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Abstract: Algorithms optimized for high-performance computing, which ensure both speed and
accuracy, are crucial for real-time data analysis in heavy-ion physics experiments. The application of
neural networks and other machine learning methodologies, which are fast and have high accuracy,
in physics experiments has become increasingly popular over recent years. This paper introduces
a fast neural network package named ANN4FLES developed in C++, which has been optimized for
use on a high-performance computing cluster for the future Compressed Baryonic Matter (CBM)
experiment at the Facility for Antiproton and Ion Research (FAIR, Darmstadt, Germany). The use
of neural networks for classifying events during heavy-ion collisions in the CBM experiment is
under investigation. This paper provides a detailed description of the application of ANN4FLES in
identifying collisions where a quark–gluon plasma (QGP) was produced. The methodology detailed
here will be used in the development of a QGP trigger for event selection within the First Level
Event Selection (FLES) package for the CBM experiment. Fully-connected and convolutional neural
networks have been created for the identification of events containing QGP, which are simulated with
the Parton–Hadron–String Dynamics (PHSD) microscopic off-shell transport approach, for central Au
+ Au collisions at an energy of 31.2 A GeV. The results show that the convolutional neural network
outperforms the fully-connected networks and achieves over 95% accuracy on the testing dataset.

Keywords: artificial neural network; multi-layer perceptron; convolutional neural network; heavy-ion
experiment; compressed baryonic matter experiment; quark–gluon plasma

1. Introduction

The upcoming heavy-ion physics experiment on compressed baryonic matter (CBM) at
the Facility for Antiproton and Ion Research (FAIR) [1] is a fixed-target experiment designed
to operate at extraordinarily high interaction rates. The combination of high-intensity beams
with a high-rate detector system and a long beam time creates unparalleled conditions for
the study of quantum chromodynamics (QCD) matter at the highest net-baryon densities
achievable in a laboratory setting [2].

One of the main objectives of the CBM experiment is to explore the quark–gluon
plasma (QGP) and its thermodynamic properties. The thermodynamic properties of a QCD
system are expressed in terms of a (T, µB) phase diagram, where T is the temperature and
µB is the baryonic chemical potential. The exploration of this complex phase diagram is
still in its early stages. In particular, the high baryon-chemical potential region, marked by
(µB > 500 MeV), is of significant interest.

Engineered as a multipurpose tool, the CBM experiment will have the ability to detect
hadrons, electrons, and muons in both elementary nucleon and heavy-ion collisions in the
entire FAIR beam energy range. To execute high-precision, multi-differential measurements
of rare processes, the experiment is designed to run at event rates from 100 kHz up to
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10 MHz for several months annually [3]. Since it is challenging to generate a simple
trigger signal for weakly decaying particles like hyperons and D-mesons, each event must
be fully reconstructed. Furthermore, the decay topology needs to be identified online
through fast algorithms. These algorithms will operate on a high-performance computing
farm located at the GSI Green Cube [4]. At the planned CBM interaction rate of 10 MHz,
one expects a data output rate of up to 1 TB/s from the detector’s front-end electronics [5].
In order to optimize the storage cost, CBM requires a maximum archival rate of 3 GB/s.
Therefore, there is a need to reduce the data output rate by a factor of at least 300 [6]. Thus,
the experimental challenge is to identify and select (1/300 = 0.3%) rare events including
complex decays in real time and discard the rest. Early classification, i.e., before data
storage, will help with the efficient collection of important information from the collisions
and storage of only the essential information. For this task, the CBM experiment has
developed the First Level Event Selection (FLES) [7] package.

The FLES package of the CBM experiment can reconstruct the full event topology,
including the tracks of charged and short-lived particles. The FLES package consists of
several modules (Figure 1): a track finder, a track fitter, a particle finder, and a physics
analysis module. As input, the FLES package takes a simplified geometry of the tracking
detectors and the hits created by charged particles crossing the detectors. The tracks of
charged particles are reconstructed by the Cellular Automaton (CA) Track Finder. The
Kalman Filter (KF)-based track fitter is used for a precise estimation of the track parameters.
Short-lived particles, which decay before reaching the tracking detectors, can only be recon-
structed via their decay products. The KF Particle Finder, based on the KFParticle package,
is used to find and reconstruct the parameters of short-lived particles by combining tracks
of long-lived charged particles that have already been found. Finally, a quality assurance
module allows for the control of the reconstruction quality at every stage. The FLES pack-
age is platform- and operating-system-independent. It will be used in the CBM experiment
for online selection and offline analysis on a dedicated multi-core CPU/GPU farm.

FLES Package

FLES Package

CA Track Finder KF Track Fitter Event Builder

Event Selection Physics Analysis KF Particle Finder

Geometry

Input

Measurements

Monte Carlo

Output Histograms

Efficiency

Physics Analysis

ANN4FLES Classification Model QGP Classification

Figure 1. Block diagram of the FLES package with the tentative components of ANN4FLES, which
will be used in the trigger for event selection.

A neural network for classification based on the ANN4FLES package, which receives
information about reconstructed particles from the KF Particle Finder package, will be
integrated into the physics analysis module of the FLES package (shown in red in Figure 1)
and will then be used as a QGP trigger for event selection. Using the output from this
neural network, in combination with the results from the FLES physics analysis module,
the final event selection will be carried out within the FLES package.
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In this paper, the possibility of using neural networks for the identification of collisions,
more specifically collisions in which QGP was created, is investigated. Various models can
generally be used to simulate the QCD phase transition in heavy ions. In this work, the
simulation model used is a microscopic transport approach grounded in Parton–Hadron
String Dynamics (PHSD) [8]. The simulation process accounting for QGP proceeds as
follows: the collision volume is partitioned into grid cells. Inside each cell, collisions and
hadronization occur in a manner that depends on the local energy density. This density
is compared to a critical energy density threshold, which is equal to εc = 0.5 GeV/fm3 [9].
Thus, in events where QGP is produced, it does not form throughout the entire collision
volume. Instead, QGP arises only within specific cells where the local energy density
surpasses the critical threshold. Therefore, as the collision energy increases, the number of
these specific cells also grows, leading to an expansion in the volume of the QGP. Using
this model, a dataset of QGP-aware and QGP-unaware simulations was created for training
the neural networks.

2. Materials and Methods
2.1. Input Data

The dataset created with the PHSD model consists of 10,000 events, half of which
contain quark–gluon plasma information, referred to as (QGPon) and the other half without
quark–gluon plasma information, referred to as (QGPoff). The data were simulated for
central Au + Au collisions at a constant energy of 31.2 A GeV. This dataset is divided into
2 sets of 8000 and 2000 randomly selected events. The first set is used to train the neural
network, and the second set is used for testing.

On average, each simulated collision produces around 1600 particles, most of which
are quite rare. From all the particles recorded in the simulation, only 28 types of particles
appear at least once in every 1000 events and were chosen as input features for the neural-
network-based approaches. That way, it is possible to reduce the total size of the model
as well as discard particles that are relatively less common and are assumed to have less
impact on training. The remaining particles are produced too rarely to affect the trigger
performance and might even be a hindrance in the training of the models. From the raw
data for these 28 types of particles, the observables measured are the absolute value of
momentum |p|, inclination angle or angle made by the momentum of the particle with
respect to the positive direction of the beam axis θ, and azimuthal angle ϕ. This information
is then entered into an array in such a way that the information for a single particle
is split into 20 intervals for each of the observable, with the angle information divided
into equal intervals and the absolute momentum value divided into 20 logarithmically
spaced intervals. As most particles possess relatively small momentum, this enables the
array to be more densely populated. So, the total length of the array comes out to be
28× 20× 20× 20 for the complete 28 particles. Consequently, each event corresponds
to a total of 22,400 input values or features which are the 28 different particles with each
particle having a total of 8000 features from the 20 intervals for each of the |p|, θ, and φ bins.
This flattened structure will be used as an input for the fully-connected networks. This
can also be arranged as a 4D array, with dimensions 28× 20× 20× 20, and serves as the
input for the convolutional neural networks. The distribution of input information for the
average over simulated events is shown in Figure 2.

On average, for the simulated dataset, nQGP collisions produce slightly more particles
than QGP collisions. This can be seen clearly in the ϕ distribution (top right) in Figure 2.
It should also be noted, from the top left panel of Figure 2, that more heavy strange
baryons are created in QGP collisions. This strange enhancement is a signature of QGP
formation [10].
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Figure 2. Average input distribution from simulated collisions. The panels in anti-clockwise order
from the top left show the distribution by particle type, by the absolute value of momentum |p|, by
inclination angle θ and by azimuthal angle ϕ.

2.2. Neural Networks

Feedforward Neural Networks or MultiLayer Perceptrons (MLPs) [11] are among
the architectures used for classification in this study. Using MLP enables the construc-
tion of models that are easy to implement as well as to train. MLPs are very popular
models for supervised learning and are commonly used for classification and regression
tasks [12]. A supervised learning procedure means that the network builds a model based
on labeled data.

A MLP comprises three types of layers (input, hidden, and output) each with several
nonlinear computational units (also called neurons). The information flows from the input
layer to the output layer through the hidden layer(s) [13]. Typically neurons from one layer
are all connected to neurons in the adjacent fully-connected layers as shown in Figure 3.
The connection strengths are represented by weights in the computational process. The
weights can be thought of as the parameters of the function the neural network is trying
to approximate. The number of neurons in the input layer depends on the number of
predictor variables in the examples of the dataset, whereas the number of neurons in the
output layer is the same as the number of target or true value variables in the examples
of the dataset. It can also be the number of variables required to produce the output for
the required task. These multi-layer connections along with the activation function enable
such networks to approximate a large class of functions with a high degree based on the
number of hidden units [14].

The primary operation in MLPs can be represented as:

an = Wn · hn−1 + bn
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hn = FA(an)

where neurons in the n-th hidden layer are constructed from the neurons in the (n − 1)-th,
with 0-th layer being the input layer and the final layer being the output layer. Since every
neuron in one layer is used to create a single neuron of the next layer, the corresponding
weight matrix Wn would be nl−1 × nl where nl−1 and nl are the number of neurons
in the (n − 1)-th layer and n-th layer, respectively, see Figure 4. Here, bn is the bias
parameter for the n-th layer, which helps in learning an overall shift for the output and
would have the same size as the number of neurons in that layer. FA is the activation
function that usually serves the purpose of introducing non-linearity to the network and
increasing its representative capacity. hn and hn−1 are neurons in the n-th and (n − 1)-th
layers, respectively.

Uniform Initialize 
the weights w 

Predict output y 
using w, x Calculate Cost J

Update w 
using dw Find dJ/dw

Input Layer � �¹� Hidden Layer � �� Output Layer � �²

Forward Pass

Backward Pass

Figure 3. Structure of the fully-connected neural network used for QGP detection. The blue color is
the forward propagation of information, and the red color is the backpropagation of information.
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Figure 7. Structure of the convolutional neural network used for QGP detection. The blue color is the
forward propagation of information, and the red color is the backpropagation of information. Each of
the cubes can be represented as L ⇥ M ⇥ N matrix and follow the forward pass operation.
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Figure 4. Each neuron in a fully-connected layer in a MLP is constructed from all the neurons of the
previous layer. Each of the neurons in l-th layer, shown in purple, has connections or has input from
every neuron in the (l −1)-th layer, shown in green.

The number of fully-connected hidden layers or network depth can be increased in
an attempt to capture the optimal representational capacity of the network for this specific
type of input and task that should be performed. A comparison of the performance of MLP
models with different network depths for their architectures has been carried out by [15].
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The other type of network used is the Convolutional Neural Network (CNN) [16].
As compared to the MLPs explained above, these types of networks are more capable of
capturing position-dependent features of the data. CNNs are commonly used for grid-like
data in multi-dimensional space. One of the popularly used examples of this is the object
detection or image recognition models, which utilize the grid-like arrangement of pixels in
2D space with usually color information as the third dimension. A similar correspondence
can be drawn to such image data with the input data used in this analysis. The dataset
used in this study can be viewed as a grid-like arrangement of three observables, namely
(|p|), (θ), and (φ), of the most common particles in QGP and non-QGP events. The structure
of the convolutional neural network used for QGP detection is shown in Figure 5.

CNNs are primarily based on the mathematical operation of the convolution [17],
denoted by the operator ∗ and are generally defined as follows:

( f ∗ g)(x) =
∫ ∞

−∞
f (y)g(x− y)dy

where f (x) and g(x) are signals on the real line R for a 1D dataset. In general, as input data
are usually discrete signals/data in real-world applications, it is more suitable to use the
discrete version of the above equation:

( f ∗ g)[n] =
∞

∑
m=−∞

f [m]g[n−m]

It is important to note that in CNNs, although the operation is termed as convolution,
it is actually cross-correlation. Basically, in a CNN or for the cross-correlation operation,
there will not be a flip of the filter as is required in typical convolutions. However, except
for this flip, both operations are identical.

CNNs have a local connection between specific regions in the input data and the
corresponding units in the subsequent layer. In general, multiple filters can be applied to
create a set of feature maps. Through the learning process, the filters are trained to capture
abstract structural features of the data that help to match the desired output and reduce the
corresponding cost function [18]. This makes them very suitable for classification tasks, as
is the case for this analysis, but their applications extend to regression tasks as well.

With regards to practical implementation, there are also the benefits of parameter shar-
ing, which increase its efficiency, reduce the overall complexity of the network, and help
with overfitting issues. Some examples of possible applications of CNN in the field of parti-
cle physics include regression tasks such as Pileup Mitigation in Emiss

T reconstruction [19]
and classification tasks include quark–gluon jet discrimination [20].

In general, there can be three different types of convolution such as valid, same, and
full convolutions. It depends on the size of the output feature map compared to the input
feature map, such as if the output map is smaller (valid), same (same), or bigger (full) than
the input map.

An example of forward pass in convolutional layers is shown below, which shows the
application of valid convolution with 2× 2 kernel and 3× 3 input map.




a b c
d e f
g h i


 ∗

[
p q
r s

]
=

[
(a · p) + (b · q) + (d · r) + (e · s) (b · p) + (c · q) + (e · r) + ( f · s)
(d · p) + (e · q) + (g · r) + (h · s) (e · p) + ( f · q) + (h · r) + (i · s)

]

It is very common to see a max-pooling layer either right after a convolution layer
or after multiple ones. The main objective here is to extract the sharpest features of the
input data. It also helps with reducing the dimension of the output feature map and
computations. In the max-pooling layer, instead of matrix calculations in the convolution
operation above, the maximum element from the group of elements coinciding with the
elements of the filter size is selected.
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Figure 5. Structure of the convolutional neural network used for QGP detection. The blue color is the
forward propagation of information, and the red color is the backpropagation of information. Each of
the cubes can be represented as L×M× N matrix and follow the forward pass operation.

In the case of 3D convolution, there will also be analogous calculations in the third
dimension for both the kernel and input feature map such as shown in Figure 6a. This
also applies to max-pooling in 3D as shown in Figure 6b. In the case of same convolution,
as applied in this study, the input feature map will be padded with zeroes, called zero-
padding, before applying the convolution in order to obtain an output feature map of the
same dimension as the input feature map. Taking the above 2D convolution as an example
again, the corresponding convolution operation in matrix multiplication can be expressed
as follows:




0 0 0 0 0
0 a b c 0
0 d e f 0
0 g h i 0
0 0 0 0 0



∗
[

p q
r s

]
=




a · s a · r + b · s b · r + c · s c · r
a · q + d · s a · p + b · q + d · r + e · s b · p + c · q + e · r + f · s c · p + f · r
d · q + g · s d · p + e · q + g · r + h · s e · p + f · q + h · r + i · s f · p + i · r

g · q g · p + h · q h · p + i · q i · p




In the above convolution, a zero-padding of width 1 is used to achieve a same con-
volution output. The backpropagation for such a convolution operation can be found
using a similar convolution operation but changing the kernel and input depending on
whether the gradient with respect to the weight matrix or the input gradient is required.
The gradient with respect to the weight parameters is given as

∂L
∂W

= X ∗ ∂L
∂Y

which can be translated to the matrix form, when taking the 2D convolution without
padding for the sake of matrix size, as (here it is a valid convolution because the output
feature map is smaller than the input one):
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∂L
∂W

=

[
∂L
∂p

∂L
∂q

∂L
∂r

∂L
∂s

]

=




a b c
d e f
g h i


 ∗

[
∂L
∂y1

∂L
∂y2

∂L
∂y3

∂L
∂y4

]

and that for the input gradient the convolution in matrix form can be represented if the
kernel is rotated and zero-padding is added to the output so that there is proper matching
of the kernel elements and output elements in the order where it appeared in the forward
pass convolution.

∂L
∂I

=




∂L
∂a

∂L
∂b

∂L
∂c

∂L
∂d

∂L
∂e

∂L
∂ f

∂L
∂g

∂L
∂h

∂L
∂ci




=




0 0 0 0
0 ∂L

∂y1
∂L
∂y2

0
0 ∂L

∂y3
∂L
∂y4

0
0 0 0 0


 ∗

[
s r
q p

]

These equations involve computations of the gradients of the loss function L with
respect to the output feature map Y, the kernel W, and the input feature map X in the
backward pass of 2D convolution using explicit matrix multiplication. See Figure 5 for 3D
cube-like representation of the Y, W, and X matrices and the corresponding convolution
operations for the model used in this analysis.

2.3. Neural Network Models

For MLP networks (shown in Figure 7), a hidden layer with 64 fully-connected neu-
rons complemented by Leaky Rectified Linear Unit (LReLU) [21] activation function is
implemented. The number of neurons is determined empirically and remains constant
to allow comparison of FC neural networks with varying numbers of layers. LReLU is
chosen for its performance, which is akin to the widely used Rectified Linear Unit (ReLU)
activation function, but it circumvents issues related to dead neurons [22]. For the learning
process, the adaptive moment estimation (ADAM) [23] algorithm is used to optimize the
network parameters after each step. The ADAM algorithm updates exponential moving
averages of the gradient (mt) and the squared gradient (vt), which themselves are estimates
of the 1st moment (the mean) and the 2nd raw moment (the uncentered variance) of the
gradient with the hyper-parameters β1, β2, which control the exponential decay rates of
these moving averages with respective values 0.9 and 0.999. The values for α and ε are
0.001 and 10−8, respectively [23].

The architecture of the CNN (shown in Figure 8) is composed of two three-dimensional
convolutional layers, each succeeded by a max-pooling layer, and two sequentially arranged
fully-connected layers. The initial convolutional layer contains 32 filters of size 3× 3× 3,
with a zero-padding of 1× 1× 1 and a stride of 1× 1× 1, thus preserving the spatial
dimensions of the input. The convolution is then followed by a max-pooling operation with
a filter size of 2× 2× 2 and stride of 2× 2× 2, leading to a halving of the spatial dimensions.
The second convolutional layer consists of 64 filters of identical size and employs the same
padding and stride length as the preceding convolutional layer. It is subsequently followed
by a max-pooling layer with an identical filter size and stride length to the previous pooling
layer. The resulting 64× 5× 5× 5 matrix is then flattened and fed into the fully-connected
layers with parameters mirroring those utilized in the MLP architectures.
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Figure 6. (a): 3D Convolution. An illustration of the three-dimensional convolution operation
applied to the input layer using a single filter, composed of 28 kernels. This process transforms
the 28 input channels into a singular output channel. The quantity of output channels directly
corresponds to the number of filters used during the convolution. (b): 3D Pooling. An illustration of
the three-dimensional pooling operation. Despite retaining the original number of channels, the data
dimensions are halved. For instance, a 20× 20× 20 cube is reduced to a 10× 10× 10 cube through
this process.
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Figure 7. From left to right: structure of one-, two- and three-layer fully-connected neural networks
used for QGP detection.
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Flatten — 8000

FC (2, Softmax)

QGP on QGP off

FC (64, LReLU)

MaxPool3D (2x2x2)

Conv3D (64, 3x3x3, LReLU)

MaxPool3D (2x2x2)

Conv3D (32, 3x3x3, LReLU)

Input: 28 x 20x20x20

Figure 8. Structure of the convolutional neural network used for QGP detection. The network consists
of two sets of convolution and max-pooling layers, followed by two fully-connected layers. After
processing through the CNN, the final output matrix is fed into the fully-connected layers for further
analysis and classification.

3. Results

Figure 9 compares the results for the same models implemented in ANN4FLES (shown
in red) and PyTorch (shown in blue) for both training (represented by a dashed line) and
testing (represented by a solid line) datasets.

The fully-connected networks show a maximum accuracy of around 80% for testing
data for each of the three different depth configurations, namely 0, 1, and 2 hidden layers,
respectively. CNN, on the other hand, shows around 95% accuracy for its testing dataset.
Another observation is the accuracy of CNN for the testing dataset is greater as compared
to that of MLP by around 15%. This can be attributed to the grid-like ordering present
in the input data and as mentioned earlier CNNs are more specialized in learning such
grid-like data.

The comparative graphs also indicate that the mathematics used in the ANN4FLES
package implementation agrees correctly with PyTorch. The small discrepancies in accuracy
may be due to the use of different random seeds when initializing the weights in the
two implementations. Since these weights are randomized, reproducing identical results
is challenging.
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Thus, although small deviations in accuracy are present due to the inherent random-
ness, the overall correlation between ANN4FLES and PyTorch implementation results
reinforces the validity of ANN4FLES’ mathematical foundations. This comparison shows
that both ANN4FLES and PyTorch have an almost identical model for the classification task.
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Figure 9. Results for same models implemented in ANN4FLES (red) and PyTorch (blue) for both
training (dashed line) and testing (solid line) datasets. The accuracy for MLP models with 0 hidden
layer ((a), Training and testing accuracy for MLP without hidden layers), 1 hidden layer ((b), Training
and testing accuracy for MLP with 1 hidden layer) and 2 hidden layer ((c), Training and testing accu-
racy for MLP with 2 hidden layers) fits the training dataset well as the training accuracy reaches 100%
as compared to the testing dataset where the accuracy saturates around 80%. For CNN ((d), Training
and testing accuracy for CNN network) the generalization error is reduced compared to that of the
MLP models and shows it is more capable of learning the right features for classification.

4. Conclusions

The results of this study indicate that the neural network classifiers manage to identify
patterns in the raw data simulated using the transport model with and without a quark–
gluon plasma (QGP) formation model. Among the four architectures tested, the CNN
achieves the highest accuracy of approximately 95%. The potential of using neural network
classifiers to identify QGP formation in heavy-ion collisions was shown. Moving forward,
the ANN4FLES package will be integrated into the physics analysis module of the FLES
package and will be used as a QGP trigger for event selection for the CBM experiment.
Future work will continue to explore the performance of various neural network architec-
tures within the ANN4FLES package across different types of input data. Another objective
will be understanding the patterns these neural network classifiers learn and whether they
match with our physics models.
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