
Citation: Konstantinov, A.; Utkin, L.;

Muliukha, V. Multiple Instance

Learning with Trainable Soft Decision

Tree Ensembles. Algorithms 2023, 16,

358. https://doi.org/10.3390/

a16080358

Academic Editor: Frank Werner

Received: 22 June 2023

Revised: 17 July 2023

Accepted: 24 July 2023

Published: 26 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Multiple Instance Learning with Trainable Soft Decision
Tree Ensembles
Andrei Konstantinov † , Lev Utkin † and Vladimir Muliukha *,†

Department of Artificial Intelligence, Peter the Great St.Petersburg Polytechnic University,
Polytechnicheskaya, 29, 195251 St. Petersburg, Russia; konstantinov_av@spbstu.ru (A.K.);
utkin_lv@spbstu.ru (L.U.)
* Correspondence: vladimir.muliukha@spbstu.ru
† These authors contributed equally to this work.

Abstract: A new random forest-based model for solving the Multiple Instance Learning problem
under small tabular data, called the Soft Tree Ensemble Multiple Instance Learning, is proposed. A
new type of soft decision trees is considered, which is similar to the well-known soft oblique trees,
but with a smaller number of trainable parameters. In order to train the trees, it is proposed to
convert them into neural networks of a specific form, which approximate the tree functions. It is
also proposed to aggregate the instance and bag embeddings (output vectors) by using the attention
mechanism. The whole Soft Tree Ensemble Multiple Instance Learning model, including soft decision
trees, neural networks, the attention mechanism and a classifier, is trained in an end-to-end manner.
Numerical experiments with well-known real tabular datasets show that the proposed model can
outperform many existing multiple instance learning models. A code implementing the model is
publicly available.

Keywords: multiple instance learning; decision tree; oblique tree; random forest; attention mechanism;
neural network

1. Introduction

Many machine learning real-life applications deal with labeled objects called bags,
which consist of several instances wherein individual labels of the instances contained in the
bags are not provided. For example, in histopathology, a histology image can be viewed as a
bag and its patches (cells) as instances of the bag [1–3]. One can find many similar examples
of applications, such as drug activity prediction [4], detecting lung cancer [5], protein
function annotation [6], etc. A useful framework for modeling the above applications is
Multiple Instance Learning (MIL), which can be regarded as a kind of weakly supervised
learning [7–13]. The MIL objectives are, firstly, to classify new bags, based on training data
consisting of a set of labeled bags, and, secondly, to classify unlabeled instances in the
bags. In order to achieve the objectives, assumptions or rules are introduced to establish
relationships between labels of instances and labels of the corresponding bag. Most MIL
models assume that all negative bags contain only negative instances, and that positive
bags contain at least one positive instance. However, there are also other rules regarding
bag label definitions [14].

There are many MIL models which try to solve the classification problem under
different conditions and for different types of datasets [15–20]. Most of the above models
use such methods as the support vector machine, K nearest neighbors, convolutional neural
networks, and decision trees. An interesting and efficient class of the MIL models applies
the attention mechanism [21–27].

However, there are drawbacks of the above approaches to MIL. On the one hand,
simple models, based on methods like the support vector machine and decision trees, do
not use neural networks and cannot attain the advantages of the network models; for

Algorithms 2023, 16, 358. https://doi.org/10.3390/a16080358 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16080358
https://doi.org/10.3390/a16080358
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-1542-6480
https://orcid.org/0000-0002-5637-1420
https://orcid.org/0000-0002-3583-7324
https://doi.org/10.3390/a16080358
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16080358?type=check_update&version=1

Algorithms 2023, 16, 358 2 of 16

example, the end-to-end training and the attention mechanism. On the other hand, the MIL
models based on neural networks cannot be accurately trained on small tabular datasets.

Therefore, the MIL model which simultaneously has properties of the random forest
(RF) and the neural network can provide better results in comparison with the available
model. The RF directly fits an MIL model because it is robust to noise in target variables.
At the same time, its structure is suboptimal; therefore, it does not minimize the MIL loss in
some cases. One of the ways to construct decision trees, which can be retrained, is by means
of the concept of soft oblique trees [28], the trainable parameters of which can be updated
and optimized by using gradient-based algorithms. Oblique trees, and RFs composed of
oblique trees, use linear and non-linear classifiers at each split in the decision trees and
allow the combining of more than one feature at a time. However, when we deal with small
tabular data, soft oblique trees may overfit, due to a large number of parameters.

Therefore, we propose to represent soft oblique trees in the form of classic decision
trees and to convert the decision trees, which comprise the RF, into trainable neural net-
works in a special way. The corresponding neural networks implement approximately the
same functions as the decision trees, but they can be effectively trained jointly with the
attention mechanism and can simultaneously take into account data from all bags, i.e., they
successfully solve the MIL problem.

As a result, we propose an attention MIL model, called Soft Tree Ensemble MIL (STE-
MIL). On the one hand, STE-MIL is based on decision trees and successfully deals with
small tabular data. On the other hand, after converting trees into neural networks and
applying the attention mechanism to aggregate embeddings of instances and bags, STE-MIL
is trained by using gradient descent algorithms in an end-to-end manner.

Our contributions can be summarized as follows:

1. A new RF neural network-based MIL model is proposed, which outperforms many
existing MIL models when dealing with small tabular data.

2. A new type of soft decision trees, similar to the soft oblique trees, is proposed. In
contrast to the soft oblique trees, the proposed trees have a smaller number of trainable
parameters. Nevertheless, the soft decision trees can be trained in the same way as
the soft oblique trees. Outputs of each soft decision tree are viewed as a set of vectors
(embeddings) which are formed from the class probability distributions in a specific way.

3. An original algorithm for converting the decision trees into neural networks of a
specific form for efficiently training parameters of the trees is proposed.

4. The attention mechanism is proposed to aggregate the instance and bag embeddings
with the aim of minimizing the corresponding loss function.

5. The whole MIL model, including the soft decision trees, neural networks, the attention
mechanism and a classifier, is trained in an end-to-end manner.

6. Numerical experiments with the well-known datasets, Musk1, Musk2 [4], Fox, Tiger, and
Elephant [15] illustrate STE-MIL. The above datasets have numerical features that are
used to perform tabular data. The corresponding code implementing STE-MIL is publicly
available at https://github.com/andruekonst/ste_mil (accessed on 17 July 2023).

The paper is organized as follows. Related work is available in Section 2. An introduc-
tion to MIL and the oblique binary soft trees is given in Section 3. A specific representation
of the decision tree function, which allows us to convert the decision tree to a neural net-
work, is proposed in Section 4. A soft tree ensemble to solve the MIL problem is considered
in Section 5. An algorithm for converting the decision trees into neural networks is studied
in the same section. The attention mechanism applied to the proposed MIL models is
studied in Section 6. Numerical experiments are described in Section 7. Section 8 considers
open research questions, provides some discussion, and offers concluding remarks.

2. Related Work

MIL. MIL can be regarded as an important tool for dealing with different types of data.
In particular, tabular data of a specific structure can be classified by means of MIL models.

https://github.com/andruekonst/ste_mil

Algorithms 2023, 16, 358 3 of 16

When considering tabular data, several available MIL models are based on applying such
models as SVM, decision trees, AdaBoost, and RFs [15,16,19,20,29].

However, most MIL models are based on applying neural networks or convolutional
neural network, and especially so when image datasets are classified [17–19,30–33].

In spite of many available MIL models, there are no models which could combine
tabular data-oriented models, such as RFs and neural networks, including the attention
mechanism, in order to use the gradient-based algorithm for updating training parameters
of RFs, as well as neural networks, and to improve accuracy in the MIL predictions.

MIL and attention. Several MIL models using the attention mechanism have been
proposed in order to enhance classification accuracy, examples of the models are the follow-
ing: SA-AbMILP (Self-Attention Attention-based MIL Pooling) [34], ProtoMIL (Multiple
Instance Learning with Prototypical Parts) [26], MHAttnSurv (Multi-Head Attention for
Survival Prediction) [24], AbDMIL [23], MILL (Multiple Instance Learning-based Landslide
classification) [35], DSMIL (Dual-Stream Multiple Instance Learning) [36]. The attention-
based MIL models can also be found in [21,22,27,37,38]. The main peculiarity of the
above-mentioned models is that they use neural networks and mainly deal with image
data rather than small tabular data.

Oblique trees and neural networks. Many studies have demonstrated that trees
with oblique splits, in many cases produce smaller trees with better accuracy than that
with axis parallel trees [39,40]. One of the important advantages of oblique trees is that
they can be trained by using optimization algorithms, an example being the gradient
descent algorithm. On the other hand, some obstacles can be encountered in training
oblique trees. In particular, the training procedure is computationally expensive. Moreover,
the corresponding model may be overfitted. Several approaches have been proposed to
partially solve the above problems. Wickramarachchi et al. [40] presented a new decision
tree algorithm, called HHCART. In order to simplify oblique trees, Carreira-Perpinan and
Tavallali [41] proposed an algorithm called sparse oblique trees, which produces a new
tree from the initial oblique tree having the same or smaller structure, but new parameter
values leading to a lower or unchanged misclassification error. One-Stage Tree, as a soft
tree to build and prune the decision tree jointly through a bi-level optimization problem, is
presented in [42]. Menze et al. [43] focused on trees with task-optimal recursive partitioning.
Katuwal et al. [44] proposed a random forest of heterogeneous oblique decision trees that
employ several linear classifiers at each non-leaf node on some top-ranked partitions. An
application of evolutionary algorithms to the problem of oblique decision tree induction is
considered in [45]. An algorithm improving learning of trees through end-to-end training
with backpropagation was presented in [46].

An interesting direction of using oblique trees is in representing neural networks
as the trees, or the trees in the form of neural networks. Lee et al. [47] showed how
neural models can be used to realize piece-wise constant functions, such as decision
trees. Hazimeh et al. [48] proposed combining the advantages of neural networks and tree
ensembles in designing a hybrid model by considering the so-called tree ensemble layer for
neural networks, which is an additive model of differentiable decision trees. The layer can
be inserted anywhere in a neural network, and is trained along with the rest of the network
using gradient-based algorithms. Frosst and Hinton [49] took the knowledge acquired
by a neural net and expressed the same knowledge in a model that relies on hierarchical
decisions instead, so that explaining a particular decision would be much easier. A way of
using a trained neural net to create a type of soft decision tree that generalizes better than
one learned directly from the training data was provided in [49]. Karthikeyan et al. [50]
proposed a unified method that enables accurate end-to-end gradient-based tree training
and can be deployed in a variety of settings. Madaan et al. [51] presented dense gradient
trees and a transformer, based on the trees, which is called Treeformer.

In contrast to the above work, we considered how to apply decision trees to the MIL
problem by converting the trees into neural networks of a special form and by training
them jointly with the attention mechanism in an end-to-end manner.

Algorithms 2023, 16, 358 4 of 16

3. Preliminary
3.1. Multiple Instance Learning

First, we formulated the MIL classification problem [7–9,13]. It differs from the
standard classification in data structure. Namely, in the MIL problem, bags have class labels,
but instances, which compose each bag, are usually unlabeled. As a result, this problem
can be regarded as a kind of weakly supervised learning problem. Due to the availability of
labels which are only for bags, the following tasks can be stated in the framework of MIL.
The first task is concerned with annotation of instances from a bag. The second task aims to
annotate new bags by having a training set of bags, i.e., the task is to train a classifier at the
bag level. The above tasks can be solved by introducing special rules which establish the
relationship between instances and the bag class labels.

Let us formally state the MIL problem taking into account the rules connecting different
levels of the MIL data consideration. Suppose that each bag is defined by a set of n instances
X = {x1, . . . , xn}, where the i-th instance xi ∈ Rm is represented by the feature vector. Each
instance xi has a label yi ∈ {0, 1} taking two values: 0 (negative class) and 1 (positive class).
We do not know labels yi during training, as it follows from the MIL problem statement.
According to the first task, we constructed a function g which maps each vector xi into the
label yi.

There are various rules establishing the relationship between labels of bags and in-
stances. One of the most common rules can be rewritten as follows: [9]:

f (X) =
{

1, ∃x ∈ X : g(x) = 1,
0, otherwise,

(1)

where f (X) is a bag classifier.
It follows from (1) that at least one positive instance makes the bag positive, and

negative bags contain only negative instances. As an example, we considered histopatho-
logical images divided into several patches [12,14]. The whole image with one of the labels
“cancer” or “non-cancer” can be viewed as a bag, whereas each patch of the image can
be regarded as an instance. The function f (X), taking values 1 and 0, corresponds to the
image labels “cancer” or “non-cancer”, respectively. The function g(x), which also takes
values 1 and 0, corresponds to the patch labels “cancer” or “non-cancer”, respectively. If
the image is from the high-risk patient, then it should be labeled as “cancer” if at least one
of all patches belonging to the image contain malignant tumor [12].

On the other hand, if the patient is low risk, then the rule establishing the relationship
between labels of bags and instances can be relaxed, i.e., some number of “cancer” patches
are necessary to assign the “cancer” label to the whole histopathological image. In this
case, the function f (X) can be defined in another way, taking into account a threshold θ;
for example, the number of “cancer” patches, can be defined as

f (X) =
{

1, θ ≤ ∑x∈X g(x),
0, otherwise.

(2)

We use the rule defined in (1).
The dataset can be represented as

D =
{(
{x(i)k }

ni
k=1, yi

)}N

i=1
, (3)

where x(i)k is the k-th instance vector belonging to the i-th bag; ni is the number of instances
in the i-th bag; N is the number of labeled bags in the training set.

Rule (1), defining the function f , can be represented through the MIL maximal pooling
operator as follows:

f ({x(i)k }
ni
k=1) = max

{
g(x(i)k)

}ni

k=1
. (4)

Algorithms 2023, 16, 358 5 of 16

Hence, the binary classification loss, which is minimized, can be written as:

L =
1
N

N

∑
i=1

l
(

yi, f ({x(i)k }
ni
k=1)

)
=

1
N

N

∑
i=1

l
(

yi, max{g(x(i)k)}ni
k=1

)
. (5)

3.2. Oblique Binary Soft Trees

One of the important procedures to build oblique decision trees is optimization of
their parameters. There are various decision rules for building trees. The so-called hard
decision rules have been successfully implemented in [50,51]. The rules are applied to
oblique decision trees which may be improper when we deal with small tabular datasets
because large degrees of freedom, in this case, would lead to overfitting.

According to [50], an oblique binary tree of a height h represents a piece-wise constant
function f (x; W, b) : Rm → RK, parameterized by weights wI(d,l) ∈ Rm, bI(d,l) ∈ R at a
node on the path from the tree root to its leaf l at the depth d. Here, I(d, l) is the index of a
node on the path from the tree root to its leaf l with depth d. Function f computes decision
functions of the form wT

j x− bj > 0, that define whether x must traverse the left or right
child next. Here W is the parameter matrix consisting of all parameter vectors wj; b is the
parameter vector consisting of parameters bj. The tree output is represented as 2h vectors
θ1, . . . , θ2h such that vector θj ∈ ∆K at the j-th leaf is associated with probabilities of K
classes, where �K is the unit simplex of dimension K. One of the ways to learn parameters
wij and bij for all nodes is to minimize the expected loss l of the form:

min
W,b

n

∑
i=1

l(yi, f (x; W, b)). (6)

Karthikeyan et al. [50] propose the following function fθ(x; W, b):

fθ(x; W, b) =
2h

∑
l=1

ql(x, W, b) · θl , (7)

where the tree path indicators ql(x, W, b) are represented as the following indicator functions:

ql(x, W, b) = I
[

h∧
d=1

([wT
I(d,l)x ≤ bI(d,l)]⊕ s(d, l))

]
, (8)

Here, I(·) is the indicator function taking the value 1 if its argument is non-negative,
and otherwise it is 0; ⊕ is the operator XOR; s(d, l) determines whether the predicate of
a node on the path to the leaf l at the depth d should be evaluated to be true or false, i.e.,
s(d, l) = 1 if the l-th leaf belongs to the left subtree of node I(d, l), otherwise s(d, l) = 0. It
is well known that the conjunction in (8) can be replaced with the product, as follows:

ql(x, W, b) =
h

∏
d=1
I
[
[wT

I(d,l)x ≤ bI(d,l)]⊕ s(d, l)
]
. (9)

However, this representation significantly complicates the optimization of the model
by using the gradient descent algorithm, due to the vanishing gradient problem. Another
representation of ql(x, W, b) is proposed in [50]. It is of the form:

ql(x, W, b) = σ

(
h

∑
d=1

σ
[
[wT

I(d,l)x ≤ bI(d,l)]⊕ s(d, l)
]
− h

)
, (10)

where the indicator functions are replaced with the so-called σ-hard indicator approxi-
mations [50], which apply quantized functions in the forward pass, but use the smooth

Algorithms 2023, 16, 358 6 of 16

activation functions in the backward pass to propagate. This specific representation of the
sigmoid function is called the straight-through operator and is proposed in [52].

The above representation allows us to effectively apply the gradient descent algorithm
to compute optimal parameters of the tree in accordance with the loss function (6).

The soft tree concept proposed in [50,51] is an interesting approach to deal with
small tabular data. However, our experiments with soft trees have demonstrated that it is
difficult to train oblique soft trees for many datasets. Therefore, we proposed modifying
the standard decision trees so as to implement them in the form of neural networks.

4. A Softmax Representation of the Decision Tree Function

In order to overcome difficulties of training the oblique decision tree, we propose
another representation of it, which allows us to effectively update it. Let us consider a
complete binary decision tree fθ of depth h:

• the tree has (2h − 1) non-leaf nodes parametrized by (wj, bj), where

– wj is an one-hot vector having 1 at the position corresponding to the node feature;
– bj is a threshold;

• the tree also has 2h leaves with values vl , where vl is an output vector corresponding
to the j-th leaf.

In contrast to the representation (10) of the function ql , we propose avoiding direct
comparison with the height of a tree, because this representation requires the indicator
approximation to return integer values; otherwise ql is always evaluated as zero. If we
use (10) instead of the softmax function, then (7) provides the sum of the leaf vectors
in place of selecting one of them. We use the softmax function to guarantee a convex
combination of leaf vectors. We replace the outer indicator with the softmax function having
the trainable temperature parameter τ:

ql(x, W, b, τ, ω) = softmaxτ

(
h

∑
d=1

σω

[
[−wT

I(d,l)x + bI(d,k)] · ŝ(d, k)
])2h

k=1

, (11)

where ŝ(d, k) ∈ {−1, 1} is the node sign; σ is the sigmoid with the trainable temperature or
scaling parameter ω.

The proposed representation could be interpreted as selecting the most appropriate
path among all candidate paths. Neural trees, defined by using the above representation,
can be optimized by means of the stochastic gradient descent algorithm with fixed node
weights wj; i.e., by updating only thresholds, the softmax temperature parameters τ, the
sigmoid temperature parameters ω, and the leaf values.

5. Soft Tree Ensemble for MIL

One of the possible ways for solving the MIL classification problem, i.e., for construct-
ing the instance model g̃, is to assign a bag label to all instances belonging to the bag. In
this case, we obtain a new instance-level dataset with the repeated instance labels, which is
of the form:

D̃ = {
(

x(i)k , yi

)
| k = 1, . . . , ni}N

i=1. (12)

According to [53], the RF can be regarded as a desirable MIL classifier, even if it is
trained on artificially made instance-level datasets, such as (12), because the RF is inherently
robust to noise in the target variable. After training on the dataset (12), parameters of the
built RF can be seen as a suboptimal solution to the optimization problem defined by the
bag-level loss (5). In the extreme worst case scenario, the RF is totally overfitted, i.e., it just
remembers the bag label for each instance.

There are approaches that try to repeatedly infer the instance labels by using the
trained RF, and then retrain the RF on the obtained instance labels. One such approach is
implemented in the so-called MIForests [53]. The main problem of the results is that the

Algorithms 2023, 16, 358 7 of 16

methods rebuild decision trees instead of updating them, partially losing the useful tree
structures obtained at different steps.

5.1. Soft Tree Ensemble

A key idea behind STE-MIL can be represented in the form of the following schematic
algorithm:

1. Let us assign incorrect labels to instances of a bag; for example assigning the same
label as that of the corresponding bag. The instance labels may be incorrect because
we do not know true labels and their determination is our task. However, these labels
are needed to build an initial RF. This is a kind of initialization procedure for the
whole model, which is trained in the end-to-end manner.

2. The next step is to convert the initial RF to a neural network having a specific architec-
ture. To implement this step, non-leaf nodes of each tree in the RF are parametrized
by trainable parameters b, τ, ω, and non-trainable parameters W.

3. Parameters of the tree nodes b, τ, ω are updated by using the stochastic gradient
descend algorithm to minimize the bag loss defined in (5). To implement the updating
algorithm, we propose approximating the tree path indicators ql(x, W, b, τ, ω), by
using the specific softmax representation (11). This is a key step of the algorithm
which allows us to update trees by updating neural networks and incorporating trees
or the RF in the whole scheme of modules, including the attention mechanism and
a classifier.

Suppose that the RF consisting of T decision trees has been trained on the repeated
instance labels (12). We convert its trees to a set of T neural networks which implement
functions f (1)(x), . . . , f (T)(x), such that the i-th tree corresponds to the i-th network imple-
menting the function f (i)(x). After converting trees to neural networks, we can update
their parameters to minimize bag-level loss (5). The ensemble prediction for a new instance
x is defined as follows:

f (x) =
1
T

T

∑
i=1

f (i)(x). (13)

The bag prediction can be obtained by applying any aggregation function G:

f ({x(i)k }
N
i=1) = G(f (x(i)1), . . . , f (x(i)ni)). (14)

The next question is how to convert the decision trees into neural networks.

5.2. Trees to Neural Networks

Suppose that the RF is trained on the artificial dataset (12). Then, it can be converted
to a neural network with a specific structure. A tree with M internal decision nodes and L
leaves is represented as a neural network with the following three layers:

1. The first layer aims to approximate the node predicates. It is a fully connected layer
with m inputs (dimensionality of x) and M outputs, i.e., it is held that:

f (1)(x) = σ(Wx + b | ω), (15)

where W ∈ Rr×m is a matrix of non-trainable parameters consisting of r vectors
wi ∈ Rm; r is the total number of the tree nodes; b ∈ Rr is the trainable bias vector; ω
is the trainable temperature parameter of the sigmoid σ.
As a result, the first layer has only trainable parameters b and ω. The matrix W
consists of one-hot vectors having 1 at positions corresponding to the node features.

2. The second layer aims to estimate the leaf indices. It is fully connected layer with M
inputs and L outputs having one trainable parameter τ:

f (2)(ξ) = softmax(Rξ + s | τ), (16)

Algorithms 2023, 16, 358 8 of 16

where R ∈ RL×M is a non-trainable routing matrix that encodes decision paths, such
that one path forms one row of R; Rξ ∈ RM is the input vector; s ∈ RL is the
non-trainable bias vector; τ is the trainable temperature parameter of the softmax
operation.
Matrix R consists of values from the set: {−1, 0, 1}. If the path to i-th leaf does not
contain j-th node, then Ri,j = 0. Otherwise, if the path goes to the left branch, then
Ri,j = −1, and Ri,j = 1 if the path goes to the right branch. The vector s = (s1, . . . , s2h)
is needed to balance the decision paths. The sum of the sigmoid functions from the
path to the k-th leaf in (11) can be represented as:

h

∑
d=1

σ
(
[−wT

I(d,l)x + bI(d,k)] · ŝ(d, k)
)

=
M

∑
i=1

(
Rk,iσ

(
−wT

I(d,l)x + bI(d,k)

)
+ I[Rk,i = −1]

)
=

M

∑
i=1

(
Rk,iσ

(
−wT

I(d,l)x + bI(d,k)

))
+ sk, (17)

because it holds that σ(−ω) = 1− σ(ω).
3. The third layer aims to calculate the output values (embeddings). It is trainable and

fully connected. Each leaf generates the class probability vector of the size C. We
take the probability v1(x) of class 1 and repeat it E− 1 times, such that the whole
embedding v(x) = (v(1)1 (x), . . . , v(E)

1 (x)) has the length E. The final output of the
network (or the third layer) is of the form

f (x) = V f (2)
(

f (1)(x)
)

, (18)

where V ∈ RE×L is a trainable leaf value matrix consisting of L vectors v(x).

An example of the transformation of a tree to a neural network is illustrated in
Figure 1. A full decision tree with three decision nodes and four leaves was considered
and is depicted in Figure 1. The first layer of the neural network computes all decisions at
internal nodes of the tree. Matrix R is constructed, such that each row represents a path
to the corresponding leaf of the tree. For example, values of the first row are (−1,−1, 0)
because the path to the leaf l1 passes through the nodes d1 and d2 to the left. Values of the
third row are (1, 0,−1) because the path to the third leaf l3 passes through the node d1 to
the right, and does not pass through the node d2 and passes through the node d3 to the left.
Elements of the vector s are equal to the number of left turns, which is equivalent to the
number of values −1 at the corresponding row of R.

Figure 1. Forming the second layer through matrix R.

The class distribution provided by a tree is computed by counting the percentage
of different classes of instances at the leaf node into which the concerned instance falls.

Algorithms 2023, 16, 358 9 of 16

Formally, the leaf value vectors are initially estimated for the l-th leaf of the j-tree as follows:

v(l)
j (x) =

(
#{(k, i) ∈ J(l)|yi = 1}

#J(l)

)E

t=1
, (19)

where J(l) is an index set of training points which fall into the l-th leaf.
We used constant matrix W, representing decision nodes, in order to preserve the axis

parallel decision planes. It is initialized as the one-hot encoded representation of decision
tree split features. Only the bias b of the first layer of the neural network is trainable, and is
initialized with the negative values of the decision tree split thresholds.

Matrix V of the leaf values is initialized with repeated tree leaf values, i.e., each column
contains the same values equal to the original tree leaf value.

The algorithm for the routing matrix R construction is shown as Algorithm 1.

Algorithm 1 Recursive R matrix construction

procedure FILL(R, a, b, k)
if k > M then return
end if
d← b b−a

2 c . A half of the input row index span [a, b]
for i← a to a + d do

Ri,k ← −1 . Fill first d rows with −1
Ri,d+k ← 1 . Fill second d rows with 1

end for
FILL(R, a, a + d, 2k) . Recursively fill the first d rows, left subtree
FILL(R, a + d, b, 2k + 1) . Fill the second d rows, right subtree

end procedure
R← 0 ∈ RL×M . Initialize matrix with zeros
FILL(R, a = 1, b = L, k = 1)

5.3. Peculiarities of the Proposed Soft Trees

• The sigmoid and softmax temperature parameters are trained starting from value 0.1
to avoid having to fit them as hyperparameters. Temperatures as trainable parameters
are not redundant because the first layer of the neural network contains a fixed weight
matrix W, so Wx + b cannot be equivalent to τ(Wx + b). The same takes place with
the softmax operation, which contains a fixed number of terms from 0 to 1.

• In contrast to [50], we did not use oblique trees, as they may lead to overfitting on
tabular data. Trees with the axis-parallel separating hyperplanes allow us to build
accurate models for tabular data where linear combinations of features often do not
make sense.

• Therefore, we also did not use overparametrization, which is a key element for con-
vergence in training the decision trees with quantized decision rules (when the indi-
cator is represented not by a sigmoid function, but by the so-called straight-through
operator [52]).

• We used softmax as an approximation of the argmax operation instead of the approxi-
mation of the sum of indicator functions. At the prediction stage, the implementation
of the algorithm proposed in [50], which uses the sigmoid function, could predict the
sum of the values at several leaves at the same time.

Further, we can reduce the temperature ω so that the decision rules become more stringent.
Unfortunately, this does not work in practice because, by a rather large depth (h > 3), on
the same path, inconsistent rules are often learned, which give the “correct” values by low
temperatures and degenerate by small ω. As a result, accuracy starts to decrease as ω decreases.
If we do not decrease ω, then the trees may no longer be axis-parallel.

Algorithms 2023, 16, 358 10 of 16

6. Attention and the Whole Scheme of STE-MIL

After training, the output of each neural network corresponding to the k-th tree is the
embedding v(i)

j,k of length E, where i and j are indices of the corresponding bag and instance

in the bag, respectively. This implies that we obtain T embeddings v(i)
j,1 , . . . , v(i)

j,T for the j-th
instance from the i-th bag, j = 1, . . . , n, i = 1, . . . , N, under an assumption of an identical
number of trees in all RFs. It should be noted that numbers of trees in RFs can be different.
However, we considered the same numbers for simplicity.

Embeddings vi,1, . . . , vi,T are aggregated by using, for example, the averaging opera-

tion, resulting in vectors e(i)j , j = 1, . . . , n, corresponding to the i-th bag. Then, aggregated

embeddings e(i)1 , . . . , e(i)n are attended to in order to obtain a final representation of the
i-th bag in the form of vector ai, which is classified. This motivated us to replace the class
probability distributions at the tree leaves with the embeddings v defined above. We can
define several ways to construct embeddings from class probability distributions. However,
we selected a simple procedure, which has demonstrated its efficiency from the point of
view of accuracy and computationally.

Hence, the second idea behind STE-MIL is to aggregate the embeddings over all
bags by using the attention mechanism and to calculate the prediction logits by the linear
projection of the aggregated embedding to the one-dimensional space. This idea is also
motivated by the Attention–MIL approach proposed in [23], and by the Multi-attention
multiple instance learning model proposed in [25], which may help to train a better bag-
level classifier. A scheme of the whole STE-MIL model is shown in Figure 2. It can be
seen from Figure 2 that each instance (x(i)j) from the i-th bag learns the corresponding RF

such that embeddings are combined to the aggregated vector e(i)j . Vectors e(i)j , j = 1, . . . , ni,
can be regarded as keys in terms of the attention mechanism. They attend to and produce
vector ai, which is the input of the classifier. The whole system is trained on all instances
from all bags.

The attention module produces a new aggregate embedding ak corresponding to the
k-th bag, which is computed as follows:

ak =
n

∑
i=1

β
(k)
i e(k)i , k = 1, . . . , N, (20)

where
β
(k)
i = softmax

(
qTki

)
, (21)

q = Vqg, ki= Vke(k)i . (22)

Here Vk and Vq are the trainable weight matrices for e(k)i (keys) and the template
vector g (query), respectively.

Figure 2. A scheme of the ensembled STE-MIL.

Algorithms 2023, 16, 358 11 of 16

7. Numerical Experiments

In order to compare the proposed model with other existing MIL classification models,
we trained the corresponding models on the well-known datasets Musk1, Musk2 (drug
activity) [4], Fox, Tiger, and Elephant (images divided into patches) [15]. Table 1 shows
the number of bags N, the number of instances n in every bag and the number of features
m in instances for the corresponding datasets. The Musk1 dataset contains 92 bags, such
that each bag consists of 476 instances having 166 features. The average bag size is 5.17.
The Musk2 dataset contains 102 bags such that each bag consists of 6598 instances with
166 features. The average bag size is 64.69. Each dataset (Fox, Tiger and Elephant) contains
exactly 200 bags consisting of different numbers of instances with 230 features. Numbers
of instances in datasets Fox, Tiger and Elephant are 1302, 1220 and 1391, respectively. The
average bag sizes of the datasets are 6.60, 6.96 and 6.10, respectively.

Table 1. A brief introduction to datasets for classification.

Data Set N n m

Elephant 200 1391 230
Fox 200 1302 230

Tiger 200 1220 230
Musk1 92 476 166
Musk2 102 6598 166

The considered datasets were created on the basis of practical tasks. In particular,
datasets Musk1 and Musk2 are real drug activity prediction datasets, which allowed
us to study how a molecule possesses a musky nature. The task using these databases
was to classify molecules as positive (musk) or negative (non-musk) [4]. A molecule
exists in multiple conformations (its certain configurations), which can be regarded as
unlabeled instances in the MIL terminology, because it is not possible to observe and
measure characteristics of a single conformation [9]. At the same time, one can observe the
characteristics for the corresponding molecule. Hence, the molecule is labeled positive if
one or more of its conformations show muskiness. It can be regarded as a bag.

Datasets Fox, Tiger, and Elephant are obtained from images which contain the cor-
responding animals [15]. Each image is divided into small patches represented by color,
texture and shape features. If at least one patch in the image contains an animal, then the
image, as a bag, is labeled positive.

The accuracy measures for these datasets were also obtained by means of the follow-
ing well-known MIL classification models; mi-SVM [15], MI-SVM [15], MI-Kernel [54],
EM-DD [55], mi-Graph [56], miVLAD [57], miFV [57], mi-Net [19], MI-Net [19], MI-Net
with DS [19], MI-Net with RC [19], Attention and Gated-Attention [23].

We investigated Extremely Randomized Trees (ERT) for initialization because they
provide better results. At each node, the ERT algorithm chooses a split point randomly for
each feature and then selects the best split among these [58].

In the experiments we also used the following: sigmoid function with the trainable
temperature parameter ω, initialized with 10, as an indicator approximation; softmax
operation with the trainable temperature parameter τ, which was also initialized with 10;
the number T of decision trees was 20; the largest depth h of trees was 5; the dimension E
of each embedding vector was 4; the number of epochs was 2000; the batch size was 20 and
the learning rate was 0.01.

Accuracy measures (the mean and standard deviations) are computed by using five-
fold cross-validation. The best results are in bold in tables. Numerical results for datasets
Elephant, Fox and Tiger are shown in Table 2. It can be seen from Table 2 that STE-MIL
outperformed on all datasets. Numerical results for datasets Musk1 and Musk2 are shown
in Table 3. One can see from Table 3 that the proposed model outperformed all the other
models for the dataset Musk1. However, STE-MIL provided the worst result for the dataset

Algorithms 2023, 16, 358 12 of 16

Musk2. One of the reasons for this result was that bags in Musk2 consisted of many
instances. This implies that the advantage of STE-MIL to deal with small datasets cannot
be shown on this dataset.

It should also be pointed out that the values of standard deviations estimated for the
Attention [23] and Gated-Attention [23] models were smaller than standard deviations
corresponding to the STE-MIL results for all considered datasets (see Tables 2 and 3). One
of the reasons was that the number of decision trees T = 20 taken in numerical experiments
with STE-MIL was rather small. On the one hand, if we increase this number, then the
number of training parameters also increases, leading to overfitting. On the other hand, the
small number of trees can be a reason for uncertainty of results. Reducing uncertainty is an
open research topic.

Table 2. Accuracy measures (the mean and standard deviation) for comparison of the well-known
MIL classification models, the RF and the STE-MIL using datasets Elephant, For and Tiger.

Elephant Fox Tiger

mi-SVM [15] 0.822 ± N/A 0.582 ± N/A 0.784 ± N/A
MI-SVM [15] 0.843 ± N/A 0.578 ± N/A 0.840 ± N/A
MI-Kernel [54] 0.843 ± N/A 0.603 ± N/A 0.842 ± N/A
EM-DD [55] 0.771 ± 0.097 0.609 ± 0.101 0.730 ± 0.096
mi-Graph [56] 0.869 ± 0.078 0.620 ± 0.098 0.860 ± 0.083
miVLAD [57] 0.850 ± 0.080 0.620 ± 0.098 0.811 ± 0.087
miFV [57] 0.852 ± 0.081 0.621 ± 0.109 0.813 ± 0.083
mi-Net [19] 0.858 ± 0.083 0.613 ± 0.078 0.824 ± 0.076
MI-Net [19] 0.862 ± 0.077 0.622 ± 0.084 0.830 ± 0.072
MI-Net with DS [19] 0.872 ± 0.072 0.630 ± 0.080 0.845 ± 0.087
MI-Net with RC [19] 0.857 ± 0.089 0.619 ± 0.104 0.836 ± 0.083
Attention [23] 0.868 ± 0.022 0.615 ± 0.043 0.839 ± 0.022
Gated-Attention [23] 0.857 ± 0.027 0.603 ± 0.029 0.845 ± 0.018
STE-MIL 0.885 ± 0.038 0.730 ± 0.080 0.875 ± 0.039

Table 3. Accuracy measures (the mean and standard deviation) for comparison of the well-known
MIL classification models, the RF and the STE-MIL by using datasets Musk1 and Musk2.

Musk1 Musk2

mi-SVM [15] 0.874 ± N/A 0.836 ± N/A
MI-SVM [15] 0.779 ± N/A 0.843 ± N/A
MI-Kernel [54] 0.880 ± N/A 0.893 ± N/A
EM-DD [55] 0.849 ± 0.098 0.869 ± 0.108
mi-Graph [56] 0.889 ± 0.073 0.903 ± 0.086
miVLAD [57] 0.871 ± 0.098 0.872 ± 0.095
miFV [57] 0.909 ± 0.089 0.884 ± 0.094
mi-Net [19] 0.889 ± 0.088 0.858 ± 0.110
MI-Net [19] 0.887 ± 0.091 0.859 ± 0.102
MI-Net with DS [19] 0.894 ± 0.093 0.874 ± 0.097
MI-Net with RC [19] 0.898 ± 0.097 0.873 ± 0.098
Attention [23] 0.892 ± 0.040 0.858 ± 0.048
Gated-Attention [23] 0.900 ± 0.050 0.863 ± 0.042
STE-MIL 0.918 ± 0.077 0.854 ± 0.061

8. Conclusions
8.1. Discussion

An RF-based model to solve the MIL classification problem for small tabular data is
proposed. It is based on training decision trees by means of their converting to a neural
network of a specific form. Moreover, it uses the attention mechanism to aggregate the bag

Algorithms 2023, 16, 358 13 of 16

information and to enhance the classification accuracy. The attention mechanism can also
be used to explain why a tested bag is assigned a certain label, because the attention shows
weights of instances of the tested bag and selects the most influential instances.

Numerical experiments with well-known datasets, used by many authors in evaluating
MIL models, demonstrated that STE-MIL outperformed many models, including the
following: mi-SVM, MI-SVM, MI-Kernel, EM-DD, mi-Graph, miVLAD, miFV, mi-Net,
MI-Net, MI-Net with DS, MI-Net with RC, the Attention and Gated-Attention models.

An important advantage of STE-MIL is that it successfully combines the positive
properties of decision trees to accurately classify small tabular data, with properties of
neural networks to learn complex functions in an end-to-end manner. This combination
was implemented by introducing soft decision trees and converting the decision trees
into neural networks. Another beneficial idea behind STE-MIL was that of using the tree
outputs, in the form of the class probability distributions, as embeddings, which allowed us
to apply the attention mechanism. Moreover, we propose several additional improvements
which enhance the classification accuracy of the whole MIL model. These include the use
of axis-parallel separating hyperplanes in building the decision trees, the use of the softmax
operation as an approximation of the argmax operation, the original method to transform
the decision tree to a neural network.

The proposed ideas and improvements made it possible to create a fairly effective
tool to solve the problem of MIL under the condition of having a small amount of tabular
training data.

8.2. Open Research Questions

There are several open research questions to study in order to significantly improve
the proposed STE-MIL. Moreover, ideas behind STE-MIL can be used in other known
MIL models.

First, it is interesting to study how neighboring patches or instances of each ana-
lyzed patch can be incorporated into the STE-MIL scheme, as in [25]. The incorporation of
neighbors can significantly improve STE-MIL and enhance its classification accuracy.

It should be noted that RF, as an ensemble of decision trees, was used in STE-MIL. At
the same time, the gradient boosting machine [59,60] is also an efficient model, which uses
decision trees as weak learners and can also be used in the STE-MIL scheme. However,
we meet several open questions in the use of a gradient boosting machine. First, it is not
obvious how to implement the attention mechanism in this case. The problem is that each
tree in the gradient boosting is built on a new dataset consisting of residuals. Second, the
end-to-end learning of the whole model is also an open question.

Another open question is how to adapt the proposed model to large image data; for
example, in the case of histology images. In this case, we need to reduce images to tabular
data in order to build decision trees. One of the ways to do so is to use the autoencoder
for each image instance to get the corresponding embedding of the low dimension. The
question is how to incorporate this autoencoder in the STE-MIL scheme to train in and
end-to-end manner.

The above questions can be regarded as directions for further research to improve the
MIL model.

8.3. Concluding Remarks

An important peculiarity of STE-MIL is that it opens a door for the construction of
various models which use trainable decision trees as neural networks. In contrast to models
using oblique decision trees, the proposed trainable trees have a significantly small number
of training parameters, preventing overfitting of the training process. Therefore, these
models could be effective when small tabular datasets are considered. Another peculiarity
of STE-MIL is that the model is very simple and clear. All components of the model are
simply implemented.

Algorithms 2023, 16, 358 14 of 16

We have shown how the introduced components of STE-MIL, including the soft tree
ensemble, the transformation procedure of decision trees to neural networks, and the
representation of the predicted class probability distributions produced by the trees as
embeddings, can be used in MIL models to obtain outperforming results. However, they
can be applied to a wide range of machine learning models and tasks which aim to classify
instances based on small tabular datasets. Therefore, the contribution of the components
proposed in STE-MIL goes beyond the application considered in the work.

Author Contributions: Conceptualization, L.U. and A.K.; methodology, L.U. and V.M.; software,
A.K.; validation, V.M. and A.K.; formal analysis, A.K. and L.U.; investigation, A.K. and V.M.; re-
sources, L.U. and V.M.; data curation, V.M.; writing—original draft preparation, L.U. and A.K.;
writing—review and editing, A.K. and V.M.; visualization, A.K.; supervision, L.U.; project adminis-
tration, V.M.; funding acquisition, V.M. All authors have read and agreed to the published version of
the manuscript.

Funding: The research is partially funded by the Ministry of Science and Higher Education of
the Russian Federation as part of the World-class Research Center program: Advanced Digital
Technologies (contract No. 075-15-2022-311 dated 20 April 2022).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express their appreciation to the anonymous referees
whose very valuable comments have improved the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hagele, M.; Seegerer, P.; Lapuschkin, S.; Bockmayr, M.; Samek, W.; Klauschen, F.; Muller, K.R.; Binder, A. Resolving challenges

in deep learning-based analyses of histopathological images using explanation methods. Sci. Rep. 2020, 10, 6423. [CrossRef]
[PubMed]

2. van der Laak, J.; Litjens, G.; Ciompi, F. Deep learning in histopathology: The path to the clinic. Nat. Med. 2021, 27, 775–784.
[CrossRef] [PubMed]

3. Yamamoto, Y.; Tsuzuki, T.; Akatsuka, J. Automated acquisition of explainable knowledge from unannotated histopathology
images. Nat. Commun. 2019, 10, 5642. [CrossRef] [PubMed]

4. Dietterich, T.; Lathrop, R.; Lozano-Perez, T. Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 1997,
89, 31–71. [CrossRef]

5. Zhu, L.; Zhao, B.; Gao, Y. Multi-class multi-instance learning for lung cancer image classification based on bag feature selection.
In Proceedings of the 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Jinan, China, 18–20
October 2008; Volume 2, pp. 487–492.

6. Wei, X.S.; Ye, H.J.; Mu, X.; Wu, J.; Shen, C.; Zhou, Z.H. Multiple instance learning with emerging novel class. IEEE Trans. Knowl.
Data Eng. 2019, 33, 2109–2120. [CrossRef]

7. Amores, J. Multiple instance classification: Review, taxonomy and comparative study. Artif. Intell. 2013, 201, 81–105. [CrossRef]
8. Babenko, B. Multiple Instance Learning: Algorithms and Applications; Technical Report; University of California: San Diego, CA,

USA, 2008.
9. Carbonneau, M.A.; Cheplygina, V.; Granger, E.; Gagnon, G. Multiple instance learning: A survey of problem characteristics and

applications. Pattern Recognit. 2018, 77, 329–353. [CrossRef]
10. Cheplygina, V.; de Bruijne, M.; Pluim, J. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in

medical image analysis. Med. Image Anal. 2019, 54, 280–296. [CrossRef]
11. Quellec, G.; Cazuguel, G.; Cochener, B.; Lamard, M. Multiple-Instance Learning for Medical Image and Video Analysis. IEEE Rev.

Biomed. Eng. 2017, 10, 213–234. [CrossRef]
12. Yao, J.; Zhu, X.; Jonnagaddala, J.; Hawkins, N.; Huang, J. Whole slide images based cancer survival prediction using attention

guided deep multiple instance learning network. Med. Image Anal. 2020, 65, 101789. [CrossRef]
13. Zhou, Z.H. Multi-Instance Learning: A Survey; Technical Report; National Laboratory for Novel Software Technology, Nanjing

University: Nanjing, China, 2004.
14. Srinidhi, C.; Ciga, O.; Martel, A.L. Deep neural network models for computational histopathology: A survey. Med. Image Anal.

2021, 67, 101813. [CrossRef]
15. Andrews, S.; Tsochantaridis, I.; Hofmann, T. Support vector machines for multiple-instance learning. In Proceedings of the 15th

International Conference on Neural Information Processing Systems, NIPS’02; MIT Press: Cambridge, MA, USA, 2002; pp. 577–584.

http://doi.org/10.1038/s41598-020-62724-2
http://www.ncbi.nlm.nih.gov/pubmed/32286358
http://dx.doi.org/10.1038/s41591-021-01343-4
http://www.ncbi.nlm.nih.gov/pubmed/33990804
http://dx.doi.org/10.1038/s41467-019-13647-8
http://www.ncbi.nlm.nih.gov/pubmed/31852890
http://dx.doi.org/10.1016/S0004-3702(96)00034-3
http://dx.doi.org/10.1109/TKDE.2019.2952588
http://dx.doi.org/10.1016/j.artint.2013.06.003
http://dx.doi.org/10.1016/j.patcog.2017.10.009
http://dx.doi.org/10.1016/j.media.2019.03.009
http://dx.doi.org/10.1109/RBME.2017.2651164
http://dx.doi.org/10.1016/j.media.2020.101789
http://dx.doi.org/10.1016/j.media.2020.101813

Algorithms 2023, 16, 358 15 of 16

16. Chevaleyre, Y.; Zucker, J.D. Solving multiple-instance and multiple-part learning problems with decision trees and rule sets.
application to the mutagenesis problem. In Proceedings of the Biennial Conference of the Canadian Society on Computational Studies of
Intelligence: Advances in Artificial Intelligence; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001;
Volume 2056, pp. 204–214.

17. Kraus, O.; Ba, J.; Frey, B. Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics
2016, 32, i52–i59. [CrossRef]

18. Sun, M.; Han, T.; Liu, M.C.; Khodayari-Rostamabad, A. Multiple instance learning convolutional neural networks for object
recognition. In Proceedings of the International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016;
pp. 3270–3275.

19. Wang, X.; Yan, Y.; Tang, P.; Bai, X.; Liu, W. Revisiting multiple instance neural networks. Pattern Recognit. 2018, 74, 15–24.
[CrossRef]

20. Wang, J.; Zucker, J.D. Solving the multiple-instance problem: A lazy learning approach. In Proceedings of the Seventeenth
International Conference on Machine Learning, ICML, Stanford, CA, USA, 29 June–2 July 2000; pp. 1119–1126.

21. Pappas, N.; Popescu-Belis, A. Explicit Document Modeling through Weighted Multiple-Instance Learning. J. Artif. Intell. Res.
2017, 58, 591–626. [CrossRef]

22. Fuster, S.; Eftestol, T.; Engan, K. Nested multiple instance learning with attention mechanisms. arXiv 2021, arXiv:2111.00947.
23. Ilse, M.; Tomczak, J.; Welling, M. Attention-based Deep Multiple Instance Learning. In Proceedings of the 35th International

Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; Volume 80, pp. 2127–2136.
24. Jiang, S.; Suriawinata, A.; Hassanpour, S. MHAttnSurv: Multi-Head Attention for Survival Prediction Using Whole-Slide

Pathology Images. arXiv 2021, arXiv:2110.11558.
25. Konstantinov, A.; Utkin, L. Multi-attention multiple instance learning. Neural Comput. Appl. 2022, 34, 14029–14051. [CrossRef]
26. Rymarczyk, D.; Kaczynska, A.; Kraus, J.; Pardyl, A.; Zielinski, B. ProtoMIL: Multiple Instance Learning with Prototypical Parts

for Fine-Grained Interpretability. arXiv 2021, arXiv:2108.10612.
27. Wang, Q.; Zhou, Y.; Huang, J.; Liu, Z.; Li, L.; Xu, W.; Cheng, J.Z. Hierarchical Attention-Based Multiple Instance Learning

Network for Patient-Level Lung Cancer Diagnosis. In Proceedings of the 2020 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), Seoul, Republic of Korea, 16–19 December 2020; pp. 1156–1160.

28. Heath, D.; Kasif, S.; IJCAI, S.S. Induction of oblique decision trees. In Proceedings of the International Joint Conference on
Artificial Intelligence, Chambéry, France, 28 August–3 September 1993; Volume 1993, pp. 1002–1007.

29. Taser, P.; Birant, K.; Birant, D. Comparison of Ensemble-Based Multiple Instance Learning Approaches. In Proceedings of the
2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), Sofia, Bulgaria, 3–5 July
2019; pp. 1–5.

30. Doran, G.; Ray, S. Multiple-Instance Learning from Distributions. J. Mach. Learn. Res. 2016, 17, 4384–4433.
31. Feng, J.; Zhou, Z.H. Deep miml network. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA,

USA, 4–9 February 2017; Volume 31, pp. 1884–1890.
32. Liu, Q.; Zhou, S.; Zhu, C.; Liu, X.; Yin, J. MI-ELM: Highly efficient multi-instance learning based on hierarchical extreme learning

machine. Neurocomputing 2016, 173, 1044–1053. [CrossRef]
33. Xu, Y. Multiple-instance learning based decision neural networks for image retrieval and classification. Neurocomputing 2016,

171, 826–836. [CrossRef]
34. Rymarczyk, D.; Borowa, A.; Tabor, J.; Zielinski, B. Kernel Self-Attention for Weakly-supervised Image Classification using

Deep Multiple Instance Learning. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV),
Waikoloa, HI, USA, 3–8 January 2021; pp. 1721–1730.

35. Tang, X.; Liu, M.; Zhong, H.; Ju, Y.; Li, W.; Xu, Q. MILL: Channel Attention–based Deep Multiple Instance Learning for Landslide
Recognition. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2021, 17, 1–11. [CrossRef]

36. Li, B.; Li, Y.; Eliceiri, K. Dual-stream multiple instance learning network for whole slide image classification with self-supervised
contrastive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN,
USA, 20–25 June 2021; pp. 14318–14328.

37. Qi, C.; Hao, S.; Kaichun, M.; Leonidas, J. Pointnet: Deep learning on point sets for 3D classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017, pp. 652–660.

38. Schmidt, A.; Morales-Alvarez, P.; Molina, R. Probabilistic attention based on Gaussian processes for deep multiple instance
learning. arXiv 2021, arXiv:2302.04061.

39. Costa, V.; Pedreira, C. Recent advances in decision trees: An updated survey. Artif. Intell. Rev. 2022, 56, 4765–4800. [CrossRef]
40. Wickramarachchi, D.; Robertson, B.; Reale, M.; Price, C.; Brown, J. HHCART: An oblique decision tree. Comput. Stat. Data Anal.

2016, 96, 12–23. [CrossRef]
41. Carreira-Perpinan, M.; Tavallali, P. Alternating optimization of decision trees, with application to learning sparse oblique trees. In

Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; Volume 31, pp. 1–11.
42. Xu, Z.; Zhu, G.; Yuan, C.; Huang, Y. One-Stage Tree: End-to-end tree builder and pruner. Mach. Learn. 2022, 111, 1959–1985.

[CrossRef]

http://dx.doi.org/10.1093/bioinformatics/btw252
http://dx.doi.org/10.1016/j.patcog.2017.08.026
http://dx.doi.org/10.1613/jair.5240
http://dx.doi.org/10.1007/s00521-022-07259-5
http://dx.doi.org/10.1016/j.neucom.2015.08.061
http://dx.doi.org/10.1016/j.neucom.2015.07.024
http://dx.doi.org/10.1145/3454009
http://dx.doi.org/10.1007/s10462-022-10275-5
http://dx.doi.org/10.1016/j.csda.2015.11.006
http://dx.doi.org/10.1007/s10994-021-06094-4

Algorithms 2023, 16, 358 16 of 16

43. Menze, B.; Kelm, B.; Splitthoff, D.; Koethe, U.; Hamprecht, F. On oblique random forests. In Proceedings of the Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011; Springer: Berlin/Heidelberg, Germany, 2011;
Volume 22, pp. 453–4622.

44. Katuwal, R.; Suganthan, P.; Zhang, L. Heterogeneous oblique random forest. Pattern Recognit. 2020, 99, 107078. [CrossRef]
45. Cantu-Paz, E.; Kamath, C. Inducing oblique decision trees with evolutionary algorithms. IEEE Trans. Evol. Comput. 2003, 7, 54–68.

[CrossRef]
46. Hehn, T.; Kooij, J.; Hamprecht, F. End-to-End Learning of Decision Trees and Forests. Int. J. Comput. Vis. 2020, 128, 997–1011.

[CrossRef]
47. Lee, G.H.; Jaakkola, T. Oblique decision trees from derivatives of relu networks. arXiv 2019, arXiv:1909.13488.
48. Hazimeh, H.; Ponomareva, N.; Mol, P.; Tan, Z.; Mazumder, R. The tree ensemble layer: Differentiability meets conditional

computation. In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 4138–4148.
49. Frosst, N.; Hinton, G. Distilling a neural network into a soft decision tree. arXiv 2017, arXiv:1711.09784.
50. Karthikeyan, A.; Jain, N.; Natarajan, N.; Jain, P. Learning Accurate Decision Trees with Bandit Feedback via Quantized Gradient

Descent. arXiv 2021, arXiv:2102.07567.
51. Madaan, L.; Bhojanapalli, S.; Jain, H.; Jain, P. Treeformer: Dense Gradient Trees for Efficient Attention Computation. arXiv 2022,

arXiv:2208.09015.
52. Bengio, Y.; Leonard, N.; Courville, A. Estimating or propagating gradients through stochastic neurons for conditional computation.

arXiv 2013, arXiv:1308.3432.
53. Leistner, C.; Saffari, A.; Bischof, H. MIForests: Multiple-instance learning with randomized trees. In Proceedings of the European

Conference on Computer Vision, Crete, Greece, 5–11 September 2010; pp. 29–42.
54. Gartner, T.; Flach, P.; Kowalczyk, A.; Smola, A. Multi-instance kernels. In Proceedings of the ICML, Sydney, Australia 8–12 July

2002; Volume 2, pp. 179–186.
55. Zhang, Q.; Goldman, S. Em-dd: An improved multiple-instance learning technique. In Proceedings of the NIPS, Vancouver, BC,

Canada, 9–14 December 2002; pp. 1073–1080.
56. Zhou, Z.H.; Sun, Y.Y.; Li, Y.F. Multi-instance learning by treating instances as non-iid samples. In Proceedings of the ICML,

Montreal, QC, Canada, 14–18 June 2009; pp. 1249–1256.
57. Wei, X.S.; Wu, J.; Zhou, Z.H. Scalable algorithms for multi-instance learning. IEEE Trans. Neural Netw. Learn. Syst. 2017,

28, 975–987. [CrossRef]
58. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
59. Friedman, J. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
60. Friedman, J. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.patcog.2019.107078
http://dx.doi.org/10.1109/TEVC.2002.806857
http://dx.doi.org/10.1007/s11263-019-01237-6
http://dx.doi.org/10.1109/TNNLS.2016.2519102
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1016/S0167-9473(01)00065-2

	Introduction
	Related Work
	Preliminary
	Multiple Instance Learning
	Oblique Binary Soft Trees

	A Softmax Representation of the Decision Tree Function
	Soft Tree Ensemble for MIL
	Soft Tree Ensemble
	Trees to Neural Networks
	Peculiarities of the Proposed Soft Trees

	Attention and the Whole Scheme of STE-MIL
	Numerical Experiments
	Conclusions
	Discussion
	Open Research Questions
	Concluding Remarks

	References

