
Citation: Ceccarelli, G.; Cantelmo, G.;

Nigro, M.; Antoniou, C. Learning

from Imbalanced Datasets: The

Bike-Sharing Inventory Problem

Using Sparse Information. Algorithms

2023, 16, 351. https://doi.org/

10.3390/a16070351

Academic Editors: Gloria Cerasela

Crisan, Ha Duy Long

and Elena Nechita

Received: 24 June 2023

Revised: 13 July 2023

Accepted: 19 July 2023

Published: 22 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Learning from Imbalanced Datasets: The Bike-Sharing
Inventory Problem Using Sparse Information †

Giovanni Ceccarelli 1, Guido Cantelmo 2, Marialisa Nigro 3,* and Constantinos Antoniou 4

1 Dott SAS, 75002 Paris, France; giovanni@ridedott.com
2 Department of Technology, Management and Economics, Technical University of Denmark,

2800 Lyngby, Denmark; guica@dtu.dk
3 Department of Civil, Computer and Aeronautical Engineering, Roma Tre University, 00146 Rome, Italy
4 Department of Mobility Systems Engineering, Technical University of Munich, 80333 Munich, Germany;

c.antoniou@tum.de
* Correspondence: marialisa.nigro@uniroma3.it
† This paper is an extended version of our paper published in the proceedings of the 7th International

Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2021,
2021 (Heraklion, Crete, 16–17 June 2021).

Abstract: In bike-sharing systems, the inventory level is defined as the daily number of bicycles
required to optimally meet the demand. Estimating these values is a major challenge for bike-sharing
operators, as biased inventory levels lead to a reduced quality of service at best and a loss of customers
and system failure at worst. This paper focuses on using machine learning (ML) classifiers, most
notably random forest and gradient tree boosting, for estimating the inventory level from available
features including historical data. However, while similar approaches adopted in the context of
bike sharing assume the data to be well-balanced, this assumption is not met in the case of the
inventory problem. Indeed, as the demand for bike sharing is sparse, datasets become biased toward
low demand values, and systematic errors emerge. Thus, we propose to include a new iterative
resampling procedure in the classification problem to deal with imbalanced datasets. The proposed
model, tested on the real-world data of the Citi Bike operator in New York, allows to (i) provide upper-
bound and lower-bound values for the bike-sharing inventory problem, accurately predicting both
predominant and rare demand values; (ii) capture the main features that characterize the different
demand classes; and (iii) work in a day-to-day framework. Finally, successful bike-sharing systems
grow rapidly, opening new stations every year. In addition to changes in the mobility demand, an
additional problem is that we cannot use historical information to predict inventory levels for new
stations. Therefore, we test the capability of our model to predict inventory levels when historical
data is not available, with a specific focus on stations that were not available for training.

Keywords: bike sharing; rebalancing problem; inventory level; machine learning; random forest;
imbalanced data

1. Introduction

Bike-sharing systems are one of the most popular and environmentally friendly forms
of shared mobility. Traditional sharing systems allow the pickup and drop-off of bikes at
fixed stations (or throughout an operational area if the system is free-floating) and have
proven to be an effective solution for first-/last-mile mobility [1].

To keep a high quality of service, bike-sharing operators face two major problems,
namely, the optimal inventory problem and the rebalancing problem [2]. The fact that bike-
sharing users can take a bicycle from and return it to any station in the system leads to
an imbalanced state, in which some stations are full while others stay empty. This non-
homogeneous distribution of bicycles lowers the overall level of service of the system [3].
The rebalancing problem consists in reorganizing the fleet location in time and space to

Algorithms 2023, 16, 351. https://doi.org/10.3390/a16070351 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16070351
https://doi.org/10.3390/a16070351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-0640-5810
https://orcid.org/0000-0003-0203-9542
https://doi.org/10.3390/a16070351
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16070351?type=check_update&version=1

Algorithms 2023, 16, 351 2 of 17

re-establish the optimal level of service [4], an operation that can be performed when
the system is shut down or the demand is low (static rebalancing) or while it is running
(dynamic rebalancing) [1,5]. To reduce operational costs generated by rebalancing oper-
ations, it is fundamental to know the correct number of bicycles (and available docks if
the service is station-based) required to achieve the optimal level of service, i.e., the target
inventory values for the rebalancing procedure. This problem is known as the optimal
inventory problem [6], and since inventory levels depend on user behavior [7], it is extremely
challenging. While many rebalancing studies assume that the target inventory level for
each station is known, to the best of the authors’ knowledge, only a few studies have
focused on combining rebalancing with target-level computation.

This paper tests specific machine learning (ML) techniques that estimate the inventory
level required to address the station-based bike-sharing static rebalancing problem. Specif-
ically, the use of decision tree classifiers—most notably a random forest classifier (RFC)
and gradient tree-boosting classifier (GTBC)—is investigated. Due to the vast amount
of data publicly available, decision trees have already been used to study bike-sharing
systems [8,9]. However, the majority of machine learning models adopted in the literature
(e.g., decision trees but also neural networks and support vector machines) assume the data
to be well-balanced. This assumption is not met in the case of the inventory problem [10].
Therefore, in this paper, we propose an ad hoc iterative resampling procedure that allows to
accurately predict inventory levels using several features, including historical data, in the
case of imbalanced datasets. The main contributions of this paper are summarized below:

1. The inventory problem is formulated as a classification problem that can be easily
solved using decision trees (or any other state-of-the-art classifier);

2. While traditional classifiers over-represent the majority class, this paper presents a
novel resampling technique that better leverages data and provides better estimates
for rare observations;

3. The proposed algorithm can be used to compute both an upper-bound and a lower-
bound value for the bike-sharing inventory problem, thus yielding to different possi-
ble configurations;

4. Although mainly based on historical data, the proposed approach can also be used
to solve the inventory problem for new stations, for which historical information is
not available;

5. The proposed model is easily implementable into an ITS-based decision support
system for also supporting bike-sharing companies in a day-to-day framework, thus
helping in improving operations.

Points 4 and 5, i.e., predictions for new stations and the proposal of a rolling horizon
approach to make day-to-day forecasts, are completely new developments with respect to
the previous presentation of this work [10].

The method has been applied and validated using the data of the New York City
Bike service.

The remainder of the paper is organized as follows: Section 2 introduces the relevant
literature, namely, the existing research on inventory and rebalancing problems, but also
provides a short overview of the most popular solutions to deal with imbalanced datasets in
ML. As a consequence, the main gaps of the literature are identified, and possible solutions
are discussed. The methodology is reported in Section 3: specifically, (i) how the target
values of the inventory problem used as the benchmark in the paper are computed; (ii) the
inventory problem formulation using ML classifiers to make previsions (for both existing
and new stations); and (iii) the proposed iterative resampling technique to deal with data
imbalance. The application and related results are reported in Section 4, followed by
the conclusion.

Algorithms 2023, 16, 351 3 of 17

2. Related Research
2.1. The Inventory Problem and the Rebalancing Problem

Developing an inventory model for a traditional station-based bike-sharing service is
particularly challenging as it needs to capture two features: (1) the demand for bicycles;
(2) the demand for docks—i.e., finding an empty dock where the user can return the rental
bicycle [11]. Therefore, to simply find the number of bicycles that serves the demand is not
sufficient [7].

The uneven distribution of vehicles and docks in the system causes some stations to
be empty (or entirely full), creating shortages of both bicycles and docks. To prevent this
shortage, several studies introduced rebalancing techniques that aim at evenly redistribute
bicycles and docks in the system [12]. Traditionally, the problem is solved using either
optimization techniques [12] or ML models [8]. Optimization techniques translate the
problem into a mathematical language and focus on tractability and convergence properties.
The most common approach is to formulate the problem as a one-commodity pickup-and-
delivery capacitated vehicle-routing problem, which is then solved using mixed-integer
linear programming [12]. This approach has also been extended to other station-based
shared mobility services, such as car sharing [13]. The complexity of the algorithm depends
on whether the objective is to achieve a complete rebalancing (all stations are jointly
optimized) or a partial one (only a subset of stations is optimized), with the former case
being far more complex than the latter [14]. Traditional algorithms for solving the problem
include tabu search [15] and branch-and-cut [16]. However, as exact formulations are not
suited for real-life instances, heuristic models have been developed to solve the problem in
practice [9,17].

In recent years, other authors have proposed using ML instead of optimization tech-
niques to solve the rebalancing problem. The most popular models include decision
trees [8,9], neural networks [18], deep neural networks [19,20], and clustering techniques [2].
The main convenience of these models is that they are suited for large-scale, real-life appli-
cations and require limited assumptions of user behavior.

The models discussed up to this point also present several differences in the opera-
tional approach. For instance, [15] provides a price mechanism to support rebalancing,
while [9] assumes that rebalancing operations are performed by the sharing company; these
approaches are translated into different parameters and objective functions. However, most
repositioning studies, including those using ML, assume that the inventory level (i.e., the
optimal number of docks/bicycles at any given time) is known from historical data or by
using an existing demand model [7]. To date, only a few studies have focused on how to
compute the optimal target levels while considering the rebalancing problem.

Among the studies that have focused on the inventory levels, [21] proposed a mixed-
integer program formulation to find the inventory levels that minimize the cost of rebalanc-
ing. Alternatively, [22] formulated the inventory problem as a nonstationary Markov chain
model that computes the most likely optimal inventory levels during the day. Ref. [23]
identifies an upper bound and a lower bound for the inventory level using historical
information. A similar approach is used in [24]. Ref. [7] also identifies an upper bound
and a lower bound for the inventory level using mixed-integer optimization. One of the
main limits of the previous approaches, however, is that the model explicitly minimizes the
journey dissatisfaction levels with respect to the user and cannot be used if the operator
has different goals (such as maximizing profit).

Another aspect to highlight is the role of IT technologies. While bike-sharing systems
date back to 1960, this service was initially unsuccessful due to several issues, e.g., vandal-
ism and theft [25] The IT revolution not only enabled operators to develop a better service
but also to improve aspects related to strategic and operational planning [26]. Thanks to the
large amount of historical data, often openly available, it is now possible to optimize not
only the fleet size and location of docks but also the entire supply chain of the system, from
ordering vehicles and spare parts to scheduling fleet maintenance [27]. This is expected to
become a primary problem in the future. Systems where the demand exceeds the capacity

Algorithms 2023, 16, 351 4 of 17

may not require rebalancing. In addition, to investigate a potential unserved demand,
operators will therefore focus on optimizing inventory levels while also considering the
scheduled maintenance, hence reducing costs and increasing margins [28].

2.2. Learning from Imbalanced Datasets

Data Imbalance means that an uneven distribution of classes exists within the data, and
it is a serious threat for classification problems, as standard classifiers assume the data to
be well-balanced. In general, class imbalance is one of the greatest challenges in machine
learning and data mining research [29] and can appear in two main forms: rare classes or rare
cases [30]. The problem of rare classes refers to datasets that contain different proportions of
observations (or instances) per class. The concept of rare cases refers instead to the sparse
distribution of examples in the feature space [30]. The two problems are closely related, as
they both result in an uneven distribution of observations. However, rare cases refer to data
that is sparse by nature, while a rare class might simply depend on the sampling procedure.

Different approaches have been proposed in the literature to deal with imbalanced
datasets, and they can be broadly divided into two: methods working at a learner level
and methods working at a sampling level [31]. Methods working at a learner level
modify an existing algorithm to increase the precision of the minority class. The most
common approach is to use cost-sensitive approaches, in which the learner associates
the rare class with some weights to compensate for data imbalance [32]. The main
limitation of these methods is that they are designed for specific learners and are hard
to generalize. Methods working at a sampling level are considered more general [33]
as they use resampling to artificially rebalance the dataset. Over-sampling and under-
sampling are the most common resampling techniques [34]; this approach consists in
creating a balanced dataset by artificially generating new observations for the rare class.
In the case of over-sampling, the algorithm creates new artificial data points for the
minority class. The SMOTE (synthetic minority over-sampling technique) approach
is one of the most common techniques [35]. The other main option is to use under-
sampling procedures, which consists of using a subsample of the majority class [36].
One particularly advanced model is balance cascading [37]: in this algorithm, the model
iteratively drops observations from the majority class that are correctly classified. The
argument is that these observations are redundant and might negatively affect the quality
of the classifier, making it biased toward the majority class.

2.3. Discussion

In this paper, we propose a novel model that uses ML—most notably decision trees—
to address the inventory problem as a classification problem. The main argument for this
decision is that inventory levels are usually estimated from historical data, and ML captures
historical trends better than simple averages. Similar to other approaches presented in the
literature, our model will compute upper bounds and lower bounds for the inventory level.
Moreover, as it is based on data, it is not limited to one specific goal, as it usually happens
when using optimization.

As previously reported, the main problem in using ML for solving the inventory prob-
lem is data imbalance. In the case of the inventory problem, we deal with both rare cases and
rare classes. Though existing algorithms for data imbalance demonstrate promising advan-
tages, they also have several disadvantages, most notably over-generalization [38]. Simply
stated, dock stations characterized by a high demand strongly differ from those character-
ized by a low demand. No model will be able to properly predict both, which means that
the model will either provide poor predictions or fit the dominant class. Case-specific algo-
rithms, tailor-made to the problem, can address the over-generalization issue [39]. Decision
trees are among the most interpretable ML classifiers as they allow to understand how
each feature contributes to the classification effort. Differently from standard decision trees,
random forest classifiers (RFCs) and gradient tree-boosting classifiers (GTBCs) combine
multiple models to make predictions, which allow them to provide better output. Inspired

Algorithms 2023, 16, 351 5 of 17

by these models, we proposed an iterative resampling algorithm that leverages multiple
learners. Similar to balance cascading, at each iteration the model drops those observations
that belong to the majority class and are properly classified. However, instead of simply
dropping some observations and repeating the training exercise on the new dataset, the
proposed model drops the majority class entirely and defines a new classification prob-
lem. Therefore, the model outputs an ensemble of models, each of them having different
classes, different features, and different prediction capabilities. The final prediction is a
combination of all these classifiers and provides more reliable predictions compared to
using a single learner.

3. Methodology

The system considered is station-based with rebalancing activity conducted during
the night (i.e., low demand, static rebalancing).

The proposed method to approach the inventory problem as a ML classification
problem is here described. It will be adopted for both defining the target demand levels
for each station and estimating the demand for new stations. The results of our proposed
method will be compared with the results of common approaches based on historical data
(benchmark values, as described in the following section). Finally, the resampling technique
used to avoid data imbalance is presented.

3.1. Benchmark Values from Historical Data

The benchmark values from historical data are computed in terms of a set of options,
from a lower bound (LB) to an upper bound (UB), never producing a lake of bikes or
docks [7,22–24]. To compute the LB and UB, once departures and arrivals in a bike-sharing
station are collected (Figure 1), the cumulative curves for departures and arrivals can
be derived, as well as the cumulative net curve, i.e., the difference between arrivals and
departures (Figure 2).

Algorithms 2023, 16, x FOR PEER REVIEW 5 of 18

Case-specific algorithms, tailor-made to the problem, can address the over-generalization
issue [39]. Decision trees are among the most interpretable ML classifiers as they allow to
understand how each feature contributes to the classification effort. Differently from
standard decision trees, random forest classifiers (RFCs) and gradient tree-boosting clas-
sifiers (GTBCs) combine multiple models to make predictions, which allow them to pro-
vide better output. Inspired by these models, we proposed an iterative resampling algo-
rithm that leverages multiple learners. Similar to balance cascading, at each iteration the
model drops those observations that belong to the majority class and are properly classi-
fied. However, instead of simply dropping some observations and repeating the training
exercise on the new dataset, the proposed model drops the majority class entirely and
defines a new classification problem. Therefore, the model outputs an ensemble of mod-
els, each of them having different classes, different features, and different prediction ca-
pabilities. The final prediction is a combination of all these classifiers and provides more
reliable predictions compared to using a single learner.

3. Methodology
The system considered is station-based with rebalancing activity conducted during

the night (i.e., low demand, static rebalancing).
The proposed method to approach the inventory problem as a ML classification prob-

lem is here described. It will be adopted for both defining the target demand levels for
each station and estimating the demand for new stations. The results of our proposed
method will be compared with the results of common approaches based on historical data
(benchmark values, as described in the following section). Finally, the resampling tech-
nique used to avoid data imbalance is presented.

3.1. Benchmark Values from Historical Data
The benchmark values from historical data are computed in terms of a set of options,

from a lower bound (LB) to an upper bound (UB), never producing a lake of bikes or docks
[7,22–24].To compute the LB and UB, once departures and arrivals in a bike-sharing sta-
tion are collected (Figure 1), the cumulative curves for departures and arrivals can be de-
rived, as well as the cumulative net curve, i.e., the difference between arrivals and depar-
tures (Figure 2).

Figure 1. Hypothetical trend of bike departures and arrivals (Source: own elaboration).
Figure 1. Hypothetical trend of bike departures and arrivals (Source: own elaboration).

Algorithms 2023, 16, 351 6 of 17
Algorithms 2023, 16, x FOR PEER REVIEW 6 of 18

Figure 2. Hypothetical cumulative net flow (Source: own elaboration).

Considering the cumulative net curve, its highest value is the minimum number of
docks required to respond to the arrival demand at the station (or the dock’s lower
bound—LB). Instead, its lowest value is the minimum number of bikes required to re-
spond to the demand (bikes’ LB). The upper bound (UB), for docks and bikes, can be com-
puted as the difference between the capacity C of the station and, respectively, the LB for
bikes and docks [10], as in the following equations: 𝐿𝐵ௗ௢௖௞ = max (𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑛𝑒𝑡 𝑓𝑙𝑜𝑤) (1)

𝐿𝐵௕௜௞௘௦ ൜min |𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑛𝑒𝑡 𝑓𝑙𝑜𝑤| 𝑖𝑓 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑛𝑒𝑡 𝑓𝑙𝑜𝑤 < 0𝐿𝐵௕௜௞௘௦ = 0 𝑖𝑓 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑛𝑒𝑡 𝑓𝑙𝑜𝑤 ≥ 0 (2)

𝑈𝐵௕௜௞௘ = C − 𝐿𝐵ௗ௢௖௞ (3)𝑈𝐵ௗ௢௖௞ = C − 𝐿𝐵௕௜௞௘௦ (4)

3.2. The Inventory Problem as a Classification Problem Using Machine Learning
An ML classifier is an algorithm that returns the probability 𝑝(𝑌 = 𝑘) that the de-

pendent variable Y belongs to a certain class k. Without the loss of generality, in the case
of a supervised classifier, we can write 𝑝(𝑌 = 𝑘) = ℋ(𝑿, 𝚯) (5)

where ℋ is a general nonlinear-model, X is the set of features (or independent variables)
used to predict the probability 𝑝(𝑌 = 𝑘), and 𝚯 is a set of hyperparameters. The form of
the model ℋ depends on the type of classifier used (neural networks, decision trees, etc.)
and the hyperparameters 𝚯, which explain the relationship between dependent and in-
dependent variables. To obtain the correct value of 𝚯, supervised models use a training
set (i.e., a dataset where both dependent and independent variables are known) and com-
pute the set of parameters 𝚯 that, given the training set, is more likely to reproduce the
data. In the case of decision trees, Equation (5) can be rewritten as follows: 𝑝(𝑌 = 𝑘) = 𝐷𝑇(𝑿, 𝜽, 𝚯) (6)

where 𝜽 is the set of hyperparameters/weights that is associated with the feature vectors
X. Similar to linear regression or logistic regression, 𝜽 represents the impact that each
feature has on the prediction. This aspect related to interpretability makes decision trees
among the simplest and most interpretable classifiers.

Figure 2. Hypothetical cumulative net flow (Source: own elaboration).

Considering the cumulative net curve, its highest value is the minimum number of
docks required to respond to the arrival demand at the station (or the dock’s lower bound—
LB). Instead, its lowest value is the minimum number of bikes required to respond to the
demand (bikes’ LB). The upper bound (UB), for docks and bikes, can be computed as the
difference between the capacity C of the station and, respectively, the LB for bikes and
docks [10], as in the following equations:

LBdock = max(Cumulative net f low) (1)

LBbikes

{
min|Cumulative net f low| i f Cumulative net f low < 0

LBbikes = 0 i f Cumulative net f low ≥ 0
(2)

UBbike = C− LBdock (3)

UBdock = C− LBbikes (4)

3.2. The Inventory Problem as a Classification Problem Using Machine Learning

An ML classifier is an algorithm that returns the probability p(Y = k) that the depen-
dent variable Y belongs to a certain class k. Without the loss of generality, in the case of a
supervised classifier, we can write

p(Y = k) = H(X, Θ) (5)

whereH is a general nonlinear-model, X is the set of features (or independent variables)
used to predict the probability p(Y = k), and Θ is a set of hyperparameters. The form
of the model H depends on the type of classifier used (neural networks, decision trees,
etc.) and the hyperparameters Θ, which explain the relationship between dependent
and independent variables. To obtain the correct value of Θ, supervised models use a
training set (i.e., a dataset where both dependent and independent variables are known)
and compute the set of parameters Θ that, given the training set, is more likely to reproduce
the data. In the case of decision trees, Equation (5) can be rewritten as follows:

p(Y = k) = DT(X, θ, Θ) (6)

Algorithms 2023, 16, 351 7 of 17

where θ is the set of hyperparameters/weights that is associated with the feature vectors X.
Similar to linear regression or logistic regression, θ represents the impact that each feature
has on the prediction. This aspect related to interpretability makes decision trees among
the simplest and most interpretable classifiers.

In order to use Equations (5) and (6) in the context of the inventory problem, it is
necessary to define the dependent and independent variables. In the case of the dependent
variables, our objective is to estimate the UB and LB of the demand for bikes/docks;
therefore, we might want to set YUB = UB and YLB = LB in Equations (5) and (6). The
problem is that classification problems require discrete variables while the LB/UB for
bikes/docks are continuous ones. Therefore, we need to define classes for the UB and LB
and transform YUB/YLB into categorical variables. To do so, we introduce the error term ε,
which represents the expected precision of the model. Given ε, we can say that a certain
value of the UB belongs to the class k if, and only if,{

UB ∈ k i f UBk − ε < UB ≤ UBk + ε with UBk − ε ≥ 0
UB /∈ k otherwise

(7)

where UBk is the center of the class. To provide a numerical example, the first class will
have a center equal to zero, therefore UB0 = 0. Assuming an error term ε of 2 bikes,
all target values UB ≤ 2 will belong to Class 0. The second class will assume UB1 = 4,
therefore all observations 2 < UB ≤ 6 will belong to this class, and so on. Note that for
ε = 0.5, each integer represents a separate class. The same procedure applies for the LB.

Creating independent variables is straightforward, as any feature can potentially be
used within the ML classifier. In general, we argue that three features should be used in the
context of the inventory problem:

X =
{

Xbehavioral , Xendogenous , Xexogenous

}
(8)

The difference between endogenous and exogenous features is straightforward. En-
dogenous features are explained by other variables within the model (for instance, lagged
variables such as the departures and arrivals collected in the station the day before), while
exogenous variables are not explained by other variables within a model (e.g., location of
the station).

The distinction between these two variables is not important when we want to predict
the target values for an existing station, but it becomes relevant when the objective is to
predict the demand for a new station, for which exogenous features might not be available.
Finally, as the target levels depend on user behavior [7], some features that approximate
user behavior will also help the model provide better estimates.

In this research, we have no access to behavioral features such as the value of time
or individual preferences. Therefore, we use weather data to approximate Xbehavioral . The
reason is that, in the case of bike sharing, it has been observed that user behavior is highly
correlated to weather data, which allows to partially compensate for the lack of behavioral
features [40].

To propose a formulation that can be deployed in practice, the classification problem
proposed in Equation (6) can be rewritten as a time series and be used to make day-to-
day predictions:

p
(

Yd = k
)
= DT

(
Xd−1, Xd−2, . . . , Xd−T , β, Θ

)
(9)

where Xd is the set of features for a given day, T represents the time lag, i.e., how many past
days are used to predict the demand for the next day, and Yd is the prediction for day d.
With respect to Equation (6), we have a new dataset every day, and the procedure must be
repeated daily.

Algorithms 2023, 16, 351 8 of 17

3.3. Iterative Resampling and Data Imbalance

Though traditional techniques for data imbalance provide many benefits, in the case of
the inventory problem, off-the-shelf techniques might over-generalize the problem. Simply
stated, they might identify a set of hyperparameters Θ that is too general, as they assume
that the same features that are important for the majority class are also important for the
minority class. Therefore, this section introduces a resampling technique that generates
and estimates, in an iterative manner, balanced data classes. The model focuses on a
database-splitting function, and it is intuitively illustrated in Figure 3.

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 18

generates and estimates, in an iterative manner, balanced data classes. The model focuses
on a database-splitting function, and it is intuitively illustrated in Figure 3.

Figure 3. Illustrative example of the resampling technique (Source: own elaboration).

Starting from the entire dataset, the approach divides the data into 2 classes. Class 1
corresponds to 𝑘 = 0, therefore 𝑈𝐵଴ = 0. All the other data points are inserted in Class 2.
The objective is to create two balanced classes of data. In Figure 3, we assume that two
classes are sufficient. In practice, additional classes are created until all classes are the
same size. However, only Class 1 is computed using the system of Equation (6), therefore 𝑈𝐵௞ and 𝜀, while all other classes are computed to ensure balance within the data, i.e.,
the only criterion to create all other classes is that they must have the same number of data
points. At each iteration, a decision tree classifier is used to classify the data. All data
points that are classified as Class 1 are considered properly classified. All remaining ob-
servations are included in a new dataset. At this point, we set 𝑘 = 𝑘 + 1, and we repeat
the operation on the new reduced dataset. The operation continues until all data points
have been classified. As Figure 3 is a purposely trivial example, the procedure is depicted
in Algorithms 1 and 2, where E is the tolerance error for the class imbalance, i.e., how
much class imbalance is allowed in the system.

Algorithm 1: Iterative Resampling Technique
Procedure: resampling(X,Y, 𝜀, k, E)
For 𝑈𝐵 in Y 𝑈𝐵௞ = 𝑈𝐵௞ିଵ + 2𝜀
if 𝑈𝐵௞ − 𝜀 < 𝑈𝐵 ≤ 𝑈𝐵௞ + 𝜀 𝑈𝐵 ∈ 𝐶𝑙𝑎𝑠𝑠ଵ
Else 𝑈𝐵 ∈ 𝐶𝑙𝑎𝑠𝑠ଶ
Set Len = length(𝐶𝑙𝑎𝑠𝑠ଶ)
If length(𝐶𝑙𝑎𝑠𝑠ଵ) < Len+𝐸
Set n = Len/length(𝐶𝑙𝑎𝑠𝑠ଵ)
Split 𝐶𝑙𝑎𝑠𝑠ଶ in n classes
If length(𝐶𝑙𝑎𝑠𝑠ଵ) ൐ Len−𝐸
Set n = length(𝐶𝑙𝑎𝑠𝑠ଵ)/Len
Split 𝐶𝑙𝑎𝑠𝑠ଵ in n classes
Return (X, Class)

Figure 3. Illustrative example of the resampling technique (Source: own elaboration).

Starting from the entire dataset, the approach divides the data into 2 classes. Class 1
corresponds to k = 0, therefore UB0 = 0. All the other data points are inserted in Class 2.
The objective is to create two balanced classes of data. In Figure 3, we assume that two
classes are sufficient. In practice, additional classes are created until all classes are the same
size. However, only Class 1 is computed using the system of Equation (6), therefore UBk

and ε, while all other classes are computed to ensure balance within the data, i.e., the only
criterion to create all other classes is that they must have the same number of data points.
At each iteration, a decision tree classifier is used to classify the data. All data points that
are classified as Class 1 are considered properly classified. All remaining observations are
included in a new dataset. At this point, we set k = k + 1, and we repeat the operation on
the new reduced dataset. The operation continues until all data points have been classified.
As Figure 3 is a purposely trivial example, the procedure is depicted in Algorithms 1 and
2, where E is the tolerance error for the class imbalance, i.e., how much class imbalance is
allowed in the system.

Algorithm 1: Iterative Resampling Technique

Procedure: resampling (X, Y, ε, k, E)
For UB in Y

UBk = UBk−1 + 2ε

if UBk − ε < UB ≤ UBk + ε

UB ∈ Class1

Else
UB ∈ Class2

Set Len = length
(

Class2
)

If length
(

Class1
)
< Len + E

Set n = Len/length
(

Class1
)

Split Class2 in n classes

If length
(

Class1
)
> Len− E

Set n = length
(

Class1)/Len

Split Class1 in n classes
Return (X, Class)

Algorithms 2023, 16, 351 9 of 17

Algorithm 2: Iterative ML Classifier

Procedure : HIT(X, Y, Θ)
Set ε, k, E
Set k = 0
While (X, Y) is not empty:
ClassLabel = resampling(X, Y, ε , k, E)
Train ML Classifier DT(X, β, Θ)
For X, Y inClass1:
remove X, Y from X, Y

Set k = k + 1

It should be noted that, as the lower and upper bounds are computed using the
cumulative net flow and not the demand, stations with different demand levels (e.g., in
the city center or in the suburbs) may still have similar inventory levels and therefore
be grouped in the same class. This could create issues during the classification, as these
stations may exhibit a different behavior. Therefore, the model should ideally incorporate
endogenous features, as previously mentioned, to account for this phenomenon.

The resampling function needs to be used together with the learner in an iterative
manner. This is illustrated in Algorithm 2. Specifically, the function determines a balanced
group of classes to be forecasted at each iteration. Once a maximum number of classes is
defined for each prediction group, the function generates the set of classes that have to
be predicted (A) and the set to predict later (B). At each iteration, the machine learning
classifier is adopted to forecast (A), and the process goes ahead on the group (B). The
procedure is repeated until all points have been properly predicted. An illustrative example
is presented in Figure 4.

Algorithms 2023, 16, x FOR PEER REVIEW 9 of 18

Algorithm 2: Iterative ML Classifier
Procedure: ℋ𝐼𝑇(𝐗, 𝐘, 𝚯)
Set 𝜀, k, E
Set k = 0
While (𝐗, 𝐘) is not empty:
ClassLabel = resampling(X,Y, 𝜀, k, E)
Train ML Classifier 𝐷𝑇(𝑿, 𝜷, 𝚯)
For X, Y in 𝐶𝑙𝑎𝑠𝑠ଵ:
remove X,Y from X,Y
 Set k = k+1

It should be noted that, as the lower and upper bounds are computed using the cu-
mulative net flow and not the demand, stations with different demand levels (e.g., in the
city center or in the suburbs) may still have similar inventory levels and therefore be
grouped in the same class. This could create issues during the classification, as these sta-
tions may exhibit a different behavior. Therefore, the model should ideally incorporate
endogenous features, as previously mentioned, to account for this phenomenon.

The resampling function needs to be used together with the learner in an iterative
manner. This is illustrated in Algorithm 2. Specifically, the function determines a balanced
group of classes to be forecasted at each iteration. Once a maximum number of classes is
defined for each prediction group, the function generates the set of classes that have to be
predicted (A) and the set to predict later (B). At each iteration, the machine learning clas-
sifier is adopted to forecast (A), and the process goes ahead on the group (B). The proce-
dure is repeated until all points have been properly predicted. An illustrative example is
presented in Figure 4.

Figure 4. Example of the iterative procedure (Source: own elaboration).

The proposed resampling procedure can be considered as a hybrid model, as it works
both at a learner level and at the sampling level. Specifically, at each iteration, a different
model is trained. For instance, the models used in Figure 4 to predict Class (0–2) and Class
(3–7) are different. At the same time, any classifier can be used, as the model leverages
different training sets at each iteration and does not modify the learner. Similarly, it
should be noted that the iterative resampling procedure is used on the training set, as it
requires knowledge of both dependent and independent variables.

Figure 4. Example of the iterative procedure (Source: own elaboration).

The proposed resampling procedure can be considered as a hybrid model, as it works
both at a learner level and at the sampling level. Specifically, at each iteration, a different
model is trained. For instance, the models used in Figure 4 to predict Class (0–2) and Class
(3–7) are different. At the same time, any classifier can be used, as the model leverages
different training sets at each iteration and does not modify the learner. Similarly, it should
be noted that the iterative resampling procedure is used on the training set, as it requires
knowledge of both dependent and independent variables.

Algorithms 2023, 16, 351 10 of 17

4. Numerical Results
4.1. Case Study

The methods discussed in the previous section are now tested adopting real data from
the Citi Bike station-based service in New York City, US (about 900 stations and 14,500
shared bikes available). In particular, the database for the machine learning derives from
over 17 million rides during 2018.

The trained models estimate the LB/UB of bikes adopting the available features
reported in Table 1. Given the capacity at the station and the LB/UB of bikes, the number
of docks is then calculated as in Equations (3) and (4). A correlation analysis of the features
is performed to avoid redundant variables. All the ML algorithms, unless differently
indicated, adopt 90% of the data as the training set and 10% for testing (randomly selected).
Also, the benchmark values have been computed on the same 10% dataset, thus allowing
for the comparison of the results.

Table 1. Available features aggregated as a function of the feature type (adapted from [10]).

Feature Type Characterization [Unit]

Exogenous

Month
Weekday

Season
Capacity of the station [number of bikes]

Nearby stations [number]
Station location (inside/outside Manhattan) [binary]

Endogenous

Average number of departures/arrivals
observed in the previous two months, in the

same referenced period
[number]

Number of departures/arrivals at the station
in the previous day [number]

Departure/arrival trip duration observed at
the station the previous two months [seconds]

Average LB (or UB) observed in the previous
two months, in the same referenced period

and at the same station
[number of bikes]

Behavioral *

Average temperature (current day) [Classes from 1(Low) to 10 (High)]
Average temperature (day before) [Classes from 1(Low) to 10 (High)]

Variability of the temperature (current day),
as the difference between the maximum and

minimum registered
[Classes from 1(Low) to 5 (High)]

Variability of the temperature (day before), as
the difference between the maximum and

minimum registered
[Classes from 1(Low) to 5 (High)]

Precipitation (current day) [Classes 0 (Null) and from 1(Low) to 5 (High)]
Precipitation (day before) [Classes 0 (Null) and from 1(Low) to 5 (High)]
Snow depth (current day) [Classes 0 (Null) and from 1(Low) to 5 (High)]
Snow depth (day before) [Classes 0 (Null) and from 1(Low) to 5 (High)]

Dependent variable Bikes LB (or UB) [number of bikes]

* Weather data are assumed to approximate behavior, e.g., more rides when the temperature is high, less rides
when the temperature is low.

In the next subsections, we first analyze the data adopted in this research; the aim
is twofold: (i) to underline if imbalance exists and (ii) if different features can impact the
model explanation as a function of the considered class of the dependent variable. Then,
the results are reported and, specifically, the following:

• The computation of the UB and LB of the inventory problem by using different decision
trees, i.e., RFC and GTBC, with and without combining them with a standard resam-

Algorithms 2023, 16, 351 11 of 17

pling technique (BorderlineSMOTE [34]) or with the iterative resampling approach
discussed in Section 2;

• The prediction for new stations by adopting the best classifier as a result of the first
point, again combining it with a standard resampling technique (BorderlineSMOTE)
or with the iterative resampling approach;

• The first results in terms of predictions in a day-to-day framework as a result of
applying Equation (9).

The results are reported only in terms of bikes since docks can be calculated as the
difference between the capacity at the station and the number of bikes.

4.2. Data Imbalance

Table 2 shows the percentage of observations as a function of the number of bikes for
the UB and LB. Considering the LB, it appears evident that the dataset is highly imbalanced
and that low values are dominant. Therefore, it is expected that traditional ML classifiers
will prioritize the larger classes and that over-sampling techniques will be required. The
observations for the UB computation are more balanced than for the LB, hence traditional
ML should correctly classify the data.

Table 2. Distribution of the upper-bound and lower-bound observation in the dataset.

Number of Bikes Upper-Bound Distribution
[%]

Lower-Bound Distribution
[%]

(0–10) 6.2 83.1
(11–20) 18.6 10.4
(21–30) 39.2 4.5
(31–40) 19.2 1.5
(41–50) 11.3 0.3
(>50) 5.5 0.2

4.3. Resampling and Feature Importance

This subsection demonstrates how different demand classes may depend on different
features. We adopt a random forest classifier (RFC) which performs feature selection based
on correlation analysis. Figure 5 shows the relative importance of some features along
the iterations of the algorithm, with Iteration 0 being the model that predicts the majority
class (low demand values), and Iteration 32 is the model that forecasts the rarest class (high
demand values). Only three main features have been shown in order to point out how their
importance changes along iterations.

Algorithms 2023, 16, x FOR PEER REVIEW 11 of 18

• The first results in terms of predictions in a day-to-day framework as a result of ap-
plying Equation (9).
The results are reported only in terms of bikes since docks can be calculated as the

difference between the capacity at the station and the number of bikes.

4.2. Data Imbalance
Table 2 shows the percentage of observations as a function of the number of bikes for

the UB and LB. Considering the LB, it appears evident that the dataset is highly imbal-
anced and that low values are dominant. Therefore, it is expected that traditional ML clas-
sifiers will prioritize the larger classes and that over-sampling techniques will be required.
The observations for the UB computation are more balanced than for the LB, hence tradi-
tional ML should correctly classify the data.

Table 2. Distribution of the upper-bound and lower-bound observation in the dataset.

Number of Bikes Upper-Bound Distribution [%] Lower-Bound Distribution [%]
(0–10) 6.2 83.1

(11–20) 18.6 10.4
(21–30) 39.2 4.5
(31–40) 19.2 1.5
(41–50) 11.3 0.3

(>50) 5.5 0.2

4.3. Resampling and Feature Importance
This subsection demonstrates how different demand classes may depend on different

features. We adopt a random forest classifier (RFC) which performs feature selection
based on correlation analysis. Figure 5 shows the relative importance of some features
along the iterations of the algorithm, with Iteration 0 being the model that predicts the
majority class (low demand values), and Iteration 32 is the model that forecasts the rarest
class (high demand values). Only three main features have been shown in order to point
out how their importance changes along iterations.

Figure 5. Relative feature importance with the number of iterations of the model.

The feature “Average LB (or UB) observed in the previous two months” (in the table—
bikes_nec_pred) is the most important one in the first iterations (low demand), while it be-
comes irrelevant when the goal is to predict large volumes of bikes (Iteration 32). The
opposite trend can be observed for other features, such as the Capacity of the station (in the
table—totalDocks), which is not relevant for small demand values but becomes dominant
when we deal with large volumes of bikes. Note also that the features Nearby_station and
totalDocks became even more correlated, and therefore at Iteration 23, the latter becomes

Figure 5. Relative feature importance with the number of iterations of the model.

The feature “Average LB (or UB) observed in the previous two months” (in the table—
bikes_nec_pred) is the most important one in the first iterations (low demand), while it
becomes irrelevant when the goal is to predict large volumes of bikes (Iteration 32). The
opposite trend can be observed for other features, such as the Capacity of the station (in the

Algorithms 2023, 16, 351 12 of 17

table—totalDocks), which is not relevant for small demand values but becomes dominant when
we deal with large volumes of bikes. Note also that the features Nearby_station and totalDocks
became even more correlated, and therefore at Iteration 23, the latter becomes redundant, and it
is removed, allowing for the increase in the relevance of the Nearby_station feature.

Thus, while different features can impact different demand levels, general purpose
resampling methods would not perceive this difference and therefore would not be able
to use the best features during the prediction phase. This is the reason for proposing
the iterative resampling approach that provides more flexibility when it comes to feature
importance, allowing to capture the difference between features that are good at explaining
the majority class, the rare class, or both.

4.4. Prediction of the Upper Bound and Lower Bound for Existing Stations

In this section, the UB and LB are calculated using the methods discussed in Section 2.
Specifically, decision trees such as GTBC and RFC are firstly implemented with the features
of Table 1.

For clarity of analysis, the results (Figures 6 and 7) are illustrated dividing the class
with the low number of bikes from the class with the high number of bikes, where the
division was performed according to half of the observed UB/LB. Hence, the MAE values
can be compared (Figure 7), highlighting the accuracy for each class. Please note that these
classes are not those used to solve the classification exercise. In that case, the classes are
defined as discussed in Section 2, assuming ε = 2.

Algorithms 2023, 16, x FOR PEER REVIEW 13 of 18

Figure 6. Distribution of the residuals for the LB, Classes (0–35) and (36–71), and related prediction
metrics.

As expected for the LB prediction, when looking at the benchmark, at the RFC and
the GDBC, the MAE is fairly low for the classes with the highest number of bikes, while it
is at least three times larger for the other ones. From the distribution of the residuals for
each model (Figure 6), it emerges clearly.

Concerning data unbalancing, we can also observe that both the BorderlineSMOTE
and the iterative model perform better than the other models. Nevertheless, the pro-posed
iterative model clearly outperforms the BorderlineSMOTE. This is because the Borderline
SMOTE shows a smaller error for the dominant class (MAE (0–35)) and a larger error for
the minority one (MAE (36–71)), which is a clear indication of the BorderlineSMOTE
model overfitting the dominant class.

Figure 6. Distribution of the residuals for the LB, Classes (0–35) and (36–71), and related prediction metrics.

Algorithms 2023, 16, 351 13 of 17
Algorithms 2023, 16, x FOR PEER REVIEW 14 of 18

Figure 7. MAE values for the UB (a) and LB (b) with and without resampling for existing stations.

4.5. Predicting New Stations Using Only Exogenous Variables
One of the main problems when using ML is the lack of endogenous variables. For

instance, if a new station appears in the system, the endogenous features presented in
Table 1 cannot be used to predict inventory levels. Therefore, in this section, we test the
same model as discussed in the previous section but with only exogenous and behavioral
features. This model can be used, for instance, to predict the inventory levels when histor-
ical data are not available, as in the case of a new station.

Table 3 shows the numerical results. As in the previous case, for the LB calculation,
the RFC alone and in combination with the iterative resampling and BorderlineSMOTE
has been used to make predictions. As expected, the results look worse than in the previ-
ous case, especially for the rare classes (36–71). When looking at the RFC, the MAE is fairly
low for (0–35), while it is almost 10 times larger for (36–71), showing that data imbalance
becomes more relevant when only exogenous variables are available. Concerning the
other models, in this case, the BorderlineSMOTE performs better than the proposed itera-
tive model for the dominant class, while it performs worse in terms of rare classes. This is
related to the generalization problem and shows, as for the previous test, the tendency of
the model to overfit the dominant class. With or without endogenous variables, the pro-
posed iterative procedure achieves similar results for the minority and majority classes,
showing that the model is less sensitive to overfitting. To remove possible collinearity is-
sues and assess how the features affect the model, the approach was tested using different
correlation cuts (see Table 4).

Table 3. Results for the LB (with and without resampling) for new stations.

Lower-Bound Models MAE (0–35) MAE (36–71)
RFC 4.85 37.83

RFC with BorderlineSMOTE 6.68 9.07

Figure 7. MAE values for the UB (a) and LB (b) with and without resampling for existing stations.

In the UB estimation case, no rebalancing technique was needed since the database
was sufficiently balanced. All models, the benchmark included, returned good forecasts of
bikes’ UB, nevertheless a slight underestimation is observed (Figure 7a).

With the benchmark model, good predictions are obtained; however, the RFC was the
best performing algorithm. Specifically, it adjusted the benchmark estimation by deriving
information thanks to the features additionally adopted in the calibration. On the other
hand, the GTBC was quite poor, especially with respect to the class with the highest number
of bikes; thus, the RFC should be used in this case.

The situation is different for the LB (Figures 6 and 7b). In this case, the database was
imbalanced (Table 2) toward the low values of bikes; thus, resampling techniques have
been used. These techniques, specifically the BorderlineSMOTE and our proposed iterative
model, have been combined with the RFC. The BorderlineSMOTE is the reference model
for resampling, as it represents a common method for data imbalance.

As expected for the LB prediction, when looking at the benchmark, at the RFC and the
GDBC, the MAE is fairly low for the classes with the highest number of bikes, while it is at
least three times larger for the other ones. From the distribution of the residuals for each
model (Figure 6), it emerges clearly.

Concerning data unbalancing, we can also observe that both the BorderlineSMOTE
and the iterative model perform better than the other models. Nevertheless, the pro-posed
iterative model clearly outperforms the BorderlineSMOTE. This is because the Borderline
SMOTE shows a smaller error for the dominant class (MAE (0–35)) and a larger error for
the minority one (MAE (36–71)), which is a clear indication of the BorderlineSMOTE model
overfitting the dominant class.

4.5. Predicting New Stations Using Only Exogenous Variables

One of the main problems when using ML is the lack of endogenous variables. For
instance, if a new station appears in the system, the endogenous features presented in

Algorithms 2023, 16, 351 14 of 17

Table 1 cannot be used to predict inventory levels. Therefore, in this section, we test the
same model as discussed in the previous section but with only exogenous and behavioral
features. This model can be used, for instance, to predict the inventory levels when
historical data are not available, as in the case of a new station.

Table 3 shows the numerical results. As in the previous case, for the LB calculation,
the RFC alone and in combination with the iterative resampling and BorderlineSMOTE has
been used to make predictions. As expected, the results look worse than in the previous
case, especially for the rare classes (36–71). When looking at the RFC, the MAE is fairly
low for (0–35), while it is almost 10 times larger for (36–71), showing that data imbalance
becomes more relevant when only exogenous variables are available. Concerning the other
models, in this case, the BorderlineSMOTE performs better than the proposed iterative
model for the dominant class, while it performs worse in terms of rare classes. This is
related to the generalization problem and shows, as for the previous test, the tendency
of the model to overfit the dominant class. With or without endogenous variables, the
proposed iterative procedure achieves similar results for the minority and majority classes,
showing that the model is less sensitive to overfitting. To remove possible collinearity
issues and assess how the features affect the model, the approach was tested using different
correlation cuts (see Table 4).

Table 3. Results for the LB (with and without resampling) for new stations.

Lower-Bound Models MAE (0–35) MAE (36–71)

RFC 4.85 37.83
RFC with BorderlineSMOTE 6.68 9.07

RFC with Iterative Model 8.41 8.36

Table 4. Results for the LB (with and without resampling) for new stations.

RFC with BorderlineSMOTE RFC with Iterative Model
Correlation Cut MAE (0–35) MAE (36–71) MAE (0–35) MAE (36–71)

0.1 6.66 10.67 8.18 8.19
0.3 6.68 9.07 8.41 8.36
0.5 6.73 8.94 8.31 8.43
0.7 6.66 9.40 8.16 8.51
1 6.66 8.81 8.19 8.44

1.2 10.45 21.39 11.43 8.17

Multicollinearity occurs when multiple features utilized by the ML classifier are
strongly correlated. When features are correlated, they are unable to individually provide
independent predictions for the dependent variable. Instead, they jointly explain a portion
of the variance, thereby diminishing their individual statistical significance. In this section,
multicollinearity is accounted for by performing hierarchical clustering on the Spearman’s
rank-order correlations, picking a threshold, and keeping a single feature from each cluster.
As hierarchical clustering computes the information loss associated with aggregating two
features, high thresholds will translate into larger clusters and higher information loss.
This threshold is called a ‘correlation cut’, and it is one of the parameters of the model
that we used to avoid overfitting. As discussed at the beginning of this section, during
each iteration, we use feature selection to select which features should be used and which
features should be excluded to avoid overfitting. A high correlation cut translates into a
model with less features. Intuitively, more features (i.e., a low correlation cut) implies more
overfitting while less features (i.e., high correlation cut) lead to poor model performance.
The results confirm that the BorderlineSMOTE tends to overfit the dominant class with
respect to the minority class and, in general, model performance is heavily influenced by
the adopted correlation cut. The proposed iterative model, which makes predictions on an
ensemble of classifiers and weights, provides more balanced predictions and an error that

Algorithms 2023, 16, 351 15 of 17

is similar for the majority and minority classes. It can also be observed that, for all models,
the error is maximum when the correlation cut = 1.2. This is reasonable, as when too many
features are grouped together, the model is not able to sufficiently generalize from the data.

4.6. Prediction Based on a Day-to-Day Approach

Finally, we test the model using the day-to-day approach as described in Equation (8).
The results are depicted in Table 5. Note that, in this case, the dominant class and the
minority class of the lower bound have different values than in the previous experiment
(MAE (0–39) and MAE (40–79) instead of MAE (0–35) and MAE (36–71) in Tables 3 and 4).
The reason is that, in this experiment, we use a different dataset. More specifically, this
experiment uses data from 2019, while the previous one focused on the number of rides in
2018. The definition of the dominant class in the two experiments is the same. However, the
interval is different, which also reflects an increase in the demand for bike-sharing services
in 2019 with respect to 2018.

Table 5. Results for the LB (best classifier with iterative resampling model) previsions for new stations.

Lower-Bound Models MAE (0–39) MAE (40–79)

RFC with Iterative Model 3.27 4.79

It should be noted that the results are shown only for the iterative model; this is
because firstly the comparison between resampling approaches was already presented in
the previous subsections. Secondly, the BorderlineSMOTE was extremely time-consuming
and not applicable in practice for a day-to-day framework. Therefore, Table 4 only validates
what was described before, showing that the proposed formulation is a good method to
compute inventory levels and that the iterative approach also performs well in the case of a
day-to-day framework.

5. Conclusions

The inventory problem is a challenge for bike-sharing operators. The problem, which
consists in estimating the total number of bikes necessary at each bike-sharing station, is
complex for two reasons. First, for traditional station-based systems, it is necessary to
estimate both the number of bikes as well as the number of bicycles, which makes the
problem more complex. Second, the demand for bicycles is sparse, meaning that many
stations are empty while a few have very high demand values. While researchers agree that
the inventory problem is a key issue, this information is usually obtained from historical
data. Therefore, in this paper, we proposed using machine learning (ML) as a more accurate
way of extracting this information from historical data. Specifically, we formulate the
inventory problem as a classification problem that can be solved using any state-of-the-art
classifier ML model. We also developed an iterative resampling technique to deal with the
problem of the sparsity of the demand, which is a main problem when using ML classifiers.

The model is tested using real-world data from Citi Bike, the bike-sharing system that
is currently in service in New York, US. The model provides estimates for the inventory
problem in terms of the upper bound and lower bound of bikes. The results suggest
that the proposed approach is robust in terms of results and can be applied in several
circumstances, including opening new bike-sharing stations and day-to-day operations.
The current research has two main limitations. First, it has been tested on a station-based
system. Second, it has been adopted for the solution of the static inventory problem, i.e.,
estimating during the nighttime the optimal inventory levels for the morning. Future
research will therefore focus on testing with different data, different operational settings,
and in the case of real-time problems. A relevant future research direction is also to use
clustering to identify similar stations. While in this research we focused primarily on
resampling, it appears obvious that it is irrelevant to compute the inventory levels for
stations that tend to naturally rebalance themselves, therefore requiring no action from

Algorithms 2023, 16, 351 16 of 17

the operator. As multiple stations have a lower bound of zero, it would be relevant to use
clustering to identify these stations. This would allow to remove these stations from the
dataset and remove or at least substantially reduce data imbalance.

Author Contributions: Conceptualization, G.C. (Guido Cantelmo); methodology, G.C. (Guido Cantelmo),
M.N. and C.A.; formal analysis, G.C. (Giovanni Ceccarelli); data curation, G.C. (Giovanni Ceccarelli);
writing—original draft preparation, G.C. (Giovanni Ceccarelli) and G.C. (Guido Cantelmo); writing—
review and editing, G.C. (Giovanni Ceccarelli), G.C. (Guido Cantelmo) and M.N.; supervision,
G.C. (Guido Cantelmo), M.N. and C.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Loaiza-Monsalve, D.; Riascos, A.P. Human Mobility in Bike-Sharing Systems: Structure of Local and Non-Local Dynamics.

PLoS ONE 2019, 14, e0213106. [CrossRef]
2. Lahoorpoor, B.; Faroqi, H.; Sadeghi-Niaraki, A.; Choi, S.-M. Spatial Cluster-Based Model for Static Rebalancing Bike Sharing

Problem. Sustainability 2019, 11, 3205. [CrossRef]
3. Fricker, C.; Gast, N.; Mohamed, H. Mean Field Analysis for Inhomogeneous Bike Sharing Systems. Discret. Math. Theor. Comput.

Sci. 2012. Available online: https://dmtcs.episciences.org/3006/pdf (accessed on 23 June 2023). [CrossRef]
4. Cruz, F.; Subramanian, A.; Bruck, B.P.; Iori, M. A Heuristic Algorithm for a Single Vehicle Static Bike Sharing Rebalancing Problem.

Comput. Oper. Res. 2017, 79, 19–33. [CrossRef]
5. Regue, R.; Recker, W. Proactive Vehicle Routing with Inferred Demand to Solve the Bikesharing Rebalancing Problem. Transp.

Res. Part E Logist. Transp. Rev. 2014, 72, 192–209. [CrossRef]
6. Legros, B. Dynamic Repositioning Strategy in a Bike-Sharing System; How to Prioritize and How to Rebalance a Bike Station. Eur.

J. Oper. Res. 2019, 272, 740–753. [CrossRef]
7. Datner, S.; Raviv, T.; Tzur, M.; Chemla, D. Setting Inventory Levels in a Bike Sharing Network. Transp. Sci. 2019, 53, 62–76.

[CrossRef]
8. Ashqar, H.I.; Elhenawy, M.; Almannaa, M.H.; Ghanem, A.; Rakha, H.A.; House, L. Modeling Bike Availability in a Bike-Sharing

System Using Machine Learning. In Proceedings of the 2017 5th IEEE International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS), Naples, Italy, 26–28 June 2017; pp. 374–378.

9. Ruffieux, S.; Spycher, N.; Mugellini, E.; Khaled, O.A. Real-Time Usage Forecasting for Bike-Sharing Systems: A Study on Random
Forest and Convolutional Neural Network Applicability. In Proceedings of the 2017 Intelligent Systems Conference (IntelliSys),
London, UK, 7–8 September 2017; pp. 622–631.

10. Ceccarelli, G.; Cantelmo, G.; Nigro, M.; Antoniou, C. Machine Learning from Imbalanced Data-Sets: An Application to the
Bike-Sharing Inventory Problem. In Proceedings of the 2021 7th International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS), Heraklion, Greece, 16–17 June 2021; pp. 1–6.

11. Laporte, G.; Meunier, F.; Calvo, R.W. Shared Mobility Systems. 4OR 2015, 13, 341–360. [CrossRef]
12. Dell’Amico, M.; Hadjicostantinou, E.; Iori, M.; Novellani, S. The Bike Sharing Rebalancing Problem: Mathematical Formulations

and Benchmark Instances. Omega 2014, 45, 7–19. [CrossRef]
13. Santos, G.G.D.; Correia, G.H.D.A. Finding the Relevance of Staff-Based Vehicle Relocations in One-Way Carsharing Systems

through the Use of a Simulation-Based Optimization Tool. J. Intell. Transp. Syst. 2019, 23, 583–604. [CrossRef]
14. Pal, A.; Zhang, Y. Free-Floating Bike Sharing: Solving Real-Life Large-Scale Static Rebalancing Problems. Transp. Res. Part C

Emerg. Technol. 2017, 80, 92–116. [CrossRef]
15. Chemla, D.; Meunier, F.; Calvo, R.W. Bike Sharing Systems: Solving the Static Rebalancing Problem. Discret. Optim. 2013, 10,

120–146. [CrossRef]
16. Erdoğan, G.; Battarra, M.; Calvo, R.W. An Exact Algorithm for the Static Rebalancing Problem Arising in Bicycle Sharing Systems.

Eur. J. Oper. Res. 2015, 245, 667–679. [CrossRef]
17. Kloimüllner, C.; Papazek, P.; Hu, B.; Raidl, G.R. Balancing Bicycle Sharing Systems: An Approach for the Dynamic Case. In

Evolutionary Computation in Combinatorial Optimisation; Lecture Notes in Computer, Science; Blum, C., Ochoa, G., Eds.; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 73–84.

18. Chen, P.; Hsieh, H.; Su, K.; Sigalingging, X.K.; Chen, Y.; Leu, J. Predicting Station Level Demand in a Bike-Sharing System Using
Recurrent Neural Networks. IET Intell. Transp. Syst. 2020, 14, 554–561. [CrossRef]

19. Wang, B.; Vu, H.L.; Kim, I.; Cai, C. Short-Term Traffic Flow Prediction in Bike-Sharing Networks. J. Intell. Transp. Syst. 2022, 26,
461–475. [CrossRef]

https://doi.org/10.1371/journal.pone.0213106
https://doi.org/10.3390/su11113205
https://dmtcs.episciences.org/3006/pdf
https://doi.org/10.46298/dmtcs.3006
https://doi.org/10.1016/j.cor.2016.09.025
https://doi.org/10.1016/j.tre.2014.10.005
https://doi.org/10.1016/j.ejor.2018.06.051
https://doi.org/10.1287/trsc.2017.0790
https://doi.org/10.1007/s10288-015-0301-z
https://doi.org/10.1016/j.omega.2013.12.001
https://doi.org/10.1080/15472450.2019.1578108
https://doi.org/10.1016/j.trc.2017.03.016
https://doi.org/10.1016/j.disopt.2012.11.005
https://doi.org/10.1016/j.ejor.2015.03.043
https://doi.org/10.1049/iet-its.2019.0007
https://doi.org/10.1080/15472450.2021.1904921

Algorithms 2023, 16, 351 17 of 17

20. Xu, C.; Ji, J.; Liu, P. The Station-Free Sharing Bike Demand Forecasting with a Deep Learning Approach and Large-Scale Datasets.
Transp. Res. Part C Emerg. Technol. 2018, 95, 47–60. [CrossRef]

21. Nair, R.; Miller-Hooks, E. Fleet Management for Vehicle Sharing Operations. Transp. Sci. 2011, 45, 524–540. [CrossRef]
22. Schuijbroek, J.; Hampshire, R.; van Hoeve, W.-J. Inventory Rebalancing and Vehicle Routing in Bike Sharing Systems. Eur. J. Oper.

Res. 2017, 257, 992–1004. [CrossRef]
23. O’Mahony, E.; Shmoys, D.B. Data Analysis and Optimization for (Citi) Bike Sharing. In Proceedings of the Twenty-Ninth AAAI

Conference on Artificial Intelligence, AAAI’15, Austin, TX, USA, 25–30 January 2015; AAAI Press: Washington, DC, USA, 2015;
pp. 687–694.

24. Rudloff, C.; Lackner, B. Modeling Demand for Bikesharing Systems: Neighboring Stations as Source for Demand and Reason for
Structural Breaks. Transp. Res. Rec. 2014, 2430, 1–11. [CrossRef]

25. Ploeger, J.; Oldenziel, R. The sociotechnical roots of smart mobility: Bike sharing since 1965. J. Transp. Hist. 2020, 41, 134–159.
[CrossRef]

26. Moran, M.E.; Laa, B.; Emberger, G. Six scooter operators, six maps: Spatial coverage and regulation of micromobility in Vienna,
Austria. Case Stud. Transp. Policy 2020, 8, 658–671. [CrossRef]

27. Li, L.; Liu, Y.; Song, Y. Factors affecting bike-sharing behaviour in Beijing: Price, traffic congestion, and supply chain. Ann. Oper.
Res. 2019, 1–16. [CrossRef]

28. Jin, Y.; Ruiz, C.; Liao, H. A simulation framework for optimizing bike rebalancing and maintenance in large-scale bike-sharing
systems. Simul. Model. Pract. Theory 2022, 115, 102422. [CrossRef]

29. Jamali, I.; Bazmara, M.; Jafari, S. Feature Selection in Imbalance Data Sets. Int. J. Comput. Sci. Issues 2013, 9, 42.
30. Orriols-Puig, A.; Bernadó-Mansilla, E. Evolutionary Rule-Based Systems for Imbalanced Data Sets. Soft Comput. 2009, 13, 213–225.

[CrossRef]
31. Krawczyk, B. Learning from Imbalanced Data: Open Challenges and Future Directions. Prog. Artif. Intell. 2016, 5, 221–232.

[CrossRef]
32. Zhou, Z.-H.; Liu, X.-Y. On Multi-Class Cost-Sensitive Learning. Comput. Intell. 2010, 26, 232–257. [CrossRef]
33. Batista, G.E.A.P.A.; Prati, R.C.; Monard, M.C. A Study of the Behavior of Several Methods for Balancing Machine Learning

Training Data. ACM SIGKDD Explor. Newsl. 2004, 6, 20–29. [CrossRef]
34. Ganganwar, V. An Overview of Classification Algorithms for Imbalanced Datasets. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 42–47.
35. Wang, J.; Xu, M.; Wang, H.; Zhang, J. Classification of Imbalanced Data by Using the SMOTE Algorithm and Locally Linear

Embedding. In Proceedings of the 2006 8th international Conference on Signal Processing, Guilin, China, 16–20 November 2006;
Volume 3.

36. Dal Pozzolo, A.; Caelen, O.; Johnson, R.A.; Bontempi, G. Calibrating Probability with Undersampling for Unbalanced Classifica-
tion. In Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 7–10 December
2015; pp. 159–166.

37. Liu, X.-Y.; Wu, J.; Zhou, Z.-H. Exploratory Undersampling for Class-Imbalance Learning. IEEE Trans. Syst. Man Cybern. Part B
(Cybernetics) 2009, 39, 539–550. [CrossRef]

38. He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [CrossRef]
39. Chen, H.; Li, C.; Yang, W.; Liu, J.; An, X.; Zhao, Y. Deep Balanced Cascade Forest: A Novel Fault Diagnosis Method for Data

Imbalance. ISA Trans. 2021, 126, 428–439. [CrossRef] [PubMed]
40. Cantelmo, G.; Kucharski, R.; Antoniou, C. Low-Dimensional Model for Bike-Sharing Demand Forecasting That Explicitly

Accounts for Weather Data. Transp. Res. Rec. 2020, 2674, 132–144. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.trc.2018.07.013
https://doi.org/10.1287/trsc.1100.0347
https://doi.org/10.1016/j.ejor.2016.08.029
https://doi.org/10.3141/2430-01
https://doi.org/10.1177/0022526620908264
https://doi.org/10.1016/j.cstp.2020.03.001
https://doi.org/10.1007/s10479-019-03293-0
https://doi.org/10.1016/j.simpat.2021.102422
https://doi.org/10.1007/s00500-008-0319-7
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1111/j.1467-8640.2010.00358.x
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1109/TSMCB.2008.2007853
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1016/j.isatra.2021.07.031
https://www.ncbi.nlm.nih.gov/pubmed/34334183
https://doi.org/10.1177/0361198120932160

	Introduction
	Related Research
	The Inventory Problem and the Rebalancing Problem
	Learning from Imbalanced Datasets
	Discussion

	Methodology
	Benchmark Values from Historical Data
	The Inventory Problem as a Classification Problem Using Machine Learning
	Iterative Resampling and Data Imbalance

	Numerical Results
	Case Study
	Data Imbalance
	Resampling and Feature Importance
	Prediction of the Upper Bound and Lower Bound for Existing Stations
	Predicting New Stations Using Only Exogenous Variables
	Prediction Based on a Day-to-Day Approach

	Conclusions
	References

