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Abstract: For multimodal multi-objective optimization problems (MMOPs), there are multiple equiv-
alent Pareto optimal solutions in the decision space that are corresponding to the same objective
value. Therefore, the main tasks of multimodal multi-objective optimization (MMO) are to find
a high-quality PF approximation in the objective space and maintain the population diversity in
the decision space. To achieve the above objectives, this article proposes a zoning search-based
multimodal multi-objective brain storm optimization algorithm (ZS-MMBSO). At first, the search
space segmentation method is employed to divide the search space into some sub-regions. Moreover,
a novel individual generation strategy is incorporated into the multimodal multi-objective brain
storm optimization algorithm, which can improve the search performance of the search engineering.
The proposed algorithm is compared with five famous multimodal multi-objective evolutionary
algorithms (MMOEAs) on IEEE CEC2019 MMOPs benchmark test suite. Experimental results indicate
that the overall performance of the ZS-MMBSO is the best among all competitors.

Keywords: brain storm optimization algorithm; multimodal multi-objective optimization; evolutionary
computation; zoning search

1. Introduction

Multimodal multi-objective optimization problems (MMOPs) have become a research
hot spot in recent years. As we know, there are at least two conflicting objectives in multi-
objective optimization problems (MOPs) [1-3]. However, for actual problems, some of
them have multiple equivalent Pareto optimal solutions in the decision space that are
corresponding to the same objective value. These special MOPs are termed as MMOPs [4].
Clearly, how to maintain the population diversity in the decision space and find the high-
quality Pareto front (PF) approximation in the objective space are two challenging tasks.

In order to effectively solve MMOPs, the niching methods [5-8], the diversity main-
tenance technique [9], and multiple population strategies [10,11] have been incorporated
into multi-objective evolutionary algorithms (MOEAs), such as the decision space-based
niching NSGAII (DN-NSGALII) [4] and the multi-objective particle swarm optimization
(PSO) based on the self-organizing mechanism (SMPSO-MM) [12]. Besides the above “soft
isolation” methods, the “hard isolation” methods (i.e., Zoning search (ZS)) [13] is employed
to reduce the solution complexity of MMOPs. Subsequently, the ZS with an adaptive
resource-allocating method is proposed by Fan et al. [14], which can further improve the
solution efficiency of the ZS. From the above studies, it is clear that the previous studies
focused on how to preserve the equivalent Pareto optimal solutions. Additionally, search
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engineering is also important for solving MMOPs as it can greatly affect the population
diversity throughout the evolution. Like other meta-heuristics algorithms, brain storm
optimization (BSO) [15,16] has good global exploration ability and is suitable for solving
different types of MOPs. Moreover, existing studies [17-21] show that the BSO is a compet-
itive method to solve multimodal optimization problems. Therefore, the BSO may be an
effective method to solve MMOPs.

In the present study, a zoning search-based multimodal multi-objective brain storm
optimization (ZS-MMBSOQ) is proposed. In the ZS-MMBSO, the ZS [13] is used to divide
the decision space, which can reduce the search complexity and improve the population
diversity. In addition, a novel individual generation strategy is proposed which can en-
hance the exploration capability in the early stage and the exploitation ability in the later
stage. Note that a “soft isolation” method (i.e., K-means) is used in the BSO. Therefore, the
proposed algorithm uses both “soft isolation” and “hard isolation” to locate and preserve
the equivalent solutions. In this paper, five famous multimodal multi-objective evolution-
ary algorithms (MMOEAs) are chosen to compare with the ZS-MMBSO on 22 MMOPs
introduced in IEEE CEC2019 [22]. The experimental results indicate that compared with
other well-known MMOEAs, the ZS-MMBSO is competitive in solving MMOPs.

The remaining parts of this article are as follows: The basic concepts of the MOPs, the
performance metric, and the BSO are introduced in Section 2. In Section 3, the relevant
work in the field of MMO is reviewed. Section 4 shows the details of the ZS-MMBSO. And
in Section 5, the experimental results and analyses are reported. Section 6 summarizes
the conclusions.

2. Preliminaries
2.1. Multi-objective Optimization Problems

The definition of the MOPs is as follows [1-3]:

minF(x) = [fi(x), &), .., fu(®)]",

subject to x; € (x%ow,x?lgh), i=1,2,...,n,

M

where x is an n-dimensional decision vector in the decision space €; F (x) = [f1(x), f2(x),
..., fm(®)] T is an objective vector containing m objectives in the objective space. x/°” and

high
X.

. © are the boundaries of the i-th decision vector, respectively.

The following are the basic concepts of MOPs:

Definition 1. (Pareto Dominance): For the vector u= [u1, t2, ... , ]t and v = [v1,05, ..., Oml?,
ifvj e {1,2,...,m}, u; < vj, and Is € {1,2,...,m}, us < v, then the vector u dominates
another vector v, expressed as u < v.

Definition 2. (Pareto Optimal Set): For a solution x* € ), if there is no other solution x € Q)
which satisfied F(x) < F(xx), x* is called the Pareto optimal solution. All Pareto optimal solutions
constitute PS, denoted by X*.

Definition 3. (Pareto Front): All objective vectors corresponding to PS form Pareto front (PF),
denoted as PF = {F(x*)|x* € X*}

2.2. Performance Metric

To demonstrate the effectiveness of MMOEAs, various performance metrics have been
proposed, such as the Pareto set proximity (PSP) [23] and the hypervolume (HV) [24].

(1) The PSP is calculated as follows:
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where CR is the cover rate and IGD, represent the inverted generational distance in the
decision space; PS* and A represent the true PS and the obtained PS, respectively; The
Euclidean distance between v and solutions in A is expressed as d(v, A); And the number
of solutions in PS* is denoted as | PS*|; For the j-th variable, V]-maX and v;“ax denote the
maximum in PS* and A, V™" and v™" are the minimum in PS* and A. A larger PSP means
the algorithm performs better in the decision space.

(2) The calculation method for HV is as follows:

HV(PS) = VOL(Uxeps- [f1(%), 7] X - - - X [fu (%), 77]), ®)

where VOL () is the Lebesgue measure; r* = (17,73, - - - 1},,) represents the reference point in
the objective space. The HV is used to evaluate the performance of the algorithm in the
objective space.

2.3. Brain Storm Optimization

Shi [25] proposed the brain storm optimization (BSO) in 2011. In the BSO, the popula-
tion is composed by N individuals, and each individual simulated the idea generated in
the brainstorming process. Then the population is updated through the convergence and
divergence operators. As a convergence operation, the clustering method is employed to
divide the population. Then, the BSO can effectively improve the population diversity by
selecting different individuals from a single cluster or multiple clusters for mutation.

The specific steps are as described below:

Step 1: Randomly generate N initial individuals and evaluate them.

Step 2: The initial population is clustered into multiple groups by the K-means method.
Moreover, for each cluster, individuals are sorted and the best one is recorded as the
cluster center.

Step 3: Randomly select a cluster center and generate a new individual to replace it.

Step 4: The new individual is produced as follows [25]:

If rand < p; then

, <04
w:{“ <04 @
Xy, oOtherwise
Else
ot — cxxep + (1—c¢)*xp, if p3 <05 5)
Y exxe + (1 =) x x50, otherwise
End

where u is generated from 1 to N, x,! is the u-th selected individual in the t-th iteration; x4
and x, are random cluster centers; x,; and x,, are random individuals from two stomatic
clusters. p; is the probability to choose the individual from one cluster [25]. py, p3, and ¢
are random number between 0 and 1. When rand < p1, Equation (4) is used to select the
individual, otherwise, Equation (5) is employed. And then, for the selected individuals, the
Gaussian mutation is employed to generate new individuals.
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x,/ Tt =,  +&x N(u,0),

0.5xT—t

¢= 10gsig(f) x rand(0,1), (6)

where x,/ ! is the u-th new individual in the  + 1-th generation; N(u, o) is the Gaussian
distribution function with mean p and standard deviation o. T represents the maximum
number of iterations; rand is a random value between 0 and 1; z is a slope.

Step 5: Evaluate new individuals and select the population for next generation.

Step 6: If the maximum number of iterations is reached, output the final solution,
otherwise go to step 2.

3. Related Work

Finding the high-quality PF and preserving all equivalent Pareto solutions are two
main tasks in the MMO. A large number of MMOEAs have been proposed to achieve
the above objectives. For example, the Omni-optimizer proposed by Deb and Tiwari [26]
introduced the crowding distance into the decision space. The results indicate that Pareto
solutions with the same objective value can be effectively retained. Then, Liang et al. [4]
designed a decision space-based niching NSGAII (DN-NSGAII). Experiments show that
the proposed algorithm preserves almost all the PSs. In Ref. [23], a multi-objective PSO
using ring topology and special crowding distance (SCD) (MO_Ring_PSO_SCD) has been
proposed. The ring topology is introduced to form stable neighborhoods. The SCD is a
measurement method that comprehensively considers the density of the population. Their
results exhibit that the proposed algorithm is effective in solving the MMOPs. In Ref. [12],
a multi-objective PSO with a self-organizing map network (SMPSO-MM) is proposed. The
self-organizing map network is utilized to establish multiple neighborhoods. The results
expound that the proposed algorithm is superior to the compared algorithms. In Ref. [27],
Zhang et al. proposed a two-stage search framework. The global search is applied in the first
stage to identify as many optimal solutions as possible. Then, the DBSCN clustering with
adaptive neighborhood radius is employed to enhance the local search ability. Their results
demonstrate that the two-stage search framework is effective. In Ref. [28], the reference
point strategy is used to construct the neighborhood and the dominant radius of each Pareto
front is utilized to distinguish whether the individual is a local optimal solution. From the
results, the proposed algorithm can effectively locate the local solutions. At the same time,
the evolutionary algorithm using the hierarchy sorting [29] is proposed to locate the global
and local PSs. In order to ensure population diversity, an evaluation method for the local
convergence of the population is introduced in the hierarchy sorting. The simulation results
demonstrate that the proposed algorithm can maintain both the global and local PSs. To
improve the distribution of Pareto optimal solutions, a niche backtracking search algorithm
is proposed by Hu et al. [30]. In the proposed algorithm, a novel mutation strategy, which
is based on affinity propagation clustering and an adaptive local search, is employed. The
achieved results show that the solutions obtained by the proposed algorithm are uniformly
distributed in the decision space. Hu et al. [31] adopted two parallel offspring generation
mechanisms to improve the population diversity, while the reverse vector mutation strategy
and niching local search scheme were used to balance convergence and diversity. From the
experimental results, it can be found that the proposed method outperforms its competitors
in most functions. In Ref. [32], a decomposition-based algorithm is proposed to address
MMOPs, and a density-based estimation strategy is designed to estimate the number
of PSs. And the mean-shift algorithm is used to partition the population. Their results
expound that the proposed algorithm can find and maintain multiple PSs. To solve the
problem of excessive convergence, Ref. [33] introduced the adaptive parameter control
method to promote the convergence of population. The adaptive sub-population size is
used to balance the convergence of the population in each region. The results exhibit that
the proposed algorithm is effective in solving the MMOPs with multiple solution sets.
Ming et al. [34] proposed a co-evolutionary algorithm, in which the convergence-relaxed
population is used to assist the convergence-first population in locating more PSs, and
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the objective relaxation method is employed to complement previously undetected areas.
The results validate the performance of the proposed algorithm is better than that of six
advanced MMOEAs.

Most of the above-mentioned studies adopted the niching approaches to solve the
MMOPs. Besides the “soft isolation” methods, “hard isolation” methods have been also
proposed. In Ref. [13], Fan and Yan proposed the ZS strategy to maintain the population
diversity in the decision space. The effectiveness of the ZS is systematically evaluated on
11 test functions. In Ref. [35], in order to distinguish the potentials of each subspace, the
reinforcement learning method is used to dynamically allocate computing resources to
each subspace. From the results, it is an effective strategy to assist the ZS in solving the
MMOPs. Ji et al. [36] proposed a ZS and transfer learning-based MMEAs, in which transfer
learning is employed to realize the information sharing between similar subspaces. The
simulation results indicate that the proposed strategy is competitive.

4. Proposed Algorithm

How to locate and preserve the equivalent PSs in the decision space is important
for the MMO. And reducing the complexity of MMOPs and improving the global search
capability may be effective. To achieve the above objectives, the ZS-MMBSO is proposed.
In the ZS-MMBSO, the ZS strategy [13] is employed to reduce the size of the search space,
the improved BSO is utilized to improve the global search ability.

4.1. Search Space Segmentation

To reduce the complexity of MMOPs, the ZS is utilized to divide the decision space
into some sub-regions. As in the previous study [13], randomly selecting h(1 < h < n)
decision variables, and then each of them is divided into e equal parts. Therefore, the

number of subspaces is set to w = ¢’

4.2. Novel Individual Generation Strategy

Although the BSO has good performance in multimodal optimization, a fixed search
pattern may be difficult to adapt to different evolutionary stages. Therefore, a novel
individual generation strategy is proposed.

In the novel individual generation strategy, the Gaussian mutation has a higher
probability to be selected in the early stage, and the DE/current-to-best/1 is employed
in the latter stage. The main reason is that the Gaussian mutation can effectively explore
the entire decision space and quickly find the area where the optimal solution may exist,
while the DE/current-to-best/1 has good exploitation ability and can promote population
convergence.

The steps of the novel individual generation strategy are as follows:

If rand < p1 then

X4, 1 <04
xufz{”d Sz < 0 @)
Xy, Otherwise
Else
ot cxx + (1 —c¢)*x,y, if p3 <05 ®)
" exxe + (1 —c) xx,0, otherwise '
End if
If rand < t/T then
! =x,! +E X N(u,0),
Else
xut+1 = xut + F* (xnd - xut) + F (xnl - an) (9)
End

where x,! is the u-th selected individual in the t-th iteration; x,; and x,, are random
individuals from two different stomatic clusters; x.1 is a random cluster center; x,,; is a
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non-dominated solution from the k-th cluster; Random individuals from the k-th cluster
are denoted as x,; and x,p. p; is a pre-set probability parameter that determines the
individuals for mutation is from the single cluster or multiple clusters. py, p3 and c are
random number between 0 and 1. The remaining parameters remain consistent with the
original reference [25]. F is the scale factor.

4.3. Main Framework of the Proposed Algorithm

The main framework of the proposed ZS-MMBSO is shown in Algorithm 1. Line 1
is the search space segmentation strategy which is used to divide the decision space. For
each subspace, a population POP is randomly initialized (line 3). Line 5 is the judgment
of the algorithm termination criterion. In Line 6, the K-means clustering is performed
on the population POP. For each cluster, the non-dominated_scd_sort method [23] is em-
ployed in lines 7 to 9. The non-dominated individuals in k-th cluster Cj are stored in
NDy, and the optimal individual is stored in the cluster center archive CA. In lines 10
to 12, it is a certain probability that a cluster center will be replaced by a new indi-
vidual. The probability parameter is the same as the original BSO [25]. In lines 13 to
17, offspring individuals are generated by the novel individual generation strategy in
Section 4.2. The individuals in the offspring population and the population POP are
sorted by the non-dominated_scd_sort method (line 18). The top N individuals are
selected for the next iteration. If the stopping criterion is not met, the procedures in
Lines 5-19 will be run iteratively. Otherwise, the non-dominated individuals in each sub-
space S; are recorded as PS; and PF; in line 20. At last, the final PS and PF are selected.

Algorithm 1. Framework of ZS-MMBSO

Input: the number of subspaces: w; maximum number of iterations: T; the number of the
cluster: K; cluster center archive: CA; the archive of the individuals in the k-th cluster: Ck; the
archive of the non-dominated individuals in the k-th cluster: NDk; the number of the individuals
inCk: I1Ckl

1: Search space segmentation via Section 4.1.

2: for each subspace Sd in S1, S2, ..., Sw do

3 Initialize the population POP.

4: t=1
5: if t < T then
6: Use the K-means method to divide POP into K subpopulations.
7 fork=1— Kdo

8: The non-dominated_scd_sort method is used to sort individuals in the k-th
cluster Ck. The non-dominated individuals of Ck are stored in NDk and the optimal individual in
the Ck is stored in CA.

9: end for

10: if rand < 0.2 then

11: Randomly select an individual from the CA, and it is replaced by the new
individual, which is randomly generated within the search space.

12: end if

13: fork=1— Kdo

14: forl=1— ICkl do

15: Generate offspring individuals via a novel individual genera-tion strategy in
Section 4.2.

16: end for

17: end for

18: Perform the non-dominated_scd_sort method to choose the population for
next iteration.

19: end if

20: Record the non-dominated individuals in Sd as PSd and PFd.

21: end for

22: PS = Selection (PS1UPS2U ... UPSw) and PF = Selection (PF1UPF2U ... UPFw).
Output: PS and PF
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5. Experimental Results and Analyses

To evaluate the performance of the ZS-MMBSO, it is compared with five famous
MMOEAs, which are the SMPSO_MM [12], the MMGPE [37], the MMODE_CSCD [6], the
MMODE_ICD [38], and the ZS-MO_Ring_PSO_SCD [13]. The IEEE CEC2019 [22] MMOPs
benchmark suite is employed to assess the performance of these comparison algorithms.
Additionally, the experimental results are analyzed by Wilcoxon’s rank sum test [39] and
Friedman'’s test [40], and the significance level is set to be 0.05. “+”, “-” and “=" indicate
that the ZS-MMBSO is better, worse, or similar to the comparison algorithm.

5.1. Experimental Settings

The parameter settings of the selected MMOEAs are recommended by their original
references [6,12,13,37,38]. For all compared algorithms, the maximum number of function
evaluations and the population size are set to 80,000 and 800, respectively. All algorithms
are implemented by using MATLAB (R2021a) and run independently for 20 times on each
test problem. Additionally, some parameter settings of the ZS-MMBSO are as follows: F is
set to 0.5 to scale the difference vectors; the pre-set probability parameter p; is equal to 0.8;
the number of clusters in K-means clustering is set to 20.

5.2. Comparison with Other Algorithms

Tables 1 and 2 record the mean values and standard deviations of PSP and HYV,
respectively. The best results are highlighted in bold, and the results are statistically
analyzed by Wilcoxon’s rank sum test.

From Table 1, it is observed that the ZS-MMBSO significantly outperforms the SMPSO_MM,
the MMGPE, the MMODE_CSCD, and the ZS-MO_Ring_PSO_SCD in terms of PSP on all
MMOPs. The main reason may be that the ZS can greatly reduce the problem complexity,
and the BSO algorithm has good global search capability. Namely, the proposed algorithm
can integrate the advantages of “soft isolation” and “hard isolation” to maintain the
population diversity. Therefore, compared with other competitors, the ZS-MMBSO can
preserve more equivalent Pareto optimal solutions. Compared to the MMODE_ICD, the ZS-
MMBSO wins 20 test functions. Clearly, the overall performance of the proposed algorithm
is significantly better than that of the MMODE_ICD. For the other two remaining MMOPs
(i.e., the SYM_PART simple and the Omni_test), the MMODE_ICD performs better. For
the SYM_PART simple, most PSs are distributed in the boundary regions of subspaces,
thus it is difficult for the ZS-MMBSO to search equivalent Pareto optimal solutions. For the
Omni_test, the distribution of PSs in different subspaces is imbalanced, thus the proposed
algorithm may waste computing resources. To visualize the performance comparison of all
algorithms, the Friedman test rankings are illustrated in Figure 1 and the ZS-MMBSO owns
the best ranking among all compared algorithms. The above statistical results indicate the
superiority of the ZS-MMBSO in decision space.
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Table 1. Mean and standard deviation values of PSP obtained by different algorithms.

SMPSO_MM

MMGPE

MMODE_CSCD

MMODE_ICD

Zs-
MO_Ring_PSO_SCD

ZS-MMBSO

MMF1 8.62 x 10! (3.67 x 10°) +  6.72 x 10" (2.90 x 10%) + 7.81 x 10! (3.90 x 109) + 712 x 10! (4.75 x 10%) + 946 x 10! (4.63 x 10°)  + 1.99 x 102 (1.25 x 10%)
MMF2 138 x 102 (215 x 101)  +  1.32 x 10%(1.90 x 10')  + 290 x 102 (452 x 10")  + 211 x102(3.26 x 101)  +  1.33 x 102 (1.78 x 10')  + 1.22 x 103 (2.21 X 10?)
MMF3 1.87 x 10% (1.42 x 10%) + 1.86 x 10% (1.99 x 101) +  3.61 x 102 (4.39 x 101) + 258 x 102 (3.46 x 10") + 1.33 x 10% (2.09 x 101)  + 9.28 x 10% (1.48 X 10?)
MMF4 1.39 x 10% (4.21 x 10°) + 1.11 x 10% (4.40 x 10°) + 1.49 x 10% (4.72 x 10°) + 1.57 x 102 (6.50 x 10°) + 1.90 x 102 (5.97 x 10%)  + 3.64 x 102 (1.10 x 101
MMF5 3.97 x 10! (1.92 x 10°) + 334 x 10" (1.21 x 10%) +  3.85x 10! (1.16 x 10%) + 294 x 10" (1.49 x 10°) + 486 x 10" (250 x 10%)  + 8.24 x 10" (5.29 x 10°)
MMF6 4.23 x 10! (1.48 x 10%) + 359 x10'(9.56 x 10°1)  +  4.24 x 10! (1.16 x 10°) + 337 x 10! (1.38 x 10°) + 545 x 101 (295 x 10%)  + 8.04 x 10" (4.25 x 10°)
MMEF7 1.42 x 10% (4.94 x 10°) + 1.10 x 102 (5.40 x 10%) + 1.41 x 10% (5.95 x 10°) + 1.60 x 10% (6.09 x 10°) + 1.81 x 10% (9.23 x 10°)  + 2.86 X 102 (1.19 x 10')
MMF8 6.25 x 10! (3.47 x 10°) + 426 x 10" (2.60 x 10%) + 630 x 101 (2.28 x 109) + 2,66 x 10! (6.91 x 10%) + 640 x10' (273 x 109  + 1.67 X 102 (2.03 x 10%)
MMF9 549 x 102 (210 x 10')  +  3.89 x 102(1.34 x 10')  + 529 x 102 (1.85 x 10})  +  8.15x 102 (4.04 x 101)  +  6.14 x 10% (2.04 x 10})  + 1.53 x 10° (5.89 x 10%)
MMF10 2.55 x 10% (1.89 x 10?) + 1.77 x 10% (3.15 x 10%) + 1.98 x 10% (1.80 x 10%) + 1.41 x 103 (4.65 x 10%) + 1.37 x 10% (1.59 x 101)  + 3.16 x 10% (2.91 x 101)
MMF11 7.63 x 102 (4.11 x 10%) + 492 x 10%(1.70 x 10%) +  6.52 x 10% (4.16 x 10%) +  7.22 x 10% (1.74 x 10%) + 617 x 102 (230 x 101)  + 1.15 x 10° (4.77 x 10
MMF12 1.29 x 10° (9.39 x 10') + 617 x 10% (5.65 x 101) + 1.46 x 10% (5.47 x 10') + 1.01 x 10% (2.84 x 10%) + 868 x10% (459 x 101)  + 1.83 x 10° (6.82 x 101
MMF13 6.67 x 10! (2.22 x 10°) + 506 x 10 (991 x1071)  + 7.12 x 10! (1.29 x 10°) + 650 x 10! (1.87 x 10°) + 574 x 10" (1.75 x 10%)  + 7.76 x 10" (3.84 x 10°)
MMF14 298 x 101 (4.26 x 1071y  +  3.00 x 10! (425 x10°1) + 315x10'(8.69 x10°1) + 400 x 10" (584 x 10°1) + 532x10' (536 x 10°1) + 577 x 10! (8.39 x 10~1)
MMF15 395 x 101 (9.86 x 10°1)  +  3.81 x 10! (1.34 x 10%) +  3.98 x 10! (1.15 x 109) + 549 x 10! (1.57 x 10%) + 654 x10'(1.20 x 109  + 7.76 X 10" (1.27 x 10°)
MMF1_z 119 x 102 (5.12 x 10°)  +  9.01 x 10! (291 x 10°  + 113 x102(5.02 x 10  + 552 x 10! (438 x 10°)  +  1.27 x 102 (447 x 109)  + 2.70 x 102 (1.90 x 10%)
MMF1_e 6.77 x 100 (828 x 1071)  + 586 x10°(6.15x 1071) + 677 x10°(620 x 1071)  +  1.24 x10°(5.20 x 10°1)  + 463 x 100 (1.11 x 109  +  8.23 x 10° (6.20 X 10~ Y)
MMF14_a 266 x 101 (5.83 x 1071)  + 266 x 10! (5.65 x 10°1)  + 262 x 10" (420 x 1071)  + 290 x 10" (497 x 10°1) +  4.82x10' (479 x 10°1) +  4.94 x 10" (9.01 x 101)
MMF15_a 359 x 101 (5.74 x 1071)  +  3.61 x 101 (6.76 x 1071)  +  3.47 x 10! (1.12 x 10°) +  439x10' (936 x10°1)  +  6.07 x 101 (9.83 x 1071)  + 6.80 x 10" (1.40 x 10°)
SYM_PART simple ~ 3.15 x 10! (2.52 x 10%) + 1.23 x 10! (1.27 x 10%) + 617 x 10! (1.68 x 10°) +  1.03 x 102 (445 x 10 - 216 x 101 (9.85 x 10°1)  + 9.22 x 10! (9.45 x 10°)
SYM_PART rotated ~ 1.67 x 10! (1.08 x 10°) + 240 x 10! (1.55 x 10%) + 627 x 10 (2.57 x 109) + 598 x 10! (3.06 x 10%) + 203 x10'(1.00 x 109  + 1.25 x 102 (1.45 x 10"
Omni_test 7.64 x 109 (1.50 x 10°) + 5.0 x 10! (1.05 x 10%) + 816 x 10° (3.18 x 109) +  5.46 x 10" (1.97 x 10% - 9.34 x 100 (1.29 x 10%)  + 3.04 x 101 (4.22 x 109)

+ 22 22 22 20 22

= 0 0 0 0 0

0 0 0 2 0

Table 2. Mean and standard deviation values of HV obtained by different algorithms.
SMPSO_MM MMGPE MMODE_CSCD MMODE_ICD Z5-MO_Ring_PSO_SCD ZS-MMBSO

MMF1 8.76 x 1071 (5.23 x 1075) + 8.75 x 107! (6.88 x 107°) + 8.76 x 107! (3.64 x 107°) + 8.76 x 107! (1.13 x 107°) + 8.76 x 107! (6.69 x 107°) + 8.76 x 107! (3.63 x 1075)
MMEF2 8.71 x 107! (4.56 x 10’4) + 8.71 x 1071 (5.12 x 10’4) + 8.74 x 1071 (1.89 x 10’4) + 8.74 x 1071 (5.64 x 10’4) + 8.70 x 1071 (7.74 x 10’4) + 8.76 X 101 (3.54 x 10~*)
MMF3 8.72 x 1071 (4.01 x 107%) + 8.72 x 107! (3.94 x 107%) + 8.74 x 1071 (9.24 x 1075) + 8.75 x 1071 (2.50 x 10~%) + 8.70 x 1071 (9.45 x 107%) + 8.76 x 1071 (2.50 x 10™%)
MMF4 5.42 x 107! (8.93 x 107°) + 5.42 x 107! (7.81 x 1079) + 5.42 x 1071 (8.17 x 1075) + 5.43 x 107! (2.04 x 1075) + 5.42 x 107! (1.42 x 107%) + 5.43 X 10~ (6.03 x 10~°)
MMF5 8.76 x 107! (3.66 x 1075) + 8.75 x 107! (5.18 x 1079) + 8.76 x 107! (4.94 x 1075) + 8.76 x 1071 (1.92 x 1075) + 8.76 x 107! (6.58 x 1075) + 8.76 x 101 (5.03 x 10~%)
MMF6 8.76 x 107! (5.06 x 107°) + 8.75 x 1071 (8.26 x 107°) + 8.76 x 1071 (4.19 x 107%) + 8.76 x 1071 (3.96 x 107°) + 8.76 x 1071 (6.01 x 107°) + 8.76 x 101 (7.58 x 1075)
MMF7 8.76 x 107! (2.79 x 107°) + 8.75 x 1071 (9.18 x 107%) + 8.76 x 107! (2.53 x 107%) + 8.76 x 1071 (2.03 x 107%) + 8.76 x 1071 (3.04 x 107°) + 8.76 X 1071 (2.34 x 1075)
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Table 2. Cont.

SMPSO_MM

MMGPE

MMODE_CSCD

MMODE_ICD

ZS-MO_Ring_PSO_SCD

ZS5-MMBSO

MME8
MMF9
MMF10
MMF11
MMF12
MMF13
MMF14
MMF15
MMF1_z
MMF1_e
MMF14_a
MMF15_a
SYM_PART simple
SYM_PART rotated
Omni_test

423 x 1071 (1.18 x 107%)
9.70 x 10° (3.48 x 107%)
1.29 x 10' (9.73 x 107%)
1.45 x 10" (4.96 x 107%)
1.57 x 10° (1.32 x 107%)
1.85 x 10! (1.10 x 10~3)
2.95 x 10° (9.22 x 1072)
4.33 x 10° (8.93 x 1072)
8.76 x 1071 (3.70 x 10~°)
8.73 x 1071 (8.39 x 10~%)
3.03 x 10° (6.85 x 1072)
427 x 10° (1.11 x 1071)
1.67 x 10" (1.20 x 1073)
1.66 x 10! (2.20 x 10~%)
5.27 x 10! (1.00 x 10~2)

423 x 1071 (1.73 x 107%)
9.70 x 10° (5.97 x 107%)
1.43 x 10° (2.01 x 1072)
1.45 x 10" (5.56 x 107%)
1.57 x 10° (2.98 x 107%)
1.84 x 10! (2.30 x 10~3)
3.02 x 10° (3.85 x 1072)
4.36 x 10° (3.04 x 1072)
8.75 x 1071 (7.85 x 107)
8.71 x 1071 (9.87 x 107%)
3.05 x 10° (6.18 x 1072)
4.42 x 10° (4.35 x 1072)
1.66 x 10" (6.62 x 1072)
1.67 x 10" (2.15 x 1073)
5.27 x 10" (1.47 x 10~2)

424 x 1071 (1.17 x 107%)
9.70 x 10° (1.35 x 107%)
1.29 x 10! (1.62 x 10™%)
1.45 x 10" (2.30 x 107%)
1.57 x 10° (6.55 x 107°)
1.85 x 10! (1.82 x 107%)
2.88 x 10° (1.31 x 1071)
413 x 10° (1.10 x 1071)
8.76 x 1071 (5.82 x 107°)
8.64 x 1071 (5.10 x 1073)
2.88 x 10° (1.72 x 1071)
416 x 10° (1.47 x 1071)
1.67 x 10! (1.14 x 107%)
1.67 x 10! (2.06 x 10~%)
5.28 x 10! (6.06 x 1073)

424 x 1071 (1.11 x 107%)
9.71 x 10° (3.01 x 107%)
1.28 x 10" (9.44 x 1072)
1.45 x 10" (2.76 x 107%)
1.57 x 10° (4.87 x 1075)
1.85 x 10" (6.12 x 107%)
3.16 x 10° (5.40 x 1072)
4.52 x 10° (5.16 X 10~2)
8.76 x 1071 (2.63 x 1075)
8.75 X 1071 (2.49 x 10~%)
3.12 x 10° (4.22 x 1072)
4.45 x 10° (4.24 x 1072)
1.67 x 10" (1.40 x 10~%)
1.67 x 10! (1.38 x 107%)
5.28 x 10! (1.72 x 1073)

nm+ 1+ 1+ +

vt

+ o+ o+ o+ o+

423 x 1071 (2.58 x 107%)
9.71 x 10° (2.58 x 107%)
1.28 x 10' (1.09 x 10~2)
1.45 x 10" (4.99 x 10~%)
1.57 x 10° (6.83 x 107%)
1.84 x 10! (1.90 x 107?)
3.05 x 10° (2.12 x 1071)
4.40 x 10° (1.14 x 1071)
8.76 x 1071 (7.05 x 107°)
8.70 x 1071 (9.00 x 107%)
3.07 x 10° (1.49 x 10~1)
4.47 x 10° (7.66 x 1072)
1.67 x 10" (1.50 x 10~3)
1.67 x 10' (2.00 x 10~3)
5.27 x 10" (1.28 x 1072)

4.24 x 1071 (3.51 x 10~%)
9.71 x 10° (3.15 x 10™%)
1.29 X 10! (4.51 x 1073)
1.45 X 10! (4.48 x 107%)
1.57 x 10° (1.07 x 107%)
1.85 X 10! (6.77 X 10~%)
3.15 x 10° (1.35 x 1071)
448 x 10° (1.13 x 1071)

8.76 X 107! (1.86 x 10~°)
8.74 x 1071 (8.20 x 107%)
3.23 x 10° (2.01 x 10~Y)
4.49 x 10° (7.99 x 1072)
1.67 X 10! (3.44 x 107%)
1.67 x 10 (6.33 x 10~%)
5.28 x 10! (1.26 x 10~?)

+

O=N|+ ++ kN

CON|+++F A+ + o+

N A T I T e L I S

»—I%G

O~ N|+ 4+ 4+ 0+ +++
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Figure 1. Performance rankings of all compared algorithms in terms of PSP values.

Table 2 lists the HV results for these comparison algorithms. It is observed that the ZS-
MMBSO outperforms the MMGPE on all test functions in terms of HV. Compared with the
Z5-MO_Ring_PSO_SCD and SMPSO_MM, the proposed algorithm achieves better results
on 21 test functions and similar result on one test function. The ZS-MMBSO is superior
to the MMODE_CSCD on 20 test functions. For the MMF10, the proposed algorithm is
surpassed by the MMODE_CSCD. The reason is that the global PS of MMF10 is simple, and
it is easier for MMODE_CSCD to find the PF approximation. The MMODE_ICD performs
better than the ZS-MMBSO on the MMF1_e, but their difference is small. In general, the
proposed algorithm is competitive in the objective space. One of the reasons is that the
ZS5-MMBSO integrates the “soft isolation” and the “hard isolation” to find more PSs, which
the population diversity in both decision space and objective space will be improved. The
novel individual generation strategy can achieve a trade-off between global exploration and
local exploitation, which can balance diversity and convergence. However, the performance
improvement of the proposed algorithm in the objective space is not more significant than
that in the decision space. In the MMOPs, there are multiple equivalent solutions in the
decision space that are corresponding to the same objective value. It is easier for MMOEAs
to find a good PF approximation than to locate equivalent solutions in the decision space. As
a result, the performance difference of the comparison algorithms in the objective space is
relatively small. Figure 2 shows Friedman's test results of the overall performance ranking.
The ZS-MMBSO gets the first ranking, followed by MMODE_ICD, MMODE_CSCD, ZS-
MO_Ring PSO_SCD, SMPSO_MM, and MMMGPE. The above observations fully indicate
the ZS-MMBSO performs better in the objective space.

6

5.64
4.68
3.50
2.91
2.45
I 1.32 I
D I

SMPSO-MM MMGPE MMODE- MMODE_ICD ZS-MO-Ring- ZS-MMBSO
CSCD SCD-PS0O

[*]

~

5]

Overall performance ranking
[y w

Figure 2. Performance rankings of all compared algorithms in terms of HV values.
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Based on the above analyses, the ZS-MMBSO performs the best among all competitors
in both decision space and objective space. The proposed algorithm is an effective tool to
solve different types of MMOPs.

5.3. Experimental Analysis
5.3.1. The Effectiveness of the ZS

To validate the effectiveness of the ZS, the ZS-MMBSO and ZS-MMBSO without the
ZS strategy (denoted as ZS-MMBSQO_1) are used to compare 22 functions in terms of PSP.
The parameter settings are consistent with Section 5.1. For each function, the optimal value
is displayed in bold, and the results are analyzed by Wilcoxon’s rank sum test.

In Table 3, the mean PSP values of the ZS-MMBSO and its variant are presented. It
can be found that ZS-MMBSO performs better than ZS-MMBSO_1 on all test functions. So,
the search space segmentation has a significant impact on the proposed algorithm in the
decision space. It is because the search complexity is reduced by the ZS, this is important for
solving complex problems. In summary, the ZS is effective to assist the proposed algorithm
in locating more equivalent PSs.

Table 3. Mean and standard deviation values of PSP obtained by ZS-MMBSO and ZS-MMBSO_1.

ZS-MMBSO_1 ZS-MMBSO
MMF1 8.38 x 10! (2.95 x 10°) + 1.99 x 10% (1.25 x 101)
MMF2 3.90 x 102 (9.44 x 101) + 1.22 x 10° (2.21 X 10?)
MMF3 2.94 x 10% (7.88 x 101) + 9.28 X 10% (1.48 X 10?)
MMF4 8.42 x 10! (1.25 x 101) + 3.64 x 10% (1.10 x 10%)
MMF5 3.36 x 10! (2.08 x 109) + 8.24 x 10! (5.29 x 10°)
MMF6 3.75 x 10! (1.65 x 10°) + 8.04 x 10! (4.25 x 10°)
MMF7 1.39 x 102 (6.75 x 10%) + 2.86 x 10% (1.19 x 10°)
MMF8 2.66 x 101 (7.53 x 109) + 1.67 X 10% (2.03 X 101)
MMF9 5.30 x 102 (1.02 x 102) + 1.53 x 103 (5.89 x 101)
MMF10 2.34 x 10% (1.53 x 10%) + 3.16 x 10° (2.91 x 101
MMF11 7.98 x 10? (6.19 x 101) + 1.15 x 103 (4.77 x 101)
MMF12 1.33 x 10% (2.23 x 10%) + 1.83 x 103 (6.82 x 101)
MMF13 4.36 x 101 (9.91 x 109) + 7.76 x 10! (3.84 x 10°)
MMF14 2.68 x 101 (1.92 x 109) + 5.77 x 10! (8.39 x 10~1)
MMF15 3.90 x 10! (1.20 x 109) + 7.76 X 10! (1.27 x 10°)
MMF1_z 9.62 x 10! (5.76 x 10°) + 2.70 x 10% (1.90 x 10%)
MMF1_e 5.37 x 100 (1.59 x 109) + 8.23 x 10° (6.20 x 10~1)

MMF14_a 218 x 10! (1.23 x 10Y) + 4.94 x 10" (9.01 x 1071
MMF15_a 3.07 x 10! (1.96 x 109) + 6.80 x 10! (1.40 x 10°)
SYM_PART simple 3.70 x 10! (1.25 x 107) + 9.22 x 10! (9.45 x 10°)
SYM_PART rotated 6.30 x 10! (8.06 x 10°) + 1.25 x 107 (1.45 x 101)
Omni_test 1.98 x 109 (5.10 x 10~ 1) + 3.04 x 10! (4.22 x 10°)

+ 22

= 0

- 0

5.3.2. The Effectiveness of the Novel Individual Generation Strategy

To demonstrate the effectiveness of the novel individual generation strategy, the PSP is
used to testify the performance of the proposed algorithm and its variant. The ZS-MMBSO
and ZS-MMBSO which adopts the Gaussian mutation to generate the offspring individuals
(named as ZS-MMBSO_2) are compared on 22 test functions. The parameter settings are
shown in Section 5.1. The Wilcoxon’s rank sum test is used to analyze the results and the
best results are showed in bold.

From Table 4, it can be observed that ZS-MMBSO achieves the best results in 19 out of
22 cases. On the MMF14_a and the SYM_PART simple, the ZS-MMBSO_2 obtains the best
results. The statistical results indicate the effectiveness of the novel individual generation
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strategy. It is because the novel individual generation strategy can balance the global
exploration and local exploitation. The Gaussian mutation used in the early stage can
explore the entire search space and find the potential regions where the optimal solution
may be located. By using the information of the non-dominated solutions, the DE/current-
to-best/1 can guide individuals to search the potential regions and locate more equivalent
solutions. The mutation strategy used in the latter stage has a good exploitation ability
and can speed up the population convergence. For MMF14_a and SYM_PART simple, the
ZS-MMBSO_2 performs better than ZS-MMBSO, but the difference is small. Overall, the
novel individual generation strategy can help the proposed algorithm locate the equivalent
PSs in the decision space.

Table 4. Mean and standard deviation values of PSP obtained by ZS-MMBSO and ZS-MMBSO_2.

ZS-MMBSO_2 ZS-MMBSO
MMF1 1.24 x 102 (4.88 x 10%) + 1.99 x 10?% (1.25 x 10%)
MME2 1.69 x 102 (9.98 x 10°) + 1.22 x 10° (2.21 X 10?)
MMF3 1.74 x 10% (1.34 x 101) + 9.28 x 107 (1.48 x 10?)
MMF4 2.64 x 102 (9.27 x 109) + 3.64 x 10% (1.10 x 10%)
MMF5 6.17 x 10! (2.54 x 109) + 8.24 X 10! (5.29 x 10°)
MMF6 7.52 x 101 (3.69 x 109) + 8.04 x 10 (4.25 x 10°)
MMF7 254 x 10% (1.13 x 101) + 2.86 x 107 (1.19 x 10°)
MMF8 1.21 x 10? (6.61 x 10°) + 1.67 x 10% (2.03 x 101)
MMF9 7.15 x 102 (1.94 x 101) + 1.53 x 103 (5.89 x 101)
MMF10 2.30 x 10% (2.85 x 10%) + 3.16 X 10% (2.91 x 101)
MMF11 7.14 x 102 (2.91 x 101) + 1.15 x 103 (4.77 x 10%)
MMF12 7.08 x 102 (4.92 x 107) + 1.83 x 10° (6.82 x 10%)
MMF13 6.23 x 10! (2.15 x 10°) + 7.76 x 10! (3.84 x 10°)
MMF14 5.77 x 10! (6.05 x 10~1) = 5.77 x 10! (8.39 x 10~1)
MMF15 7.41 x 10! (9.13 x 107 1) + 7.76 x 10! (1.27 x 10°)
MMF1_z 1.63 x 102 (5.58 x 10%) + 2.70 X 102 (1.90 x 10%)
MMF1_e 6.76 x 100 (7.15 x 10~ 1) + 8.23 x 10° (6.20 x 10~1)

MMF14_a 5.11 x 10! (5.41 x 10~ - 494 x 10 (9.01 x 107 1)
MMF15_a 6.68 x 10! (8.58 x 1071) + 6.80 x 10! (1.40 x 10°)
SYM_PART simple 1.00 X 10? (4.37 x 10°) - 9.22 x 10! (9.45 x 10°)
SYM_PART rotated 1.01 x 102 (4.36 x 10%) + 1.25 X 102 (1.45 x 10%)
Omni_test 1.99 x 10! (1.62 x 10°) + 3.04 x 10! (4.22 x 10°)

+ 19

= 1

- 2

5.3.3. Impact of the Number of Clusters

The number of clusters may impact the performance of the BSO. If there are too many
clusters, the population diversity will be improved. Conversely, if the number of clusters
is too small, the population may converge quickly, and the equivalent solutions will be
difficult to preserve. To validate the influence of different K values on the performance of
the ZS-MMBSO, K is set to be 10, 15, 20, 25, and 30, respectively. In addition, ZS-MMBSO
with different K values is independently run 20 times on 22 functions. The best results are
marked in bold. And Friedman'’s test [40] is employed to analyze the experimental results.

In Table 5, it is observed that for different K values, the ZS-MMBSO can only achieve
the best results on a few problems. Namely, the differences for different K values are small.
This means that users can easily set the K value. The Friedman rankings with different K
values are represented in Figure 3. From Figure 3, if the number of clusters is too large
or small, the performance of the proposed algorithm will be degraded. When K = 20, the
ZS-MMBSO can balance diversity and convergence and its overall performance is the best.
Hence, the K value of ZS-MMBSO is set to 20.
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Table 5. Mean and standard deviation values of PSP obtained by different K values.

10

15

20

25

30

MMF1
MMEF2
MMEF3
MMF4
MMF5
MMF6
MME7
MMF8
MMF9
MMF10
MMF11
MMF12
MMF13
MMF14
MMF15
MMF1_z
MMF1_e
MMF14_a
MMF15_a
SYM_PART simple
SYM_PART rotated
Omni_test

1.66 x 10% (9.23 x 10%)
1.04 x 103 (1.42 x 102)
7.97 x 102 (1.64 x 102)
3.52 x 10% (8.24 x 10°)
7.45 x 10! (4.39 x 10°)
7.68 x 101 (3.48 x 109)
2.70 x 10% (1.20 x 10%)
1.66 x 10% (2.11 x 10%)
1.53 x 103 (6.41 x 101)
2.97 x 103 (6.61 x 102)
1.17 x 103 (5.05 x 101)
1.83 x 103 (7.57 x 101)
7.42 x 101 (6.60 x 109)
5.86 x 10! (8.46 x 10~1)
7.80 X 10! (1.06 X 10°)
2.24 x 10% (2.22 x 10%)
717 x 100 (9.16 x 10~1)
5.02 x 10! (7.29 x 101)
6.93 x 10! (1.33 x 10°)
1.01 X 10% (1.10 X 101)
1.24 x 10% (1.51 x 10%)
1.38 x 10! (6.81 x 109)

1.76 x 10% (9.95 x 10~1)
1.16 x 103 (1.24 x 102)
9.37 x 107 (1.20 X 10?)
3.59 x 10% (9.81 x 109)
7.89 x 101 (4.28 x 10Y)
7.86 x 101 (2.60 x 109)
2.75 x 10% (1.19 x 10%)
1.67 x 10% (2.44 x 10Y)
1.53 x 103 (6.10 x 10%)
3.08 x 103 (7.65 x 10?)
1.15 x 10° (4.82 x 10%)
1.84 x 103 (7.17 x 10%)
7.59 x 101 (6.25 x 109)
5.80 x 101(5.65 x 10~1)
7.77 x 10! (1.16 x 10°)
2.54 x 102 (1.71 x 10%)
8.24 x 100 (7.13 x 10~ 1)
4.96 x 101 (5.89 x 10~1)
6.85 x 10! (1.60 x 10°)
9.60 x 10! (1.01 x 10%)
1.21 x 10% (1.90 x 10%)
3.11 x 10! (8.24 x 10°)

1.99 x 102 (1.25 x 10%)
1.22 x 103 (2.21 x 10?)
9.28 x 102 (1.48 x 102)
3.64 x 102 (1.10 x 10")
8.24 x 10! (5.29 x 10°)
8.04 x 10! (4.25 x 109)
2.86 x 10% (1.19 x 101
1.67 x 102 (2.03 x 10%)
1.53 x 103 (5.89 x 101)
3.16 x 10% 2.91 x 10')
1.15 x 103 (4.77 x 10%)
1.83 x 103 (6.82 x 101)
7.76 X 10! (3.84 x 10°)
5.77 x 10! (8.39 x 107 1)
7.76 x 10! (1.27 x 10°)
2.70 x 102 (1.90 x 101)
8.23 x 10° (6.20 x 10~ 1)
4.94 x 10! (9.01 x 1071)
6.80 x 10! (1.40 x 10°)
9.22 x 10! (9.45 x 10°)
1.25 x 102 (1.45 x 10%)
3.04 x 10! (4.22 x 109)

2.07 x 102 (1.01 x 10%)
1.31 X 103 (1.77 X 10?)
9.16 x 10% (2.04 x 10?)
3.57 x 10% (1.27 x 10%)
8.32 x 10! (3.96 x 10°)
8.29 x 101 (2.99 x 10Y)
2.84 x 10% (1.26 x 101)
1.68 X 10% (1.91 x 101)
1.52 x 103 (5.70 x 101)
2.84 x 103 (7.06 x 102)
1.15 x 10% (5.45 x 10%)
1.83 x 103 (6.19 x 101)
7.73 x 101 (4.06 x 109)
5.75 x 10! (8.70 x 10~1)
7.63 x 101 (1.31 x 109)
2.91 x 102 (1.74 x 10%)
8.23 x 10° (1.03 x 109)
4.86 x 10! (1.02 x 109)
6.72 x 10! (1.56 x 10°)
9.20 x 10! (9.48 x 10°)
1.22 x 10% (1.68 x 10%)
3.10 x 10! (3.01 x 10%)

2.16 x 10% (1.21 x 10")
1.25 x 103 (1.96 x 102)
9.21 x 102 (1.54 x 102)
3.56 x 10% (1.23 x 101)
8.75 X 10! (4.28 x 10°)
8.36 x 10! (3.64 x 10°)
2.94 x 102 (1.04 x 10%)
1.65 x 102 (2.12 x 10%)
1.52 x 103 (5.47 x 101)
2.65 x 103 (7.47 x 102)
1.15 x 10% (4.33 x 10%)
1.76 x 103 (8.67 x 101)
7.66 x 101 (3.86 x 109)
5.68 x 10! (8.82 x 1071)
7.62 x 10! (1.22 x 109)
3.00 x 102 (1.66 x 101)
8.59 x 10° (9.81 x 10~1)
4.84 x 10! (6.84 x 1071)
6.67 x 10! (1.24 x 10%)
8.50 x 10! (9.85 x 109)
1.26 x 10% (1.12 x 10%)
3.01 x 10! (5.28 x 10%)




Algorithms 2023, 16, 350 14 of 16

a4
3.50

35
oo 3.14
£, 201 .82
c 2.64
i
@25
c
w
g 2
€
215
T
g 1

0.5

0

K=10 K=15 K=20 K=25 K=30

Figure 3. Performance rankings of PSP values with different K values.

6. Discussion

In this study, a zoning search-based multimodal multi-objective brain storm opti-
mization (ZS-MMBSO) is proposed. In the ZS-MMBSO, the ZS is employed to reduce the
complexity of MMOPs. A novel individual generation strategy is proposed to strengthen
the global exploration ability in the early stage and improve local exploitation in the late
stage. To demonstrate the effectiveness of the ZS-MMBSO, it is compared with five famous
MMOEAs on 22 test functions. The results demonstrate ZS_MMBSO is competitive in both
decision space and objective space. The effectiveness of the proposed strategy is analyzed
in Section 5.3.1 and Section 5.3.2. The experimental analysis results indicate that these
strategies can help the ZS-MMBSO solve MMOPs. Section 5.3.3 analyzed the sensitivity of
the cluster number K.
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