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Abstract: The objective is to find a Cellular Automata (CA) rule that can generate “loop patterns”. A
loop pattern is given by ones on a zero background showing loops. In order to find out how loop
patterns can be locally defined, tentative loop patterns are generated by a genetic algorithm in a
preliminary stage. A set of local matching tiles is designed and checked whether they can produce
the aimed loop patterns by the genetic algorithm. After having approved a certain set of tiles, a
probabilistic CA rule is designed in a methodical way. Templates are derived from the tiles, which
then are used in the CA rule for matching. In order to drive the evolution to the desired patterns,
noise is injected if the templates do not match or other constraints are not fulfilled. Simulations
illustrate that loops and connected loops can be evolved by the CA rule.

Keywords: loop pattern generation; overlapping tilings; probabilistic cellular automata; pattern
generation by genetic algorithm

1. Introduction
1.1. Main Aim

The main aim is to generate interesting pattern classes (from a global point of view)
that are defined by local conditions only. An optional aim is to optimize a global criterion
for such patterns, preferably in a local way. For instance, one could aim to fill a space
with particles where the distance between them should be kept in a certain range and their
number should be maximized.

1.2. The Problem

Our problem is to find loop patterns in a 2D space (grid/field of cells). We consider a
square field of size n× n under cyclic boundary conditions. First, we have to define what
we mean by loop and loop pattern.

1.2.1. Loop

We define a loop as a cyclically closed path (sequence of path cells) on a background.
The value 1 is assigned to path cells (depicted in black/blue), and the value 0 to background
cells (depicted in white/green). The loop length (the number of path cells) has to be greater
than 1 (we forbid a single black cell to be a trivial loop).

A loop path cell is a black cell that has exactly two black cells in NESW where NESW
are the direct orthogonal neighbors. We call this condition the “loop path condition”. This
means that three path cells in sequence form a vertical or horizontal straight line or a corner
(four variants by rotation). In order to form a loop, it is required that the neighboring cells
of a path cell are also path cells, and all path cells in continuation form a closed path.

A loop path shall be surrounded by zero cells (hull cells). This is already partly fulfilled
by the definition that a path cell has two white (just as two black) neighbors in NEWS.
Additionally, at each corner (convex side) an extra zero has to be provided on the corner’s
outer diagonal cell, for example

0 0
0 1 1
0 1 0
⇒ 0 0 0

0 1 1
0 1 0

.
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The hull ensures that loops keep a (visible) minimal distance between each other,
and also within a loop itself. Hull cells are allowed to be used by several paths, from the
same or other loops.

Remark. We may imagine that an agent walks around in one direction on the surface of
a torus and returns back to its starting point without touching its own path (except for the
cyclic connection) or another loop. When walking along the path, the path cells are colored
black, assuming that the field was initially colored in white. The agent follows its path by
going straight, to the right, or to the left, assuming that the agent has a direction.

We distinguish the following loop types by counting the number of turns to the right
(#R) and the number of turns to the left (#L) when walking for one cycle along a loop the
surface of a torus in one direction.

• Plane Loop. Such a loop is a loop we commonly understand as a loop that can be easily
recognized. The number of right turns minus the number of left turns sums up to +4
(360◦ clockwise) or −4 (360◦ counter-clockwise): |#R− #L| = 4 .
A plane loop can be visualized in a plane, but not necessarily in a field of size n× n.
Plane loops can use the inherent cycles available in a torus, but not necessarily. Then,
they do not fit into a field of size n× n but they can be visualized by repeating the
field periodically.

• Wrapped Loop. A wrapped loop is a loop that makes use of the inherent cycles in a
torus. We can distinguish straight loops and wave loops.

– A straight loop is just a horizontal or vertical line wrapped around using one or the
other inherent cycle. The condition is #R = #L = 0 .

– A wave loop shows a wave-like structure vertically and/or horizontally wrapped
around. The condition is #R = #L = k, k ≥ 2. A wave loop can be very long,
e.g., it can cycle many times around as long as there is enough space.

1.2.2. Loop Pattern

A loop pattern is a cell field with a white background that contains at least one loop.
Several loops of different types may appear in such a pattern, and a loop may enclose other
loops. Note that connected and intersecting loops are not allowed. The field size n > 1 can
be arbitrary, but we have to notice that not every loop type can appear for an arbitrary size.

For instance the plane loop
0 0 0 0
0 1 1 1
0 1 0 1
0 1 1 1

needs at least a space of 4× 4.

An optimal loop pattern is a loop pattern that maximizes or minimizes a global criterion.
A global criterion is a measure that may take all cell states into account. Usually it is easily
computed on the global level, often by counting some local conditions or relations between
cells. In the GA (Genetic Algorithm) we maximize the number of tile matches that are
locally computed but globally counted. In the CA, we try to minimize the number of
uncovered cells (to zero) by using a local rule only.

We aim at patterns that show loops only. Nevertheless, there may appear faulty loop
patterns (loop-related patterns) during or at the end of the pattern evolution by the used
GA or the CA. A faulty loop pattern is a pattern that shows some similarity to a loop pattern.
One could define a similarity measure such as the minimal number of pixels that need to be
changed in a loop-related pattern in order to yield a loop pattern. Objectionable black cells
could be deleted (faulty cells, not-needed black cells, branches, or connections between
loops, see Section 2.6). Remark: This task could also be used for mind training or as a game
between two players.

The main challenge is how to form a loop (its path and closing it) by local conditions.
The solution presented here is the definition of a set of tiles (local patterns acting as local
conditions) that are allowed and forced to overlap (aggregate) in a way that loops are
formed. Such a set of tiles is designed and tested by a GA in a preliminary stage. The
GA tries to find optimal loop patterns by covering the space (totally or partially) with
the defined tiles. The GA works on a global criterion, namely maximizing the number of
matching tiles.
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After having found an appropriate set of tiles, the second challenge is to find a local
Cellular Automata (CA) rule that can evolve the desired loop patterns. To solve this
problem, we extend the approach already used to generate point patterns [1], domino
patterns [2], and sensor networks [3]. Local matching patterns (templates) are derived
from the tiles and tested by the CA rule. If there is no template hit, noise is injected that
finally drives the evolution to a loop pattern.

1.3. Related Work

Own Previous Work. Complex patterns were constructed in a local way by moving CA
agents [4]. The agents use a finite state machine evolved by a GA. Though the results are
impressive, it takes quite some effort to train the agents. In addition, it is very difficult
to train them for small and large grid sizes at the same time in order to make them work
for any grid size. It would be a new and interesting task to train them for forming loop
patterns and to find out the limitations.

Then, a probabilistic CA rule was used to generate point patterns [1], sensor point
patterns [3], and domino patterns [2,5]. It was possible to aim at a maximal or a minimal
number of dominos by injecting noise depending on the level of tile overlapping. In this
paper, the idea of using a probabilistic CA is also followed. The rule here was adapted to a
new set of tiles and uses an additional logical condition in order to evolve loop patterns only.

Genetic Algorithm for Pattern Generation. In our internal research work, we used for
several years a GA to generate patterns with a global fitness function based on local
conditions and local pattern matchings. This method is first published in this article. GA is
a generally accepted method for optimization. It dates back to John H. Holland [6,7] and
overviews are given in [8,9]. We just used the classical techniques (crossover, mutation,
selection) in a simple way, i.e., we randomly selected the second parent (the mate) without
giving preference to parents with high fitness. This was sufficient for our purpose and it
was not the intention to find a more efficient evolutionary algorithm or heuristic.

Overlapping Tiles and Loops. The recommendable book [10] provides much information
about tilings but it does not deal with overlapping tiles. Overlapping 1D tilings are treated
theoretically in the context of recognizable languages, monoids, and two-way automata [11],
and it was partly motivated by an application in computational music theory. This paper
is a good basis for further studies and extensions to the n-dimensional case. There are
a lot of applications for overlapping tilings, like the dense parking of cars in a parking
lot or constructing a sieve for maximal particle flow (using domino tiles) [5], optimizing
task scheduling (overlapping communication and computation) [12], or building nano-
structures [13].

Our problem is related to open and closed (loop) space-filling curves [14–16]. In princi-
ple, such loops can be generated with our approaches (GA and CA), among others. The
wave loop (Figure 11 (fourth in the second row)) is a space-filling wave loop. It is also
an open space-filling curve if the horizontal wrap-around of the torus is not used. The
wave loop (Figure 11 (second in the first row)) is a space-filling wave loop in the torus.
The proposed GA could be tuned (by additional global fitness measures) to generate such
curves only. Generating only space-filling curves by a CA rule is a task that has to be
performed. For space-filling curves, the field size has to be considered with respect to the
possible solutions. Note that in our approach, the space between loops is not constant 1, it
can vary between 1 and 2 (or even more if allowing uncovered cells). So our loops can be
arranged in a more flexible way for any grid size, they can keep a suitable distance out of
a certain range. This feature is also valuable for describing particles that can attract and
repulse. Hamiltonian cycles can algorithmically be computed in grid graphs. In [17], the
grid graph is interpreted as a field of cells as here, whereas in [18] a checkerboard marked
grid graph is used. In [19], families of intersecting closed curves (connected loops) are
discussed in the context of string topologies. This paper could be of interest for further
work on generating connected loops.
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Cellular Automata. A CA is a grid of automata (cells). Every cell changes its state
depending on its own state and the state of its local neighbors according to a local rule.
The model of computation is parallel, simple, powerful, and has a wide range of applica-
tions [20].

1.4. New Results

• A GA was designed that can use an arbitrary set of tiles (small matching patterns) in or-
der to find optimal patterns depending on a global fitness function. The fitness function
used here is the number of local tile matches being maximized. The working principle is
demonstrated for an example: Generating patterns with points and squares.

• Then, the GA was used for generating loop patterns. A set of overlapping tiles was defined,
which can aggregate to loops. Loop patterns appear by maximizing the number of tile
hits. Most of the generated patterns are loop patterns, but not all of them.

• A CA Rule was defined that evolves stable loop patterns only. It uses (i) templates derived
from the prior defined set of tiles, and (ii) an extra logical condition, the loop path
condition. This extra condition can easily be modified in order to allow connections
between loops.

1.5. Paper Structure

The paper is structured into two main parts: (i) using GA to generate loop patterns
(Section 2), and (ii) using a CA rule (Section 3). In the first part, the GA is described, which
can generate such patterns based on a set of designed tiles. The purpose is to affirm that
the designed tiles do the job and can then be used in the second part. In the second part, a
CA rule is designed using templates derived from the set of tiles. Different loop patterns
evolved by the CA rule are then presented. In Section 4, the findings are discussed.

2. Generating Loop Patterns with a Genetic Algorithm

First, we will show how 2D patterns can be generated by a GA using a set of local
matching patterns (tiles). Then, a tile set is designed that can generate loop patterns.

We aim at binary patterns S of size n× n, where the elements S(x, y) ∈ {0, 1}, and the
coordinates x, y ∈ {0, . . . , n− 1}. We may call the elements also “cells” as we will later
deal with cellular automata cells and patterns of them. We will use also the term “field” or
“space” for an array of cells.

2.1. Tile

A tile L is a pattern of m1 ×m2 elements L(x, y) ∈ {0, 1, -} where m1, m2 ≤ n. We call
the elements “pixels” in order to distinguish them from cells. The symbol “-” represents
a null, a pixel that is not part of a tile. A non-null pixel 0/1 is also called a valid pixel. We
want to use only tiles that are much smaller (or smaller for small fields) than the size of the
whole field. The reason is that we do want to allow that a few large tiles of size m1 ≈ n
and/or m2 ≈ n may simply cover the whole global space. Then, a trivial solution could be
that just one tile is equal to the aimed pattern. In fact, we want to restrict the size of the
tiles, m1 ≤ Bm1 and m2 ≤ Bm2 , where Bm1 , Bm2 ≥ 1 are the boundaries of a tile, and where
Bm1 × Bm2 ≥ 2. Here, we want to solve the problem with small tiles of size Bm1 , Bm2 ≤ 5.
The coordinates (x, y) within a tile L are locally defined separately for each tile where the
origin (0, 0) is assigned to the central pixel of a tile.

Remark. It would be possible to define a tile as a set of pixels (x, y, v) where (x, y) are
the coordinates and v ∈ {0, 1} are the states of a pixel. In addition, the name of the tile and
the anchor’s position have to be related.

2.2. Overlapping Tiles

Now, we search for global patterns that can be tiled by tiles from a set of tiles
L = {L0, L1, . . . .} that may overlap. Two tiles L1, L2 ∈ L , L1 6= L2, overlap if they are
overlaid (shifted relative to each other) and all overlaid non-null pixels have the same
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value. The result of overlaying a pixel p1 from L1 with a pixel p2 from L2 is summarized in
Table 1.

Table 1. The result of overlaying two pixels.

Pixel p1 Pixel p2 Result

0 0 0
1 1 1
- 0/1/- -

0/1/- - -
0 1 forbidden
1 0 forbidden

It is possible that k ≥ 2 tiles overlap. In this case, there exists pairwise an overlap and
the resulting overlap forms a compound tile consisting of k sub-tiles. In terms of particle
systems, we may associate a basic particle with a (basic) tile, and a compound/complex
particle with a compound tile.

Two tiles L1, L2 may also overlap (by inclusion) if L1 is smaller than L2 but compatible
with it (L1 has the same pixel structure as L2 except that some of the valid L2–pixels are
null in L1). Overlap by inclusion is symmetric.

We define a field of cells as fully covered if all cells are covered by tiles (the number is
not restricted) taken from the given set of tiles, and tiles are allowed to overlap as explained
already. In order to cover the field, not only the basic tiles but also compound tiles can be
used. Due to a not properly defined set of tiles, it may happen that a given field cannot
totally be covered by valid pixels. Then, the field is partially (not fully) covered because it
contains uncovered cells (null pixels, gaps, wholes, spaces). Nevertheless, partially covered
fields may be of interest as patterns too.

2.3. Genetic Algorithm

In the first stage, we use a GA to find optimal patterns with respect to a global fitness
function and defined by tiles. The main purpose here is to validate that a certain set of
designed tiles define the patterns that are aimed at the user and that can be used later by
the CA rule in the second stage.

The algorithm used is given in Algorithm 1. A possible solution (an individual)
is a tuple (Pattern, Fitness). An array/list of M solutions is the data and output that is
manipulated by the algorithm. (1) The pattern list is initialized randomly. (2) The while
loop is repeated until a termination condition becomes true, i.e., the number of iterations
reaches a certain limit, and / or another global condition, like a certain fitness level or
certain pattern features. (3) In each block, better solutions are searched for. For each current
existing individual (tentative solution), an offspring (a new individual) is generated by
crossover and mutation. The current individual is replaced by the offspring if it has higher
fitness. (4) A mate Sj is selected at random from the list. (5) A new offspring pattern is
computed by crossing over Si with Sj, and then applying a mutation. (6) The fitness of the
offspring pattern is computed and stored within the offspring. (7) The offspring replaces
the current individual Si if its fitness is higher. (8) The list of solutions is sorted for output.

The fitness function computes the number of tile matches that occurs within a pattern.
At every site of the pattern, all tiles from the given set are tested if they match locally, i.e., test
if all tile pixels (aligned to the tile’s anchor/center) are equal to the pattern values in the
local neighborhood. A null tile pixel (do not care) excludes the testing of the corresponding
pattern value.

The used GA is a simple form using the classical GA algorithm basics. The goal was to
generate optimal patterns in a simple way and not to optimize the algorithm itself, which
is a topic for further research. Only one list of individuals is used and not two (old and
new generation).
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Algorithm 1: Generating a Binary Pattern with a Genetic Algorithm

Types: Pattern = array [0 . . . n1 − 1, 0 . . . n2 − 1] of {0, 1}
Solution = (Pattern, Fitness)

Data and Output: S is an array [1 . . . M] of Solution
Temporary: Offspring is a Solution
(1) S.Pattern← RandomPatterns

(2) while not TerminationCondition

(3) foreach Si in S
(4) Select randomly a Mate Sj
(5) Offspring.Pattern = Mutate (Crossover (Si, Sj))
(6) Offspring.Fitness← fitness (Offspring.Pattern)
(7) if Offspring.Pattern /∈ S.Pattern and Offspring.Fitness > Si.Fitness

then Si ← Offspring
(3) foreach end

(2) while end

(8) S← SortByFitness (S)

Algorithm 1 that generates patterns with a maximal number of tile matches. The
fitness function computes the number of matches. Every site of the pattern field is tested if
there is a match of a tile out of a given set of tiles.

Each individual is treated separately and is expected to improve by crossover with
any other individual, not depending on their fitness. Thereby a high diversity is supported,
though the speed of improvements may not be so high. Crossover is performed in the
following way (uniform crossover with a certain probability): (1) Each bit of the offspring
Crossover(Si, Sj) (without mutation) is taken from the mate Sj with probability p1 otherwise
unchanged from the parent Si. (2) Then, mutation is performed on each bit with probability
p2 yielding Mutate(Crossover(Si, Sj)). Then, the fitness of the offspring was computed and
used for replacement in the case of improvement.

The probabilities used were p1 = 0.2, p2 = 0.05. Optimal or near-optimal solutions
were found within a number of iterations between 1000 and 10,000 in a short time (a few
minutes for 12× 12 patterns on a desktop PC with an Intel Core i5-3470 CPU @ 3.20 GHz
and 8 GB RAM under Windows 10). The programming language was Free Pascal using
one thread only. The size of the population (the number of possible solutions) was 40.

2.4. Sample Pattern: Squares and Points

In this section, we demonstrate that the GA can produce optimal “square/point”
patterns (SP patterns) defined by three tiles. The pattern contains simple 1-points and
squares 1 1

1 1 surrounded by zeroes. In order to keep the computations as local as possible, we
restrict the size of the tiles to 3× 3. The designed three tiles are shown in Figure 1. The point
tile (a) is just a 1 surrounded by 0’s. The center is marked and is the anchor/origin of the tile.
A square surrounded by zeroes can easily be defined by a 4× 4 tile, but not by a 3× 3 tile.
Therefore, the square is composed of two parts (b1) and (b2), which then aggregate to a full
square (c) (without 2 zeroes at two of the corners) during the GA evolution.

Some solutions of the GA are shown in Figure 2. The tile matches are marked. All
patterns are valid as desired (show only squares and points surrounded by zeroes) and
each cell is covered (the field is fully covered). Patterns (a) and (b) are optimal with a
maximal possible number 18 of matches. (a) Contains 2 squares and 14 points, whereas
(b) contains 3 squares and 12 points. Patterns (c) and (d) are non-optimal with respect to
the number of matches.
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Figure 1. The three tiles used for the first pattern generation by GA: (a) point; (b1) a square (11/11)
with upper-left zeroes; and (b2) with the lower-right zeroes. The tile centers are marked by “.”. The
tiles b1 and b2 can overlap forming a “full” square surrounded by 10 zeroes (at relevant positions),
where “11” marks an overlap.

(a) (b) (c) (d)

Figure 2. 9 × 9 patterns generated by a Genetic Algorithm using three tiles, a point, and two
overlapping partial squares that yield together a full square. The number of tile matches was
optimized. The positions where tile centers match are marked. (a) 18 matches. (b) 18 matches.
(c) 17 matches. (d) 16 matches.

2.5. Tiles for Generating Loop Patterns

Now, we want to generate a loop pattern using the GA. A set of 12 tiles was designed
specifying such patterns (Figure 3a). The size of the tiles was restricted to 3× 3. The
tiles were designed in the following way: (1) possible loop patterns were constructed on
a grid (the aimed patterns). (2) The aimed patterns were scanned by small windows at
several relevant positions. Such window patterns were stored or remembered. (3) Tiles were
designed that can cover the window patterns and that can overlap.

The tiles A (Figure 3) define corners, B define straight continuations, and C define
possible turns. The null pixels are necessary in order to enforce connections. Simply
speaking, the tiles’ surfaces need properly structured interfaces in order to aggregate. At
the moment it is not clear how the interfaces can be defined in a methodical way.

Figure 3b,c shows how certain small loop patterns can be assembled by tiles. A small
open square (Figure 3b) can be formed as shown by (A0 + A1 + A2 + A3) + (B0 + B1 + B2
+ B3) where ‘+’ means adding a tile or compound tile that overlays without conflict. The
resulting composition can fit into a cyclic field of size 4× 4 or 5× 5. A larger open square
(Figure 3c) can be formed as shown fitting into a cyclic field of size 5× 5 or 6× 6. Figure 4
shows (a) another small loop and (b) how it can be assembled by tiles.

Until now, it seems difficult to automate this process, and therefore, it is a topic of
further research. It is also a question of what is a minimal set of m1 ×m2 tiles, or what is
the smallest size of the tiles in order to produce the same class of patterns. Note that there
are different classes of loop patterns that differ in certain details like allowed crossings (and
how) or allowed diagonal connections. We discuss here only the class of loop patterns that
are defined by the tile set shown in Figure 3a.
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(a)

(b)

(c)

Figure 3. (a) The twelve tiles defining loop patterns. (b) A small open square compound tile. (c) A
larger open square compound tile (“open” means here not fully surrounded by zeroes).

(a) (b)

Figure 4. A 6× 6 loop pattern. (a) The field boundary is marked in red. Pixels outside the boundary
wrap around and thus make the field fully covered. (b) The used tiles and their connections. Arrows
mark pixels (and their associated tiles) that overlay. Dotted arrows show adjacent pixels/tiles that
connect but do not overlay.

2.6. Loop Patterns Generated by GA

Let us consider generated patterns of size n× n. We consider patterns as ‘equal’ if
they are equivalent under rotation, shift, or mirroring. For n = 2, there exists only the loop
pattern

0 0
1 1
0 0

, and
0 0 0
1 1 1
0 0 0

for n = 3. Note that a straight line of one-pixels forms a loop under
cyclic boundary conditions. For n = 3, there exist five patterns as shown in Figure 5a1–a5.
All patterns contain one loop, except (a2), which contains two loops. Patterns (a4) and
(a5) use two cyclic connections each, one horizontal and one vertical. The patterns (b) are
the patterns (a), doubled vertically and horizontally, altogether they form quadruplicates,
and that is why we call them quad patterns or simply quads.
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Figure 5. GA evolved loop patterns of size 4× 4. The quad patterns (b1–b5) repeat the patterns
(a1–a5) horizontally twice and vertically twice in order to exhibit the inherent cyclic structures. The
cyclic connections relevant for the loops in (a1–a5) are noted. (a1) is a plane loop, (a2) shows two
straight loops, and (a3–a5) are wave loops.

For n = 6, some of the GA evolved patterns are shown in Figure 6 as quads. The
patterns (a) have the same number of 1- and 0-pixels, and therefore, we can call them
balanced. They are also very dense if we consider 0-pixels as space between the 1-pixel loops.
Patterns (b, c) are less dense, because their loops are more commodiously embedded in the
space. The used GA favors dense patterns, but it could be modified to aim at low-density
loop patterns. Figure 6a3,b1,b4 show two loops, and the other patterns only one. Patterns
(b5, c1–c4) contain plane loops. Pattern (a3) contains a plane and a straight loop, (b1) a
wave and a straight loop, and (a1, a2, a4, a5, b2, b3, b4, c5) are wave loop patterns.

Figure 6. GA evolved loop patterns of size 6× 6, depicted in quad representation. Patterns (a1–a5)
consist of 18 one-pixels (blue) and 18 zero-pixels (green). Patterns (b1–b5,c1–c4) have 16 one-pixels.
Pattern (c5) has only 14 pixels.

The GA does not always produce loop patterns (Figure 7). GA generated optimal
patterns are patterns with a maximal number of tile matchings. Such patterns correspond
to dense loops, as shown in Figure 6a1–a5, and their number of one- and zero-pixels is
balanced (may differ by one if the whole number of pixels is not even). The generated
non-optimal patterns, in which the number of tile matches is not maximal, can be (a) loop
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patterns, or (b) faulty loop patterns. We can observe special types of faults that may appear
in combination (Figure 7).

• (UFC) Uncovered cell. The given space is only partially filled with tiles. The isolated
and marked blue cells in Figure 7a1,a2 are such cells. The GA generates for such
uncovered cells either 0 or 1. Such cells can automatically be detected and then shown
in a distinct color (e.g., white or green).

• (TCN) Touching corners. There exists a pair of one-pixels that touch each other on
a diagonal.

• (3PC) 3-pin-connector. There exists a 3-pin connector in a loop path (Figure 7a5,b2,b5).
• (4PC) 4-pin-connector. Such a connector exists in a loop path (Figure 7b1).
• (ART) Artifact. There exist other black pixel structures that may be a part of a possible

loop or an appendix of a loop. Typical such structures are: a line, a partial rectangle,
or a branch (Figure 7b2–b5).

Figure 7. Faulty loop patterns with different faults: (UNC) uncovered with wrong color (marked by
‘x’); (TCN) touching corners; (3PC) 3-pin-connector; (4PC) 4-pin-connector; (ART) artifact.

Remark. In the course of the further GA evolution of the (b4) pattern, the uncovered
cells can be eliminated such that only line loops will appear. In (b5), a tile can be added,
closing the gap and thus forming connected loops.

It is a matter of definition what kind of loops are allowed. It would be possible to
modify the fitness function of the GA in a way that (a) TCN and certain ART structures are
suppressed (adding a penalty to the fitness function); (b) 3PN and/or 4PN are promoted
(adding a reward); (c) UFC are allowed in a certain range in order to control the space
between loops.

For n = 10, some of the GA evolved patterns are shown in Figure 8 as quads. The
patterns contain one loop (a), two loops (b1–b5), or three loops (b6). The patterns (c) contain
connected loops. Loops are connected through connectors. A connector with four pins is
used in (c1–c5), and one with three pins in (c6). We find 10× 10 windows marked in the
quads intended to exhibit the inherent structures. In order to show explicitly the loops for
the original 10× 10 patterns (as marked) external connections as added in Figure 5 would
often be necessary. Some of the loops cross the 10× 10 window boundary back and forth,
e.g., (a4) and (b5). Most of the loops in the loop patterns are wave loops.

We have seen that a GA can generate patterns of a certain class (such as square/point,
loop, defined by a set of tiles). The GA uses a globally defined and tested fitness function,
here given by the number of tile matches. It was a kind of surprise that such complex
patterns can easily be found by the GA although the search space is very large. The
fitness function can easily be modified, for instance, including further conditions like the
ratio between zero and one pixels (density), the length of loops, the kind of loops, and so
on. Therefore, the GA is a powerful tool for generating patterns under complex global
conditions. In the next sections, we want to show that loop patterns can also be generated
by testing only local conditions by a CA rule.
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Figure 8. GA-evolved loop patterns of size 10× 10 in quad representation. Repeating 10× 10 struc-
tures are marked. (a1–a6) Patterns with one loop. (b1–b5) Patterns with two loops. (b6) Three loops.
(c1–c6) Connected loops.

3. Generating Loop Patterns with a Probabilistic Cellular Automata Rule

In the following Section 3.1, we want to decide what kind of updating scheme and
rule we will use, then, in Section 3.2, how the tiles from the already tile set are incorporated
into the CA rule (by templates derived from them), and then in Section 3.3, we will describe
the rule that injects noise when a loop pattern is not reached. Simulations follow showing
the resulting patterns.

3.1. Choosing the Type of the Rule

The simulation of a CA is very simple, that is one reason why CA are so popular.
Nevertheless, there are different types of CA and we need to choose the best-suited one for
our application. There are two important properties we have to choose: (i) synchronous or
asynchronous updating, and (ii) a deterministic or a probabilistic rule.

(i) Synchronous or Asynchronous Updating.

• Synchronous updating.
(Phase 1) For every cell (x, y) its new state s′ is computed by a local rule and buffered
in the new state variable snew.

∀(x, y) : snew(x, y)← s′(x, y) = f (s(x, y), s(neighbor1(x, y)), s(neighbor2(x, y)), . . .)

We use z← v to denote that a variable z (with memory) is used to store the value v.

(Phase 2) The state of each cell is updated (replaced) by its new state.

∀(x, y) : s(x, y)← s′(x, y)

It is important to notice that the order in which the cells are processed in phase 1
and in phase 2 does not matter, but the phases must be separated. This model can
easily be implemented in software, or in clocked hardware using d-flipflops (internally
supplying a master and a slave memory).

• Asynchronous updating.
There are several schemes. In the pure case, there are no phases. A cell (x, y) is selected
at random, snew is computed, and then immediately updated: s← snew.
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We want to use the following scheme. A time step t→ t + 1 is considered as a block
of N = n1 × n2 micro time steps τ → τ + 1. A selected cell is processed during one
micro time step. For each time step, we select the cells sequentially in a different
random order (elements are mutually exclusive). During one time step, each cell is
updated once, but the order is random. We display CA configurations at time steps.
This scheme is called random sequence or random new sweep.

(ii) Deterministic or Probabilistic Rule. A deterministic rule always computes the
same next state for a given input (the combined state of all neighbors). A probabilistic rule
computes different next states with certain associated probabilities for a given input.

Combination. In principle, we can combine synchronous or asynchronous updating with
a deterministic or a probabilistic rule. This makes four options: (1) synchronous updating
and deterministic rule; (2) synchronous updating and probabilistic rule; (3) asynchronous
updating and deterministic rule; (4) asynchronous updating and probabilistic rule.

Option 1: Until now, it was not possible to design such a rule that can produce loop
patterns. The problem is that the evolving patterns may get stuck in non-desired patterns
or oscillating structures such as we know from the Game of Life. It remains an open question
if it is possible to find such a rule.

Options 2–4: These options are related because the computation of a new configuration
is stochastic. It seems that they can be transformed into each other to a certain extent. We
decided to use option 4 (random sequence together with a probabilistic rule) as in our for-
mer work [1–3,5]. With asynchronous updating, we do not need buffered storage elements
and a central clock for synchronization, which is closer to the modeling of natural processes.

3.2. Templates Used for the CA Rule

One of the key ideas is to use templates (local matching patterns) for testing them
everywhere (at any point (x, y)) in the CA space. If we find a template match we call it a hit.
A hit means that the cell is covered by a pixel of a tile. We are searching for stable patterns
where we have at least one hit everywhere.

A template is a shifted tile. Let us assume that templates have the size of m×m pixels.
We have chosen m to be odd because then it is easier to define the unique center as the
origin for the local coordinates and to handle symmetric templates. But this choice is not
obligatory as long as all templates fit into the boundaries of m × m. We index tile and
template pixels relative to their center located at (x, y) = (0, 0). We declare x-coordinates
to increase rightwards and y-coordinates downwards.

For a given tile (the generating tile), we derive a set of templates by shifting the
generating tile vertically and/or horizontally. We consider only the valid pixels with a
value of 0/1 for the process of deriving the templates. We call a valid pixel reference pixel
when it is selected for deriving a specific template. For each reference pixel with the
(relative) coordinates (xre f (i), yre f (i)), we shift the tile in such a way that after shifting, the
reference pixel occupies/arrives at the center (0, 0) of the derived template, i.e.,

• for each reference point i at (xre f (i), yre f (i)) : Ai = shi f t(−xre f (i),−yre f (i), L)
where the operator shift(∆x, ∆y, L) shifts a tile L by the given offsets, and is
shifting-in null pixels and deleting shifted-out pixels.

Figure 9 shows the templates derived from A0, B0, and C0 as defined in Figure 3.
A0 = A00 is the generating tile and also the first (the main) template that needs no shift
because it contains a valid pixel in its center already (what we assumed). Now, we consider
the pixel A0 (−1,−1), in green. A0 is shifted by (1, 1) steps, (1 rightwards, 1 downwards),
which yields A01. A02 is A0 shifted by (0, 1), where the red pixel occupies the center. A03
is A0 shifted by (1, 0), and so on. As a result, we obtain seven templates derived from A0.
In a similar way, we obtain seven templates each from B0 and C0. As we have altogether
16 tiles with 7 valid reference pixels we obtain 16× 7 = 112 templates. We may reduce
the number of templates by joining them using classical methods of minimization logical
functions where the center value is the output and the neighboring pixels are the inputs.
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The templates (to fit in a square array) are larger than the given tile because of shifting, the
radius of the templates is twice the radius of the given tile.

Figure 9. (A00–A06) The templates derived from tile A0 = A00. (B00–B06) The templates derived
from tile B0 = B00. (C00–C06) The templates derived from tile C0 = C00. Templates are shifted tiles.

Remark. In general, we can define a template set independently of certain tiles, but this
is a general topic that will not be followed here.

3.3. The CA Rule

The following rule is able to evolve CA loop patterns. The main idea is to inject noise
if no template hit is recognized in order to drive the evolution to a stable pattern. In such a
pattern, there is everywhere a template hit, i.e., every CA cell is either equal to the center
of a tile or it is a part (a pixel) of a tile, corresponding to the center of a template.

The default value of the new state s′ is the current state s. All templates Ai are tested
against the current CA neighborhood at the selected site (x, y) where the template center
is excluded from the test. If there is a template hit, the center of the template defines the
new state. (Either the CA neighborhood corresponds fully to the template or only the
center is false and then it is corrected). Noise is injected under certain conditions including
certain probabilities. The main condition is C0, which becomes true if there is no hit. The
condition C1 takes toggling uncovered cells of the NESW-neighborhood into account in
order to dissolve them. The additional condition C2 excludes faulty loop patterns.

s′(x, y) =


s(x, y) default no change (a)
center(Ailasthit) ∃ hit(Ai, (x, y)) (b)
random ∈ {0, 1} if C0 ∨ C1 ∨ C2 (c)

where

• hit() is a test whether a template Ai matches in the current CA neighborhood of the
selected CA cell (x, y):

hit(Ai, (x, y))) =
{

1 if template Ai matches in the CA neighborhood of (x,y)
0 else

Remark. For specialized rules, it may be useful to store the number of template hits
in the state of the cell: h(x, y) = ∑i hit(Ai, (x, y))). Certain values of h were used to
inject additional noise [2,5] in order to find a minimal or maximal number of dominos
covering a space.

• center(Ailasthit) is the value of the center pixel of a template match. Here, the value of
the last hit is used, if there are several hits. It would be possible to use the value of the
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first hit or that of any hit randomly. To which extent the choice matters is a topic of
further research.

• C0 = Decision(π0) ∧ (hit = 0)
is the main basic condition that drives the evolution through injecting noise if there is
no hit, which means that such a cell is not covered by a tile pixel.

– Decision(π) is a function that is TRUE if a trial is successful under probabil-
ity π, otherwise FALSE. In Python, the function can be defined as: “def deci-
sion(probability): return random() < probability”

• C1 = Decision(π1) ∧ (sum(NESW, hit = 0) > 0)
This additional condition avoids lonely uncovered cells that cannot be destroyed by
C1. This problem will further be discussed in Section 3.5.

– NESW = {(0,−1), (1, 0), (0, 1), (−1, 0)}
is the North-East-South-West-Neighborhood (relative indexes)

– sum(Neighborhood, ConditionForANeighbor) ∈ {0..|Neighborhood|}
is a function that tests for each neighbor in the Neighborhood (set of relative positions
of the neighbors) a local condition ConditionForANeighbor and counts the fulfilled
conditions.

• C2 = Decision(π2) ∧ (sum(NESW, s = 1) 6= 2)
These additional conditions realize the loop path condition. Thereby faulty loops are
excluded (see end of Section 3.6).

• C2 = Decision(π2) ∧ (sum(NESW, s = 1) < 2)
This alternative additional condition allows unconnected and connected loops.

The behavior of the CA rule depends on the probabilities π0, π1, π2. We can use them
as parameters in the general rule: Rule(π0, π1, π2). Note that the conditions π0, π1 > 0
have to be fulfilled to drive the evolution to a stable pattern by destroying uncovered cells.
The condition C2 can be deactivated by setting π2 = 0.

3.4. Simulation of the First Rule

The First Rule (also called Basic Rule) is the Rule(π0 > 0, π1 = 0, π2 = 0) in which we
used the probability π0 = 0.08. It injects noise only when the own cell shows no hit, i.e., the
cell is uncovered. Figure 10 shows the evolved patterns for 20 runs with different random
initial conditions. We found different types of patterns:

1. Seven patterns (a2, a3, a5, a7, a9, a19, a20) with unconnected (separated) loops,
patterns that we mainly aim at.

2. Four patterns (a4, a6, a8, a11) with loops that are connected, meaning that there are
connections between them. It is a matter of definition whether such loops should be
within the scope of objectives. In Section 1.2.2 we classed them as faulty patterns.

3. Nine patterns (a1, a10, a12, a13, a14, a15, a16, a17, a18) are faulty loop patterns. Such
patterns are not really what we want to achieve.

4. Four patterns (a5, a7, a16, a17) contain an uncovered cell, marked by ‘0’. Such cells are
toggling (0↔ 1) because of noise injection through condition C0. Such patterns can
also be of interest but they are partially unstable (cycling). We may wish to exclude
them, or we may fill the toggling cell constantly with zero to yield a lower-density
loop pattern with less ones.

Although this is only a test case (the number of types and the actual pattern may vary)
we can observe that the First Rule does not work perfectly because a faulty loop pattern
can appear. Now, we aim at a rule that produces a loop pattern only. First, we want to
avoid uncovered toggling cells (type 4 patterns) by the enhanced Second Rule described in
the next Section 3.5. Then, we want to avoid faulty patterns of type 3 and type 2 (Third Rule,
Section 3.6).
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Figure 10. First CA Rule. the patterns evolved by 20 simulation runs. Seven patterns are loop
patterns (a2,a3,a5,a7,a9,a19,a20) we aim at. Four patterns show connected loops (a4,a6,a8,a11). The
patterns (a5,a7,a16,a17) contain one uncovered cell (marked by ‘0’). Patterns (a1,a10,a12–a18) are
faulty loops (not closed, diagonally touching 1-cells, branches). Simulation values: R (Run), t (time
step), E (number of 1-cells), u (number of uncovered cells), M (number of tile matches).

3.5. Simulation of the Second Rule

The Second Rule is the Rule(π0 > 0, π1 > 0, π2 = 0), it was used with the setting
(0.08, 0.2, 0). It avoids the toggling of uncovered cells. The problem was solved by inject-
ing additional noise from a neighbor to the current cell if there exists a neighbor that is
uncovered (with no hit). We have used the NESW neighborhood for this problem. This
is achieved by activating the condition C1 by setting the probability π1 > 0. We recall the
condition C1 = Decision(π1) ∧ (sum(NESW, hit = 0) > 0). Indeed we could not find such
lonely toggling cells in the many simulation experiments. This is not proof that the NESW
neighborhood is sufficient in general to solve this problem. In the general case, a larger
neighborhood is probably necessary if sophisticated or larger tiles are given.

Remark. We may consider a situation where the given tile(s) cannot cover the space.
Given a square tile of size n× n with a black border of width one around a white square of
size (n− 2)× (n− 2). The tile shall be used to cover a field of size (n + 1)× (n + 1). We
can easily see that only one such tile can be used (because of overlaying conflicts) and there
will always remain 2n + 1 uncovered cells. In such a case, it would even be better to use
the First Rule in order to reach a partially stable pattern, in this case with one tile only.

3.6. Simulation of the Third Rule

The Third Rule is the Rule(π0 > 0, π1 > 0, π2 > 0), it was used with the setting
(0.08, 0.2, 0.8). In addition, it activates the condition

(Case 1) C2 = Decision(π2) ∧ (sum(NESW, s = 1) < 2), or
(Case 2) C2 = Decision(π2) ∧ (sum(NESW, s = 1) 6= 2).

(Case 1) Additional noise is injected if the number of ones in the NESW neighborhood
is less than 2. This means that only patterns are allowed in which a one-cell has at least two
orthogonal one-neighbors. Thereby faulty type 3 patterns of the First Rule simulation are
excluded, but connected loops (type 2 patterns) are still allowed. Many simulations were
performed (Figure 11) converging to loop patterns with separated loops or patterns with
connected loops having 3- or 4-pin connectors.

(Case 2) This condition is the negation of the loop path condition (a path cell has
exactly 2 path cells in NESW). Noise is injected if this condition is not fulfilled. Thereby the
evolution is pushed to loop patterns only (Figure 12), the patterns we aimed at.
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Figure 11. Simulation results of the third CA Rule (Case 1) using the conditions C1, C2, C3. The
evolved patterns are stable and contain unconnected or connected loops.

Figure 12. Only loop patterns are evolved by the Third Rule (Case 2). Noise is injected if a path cell
has not two path cells in NESW. Field size is 12× 12.

4. Discussion and Future Work
4.1. Forming Loops by the Tiles

We defined a set of overlapping tiles that are able to cover a 2D space in a way that a
loop pattern can appear. For the design, it was important that the tiles can connect to each
other by overlapping in a way that they can find other suitable tiles in the continuation of a
path (during the evolution), and finally that the beginning and end of a path connect with
each other and form a loop.

The driving force in the GA is the number of matches. Let us consider an almost closed
loop (or we may call it a slightly opened loop), just one path cell is missing (is zero). Compared
to the (closed) loop there are fewer matches because the endings are “free”, not connected
to tiles that could be used to close the gap. Then, the GA closes the gap because it tries to
maximize the number of matches through using more tiles.

The CA rule works differently because it tries to avoid uncovered cells. In the case of
an almost closed loop, there are uncovered cells around the gap (if the tiles are properly
designed). The gap is then closed by evolution; finally, all cells are covered, no more noise
is injected and the pattern remains stable. These are only rough explanations that have to
be detailed and improved in a further work.

4.2. The Genetic Algorithm Generating Loops

A GA was developed that can find optimal loop patterns based on the set of tiles. It
tries to maximize the number of tile matches. Some of the patterns are faulty (e.g., touching
black cells on the diagonal, loops having branches). This means that the designed tiles are
not able to produce loop patterns only but also faulty ones. Instead of improving the tiles
to make them proper in a way that loop patterns are evolved only, this issue was left to the
CA rule (with condition C2). Nevertheless, it is a research issue to find a proper set of tiles
that enforce the forming of loop patterns only.
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4.3. The Cellular Automata Rule Generating Loops

A CA Rule was defined that tests templates derived from the defined tiles. In the
first version (First Rule, Second Rule) it can easily evolve loop patterns or faulty ones. The
extra logical condition C2 can exclude the faulty ones (Third Rule). This condition can
easily be modified in order to allow connections between loops. A difficulty during the
design and simulations was to make the rule simple and reliable. The used settings for the
probabilities π0, π1, π2 were good working, but there is potential for optimizing them in
order to minimize the average time for finding a stable pattern. For small problem sizes,
the CA rule converges fast, but for large sizes, we expect an exponential increase, as already
tested for domino patterns in [2]. In order to reduce the computational time, the CA rule
programming code can be optimized or other techniques (e.g., divide and conquer) could
be involved.

4.4. Future Work

There are several open questions.

• What are (all) possible loop patterns depending on the size of a field, and what is the
distribution of different loop types with certain properties?
A special question could be: How many loops (optionally restricted to a certain type)
can maximal be placed in a certain field.

• Can it be proven that the presented CA rule always (for large field sizes) produces
stable loop patterns? What are the probabilities that certain loop types are evolved?
What happens for large fields?
For this mainly experimental work, the minimal loop pattern size is 2× 2, and we see
no limit for large sizes. For large sizes, we expect a mixture of different loops and loop
sizes as in Figure 12. The CA rule always generated stable loop patterns so far, but the
computation time increases exponentially. In the simulation, rectangular fields could
be handled too. Nevertheless, the convergence and limits of this approach should be
proved and further evaluated.

• How do tile matches lead to loops? The tiles were designed in a way that corners
and lines can easily connect/overlap to a loop that is surrounded by zeroes. The tile
matches are maximized, thereby each cell tries to obtain a match, and the idea used is
that loops are paths with a maximal number of matches. Until now, the defined set
of tiles did not always produce loop patterns, and therefore the CA rule needed an
additional local condition (the path condition). This issue has to be further investigated,
and it is the aim to find a proper set of tiles that securely stimulates the generation of
loop patterns.

• How can optimal loops be generated on the basis of local conditions only when
optimality depends on a global measure. Possible parameters for a global measure are:

– The space between loops;
– The number of loops;
– The length of the loops;
– The type of the loops (plane, straight, wave).

We can conclude that we found a way to generate loop patterns using local conditions
only, but there are several open questions to be answered in further research.
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