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Abstract: Singular spectrum analysis (SSA) is a non-parametric adaptive technique used for time
series analysis. It allows solving various problems related to time series without the need to define
a model. In this study, we focus on the problem of trend extraction. To extract trends using SSA, a
grouping of elementary components is required. However, automating this process is challenging
due to the nonparametric nature of SSA. Although there are some known approaches to automated
grouping in SSA, they do not work well when the signal components are mixed. In this paper, a novel
approach that combines automated identification of trend components with separability improvement
is proposed. We also consider a new method called EOSSA for separability improvement, along
with other known methods. The automated modifications are numerically compared and applied to
real-life time series. The proposed approach demonstrated its advantage in extracting trends when
dealing with mixed signal components. The separability-improving method EOSSA proved to be the
most accurate when the signal rank is properly detected or slightly exceeded. The automated SSA
was very successfully applied to US Unemployment data to separate an annual trend from seasonal
effects. The proposed approach has shown its capability to automatically extract trends without the
need to determine their parametric form.

Keywords: singular spectrum analysis; time series decomposition; trend extraction; seasonality;
automated SSA

1. Introduction

Singular spectrum analysis (SSA) [1–4] is a non-parametric, adaptive technique used
for time series analysis. It can effectively solve various problems, such as decomposing
a time series into identifiable components (e.g., trends, periodicities, and noise). Trend
extraction is especially useful in its own right, as well as a prerequisite for forecasting.
The benefit of SSA over other methods is that it does not require that the time series and its
components assume any specific parametric form. Nevertheless, automation of SSA has
yet to be achieved, limiting its application. This paper presents a step in the direction of
automating SSA for trend extraction.

SSA consists of two stages: Decomposition and Reconstruction. After the Decomposition
step, it is necessary to group the obtained elementary components in order to reconstruct
time series components, such as the trend. However, automating the grouping step in SSA is
challenging due to the nonparametric nature of SSA. The success of grouping depends on the
separability of the component of interest, meaning that there should be no mixture of elemen-
tary components corresponding to the trend with elementary components corresponding to
the residual (periodicity or noise).

Novelty. While there are some known algorithms for automated grouping [5–8], they
only work if signal components such as trend and periodic ones are separable with SSA.
However, if trend and periodic components are mixed, automated grouping is not able
to separate them and, as a consequence, cannot extract the trend. At the same time, there
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are algorithms that can improve separability [9]. This paper proposes a novel approach to
automated trend extraction that combines automated trend identification and separability
improvement with automation of the methods of separability improvement called IOSSA,
FOSSA and EOSSA (OSSA means Oblique SSA). The latter algorithm is new and was not
justified before; therefore, we include a separate section devoted to EOSSA.

To connect the paper’s structure with the proposed method, we present a flowchart in
Figure 1.
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Figure 1. Flowchart of intelligent trend extraction.

Paper’s structure. Let us outline the structure of this paper. Section 2 (the green
block in Figure 1) provides a brief description of the SSA algorithm and the basic concepts.
Section 3 (the blue block in Figure 1) introduces the notion of separability and briefly de-
scribes the methods for improving separability. In Section 4 (the yellow blocks in Figure 1),
the method for automated identification of trends is described, followed by the proposal
of combined methods that can both improve the separability of the trend components
and automatically extract them. Section 5 (the violet block in Figure 1) is dedicated to
justifying the EOSSA method, which was introduced in Section 3. The proposed methods
are compared through numerical experiments, and their results are demonstrated for a
real-life time series in Section 6. Section 7 concludes the paper.

2. SSA Algorithm and Linear Recurrence Relations

A comprehensive description of the SSA algorithm and its theory can be found in [4].
In Algorithm 1, we present a specific case for extracting the trend.

Consider a time series XN = (x1, . . . , xN) of length N, where xn ∈ R.
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Algorithm 1 Basic SSA for trend extraction.
Parameters: window length L, 1 < L < N, and method of identifying trend components.
1. Construction of trajectory matrix: X = T (X) = [X1 : . . . : XK] is a Hankel matrix,

where Xi = (xi, . . . , xi+L−1)
T, 1 ≤ i ≤ K, K = N − L + 1 .

2. The SVD of the trajectory matrix: X =
d
∑

i=1

√
λiUiVT

i =
d
∑

i=1
Xi, d = rank X. Here Xi,

i = 1, . . . , d, are the elementary matrices of rank 1.
3. Identification of trend components of the SVD using the given method of identi-

fying trend components: identification of slowly varying elementary time series X̃i =
T −1(ΠH(Xi)), where ΠH is the hankelization operator. Denote by I = {i1, . . . , it} the
set of slowly varying components.

4. Estimation of trend X̃ = ∑i∈I X̃i.

By definition, the L-rank of a time series is equal to the rank of its L-trajectory matrix
r. It turns out that for L such that min(L, K) > r (assuming that the time series is long
enough and such window lengths exist), the L-rank of the time series does not depend on L
and is called simply the rank of the time series. Further reasoning will require knowledge
of the ranks of particular time series. From [4] we know that the rank of a sinusoid with
frequency ω, 0 < ω < 0.5, is 2, and the rank of an exponential series and a sinusoid with
period two equals 1. The same is valid for exponentially-modulated sinusoids. The rank of
a polynomial series of degree ` equals `+ 1.

An infinite series S is a time series of rank r if and only if it is governed by a linear
recurrence relation (LRR) of order r, i.e., sn+r = ∑r

i=1 aisn+r−i, ai 6= 0, and this LRR is
minimal. The minimal LRR is the only one, but obviously, there are many LRRs of higher
order. If r exists, we call such signals time series of finite rank; overwise, we refer to them as
time series of infinite rank.

A characteristic polynomial of the form P(µ) = µr − ∑r
i=1 aiµ

r−i is associated with
the LRR. Let it have k complex roots µ1, . . . , µk, which are called signal roots, and µi have
multiplicity mi, ∑k

i=1 mi = r.
Through these roots, we can express the general parametric form of the time series [10]

(Theorem 3.1.1)

sn =
k

∑
i=1

Pmi (n)µ
n
i , (1)

where Pm(n) denotes a polynomial of degree m in n.
The decomposition of a time series into components of a certain structure using SSA,

as well as their prediction, does not require knowledge of the explicit form of the time
series (1), which greatly expands the applicability of SSA. However, if the signal fits this
model, there is a method that allows one to estimate the non-linear parameters entering the
time series, namely, µi; this is the ESPRIT method [11] (another name of ESPRIT for time
series is HSVD [12]). For instance, let the trend correspond to the leading r components in
the SVD decomposition of the trajectory matrix of the time series. Let P = [U1 : . . . : Ur],
and P and P be the matrices obtained by removing the last and first rows of a matrix P,
respectively. Then the estimates of single roots µi, i = 1, . . . , r, will be the eigenvalues of the
matrix P†P (LS-ESPRIT). In the case of a root of multiplicity larger than 1, when numerical
methods are employed, the result of estimation will be a group of close roots, with a size
equal to the multiplicity of the root.

In the real case, denoting µi = ρie2πωi i, we obtain an explicit form of the time series as
a sum of polynomials multiplied by exponentially-modulated harmonics:

sn =
k

∑
i=1

Pmi (n)ρ
n
i cos(2πωin + φi);

ESPRIT estimates the parameters ρi and ωi. In what follows we will consider the real case.
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3. Separability Improvement
3.1. Separability of Time Series Components

For the proper decomposition of a time series into a sum of components, these compo-
nents must be separable. By separability we mean the following. Let the time series be a
sum of two components in which we are interested separately. If the decomposition of the
entire time series into elementary components can be divided into two parts, with one part
referring to the first component and the other part referring to the second component, then
by gathering these components into groups and summing them up, we will obtain exactly
the components we are interested in, that is, to separate them. If the decomposition into
elementary components is not unique (which is the case with singular value decomposi-
tion), then the notions of weak and strong separability arise. Weak separability is defined
as the existence of a decomposition in which the components of the time series are separa-
ble. Strong separability means the separability of the components in any decomposition
provided by the decomposition method in use. Therefore, the main goal in obtaining a
decomposition of a time series is to achieve strong separability.

Without loss of generality, let us formalize this notion for the sum of two time series,
following [4] (Section 1.5 and Chapter 6). Let X = X1 + X2 be a time series of length N,
the window length L be chosen and the time series X1 and X2 correspond to the trajectory
matrices X1 and X2. The SVDs of the trajectory matrices are X1 = ∑r1

i=1
√

λ1iU1iVT
1i and

X2 = ∑r2
j=1

√
λ2jU2jVT

2j. Then

• Time series X1 and X2 are weakly separable using SSA, if X1XT
2 = 0L,L and XT

1 X2 = 0K,K.
• Weakly separable time series X1 and X2 are strongly separable, if λ1i 6= λ2j for each

i = 1, . . . , r1 and j = 1, . . . , r2.

Thus, strong separability consists of weak separability, which is related to the orthogo-
nality of the time series components (more precisely, orthogonality of their L- and K-lagged
vectors), and of different contributions of these components (that is, different contributions
of elementary components produced by them). We will call the latter contribution separability.
The conclusion of this is that to improve weak separability one needs to adjust the notion
of orthogonality of the time series components, and to improve contribution separability,
one needs to change the contributions of the components. To obtain strong separability,
both weak and contribution separabilities are necessary.

3.2. Methods of Separability Improvement

The following methods are used to improve separability: FOSSA [9], IOSSA [9]. and
EOSSA. Algorithms and implementations of the FOSSA and IOSSA methods can be found
in [13,14]. A separate Section 5 is devoted to EOSSA. The common part of the methods’
names is OSSA, which stands for Oblique SSA.

All methods are nested (that is, they are add-ons to the SVD step of Algorithm 1) and
satisfy the following scheme.

Scheme of applying nested methods:

• Perform the SVD step of Algorithm 1.
• Select t of the SVD components, presumably related to the signal; denote their sum Y.
• Perform re-decomposition of Y by one of nested methods to improve the separability

of the signal components (nested decomposition).

In all algorithms for improving separability, we first select the components of the
expansion to be improved. Consider the case where the leading t components are selected.
The algorithms’ input is a matrix Y of rank t, recovered from the leading t components,
not necessarily Hankel. Denote Y = T −1 ◦ΠH(Y). Then the result of the algorithms is the
decomposition of the matrix Y and of the time series Y generated by Y.

Figure 2 illustrates the relationship between the various methods of improving separa-
bility and the different types of separability, which are indicated by color. The characteristics



Algorithms 2023, 16, 353 5 of 22

of these methods are briefly listed. In the following paragraphs, we provide a more detailed
description of each method.

Strong Separability

Filter-adjusted
OSSA

FOSSA

Iterative OSSA
IOSSA

ESPRIT-motivated OSSA
EOSSA

Strong separability

Weak separability

Contribution
separability

Fast, improves 
contribution
separability

Fast, parametric,
improves 

strong separability

Slow, iterative,
requires initial

grouping, improves
strong separability

+

=

Types of separability Methods of separability improvement

Figure 2. Methods of separability improvement.

The Filter-adjusted Oblique SSA (FOSSA) [9] method is easy to use; however, it can
improve only contribution separability, that is, strong separability if the weak separability
holds. The idea behind a variation of the method, called DerivSSA (this is the one we
will use in this work), is to use the time series derivative (going to consecutive differences
in the discrete case) that changes the component contributions. The method calculates
Φ(Y) = [Y2 −Y1 : · · · : YK −YK−1], whose column space belongs to the column space of Y,
and then constructs the SVD of the matrix Z = [Y : γΦ(Y)], γ > 0. The [14] (Algorithm 2.11)
provides an extended version of the algorithm that makes different contributions of the
components to the time series, regardless of whether those contributions were the same or
different. It is implemented in [13] and that is what we will use. We will take the default
value of γ, so we will not specify it in the algorithm parameters. Thus, the only parameter
of the algorithm is t. We will write FOSSA(t).

The Iterative Oblique SSA (IOSSA) [9] method can improve weak separability. It can
also improve the strong separability, but the use of IOSSA is quite time-consuming, so when
there is weak separability, it does not make sense to use it. The idea behind the method
is to change the standard Euclidean inner product (X, Y) = XTY to the oblique inner
product (X, Y)A = XTAY for a symmetric positive semi-definite matrix A. This approach
allows any two non-collinear vectors to become orthogonal. It is shown in [9] that any two
sufficiently long time series governed by LRRs can be made exactly separable by choosing
suitable inner products in the column and row signal spaces. The algorithm uses iterations,
starting from the standard inner product, to find the appropriate matrices that specify the
inner products. The detailed algorithm is given in [14]. We will use the implementation
from [13]. The parameter of the algorithm is the initial grouping {1, . . . , t} = ⊔k

j=1 Ij. We
will consider two types of grouping. Since our goal is trend extraction, in the first case
the initial grouping consists of two groups and is set only by the first group I = I1. Also,
consider the variant with elementary grouping with k = t and Ij = {j}. Since the algorithm
is iterative, it has a stopping criterion that includes the maximum number of iterations
niter and tolerance; the latter will be taken by default to be 10−3 and we will not specify
it in the parameters. There is also a parameter κ, which is responsible for improving the
contribution separability; it will be taken equal to 2 by default. So, the reference to the
algorithm is IOSSA(t, niter, I) in the case of non-elementary grouping and IOSSA(t, niter)
when grouping is elementary.
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Note that since IOSSA(t, niter, I) requires an initial group of components I, it matters
which decomposition of the matrix Y is input (the other methods do not care). There-
fore, before applying IOSSA, it makes sense to apply some other method, such as FOSSA,
to improve the initial decomposition and make it easier to build the initial grouping I.

The third method we will consider is the ESPRIT-motivated OSSA (EOSSA) algorithm.
This method is new, so we will provide the full algorithm and its justification in Section 5.
The method can improve strong separability. Unlike IOSSA, it is not iterative; instead, it
relies on an explicit parametric form of the time series components. However, when the
signal is infinite-rank time series or if the rank is overestimated, this approach may result
in reduced stability. The reference to the algorithm is EOSSA(t).

3.3. Comparison of Methods in Computational Cost

So that the results at different time series lengths do not depend on the quality of the
separability of time series components, we considered signals that are discretizations of a
single signal, namely, we considered time series in the form of

sn = 0.5 exp(0.01n(100/N)) + cos(2πn/(3N/100)) + cos(2πn/(6N/100)),

with standard white Gaussian noise. The rank of the signal is 5, so the number of compo-
nents t was also chosen to be 5.

The IOSSA method was given two variants as the initial grouping, the correct grouping
{1}⋃{2, 3, 4, 5} (true) and the incorrect one {1, 2}⋃{3, 4, 5} (wrong). As one can see from
Table 1, the computational time is generally the same. IOSSA marked 10 ran with the
maximum number 10 of iterations to converge. In other cases, there was only one iteration.
Note that the computational time in R is unstable, since it depends on the unpredictable
start of the garbage collector, but the overall picture of the computational time cost is visible.

Table 1. Comparison of computational time (ms).

N SSA FOSSA EOSSA IOSSA.true IOSSA.true10 IOSSA.wrong10

1000 4.52 3.93 3.02 64.32 199.00 192.20

10,000 36.12 36.12 18.06 166.83 596.83 690.92

Thus, EOSSA and FOSSA work much faster than IOSSA, but FOSSA improves only
contribution separability, i.e., strong separability if weak separability holds. Since vari-
ations of OSSA are applied after SSA, the indicated computational times for OSSA are
the overheads concerning the SSA computational cost (the column ‘SSA’). If there is no
separability improving, the overhead is zero.

3.4. Numerical Comparison of the Methods for Improving Separability

Let us compare the accuracy of the methods for improving separability using a simple
example of a noisy sum of an exponential series and a sine wave:

sn = 0.2 exp(0.05n) + 4.12 cos(2πn/30), n = 1, . . . , 100.

The noise is standard white Gaussian. The parameters are: the window length L = 48,
the number of components t = 3, which is equal to the signal rank, the grouping for IOSSA
{1}⋃{2, 3}. Table 2 shows the average and median MSEs calculated with 1000 repetitions;
the smallest errors are marked in bold. It can be observed that the IOSSA and EOSSA
methods perform similarly, with the EOSSA error even being significantly smaller. It
is important to note that the EOSSA method is faster than a single iteration of IOSSA.
On the other hand, Basic SSA yields incorrect results due to poor separability, while FOSSA
improves separability but still produces less accurate results compared to both IOSSA and
EOSSA. This is mainly due to the rather poor weak separability of the sinusoid with period
30 and the exponential series of length 100.
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Table 2. Comparison of accuracy (MSE) of trend estimates.

trend_mse iterations_num

Basic SSA(3) mean: 1.1927, med: 1.1751 mean: 1, med: 1
FOSSA(3) mean: 0.1125, med: 0.0910 mean: 1, med: 1

IOSSA(3, 100, {1} ∪ {2, 3}) mean: 0.0422, med: 0.0250 mean: 7, med: 7
IOSSA(3, 100) mean: 0.0467, med: 0.0296 mean: 13, med: 13

EOSSA(3) mean: 0.0404, med: 0.0224 mean: 1, med: 1

4. Combination of Automatic Identification and Separability Improvement
4.1. Automatic Identification of Trend

By trend, we mean a slowly varying component of a time series. We will use the
Fourier decomposition. For F = ( f1, . . . , fN),

fn = c0 +
b N−1

2 c

∑
k=1

√
c2

k + s2
k cos(2πnk/N + φk) + cN/2(−1)n;

the last summand is zero if N is odd.
The periodogram of the time series F is defined as [4] (Equation (1.17)):

Π f
N

(
k
N

)
=

N
2


2c2

0 if k = 0,
c2

k + s2
k if 0 < k < N/2,

2c2
N/2 if k = N/2 (N is even).

Introduce the measure

PN,ω0(F) = ∑
0≤ k

N <ω0

Π f
N(

k
N
)/‖F‖2. (2)

We call PN,ω0(F) the contribution of low frequencies, where ω0 is the upper bound of low
frequencies, which can be different for different kinds of time series and different problems.

Algorithm of trend identification [14,15]:

• Input: time series F of length M, parameters: ω0 : 0 < ω0 < 1
2 and the threshold

T0 : 0 < T0 < 1.
• The time series F is considered as a part of trend, if PM,ω0(F) > T0.

If there are several time series at the input, the result of trend identification is the
set of numbers of time series for which PM,ω0(F) > T0. We will apply this algorithm to
elementary time series and call it TAI(T0, ω0).

4.2. Combined Methods

Consider the following combinations of methods. In all methods, assume that they
are applied to the leading t components of Basic SSA. The result is the set I which consists
of the numbers of trend components in the refined decomposition.

Algorithm autoFOSSA with threshold T1 and frequency boundary ω0.

1. Apply FOSSA(t).
2. Apply TAI(T1, ω0) to the obtained decomposition; the result is I.

Algorithm autoEOSSA with threshold T1, frequency boundary ω0 and the method of
clustering the signal roots.

1. Apply EOSSA(t, method of signal root clustering).
2. Apply TAI(T1, ω0) to the obtained decomposition; the result is I.

The ways of clustering the signal roots will be described further in Section 5.2.
Algorithm autoIOSSA without initial grouping with threshold T1, frequency bound-

ary ω0, and maximum number of iterations niter.
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1. Apply IOSSA(t, niter).
2. Apply TAI(T1, ω0) to the obtained decomposition, the result is I.

Algorithm autoIOSSA + FOSSA with thresholds T0 and T1, frequency boundary ω0,
maximum number of iterations niter.

1. Apply FOSSA(t).
2. Apply TAI(T0, ω0) to the obtained decomposition; the result is I0.
3. Apply IOSSA(t, niter, I0).
4. Apply TAI(T1, ω0) to the obtained decomposition; the result is I.

4.3. Summary

Let us gather the properties of the methods, including the features of their automation.
Note that all the methods use automatic trend detection at the final step.

• autoFOSSA: improves contribution separability (strong separability in the presence
of weak one; no iterations.

• autoIOSSA + FOSSA: improves strong separability, requires auto-detection of trend
components for initial grouping; iterative method with few iterations.

• IOSSA without initial grouping: improves strong separability; iterative method with
a large number of iterations.

• autoEOSSA: improves strong separability; no iterations.

5. Justification of EOSSA
5.1. Algorithm EOSSA

Consider time series with signals in the form sn = ∑r
j=1 Ajµ

n
j . This means that we

are considering the case where all signal roots of the characteristic polynomial of the LRR
controlling the time series are different.

Here and below we will use the following notation: for a matrix A and a set of column
indices G, we denote by A[G] the matrix composed of the columns with numbers from G.

Note that Algorithm 2 of EOSSA contains the step of clustering the signal roots, which
will be discussed later in Section 5.2.

Algorithm 2 EOSSA.

Input: matrix Y and its SVD Y = ∑t
i=1
√

λiUiVT
i (Y = T −1 ◦ΠH(Y) is a signal estimate),

window length L, way of clustering the signal roots.
Result: time series decomposition Y = Y(1) + · · ·+ Y(k).
1. Construct the matrices P = [U1 : · · · : Ut] and Q = [

√
λ1V1 : · · · :

√
λrVt].

2. Compute the shift matrix M = P†P (then M: P ≈ PM);
3. Find the matrix T from the eigendecomposition M = T diag(µ1, .., µt)T−1.
4. Apply the method of clustering to the set of pairs (Re(µi), |Im(µi)|); the result is k

clusters of signal roots. Hereby, we get a grouping {1 . . . t} = ⊔k
j=1 Gj. Note that the

conjugate eigenvalues belong to one cluster together.
5. For j = 1, . . . , k, compute a basis of colspace(T[Gj]) and constitute the matrix T̃j of the

basis vectors as columns. Denote by T̃ the matrix with T̃[Gj] = T̃j and put Φ = PT̃
and Ψ = Q(T̃−1)T. Then Y = ΦΨT.

6. Set Φj = PT̃j, Ψj = (Q(T̃−1)T)[Gj].
7. Y(j) = T −1 ◦ΠH(ΦjΨ

T
j ), j = 1, . . . , k.

5.2. Methods of Clustering the Signal Roots

In step 4 of Algorithm 2, one can perform an elementary clustering, where the index
clusters Gj consist of either a real root number or two complex-conjugate root numbers. For
the algorithm to work in the case of close roots, a more sophisticated clustering is necessary.
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A mandatory requirement for clustering is that trend components should not be in the
same cluster as non-trend components. Describe three possible ways of clustering in step 4.

1. The aim is to obtain small distances between points (Re(µi), |Im(µi)|) within one cluster,
while distances between points from different clusters should be large. Then distance
clustering is carried out as follows. Denote D = |{µi : Im(µi) ≥ 0}|. The k-means
method is sequentially applied for k = 1, . . . , D to {(Re(µi), |Im(µi)|), i = 1, . . . , t}.
At each step, the ratio of the within-cluster sum of squared distances between points to
the total sum of squared distances is calculated. If this value is less than the parameter
δ, the procedure stops, and we take the result of clustering with the current k as the
desired clustering. Thus, the parameter of Algorithm 2 is δ, and the number of groups
is included in the result of the algorithm. The result of the distance clustering is similar
to elementary clustering; however, close roots will be in the same cluster.

2. Perform the hierarchical clustering for pairs (Re(µi), |Im(µi)|) using Euclidean distance
and complete linkage, with a given number of clusters k. For trend extraction, k = 2.
This version of clustering is implemented in the current version of Rssa [13]. For this
type of clustering, trend components can be mixed with non-trend ones.

3. For the special case of clustering into two clusters, when all trend components must
fall into one group, a special way of clustering ( frequency clustering) is proposed. Since
the concept of trend is based on its low-frequency behaviour, i.e., on the fact that its
periodogram is mainly concentrated in a given frequency range [0, ω0], it is suggested
that the roots µ = ρe2πωi with |ω| ≤ ω0 are included in the trend cluster.

In the hierarchical (with k = 2) and frequency clustering methods, clustering is used
instead of grouping at Trend Identification step of Algorithm 1. Since automatic grouping
appears to be more stable, we will further use distance clustering.

5.3. Methods of Constructing the Basis

Let us describe two ways of choosing a basis in step 5 of Algorithm 2.
The first way is the simplest, the columns of the matrix T[Gj] are chosen as the basis.

In this case, the basis is complex, but this is not a problem, since the resulting time series
will be real due to the inclusion of the conjugate pairs of roots in the same group. In this
case, step 7 can be written as Y(j) = T −1 ◦ (ΦΨT)[Gj], i.e., clustering and decomposition
are permutable.

In the second way, the leading |Gj| left singular vectors of the SVD of the matrix
[Re(T[Gj]) : Im(T[Gj])] are chosen as the basis. In this case, the real-valued basis is found
at once, and the matrix T̃ becomes block-diagonal with orthogonal matrix blocks. Note
that formally, the algorithm result does not depend on the choice of basis. However,
the numerical stability can differ.

5.4. Justification of Algorithm 2

Proposition 1. Let the time series have the form

sn =
r

∑
j=1

Ajµ
n
j , (3)

S be its L-trajectory matrix, min(L, K) > r. Denote

Φ = [Φ1 : . . . : Φr] =


c1 . . . 1

c1µ1 . . . crµr
...

. . .
...

c1µL−1
1 . . . crµL−1

r

, (4)
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ΨT = [Ψ1 : . . . : Ψr]
T =

h1 h1µ1 . . . h1µK−1
1

...
...

. . .
...

hr hrµr . . . hrµK−1
r

. (5)

Then S = ΦΨT and S(j) = T −1(ΦjΨT
j ), where s(j)

n = Ajµ
n
j , j = 1, . . . , r.

Proof. Note that the application of T −1 is correct, since the matrix ΦjΨT
j is Hankel. The

statement of the proposition is checked by straightforward calculations.

Remark 1. Under conditions of Proposition 1, let G ⊂ {1, . . . , r}. Then for the time series S(G)

with the terms s(G),n = ∑j∈G Ajµ
n
j we obtain S(G) = T −1(Φ[G]Ψ[G]T).

Proposition 2. Let the time series S be given in (3). Then in Algorithm 2 with elementary clustering,
Φ and Ψ have the form (4) and (5) respectively.

Proof. It follows from [11,16] that there exists M such that PM = P and its eigenvalues
are µ1, . . . , µr. Therefore, the eigendecomposition of M is M = T diag(µ1, . . . , µr)T−1. Set
Φ = PT. Then

Φ = PT⇒ Φ diag(µ1, . . . , µr)T−1 = P⇒ Φ diag(µ1, . . . , µr) = Φ.

Since µiΦi = Φi, we obtain
µiφ1,i
µiφ2,i

. . .
µiφL−1,i

 =


φ2,i
φ3,i
. . .
φL,i

⇒ φ1,i =
φ2,i

µi
=

φ3,1

µ2
i

= · · · = φL,1

µL−1
i

.

Therefore, Φi = ci(µi, µ2
i , . . . , µL

i )
T for some ci 6= 0.

Find the structure of the matrix Ψ. We have S = ΦΨT. Therefore, the jth lagged vector
of S has the form Sj = ψj,1Π1 + · · ·+ ψj,rΠr. Set ψj,i =

Ai
ci

µ
j−1
i . Since Ψ is uniquely defined

by the equality S = ΦΨT, Ψi is proportional to (µi, µ2
i , . . . , µK

i )
T.

Remark 2. Note that Φj, j = 1, . . . , r, constitute the basis of the column space of S, and Φi, i ∈ G,
gives the basis of the column space of S(G), where S(G) is the L-trajectory matrix of the time series
S(G). The same is true for Ψj and the row spaces. Let C be a nonsingular matrix g× g, where
g = |G|. Then multiplication by C or by its inverse can be considered as a transition to another basis.
If we transfer accordingly to the other bases as Φ̃[G] = (Φ[G])C and Ψ̃[G] = (Ψ[G])(C−1)T,
then the result will obviously be S(G) = T −1((Φ̃[G])(Ψ̃[G])T).

Proposition 3. In the notation of Remark 2, re-numerate the indices in the expansion (3) so that
the indices in each group Gi are successive. Let C be a nonsingular matrix with a block structure:

C =


C1 O . . . O

O C2 . . . O
...

...
. . .

...
O O . . . Ck

.

Then for Φ̃ = ΦC, Ψ̃ = Ψ(C−1)T, the time series components are separated:

S(Gi)
= T −1((Φ̃[Gi])(Ψ̃[Gi])

T).
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Proof. This statement is a generalization of Remark 2. Indeed,

C−1 =


C−1

1 O . . . O

O C−1
2 . . . O

...
...

. . .
...

O O . . . C−1
k

.

5.5. EOSSA and Separability

Proposition 1 can be interpreted as stating that in the sum sn = ∑r
j=1 Ajµ

n
j all sum-

mands are separable from each other by EOSSA. In the real-valued case, for complex-
conjugate roots µ` = ρ exp2πωi, ρ > 0, 0 < ω < 0.5, and µj = µ∗` , the coefficients A` and Aj
are such that the sum of the corresponding terms is A`µ

n
` + Ajµ

n
j = Aρn cos(2πnω + ϕ).

Thus, as a result of Proposition 2 we obtain the following theorem.

Theorem 1. Let S = S(1) + · · ·+ S(k), k = r1 + r2/2, the terms of the time series S(i) have the form
s(i)j = Aia

j
i (rankS(j) = 1) for i = 1, . . . , r1 and s(i)j = Bzbj

z cos(2πωz j + φz) (rankS(j) = 2)

for i = r1 + 1, . . . , r1 + r2/2, with ai 6= 0, bz > 0, ωz ∈ (0; 1
2 ). We have r = rankS = r1 + r2.

Let min(L, K) ≥ r and step 4 of Algorithm 2 provides elementary clustering into k = r1 +
r2
2

clusters. Then Algorithm 2 applied to the trajectory matrix Y = S = T (S) results in the
decomposition with Y(i) = S(i), after some reordering of time series components.

Remark 3. Theorem 1 means that in the case of no noise, Algorithm 2 solves the problem of lack of
strong separability, since the algorithm does not need the orthogonality of time series with the terms
Ajµ

n
j , and the singular values they generate are also not important.

5.6. The Case of Multiple Roots

In the case of multiple signal roots, Algorithm 2 formally fails because the matrix T
of eigendecomposition does not exist (the matrix M is not diagonalizable and therefore
the Jordan decomposition should be constructed; however, it is very unstable procedure).
For stability of the algorithm in the case of close roots, the following option was proposed:
at step 3 of Algorithm 2 the matrix T is constructed from the eigenvectors of the matrix
M as columns. In the degenerate case of multiple roots of the characteristic polynomial,
the eigenvector corresponding to the eigenvalue is one for each eigenvalue, but numerically
we obtain a system of almost identical but linearly independent eigenvectors.

The second way of finding the basis in step 5 described in Section 5.3 leads to the
matrix T̃ being block-diagonal with orthogonal blocks. Thereby, its numerical inversion is
stable and is constructed by transposing the blocks.

It turns out that Algorithm 2 works approximately for the case of multiple roots using
the second way of finding the basis. The explanation is that numerically the roots are not
exactly equal, and orthogonalization of blocks of the matrix T makes the computation
stable even in the case of very close roots. Thus, in further numerical investigations, we
will use the second way of finding the basis from Section 5.3.

6. Numerical Investigation

To compare the methods considered for trend extraction, we first numerically investi-
gate their accuracy by varying their parameters. This allows us to develop recommenda-
tions for parameter selection and conduct further comparisons. Estimating the rank of the
signal is a challenging task due to the nonparametric nature of the method. Therefore, we
also focus on the stability of the methods in correctly identifying the rank. All experiments
are conducted using 1000 generated time series.
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The numerical study is performed using the time series described in Section 6.1.
The signal models include various levels of separability, signals with finite and infinite rank,
and an example with a polynomial trend, which represents a signal with a root multiplicity
larger than one. In Section 6.6, we analyze a real-life time series.

R-scripts for replicating the numerical results can be found in [17].

6.1. Artificial Time Series

All of the time series considered have the model XN = TN + SN + εN , where εN is
white Gaussian noise with zero mean. The variance of the noise is given in the example
descriptions. The time series length is 100, and the window length is 50.

Harmonic trend of rank 2. Good approximate separability. The components of the
signal have the form

tn = 8 cos
(

2πn
50

)
, sn = cos

(
2πn

3

)
. (6)

In this example, the trend has the form of a harmonic with a large period 50; this trend
is well separable from the sinusoidal component with period 3. The signal rank is r = 4.
The noise standard deviation is σ = 1.

Complex trend of rank 3. No weak separability. The components of the signal have
the form

tn = 0.2e0.05n + 2 cos
(

2πn
60

)
, sn = 4.12 cos

(
2πn
30

)
. (7)

The trend in this example consists of an exponential series and a harmonic with a large
period. The example lacks weak separability of the trend and the periodic component.
The component contributions are different. The signal rank r = 5. The noise standard
deviation is σ = 1.

Trend of infinite rank. No contribution separability. The components of the signal
have the form

tn = ln(n), sn = 0.4 cos
(

2πn
12

)
. (8)

The signal in this example has no finite rank. The example has a small lack of weak
separability of the trend and periodic component. The component contributions are close.
The noise standard deviation is σ = 0.2.

Polynomial trend of rank 3. No weak and contribution separabilities. The compo-
nents of the signal have the form

tn = 0.001n2 − 0.2n + 15, sn = 12 cos
(

2πn
30

)
. (9)

The trend of this time series is polynomial and produces three equal roots µi = 1, i = 1, . . . , 3.
In the example, there is a lack of weak and contribution separabilities. The signal rank
r = 5. The noise standard deviation is σ = 1.

6.2. Choosing Methods

Among the methods using IOSSA, we will consider only autoIOSSA + FOSSA, since
autoIOSSA without initial clustering has a high computational cost (large number of
iterations) and does not show better accuracy than autoIOSSA + FOSSA. The maximum
number of iterations was set to 10.

For the autoEOSSA method, we will use the distance clustering method described in
Section 5.2. This clustering appears to be the most stable. We fix its parameter δ = 10−3.

6.3. Choice of Parameters

Example (7) was chosen as a basic time series for demonstration, since its trend is
complex enough and is not separable from the periodic component using Basic SSA.
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6.3.1. Choice of Threshold T0 for Pre-Processing in autoIOSSA + FOSSA

The autoIOSSA + FOSSA method is the only one of the considered methods for which
it is necessary to specify groups of components as an input. Specifying the input grouping
is a difficult task because initially, if there is no separability, the components are mixed.
The study confirmed that the autoIOSSA + FOSSA method is unstable to the choice of the
low-frequency contribution threshold T0 for the initial grouping. We demonstrated this
using the threshold T1 = 0.5 (Section 6.3.2 will show that this is a reasonable choice of T1).

Typical behaviour of MSE in T0 is presented in Figure 3 for Example (7). One can
see that the range of values of the parameter T0 at which autoIOSSA + FOSSA shows
errors comparable to those of the autoEOSSA method, is narrow. Nevertheless, we choose
T0 = 0.2 for further numerical experiments.

0.5

1.0

1.5

2.0

0.2 0.4 0.6
T_0

M
S

E
, m

ea
n

Methods

autoSSA

autoFOSSA

autoIOSSA+FOSSA

autoEOSSA

Figure 3. MSE vs initial threshold T0. Example (7).

6.3.2. Choice of Threshold T1

To use the proposed methods, it is necessary to develop recommendations on the
choice of the threshold T1, which is an important parameter of the automatic trend identifi-
cation method. For this purpose, let us study the behaviour of trend estimation errors in
dependence on T1.

Let us fix an estimate of the signal rank t = r = 5 and a frequency threshold ω0 = 1/40.
The frequency threshold ω0 should be between the signal and periodicity frequency ranges,
that is, between 1/30 and 1/60 in this case. The graph of MSE vs value of T1 is depicted in
Figure 4.

All of the methods considered proved to be quite robust to the choice of T1. The accu-
racy of all methods does not vary between T1 = 0.3 and T1 = 0.7.

We choose T1 = 0.5 as the recommended value for T1.
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Figure 4. MSE (log) vs threshold T1. Example (7).

6.3.3. Choice of Frequency Threshold ω0

Thus, we fix the threshold values T0 = 0.2 and T1 = 0.5. With the chosen values of
the parameters, the considered methods are quite stable to the change of the frequency
threshold ω0.

Let us demonstrate this using the same Example (7).
Indeed (Figure 5), the range of ω0 values at which method errors do not change is

quite large.
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autoIOSSA+FOSSA

autoEOSSA

Figure 5. MSE (log) vs frequency threshold ω0. Example (7).

As for the recommended value, in the case where trend frequencies and periodic
frequencies are known, one should take the value ω0 between the highest trend frequency
and the lowest periodic frequency; e.g., ω0 = 1

24 for seasonal monthly time series. In the
general case, one should choose as the value of ω0 the upper bound of frequencies, which
we consider to be trending.
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6.4. Robustness of Methods to Exceeding the Signal Rank

All trend extraction methods have the signal rank as a parameter. Unlike the pre-
viously studied parameters, there are no universal recommendations for selecting the
signal rank. Currently, there is no justified AIC-type method for SSA, so methods such
as visual determination of the rank are used. Consequently, the signal rank can be deter-
mined incorrectly. Underestimating the rank can often lead to large distortions, so it is
better to overestimate the rank. The purpose of this section is to investigate the effect of
overestimating the rank on the accuracy of the methods.

Thus, we fix thresholds T0 = 0.2 and T1 = 0.5 and consider examples of signals of
different structures.

6.4.1. Case of Exact Separability

Note that the use of automatic trend identification methods in combination with the
improvement of separability is appropriate only in the case of insufficient separability
quality. If the components of the time series are strongly separable, then the autoSSA
method shows small errors without the use of separability improvement methods.

We start from Example (6) with ω0 = 1/24, where the signal components are separable
with high accuracy.

Figure 6 clearly shows the ordering of the methods. These are the methods ordering
in decreasing robustness: autoSSA, autoFOSSA, autoIOSSA + FOSSA, autoEOSSA. Interest-
ingly, the ordering in decreasing MSE is typically inverse if there is no separability and the
rank is detected correctly.
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autoFOSSA

autoIOSSA+FOSSA

autoEOSSA

Figure 6. MSE vs number of somponents t. Example (6).

6.4.2. Case of Lack of Separability
Case of Finite Rank Time Series

Let us first consider the case of time series of finite rank. In this case, we will discuss
the robustness to rank overestimation. The most stable method for exceeding the rank of
the signal, with the chosen parameters, is autoSSA. However, this method is suitable for
trend extraction only when there is strong separability of the components. Such a case is
considered in Section 6.4.1.

Consider Example (7), where we fix ω0 = 1
40 . The graph of MSE in dependence on the

rank estimate t is depicted in Figure 7.
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Figure 7. MSE vs number of components t. Example (7).

The ordering of the methods by the error growth rate is approximately the same
(except for bad accuracy of autoFOSSA) as in the case of exact trend separability. The most
stable methods are the autoSSA and autoFOSSA, and the fastest error growth is with the
autoEOSSA method. However, due to the lack of separability, the autoSSA and autoFOSSA
methods inadequately estimate the trend, so for quite large rank excess the autoEOSSA
method is the most accurate.

Case of Infinite-Rank Time Series

Example (8) differs from Examples (6) and (7) in two points. First, the logarithmic trend
is of infinite rank. Then, the periodic component has a not large period and has good weak
separability from the trend. However, there is no strong separability due to close component
contributions. The latter means that the autoFOSSA method should improve the separability.

Indeed, Figure 8 confirms that autoFOSSA is the best, while the autoSSA method is
the most robust, but it produces large errors.
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Figure 8. MSE vs number of components t. Example (8).
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6.4.3. Case of Multiple Signal Roots

Consider Example (9). As discussed in Section 5.6, the EOSSA algorithm is applied to
time series with multiple signal roots, and therefore we can include it in the comparison.

Figure 9 shows the dependence of MSE on the number of components t. It can be
observed that the autoSSA and autoIOSSA + FOSSA methods are the most robust, but both
produce large errors rendering this robustness useless. Note that autoEOSSA is somewhat
unstable; however, it results in the smallest errors.
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Figure 9. MSE (log) vs number of components t. Example (9).

Figure 10 demonstrates the source of large errors for other methods.
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Figure 10. The extracted trends and the original trend. Example (9).

It can be seen that the autoSSA and autoIOSSA + FOSSA methods do not work
correctly. The autoEOSSA method extracts the trend well, with errors significantly smaller
than those of the autoFOSSA method. Likely, the large errors of the autoIOSSA + FOSSA
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method are due to the two elementary components corresponding to the trend have such a
small contribution that they are mixed with the noise.

6.5. Comparison of Accuracy

Let us compare the results of the methods for all examples described in Section 6.1.
The following general parameters were used:

• Threshold T0 = 0.2.
• Threshold T1 = 0.5.
• Maximum number of iterations for IOSSA method niter = 10.

As before, the comparison is performed using the same 1000 generated time series. In
Equations (6)–(9) below, the rows with significantly smallest mean MSE errors are in bold.

Example (6).

This example corresponds to the accurate separability of the trend from the periodic
components. Take the frequency threshold ω0 = 1

24 and the number of components
equal to the signal rank, t = r = 4. Table 3 contains the results on the accuracy of the
trend extraction.

Table 3. MSE of trend estimates. Example (6).

trend_mse iterations_num

autoIOSSA + FOSSA mean: 0.068, med: 0.059 mean: 2, med: 2
autoEOSSA mean: 0.068, med: 0.059 mean: 1, med: 1

autoSSA mean: 0.068, med: 0.059 mean: 1, med: 1
autoFOSSA mean: 0.068, med: 0.059 mean: 1, med: 1

All methods showed approximately the same errors. When the trend is accurately sep-
arated from the periodic, the best method to extract the trend with the selected parameters
is autoSSA, since the method is the fastest and the most stable.

Example (7).

This example corresponds to no weak separability of the trend from the periodic
components. Take the frequency threshold ω0 = 1

40 and the number of components
equal to the signal rank, t = r = 5. Table 4 contains the results on the accuracy of the
trend extraction.

Table 4. MSE of trend estimates. Example (7).

trend_mse iterations_num

autoIOSSA + FOSSA mean: 0.2573, med: 0.1766 mean: 10, med: 10
autoEOSSA mean: 0.1593, med: 0.1183 mean: 1, med: 1

autoSSA mean: 1.0696, med: 1.0510 mean: 1, med: 1
autoFOSSA mean: 1.9922, med: 1.9942 mean: 1, med: 1.

The autoEOSSA method is the most accurate one. The autoIOSSA + FOSSA method
also shows small errors, although it reaches the maximum number of iterations. The meth-
ods autoFOSSA and autoSSA do not improve weak separability, so they show large errors.

Example (8).

This example contains the trend of infinite rank and corresponds to more or less
accurate weak separability and no contribution separability of the trend from the periodic
components. Take the frequency threshold ω0 = 1

24 and large number of components equal
to t = r = 12. Table 5 contains the results on the accuracy of the trend extraction.
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Table 5. MSE of trend estimates. Example (8).

trend_mse iterations_num

autoIOSSA + FOSSA mean: 0.0158, med: 0.0096 mean: 7, med: 6
autoEOSSA mean: 0.0142, med: 0.0082 mean: 1, med: 1

autoSSA mean: 0.0307, med: 0.0255 mean: 1, med: 1
autoFOSSA mean: 0.0096, med: 0.0079 mean: 1, med: 1

Despite a slightly inaccurate weak separability, the autoFOSSA method is the most
accurate in extracting the trend. The errors of the autoIOSSA + FOSSA method are signifi-
cantly larger than those of the autoEOSSA method.

Example (9).

In this example, the trend is a polynomial of degree 2, which produces a signal root
of multiplicity 3. There is neither weak nor contribution separability. Take the frequency
threshold ω0 = 1

40 and set the number of components equal to the signal rank, t = r = 5.
Table 6 contains the results on the accuracy of the trend extraction. The only method that
accurately extract the trend is autoEOSSA.

Table 6. MSE of trend estimates. Example (9).

trend_mse iterations_num

autoIOSSA + FOSSA mean: 6.2082, med: 7.1549 mean: 8, med: 10
autoEOSSA mean: 0.0985, med: 0.0818 mean: 1, med: 1

autoSSA mean: 7.4691, med: 7.4710 mean: 1, med: 1
autoFOSSA mean: 1.1389, med: 0.8167 mean: 1, med: 1

6.6. Real-Life Example

Let us consider ‘US Unemployment’ data (monthly, 1948–1981, thousands) for male
(20 years and over) [18]. This time series has a complex-form trend and was analysed
in [9,14] (Section 2.8.5) using IOSSA and FOSSA. It is interesting if autoEOSSA would be
able to automatically extract the trend. The time series has length N = 408. As in [14], we
take the window length L = 204 and the number of signal components t = 13.

The chosen parameters of autoEOSSA are T1 = 0.5 and ω0 = 1
24 .

Let us take a look at the graph of the elementary components before we improve the
separability (Figure 11).

Figure 11. ‘US Unemployment’. Leading 13 elementary time series before separability improvement.
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In this example, the trend is complex and is described by an exponential series and
harmonics with periods ranging from 35 to 208. In Figure 11, one can see that the elementary
components numbered 4 and 11 have distortions caused by mixing with the seasonal
components. The seasonal components 5, 6, 13 are also distorted. This suggests that there is
a lack of separability between the trend components and the periodic components.

Let us now look at the graphs of the elementary components after improving the
separability with the autoEOSSA method (Figure 12). One can see that the mixture has
been eliminated.
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Figure 12. ‘US Unemployment’. Leading 13 elementary time series after separability improvement
by EOSSA.

Figure 13 demonstrates the resultant decompositions. The trend extracted by autoSSA
has small fluctuations and the extracted trend is most distorted at the edges. The autoEOSSA
method extracts the trend well.
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Figure 13. ‘US Unemployment’. Decompositions using autoSSA and autoEOSSA.
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7. Conclusions

The paper presented a novel approach to automated identification by combining
methods to improve separability and methods for automatic identification of decomposition
components. The new separation-improvement method, EOSSA, was proposed and fully
justified. Its modification with distance clustering ultimately proved to be the best in
combination with the automatic identification of the trend in the case of finite-rank signals
with precisely defined signal ranks.

Using a numerical study, we provided recommendations for selecting parameters for
automatic trend identification in both finite- and infinite-rank signals, and also described
the strengths and weaknesses of the proposed methods.

The methods exhibit good stability with respect to the choice of automatic identifi-
cation parameters. In terms of stability to overestimation of the signal rank, the methods
can be ranked as follows: the most stable method is autoSSA without improvement of
separability, followed by autoFOSSA, which only improves contribution separability, then
autoIOSSA + FOSSA, and the most unstable method is autoEOSSA. However, when the
rank is determined correctly, the methods act in reverse order in terms of trend extraction
accuracy. So, when the rank is slightly exceeded, autoEOSSA remains preferable, while
the autoSSA method is not aided by its stability in exceeding the rank due to poor trend
extraction caused by mixed components in the time series decomposition.

For time series of infinite rank, a similar effect occurs if the concept of rank is replaced
by the number of signal approximation components that are not mixed with the trend.

It should be noted that although the EOSSA algorithm is formally designed for cases
with roots of multiplicity one, meaning it is not suitable for polynomial trends, its imple-
mentation has proven to be effective in extracting polynomial trends.

The application of automated SSA to real-world data, specifically the ‘US Unemploy-
ment’ data, demonstrates that the method effectively extracts an annual trend despite the
presence of seasonal effects.

Thus, the methods autoFOSSA, autoIOSSA + FOSSA, and autoEOSSA can be recom-
mended for extracting trends in time series. These methods are based on SSA, which is
nonparametric and robust to various forms of trends, periods of oscillations, and noise
models. Due to its robustness in handling a moderate overestimation of time series ranks,
the proposed approach can be considered general for cases when the parametric form of
the trend is unknown. We expect that autoEOSSA will help extract the trend in cases where
the trend is only approximately and locally governed by LRRs (therefore, the SSA analysis
of moving and overlapping segments of a time series is considered [19,20]) and forecast the
trend using the technique described in [21].

Automated decomposition of time series also requires methods for automated extrac-
tion of periodic components and estimation of signal ranks. In the future, it is expected
to combine these methods with automatic trend extraction methods, as well as with the
methods discussed in this paper to improve separability.
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The following abbreviations are used in this manuscript:

LRR Linear recurrence relation
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FOSSA Filter-adjusted OSSA
EOSSA ESPRIT-motivated OSSA
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