not directly defined or known, but may significantly change the price. Once there are no
available free trucks in a certain region, the owner of a free truck may dictate a very high
non-market spot price. The price during summer may differ from that in winter or during a
holiday period. The character and the localization of the final delivery affects the possibility
of taking further business and the shipping company may take into account the no-load
truck travel to safe locations. Some customers are preferred and they may obtain lower
prices, while in the case of an unknown partner without any historical record, they may be
charged at a higher cost. On the contrary, pre-booked shipping is subject to lower costs.
Finally, the price may be affected by pure speculation.

2.2. Algorithms Used in Estimation

The proposed algorithm uses a hybrid approach to incorporate into the solution as
much as possible of the process’s custom knowledge and available data. It is an intentional
approach to exclude fully black-box solutions, which are nontransparent, inflexible and
their use requires enormous calculation power [20]. The hybrid approach allows for the
estimation procedure decomposition to smaller tasks, which can be separately assessed
and maintained.

The developed algorithm uses two ML approaches: a two-dimensional clustering and
k Nearest Neighbors estimation. The 2D grouping was used to diminish the number of
considered pickup and unloading locations. The DBSCAN was selected as it proved to be
more effective in comparison with the other tested approaches. The kNN estimator was
selected as it gives enough flexibility to incorporate transportation process knowledge and,
respectively, easy self-adaptation.

Additionally, the residuum analysis measures are also briefly explained.

2.2.1. Residuum Analysis

A residuum analysis for the generated models was needed to properly compare the
obtained estimators. We used three main integral indexes: mean square error (MSE), mean
integral absolute error (IAE) and mean percentage integral absolute error (pIAE) [21]. Two
statistical measures were also evaluated, i.e., normal standard deviation and the robust
estimator of standard deviation in the form of the logistic i function estimator.

Gaussian probability density function (PDF) is described as a function of some variable
x; with two parameters: mean x, and standard deviation ¢ (1). Normal PDF is symmetrical
and is described as follows:

(=)
LI 1)

() = o=
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The x, and o exist and Equation (2) shows the discrete-time case (x1, ..., xyn), where
N is the number of data points.

1 LN (xi — x0)?
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Outlying observations in data bias normal estimators and cause fat tails [22], and,
thus, robust estimators are required. The scale M-estimator was calculated as a solution to
Equation (3).
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where 0 < x < p(o), p(.) is even, differentiable and non-decreasing on the positive
numbers for the performance index, o is the scale and iy is the median. Once the logistic
¢ function in Equation (4) is used for p(.), one obtains the logistic i scale estimator [23],
denoted as oR.
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2.2.2. DBSCAN Clustering

There are so many clustering algorithms that discussing each of them is an impossible
task. They differ mainly in the way of data processing, application, as well as the very
definition of the concept of a group [24,25]. In general, clustering algorithms can be divided
as follows:

-  iterative optimizing algorithms, like k-means or k-medoids [26];
—  hierarchical, organized in bottom-up or top-down ways;

- density-based clustering, like DBSCAN, OPTICS or DENCLUE;
- grid algorithms, such as, for instance, STING or WaveCluster;

- algorithms based on a data model, like COBWEB.

The DBSCAN, as mentioned earlier, is an algorithm included in the class of density
algorithms [27]. Among the biggest advantages of this algorithm are finding groups of
different, even complex, shapes, not only spherical, and finding groups surrounded by
other clusters. They also cope well with noisy data and do not need to provided with the
number of groups to be found—the algorithm finds them by itself.

DBSCAN takes two parameters as input. The first is the minimum number of points
required to form a group, denoted as 1, while the second is the maximum radius of the
neighborhood €. The neighborhood itself, shown in Equation (5), is the set of points D
lying at a distance less than or equal to € from a given point p and is defined as

Ne(p) ={q9 € D:d(p,q) <€}, (5)

where d(p, q) denotes the distance between p and g. The core point presented in Equation (6)
is a p such that in its € neighborhood, there are at least n points

|Ne(p)| = n. (6)

The border point is such a point that is not a core but is reachable from another core.
Point p is called directly density-reachable if p € N¢(p) and [Ne(p)| > n.

Point p is called density-reachable from point g if there exists such a set of points
P1-.-Pn,P1 = 4,Pn = p and each p;, is reachable from point p;. A point r is density-
connected with point g, if there exits such a point p that both points r and q are reachable
from point p.



Algorithms 2023, 16, 360

60of 17

A cluster is such a subset of all points under consideration that meets the following
conditions:

- If point p belongs to a group and point g is reachable from it, then point 4 also belongs
to that group.
- If two points belong to the same group, they are densely connected.

A noise is a subset of all points from the database that do not belong to any group found.

The DBSCAN consecutively reviews all the yet-unvisited (unclassified) points. For
each of them, the method checks the number of all points in its neighborhood. If the number
of such points is less than the n parameter, the point in question is temporarily marked as
noise and the algorithm takes another of the points not yet reviewed. Otherwise, a new
group consisting initially of points from the surroundings of the current core (the set of
seeds) is created.

For each point belonging to the seed set, the number of neighbors is checked. If this
number is greater than or equal to 7, all points not previously visited from the neighborhood
of the point under consideration are added to the seed set and, so, the cluster is expanded.
If, in such a neighborhood, there are points previously marked as noise, they will be added
to the cluster. Its expansion ends when all points from the seed set have been examined.

In addition to its advantages, DBSCAN also has disadvantages. The algorithm is
not entirely deterministic—its results depend on the order in which the data are viewed.
A boundary point that is already assigned to one group can later be found in another, if it
lies close enough to it. This situation, fortunately, is not frequent and, most importantly,
does not have a big impact on the results of grouping. The detailed algorithm description
can be found in [27].

In the considered case, DBSCAN is used in a spatial context, which is actually quite
popular. Relatively similar applications can be found in [28,29]. Its interesting feature is
that it may incorporate geographical borders into the algorithm, which is useful in the
considered application [30].

2.2.3. The kNN Estimation

k Nearest Neighbors is the implementation of a memory-based method, which, unlike
other statistical methods, does not require learning (does not fit the model data). The idea
of prototypes is applied here. It assumes, as is intuitively clear, that similar objects are in
the same class. The prediction of class membership of a new object is, therefore, based on a
comparison with a set of exemplary (prototype) objects. In classification, the vote (voting)
of the nearest k neighbors is decided, while in regression, averages are calculated.

The kNN estimation and prediction methods do not require any learning as such,
which increases their attractiveness and popularity [31]. It is additionally interesting that
this approach has been already adopted into the shipping context [32,33], which justifies
our approach.

3. Clustered kNN Shipping-Cost Estimation

The algorithm consists of three main steps, with its flow diagram shown in Figure 2:

Step 1: Preprocessing—evaluation of algorithm inputs from the industrial database.
Step 2: Spatial DBSCAN clustering of the pickup/unloading locations.
Step 3: The kNN cost estimation for the contract.

3.1. Preprocessing

Real production databases for the logistics of a company store large amounts of
different information about shipping contracts. Apart from that, there are also other
databases, which keep auxiliary information, such as, for instance, financial or human
resources data. Therefore, these databases must be properly scanned and the required
data must be extracted and synchronized. The most relevant common records available in
transportation companies’ databases are listed below:
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. Orders database:

- ltemID—unique item identifier;

- CarrlD—unique carrier identifier;

- CreationTime—order creation time;

—  Value—order value;

- Currency—order currency;

—  PaymentTerm—payment terms, in days;

- TruckType—the type of truck required;

-  TruckTemp—shipping goods’ temperature;

- isCooler—identifier, if cooler transport is required;
- isOversize—identifier, if oversize transport is required;
- isWaste—identifier, if it is waste transport;

- isADR—identifier, if it is ADR transport.

*  Shipping info information:

- EmpyDist—empy truck travel to pickup or after unloading;
—  PickupType—type of pickup location;

- PickupLoc—pickup location geographical coordinates;
- PickupCountry—pickup location country;

—  PickupTown—pickup location town;

- PickupCode—pickup location zipcode;

- PickupTimeFrom—pickup time from;

- PickupTimeTill—pickup time till;

- UnloadType—type of unloading location;

-  UnloadLoc—unloading location geographical coordinates;
- UnloadCountry—unloading location country;

- UnloadTown—unloading location town;

-  UnloadCode—unloading location zipcode;

- UnloadTimeFrom—unloading time from;

-  UnloadTimeTill—unloading time till;

-  Type—type of transport (intermodal, ferry, etc.);

- CargoWeight—the cargo weight;

- CargoQuantity—the quantity of the cargo elements;

- CargoUnit—the cargo unit;

- LoadNo—number of pickups;

- UnloadNo—number of unloadings.

. Auxiliary information

- InflRate: monthly inflation rate in transport sector;
- FuelPrice: daily price of EcoDiesel fuel.

*  Execution database (for learning purposes)

- RealTime: execution time, in hours;
- RealCost: cost of executing an order, in monetary units.

The above data are considered to be the raw information about the contract and its
environment. In the case of the majority of DM and Al approaches, they are considered
as-they-are and taken directly as the black-box model input. On the contrary, we take as
much effort as possible to first extract more information out of the process.

As shown in Figure 1, the final cost is the result of many factors influencing with
different strengths, which depend on time and on a human, and are generally unknown
and should not be expected to be known. Even if we reach such a guess in a number of
cases, it may turn out that in the next one our mistake will be so large that the previous
gains will be wiped out.
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Transportation logistics experts indicate the route, fuel costs, the cargo type and the
travel time as the most significant contributors to the final cost. These factors may be
considered as the base-cost drivers, while the others are heavily understated and vague.

DATABASE

Orders information

Shipping information

Execution information

Auxiliary information

Data cleaning

| | Locations of
additional clusters

| | e
¢ Pickup and delivery
i | Additional features locations E
, extraction
: DBSCAN |
clustering A :

Pickup and delivery H
clusters
Y + H

! Input features PREPROCESSING ;

Contracts grouping (based
on
clustered routes)

1

: Classification of execution
variants

!

KNN

l

Predictions

ESTIMATION

Figure 2. Cost-estimation algorithm flow diagram.

Pre-processing starts with a general data review to remove those records which are
not fully filled or contain clearly erroneous entries. Such incorrect orders are just removed.
Next, new records are evaluated:

—  TimeDiff—the time interval between the acceptance of the order and the moment of
the first cargo pickup. The reason is that urgent orders are generally more expensive.

—  TimeTillNow—the time interval between the historical execution of the contract and
the current moment. This feature incorporates the history to differ old orders from
new ones.

- RealDate—the execution date expressed in months from now, to indicate past orders.

—  MinShippingTime—minimum shipping time.

- MaxShippingTime—maximum shipping time.

—  TonnesKM—tons-kilometers of the shipping.



Algorithms 2023, 16, 360

90f17

Actually, the clusterization of the pickup/unload localization can be considered as the
pre-processing as well; it is presented in the separate section below.

3.2. DBSCAN Clustering

The rationale for the location clustering is simple. There are two main reasons: one is
process oriented, while the second derives from the applied kNN estimation method. The
transportation cost mainly depends on the route. The database shows that there are many
pickup/unloading locations close to each other. From that perspective, there is a minor (or
even no) difference between the route between Dortmund and Sopot and that from Gdarisk
to Bochum. The exact locations differ; however, the direct transportation cost difference is
marginal. Therefore, it seems inefficient to keep an exact start/end location, and it is worth
it to merge similar routes.

The second reason comes from the selected kNN estimation. Its efficiency depends
on a number of neighbors. Therefore, one expects to have many similar orders to select
the most relevant ones. A review of the available data reveals that there are many close-by
locations. Therefore, there are dozens of different routes starting and ending close to each
other. Clustering such location merges different routes (orders) and then the estimation
obtains more appropriate data examples for finding the most similar neighbors for a new
route. It allows one to estimate the cost for totally new locations, as long as they lie close to
the already exiting ones. Modified DBSCAN addresses that issue.

Data clustering was performed in two steps. At first, the main clusters were evaluated
using the classical DBSCAN procedure with the following parameters: € = 7 [km] and
n = 100. Figure 3 shows the obtained initial clusters and Figure 4 the centers. The locations
considered as noise, i.e., not assigned to any cluster, are not shown, as they were taken into
account by further manual clustering (as there were no relevant historical data).
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Figure 3. Clusters assigned using DBSCAN together with enlarged cluster in Warsaw (PL) area.
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Cluster type
«found by DBSCAN

» set manually

Figure 4. Cluster centers: DBSCAN and manual ones.

It is worth noting that these clusters reflect real road positions and clustered locations
frequently follow the road patters lying along them. As one may notice, the clustering does
not fill the entire map with assigned clusters and leaves empty map regions without an
assigned group. This issue was addressed using custom manual clustering. Empty regions
were filled with the manually set centers of attraction (see Figure 4), which represent
additional MANUAL clusters for regions without order histories. In such a way, the
clustering was completed. Each estimated location can be assigned to the nearest cluster,
i.e., the DBSCAN one or to the MANUAL one.

Therefore, each ordered route was defined by two labels indicating start/end clusters
and was characterized by the route length. The RouteLength is evaluated as the distance
between the centers of both clusters. Once the estimation was run, each new pickup/unload
location could be assigned to the nearest cluster. As there always might appear some
erroneous data, it was checked against the distance threshold d;;;x (maximum distance
from the nearest cluster). If some new location exceeded this maximum distance, it was
considered as erroneous and the associated route cost was not estimated.

3.3. The kNN Cost Estimation

Once the pre-processing was completed and substituted with the clustering informa-
tion, the data could be transformed into a tree-like structure, which facilitated the KNN
estimation. At first, any new contract for the specific carrier, which is subject to estimation,
was assigned to the connection between existing clusters. Next, the classification was
conducted according to the main classifiers, which were (starting from the root):
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* /ANY — any existing contract for the current route

-  /INTERMODAL — intermodal shipping
- /ROAD — road truck only shipping

*  /LEASED — leased carriers

/SPECIFIC — specific leased carrier
/0THER — other leased carrier

* /EXTERNAL — external carriers

/SPECIFIC — specific external carrier
/0THER — other external carrier

The results were returned for all possible executions for further selection. In case of
a validation (during algorithm design and testing) we selected the most similar one to
the tested example. Once there were no contracts in the current leaf, i.e., for instance, the
estimated carrier had no history over the route, we took into account the same route but
operated by other carriers. Finally, the following features were selected (from the ones
mentioned in Section 3.1) for the final kNN operation at the actual leaf of the tree for the
order being estimated. Features are listed in importance order—reflected by the weight w;:

*  weightw; = 10 — TimeTillNow;
e weightw; =5 — isCooler;
e weightw; =3

—  FuelPrice;

— RouteLength;
e weightw; =1
PaymentTerm;
MinShippingTime;
MaxShippingTime;
LoadNo;
UnloadNo;
CargoWeight;
PaymentTerm;
EmpyDist;
TonnesKM;
TimeDiff.

The above w; weights were optimized out of their initial values w; = 1, for all i, using
the Bayesian optimization algorithm implemented in Python library Optuna [34].

The final price estimation, RouteEstimCost , was evaluated as the weighted mean out
of k = 5 Nearest Neighbors. Moreover, all the found neighbors’ costs were re-scaled to the
current process using the inflation rate coefficient Inf1Rate. Apart from the estimated cost,
the algorithm evaluated the estimated minimum and maximum cost, which was calculated
as the cost of the cheapest and the most expensive Nearest Neighbor. Additionally, the
travel times were returned in form of the trimmed (trimming factor equal to 1) route time
out of the selected k = 5 Nearest Neighbors.

N A

4. Estimation Case Study

The data used to evaluate and test the method originated from the databases for
selected Polish transportation companies [35]. The original records for each contract
included dozens of fields and features. The proposed approach aimed to incorporate
into the algorithm the knowledge of the process; thus, the data fields (contract features)
were filtered to leave the most influential ones (as described in the previous section). The
original orders database consisted of approximately 583,000 orders. After pre-processing
the 414,000 record remains, the own fleet contracts (fixed-price costs) and the erroneous
entrances were removed. The data considered cover the time period from 1 January 2016 to
30 April 2022. These records were considered the training data.
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Records from 1 May 2022 till 1 August 2022 were considered as the validating dataset.
It comprised 15,000 orders obtained after removing the own-fleet and erroneous ones
from the original size of 25,000 records. The residuum analysis for the obtained custom
kNN modeling was compared with the simultaneously prepared and tuned reference ML
eXtreme Gradient Boosting (XGBoost) model [36]. Actually, four different kNN models
were compared with the XGBoost model:

KNN(@)raw— the raw kNN model evaluated with the weights not tuned, i.e., for all i,
w; = 1 and considering all the routes, for which there was at least one historical
shipping record.

kNN(1)opt— the raw kNN model evaluated with all the weights optimized and taking
into consideration all the routes, for which at least one historical shipping happened.

kNN(5)raw— the raw kNN model evaluated with the weights not tuned and taking into
consideration all the routes, for which at least five historical shippings happened.

kNN(5)opt— the raw kNN model evaluated with all the weights optimized and taking
into consideration all the routes, for which at least five historical shippings happened.

XGBoost— the XGBoost model.

The residuum analysis started from the evaluation of the main model fitting indicators,
i.e., the integrals and statistical factors of the prediction error. They are shown in Table 1.
We see that the tuning of the model’s hyper-parameters improved the model’s quality. The
model kNN(5)opt reached the best quality in terms of all indexes. The percentage index
PIAE also indicates that even the kNN(1)opt model behaved better than the XGBoost one.

Table 1. The residuum analysis performed for all data taken as they are.

ISE IAE pIAE o OR
kNN(1)raw 1,207,139 561.7 16.54 1099 489.8
kNN(1)opt 1,111,817 492.3 14.94 1053 385.9
kNN(5)raw 921,361 490.0 13.01 960 456.5
kNN(5)opt 821,574 416.1 11.33 904 353.8
XGBoost 902,040 456.2 16.18 944 400.1

One has to be aware that such simple and one-dimensional residuum analysis does not
explain the nature of the model and the causes for the model’s misfits. The analysis of the
error histograms and their properties may deliver further information. Sample histograms
for two models, kNN (I)raw and kNN(5)opt, are presented in Figure 5.
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Figure 5. Sample histogram plots with the fitted normal and robust Gaussian distributions.

They show the best and the worst model, respectively. We clearly may notice that
normal distribution is not an appropriate approximation of the error stochastic properties.
Robust estimator is better. Therefore, normal mean and standard deviations should not be
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used. Following this line of thinking further, the MSE should also not be used, since, as
Gauss has already shown, it is equivalent to the standard deviation. Thus, the IAE measure
(absolute or percentage) and robust standard deviation are acceptable alternative measures
of model quality. The automatic use of the MSE error can be misleading without knowing
the properties of the process and, thus, one should be cautious in its use.

The statistical comparison of all three models is shown in Figure 6, which presents all
fitted robust Gaussian distributions in a single plot. We can better observe how the predic-
tion error improves. The observation about non-Gaussian error properties, distribution fat
tails and the related outlying results suggest other model representation.
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Figure 6. Comparison of the model robust Gaussian PDFs.
Figure 7 shows the respective box-plot representation of the errors. In this way, we

may better compare the models, and this type of the residuum representation was used
during the next steps of the analysis.
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Figure 7. Comparison of the models with the box plot.

The comparison of the differences between the absolute and the percentage absolute
errors suggest that the error and the quality of estimation may depend on the cost of the
shipping. One of the ways to address this issue is to present a plot of the predicted versus
the real costs. Figure 8 shows such a plot for three selected models, i.e., two optimized ones
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and the XGBoost. We see that the XGBoost model favors low costs, while the higher costs
routes are better estimated with the kKNN approach.
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Figure 8. The predicted versus real cost for selected models.

It is even better visible in Figure 9, which depicts the relationship between the pre-
diction error and the real shipping cost. This dependence is well-seen observing the
polynomial fitting of the error versus the real cost.
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Figure 9. The relationship between the model quality (prediction error) and the route shipping cost.

Finally, we observed a difference in behavior between the kNN(1) and kNN(5) models.
We can hypothesize that the quality of the prediction depends on the number of historical
examples along the route. Figure 10 shows this relationship. The figure clearly shows that
the more often a given connection is used, the more accurately we can estimate its cost.
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Figure 10. The relationship between the number of the historical samples on route and its actual
shipping cost.

5. Conclusions and Further Research

This article presents a proposal for the authors” approach to modeling the cost of
full-load transportation in the case of the dynamic pricing model that occurs when working
with third-party shipping companies. The proposed approach uses a combination of
clustering with DBSCAN and kNN modeling.

Observation of the results allows us to show that the proposed model is effective. Its
quality is not only confirmed by its superiority over a high-quality Al model like XGBoost,
but also by the fact that the approach is practically used in commercial solutions for freight
forwarding companies. The mere fact that a particular model is superior and inferior
should not be enough. It is necessary to try to investigate the reasons for this and not
another result.

In the case under consideration, the non-Gaussian nature of the phenomenon and
the distribution of errors is demonstrated, which should preclude the use of error analysis
using the MSE index or the coefficients of the Gaussian normal distribution. This nature of
the process generates a lot of outliers and fat tails. This is a classic effect of the influence of
the human factor.

In addition, it has been shown that the quality of the model depends on the cost of
the route, which is practically the distance of delivery planning. The task of modeling
short routes is much more complicated and demanding. Furthermore, modeling the cost of
infrequently traveled routes is a much more serious challenge than for popular routes.

The above conclusions indicate the need for further recognition of the task, a more
thorough understanding of human-factor influences, and an attempt to develop a solution
for routes that are short, have a short history of use or have not been used for a long time.

One has to be aware that the proposed algorithm is deterministic and does not contain
stochasticity that is connected with the process, such as “Probability of car accident” or
the “Risk of disruption in SC”. Extension toward the stochastic solutions is considered
for further research with the implementation of the non-Gaussian risk measures and
appropriate stochastic solutions for the interval estimation framework.
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Abbreviations

The following abbreviations are used in this manuscript:

FTL Full Truckload

LTL Less than Truckload

DBSCAN  Density-Based Spatial Clustering of Applications with Noise

kNN k Nearest Neighbors

Al Artificial Intelligence

DM Data Mining

ML Machine Learning

ADR I’Accord européen relatif au transport international des marchandises
Dangereuses par Route

MSE Mean Square Error

TIAE Integral Absolute Error

pIAE percentage Integral Absolute Error

PDF Probability Density Function

XGBoost  eXtreme Gradient Boosting
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