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Abstract: The verticillium fungus has become a widespread threat to olive fields around the world
in recent years. The accurate and early detection of the disease at scale could support solving the
problem. In this paper, we use the YOLO version 5 model to detect verticillium fungus in olive trees
using aerial RGB imagery captured by unmanned aerial vehicles. The aim of our paper is to compare
different architectures of the model and evaluate their performance on this task. The architectures are
evaluated at two different input sizes each through the most widely used metrics for object detection
and classification tasks (precision, recall, mAP@0.5 and mAP@0.5:0.95). Our results show that the
YOLOv5 algorithm is able to deliver good results in detecting olive trees and predicting their status,
with the different architectures having different strengths and weaknesses.

Keywords: YOLO; deep learning; verticillium; olive trees; precision agriculture

1. Introduction

The Verticillium fungus [1] is one of the largest and most widespread causes of
destruction in olive trees around the world. The fungus survives in soil and can transmit
through water [2,3]. Controlling it is extremely challenging since it has a wide selection of
alternative hosts and is able to initially manifest asymptomatically [4]. In order to protect
the crops, it is of the utmost importance to accurately detect and assess tree health at scale.

Recently, image data collection has been facilitated due to advances in technology,
such as the improvement of camera resolutions and Unmanned Aerial Vehicle (UAV)
technologies that enable automatic collection of data. Machine learning and especially
deep learning has made it possible to analyse and classify such data accurately [5]. YOLO
is one of the most used algorithms for such tasks. It has been used effectively in tasks
of tree damage detection from UAV imagery, both for parasite infestations [6] and for
environmental damage detection [7].

The timely detection of Verticillium infections is a complex and time intensive task, due
to the nature of the disease, that as previously stated, initially manifests asymptomatically.
Until recently, skilled labor was needed to determine whether infection has occurred.
Still, in cases where the wilt had manifested in areas not visible to the examiner, like
the top of the tree, infection could go undetected and thus lead to disease spreading. In
this context the objective of this paper is to explore the potential of the application of
the YOLO algorithm to detect Verticillium infections in olive trees. We have used RGB
images captured with UAVs from three fields in northern Greece during October and
November, when the symptoms of the disease are more pronounced. The images were
used to train three different architectures of the YOLO version 5 algorithm with promising
results. By employing UAVs, we attempted to eliminate cases where infections were not
visible to an examiner, and by using the YOLO algorithm we introduced an objective way
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of determining tree infection with high accuracy and without the need for time intensive
human labor.

The structure of this paper is organised as follows. Section 2 contains background
information on the Verticillium fungus and the YOLO algorithm. Section 3 lists the work
performed by other researchers on similar tasks, focusing on the application of YOLO
on UAV tree imagery data. Then, Section 4 describes the materials and methods used to
conduct the experiment as well as information on the evaluation processes that took place.
In Section 5, the results of this research effort are presented both regarding the produced
dataset and the YOLO model performance reached. Lastly, Section 6 contains discussion of
the results and future work that is to be performed as an extension of this present work,
concluding the paper.

2. Background
2.1. Verticillium Wilt

Verticillium wilt of olive tree is caused by the soil-borne fungus Verticillium dahliae
Kleb. It is currently considered the main soilborne disease threatening olive production
worldwide. This disease was first described in Italy in 1946 [1], followed by California [8]
and Greece [9]. Descriptions of disease occurrence have been reported from 1970 and
onwards in Turkey, France, Spain, Syria, Morocco, Jordan, Algeria, Israel, Iran, Malta,
and Australia [10–17], practically covering all olive production zones. This disease is one
of the most significant diseases of olives, causing significant economic damages every year,
not only in terms of yields, but also in terms of trees that die, thus permanently decreasing
production potential [3]. One more factor affecting financial sustainability is the fact that
fruits of V. dahliae-infected trees have poor organoleptic properties [18]. The fungus
survives in soil by means of microsclerotia, which serve as primary inoculation means.
Hyphae generated by microsclerotia germination penetrate the roots and grow toward the
xylem vessels, producing mycelium and conidia [19]. The typical symptoms of infestation
include early drop of asymptomatic, green leaves from individual twigs and branches that
eventually end to complete defoliation. However there are cases that apoplexy is rapidly
developing (acute form of the disease) [9,20,21]. The symptoms are more evident from late
fall to late spring. The blocking of xylem by fungus mycelia reduces the water flow and
leads to water stress [22,23], affecting amongst others, plant transpiration rates. Cultivation
techniques have contributed to fast dispersal of the disease worldwide. Infested plants
that are transported to new areas are the means of new infestations; increased water levels
in soil help microsclerotia migrate to new areas infecting new olive trees [2,3]. V. dahlia
biology includes specific traits that make control very difficult. The most important are
the numerous alternative hosts and the asymptomatic appearance of infested olive trees at
initiative stages of infection [4].

2.2. You Only Look Once (YOLO) Algorithm

The YOLO algorithm proposed in 2015 adopts an approach of framing object de-
tection as a regression problem to spatially separated bounding boxes and associated
class probabilities [24]. Essentially, classification and bounding box location calculation
happen simultaneously.

The algorithm begins by partitioning the image in an N × N grid, and then, for
each cell of the grid, it predicts bounding box locations, confidence of detection of an
object, and class probability for every class, thus having the entire object detection and
classification process happen in a single pass over the image.

YOLO as a project is being actively developed, with newer and more enhanced
versions coming out in the form of versions steadily throughout the last few years, with im-
provements made in the algorithm’s speed and performance [25] through the change in the
algorithm’s architecture or the addition of new capabilities. Each new release receives a new
version number; we are currently in the eighth official release of YOLO, YOLOv8; however,
in the case presented in this paper, YOLOv5 [26] is used. The reasoning behind the choice
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is that while newer versions of the YOLO algorithm have been developed, YOLOv5 has
been the most recent version preferred by researchers in related works in the literature,
as also shown in the next chapter.

The YOLO algorithm is especially powerful in the task of detecting olive tree infections
by the Verticillium wilt from UAV images, since, as shown in the literature [25], it has both
high inference speeds that allow for the classification of images in near real time and can
achieve high classification performance metrics. In fact, it is not an overstatement to say
that it is currently the only algorithm that offers such a balanced solution in terms of speed
and performance for the simultaneous object detection and classification task.

YOLOv5’s network design is comprised of a Backbone, a Neck and a Head, as de-
scribed by its authors. All of these are essentially sub-networks that, when assembled
together in the right order mentioned above, create the YOLOv5 model. The architecture
of YOLOv5 that is used in the current paper employs the New CSP-Darknet53 as the
backbone, the SPPF and the New CSP-PAN as the neck and the YOLO head layer as the
Head, as shown in Figure 1.

Figure 1. YOLO version 5 architecture.

The differences between the medium, small and nano architectures of YOLOv5 concern
the size of the network according to depth and width multipliers, the values of which are
shown in Table 1.

Table 1. Specifications of the different YOLOv5 architectures.

YOLOv5
Architecture Depth_Multiple Width_Multiple ResNet in

CSPNet
Convolution

Kernel

Medium 0.67 0.75 24 768
Small 0.33 0.50 12 512
Nano 0.33 0.25 12 256

The model can be used as is, without initialised weights, or with weights that have
been created through prior training on a given dataset.

3. Related Work

Unmanned aerial vehicles and machine learning have been a game changer in tree
image data collection and analysis that used to rely solely on satellites until recently. More



Algorithms 2023, 16, 343 4 of 13

specifically, in the case of tree image collection and analysis, it has been shown [5] that
the two technologies, when paired together, could provide a means to analyse data with
significantly lowered costs and at a much greater speed, thus enabling the accurate and
timely detection of damages, both caused by weather conditions or pests and disease.

The YOLO algorithm is ideal for tree image data detection and classification tasks
since it provides a unified solution for those two most common agricultural problems at
scale, with the added advantage of fast inference time; something that makes it suitable for
real-time applications.

The combination of YOLO on UAV image data has been tested on multiple scenarios,
with one of the most general of them being the simple detection of fruit trees regardless of
species in an orchard. In that research effort, the researchers deployed an improved version
of the YOLOv4 algorithm and managed to successfully build a fast and accurate model
with 1380 RGB UAV images of varying resolutions that were augmented through standard
augmentation methods (change in orientation, brightness and by adding noise) to a total of
3000 images. Their model achieved 98.21% mAP, and 0.936 f1-score for canopy detection,
showing that a model like that can be an effective way to address tree detection tasks [27].

Moving to more specific situations, the implementation of YOLO on UAV tree image
data has been used to detect only trees of a specific genus [28] or species [29–33]. In all of
those cases, the detection was not anymore a matter of just detecting trees but the task had
to be narrowed down to the correct type of tree; success was achieved, indicated by high
classification scores with multiple metrics (precision, recall, f1-score) in the above cases.
The parameters of the experiments are shown below, in Table 2.

Table 2. Research parameters of detecting specific trees with YOLO on UAV images.

Reference YOLO Version
Tested Number of Images UAV Flight Altitude

[28] YOLOv5 - 50 m
[29] YOLOv5 (s, m, x) 889 -
[30] YOLOv5 125 122 m
[31] YOLOv3 221 -

[32] Improved version of
YOLOv5 1558 -

[33] YOLOv3, v4, v5m 17,343 200 m

As seen from the table, the research efforts had a high level of experimental variance,
with the number of images used ranging from 125 [30] to 17,343 [33], the UAV flight
altitude ranging from 50 m [28] to 200 [33], while the versions of the YOLO algorithm used
were v3 [31,33], v4 [33], and v5 [28–30,32,33], with the last version having many different
architectural variants. Therefore, it can be concluded that YOLO is more than capable to
tackle problems of detecting very specific objects from UAV images, thus allowing finer
detection tasks to be undertaken.

Still, the two applications of the YOLO-UAV combination described above only show
the algorithm’s capacity to detect one class, whether it is trees in general or a specific species.
Research has been conducted to highlight the ability of YOLO to perform simultaneous
detection of multiple classes. In [6], researchers deployed the YOLO algorithm on UAV
images to detect predominantly spruce trees damaged by the bark beetle. In that case,
the classes that the algorithm was called to classify the trees into were four: green attack,
yellow attack, red attack and grey attack; essentially different levels of tree damage from the
bark beetle. YOLO versions 2, 3 and 4 were tested on 400 images taken 120 m from ground
level. There was significant class imbalance on the training set (green: 312, yellow: 622,
red: 76, grey: 188) and the validation set (green: 202, yellow: 400, red: 20, grey: 61) [6],
with the two sets having different class imbalances. Despite that, YOLOv4, along with
the author’s proposed method of image preprocessing, achieved impressive results with
0.95 precision, 0.76 recall and a mAP of 0.94.
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Another case study was that of the authors of [7], where the researchers applied the
YOLOv5 algorithm on a vast dataset of tree UAV image data derived from 40,697 individual
trees photographed during different times of the day, month and year to detect snow
damage on trees. The classes were healthy, damaged and dead, while there was a great class
imbalance: only 16% of the instances were damaged or dead. Nevertheless, the classification
evaluation metrics proved to be high, with the small caveat that the different classes had
significantly different results, with precision ranging from 0.759 to 0.546 and recall from
0.78 to 0.40 [7]—almost double.

Finally, in [34], research was conducted to spot trees affected by pine wilt nematode,
a fast spreading disease affecting forest areas. The disease starts from the top of the affected
tree and spreads to the bottom, making the use of UAVs ideal since they provide a top view,
allowing for an easy and early detection. In this research effort, 116,012 images were taken
at different heights ranging from 50 m to 300 m, and the YOLOv4 algorithm was applied
again with success (precision: 1, recall: 0.8969).

Based on the results of the research efforts mentioned above, we can determine that
the YOLO algorithm can be used effectively in damage or disease detection on trees that
belong to a particular species. It was also shown that the algorithm was capable of handling
class imbalance but at the same time it would be possible for one class to be more easily
detectable than another, sometimes with large differences.

4. Materials and Methods

Our areas of study were three olive fields, Fields A, E and K, located in Northern
Greece (Figure 2), photographed at midday between the 5th of October and the 4th of
November of 2022. The UAV used to gather the images was an Air Surveyor 4 equipped
with a SONY ILCE-6000 camera. The camera was running the 3.21 version of its software
and captured images at 8× 10−4-second exposure time with the use of SAMYANG AF
24 mm F2.8 lens. The produced RGB images where 6000 × 4000 pixels.

Figure 2. Locations of the olive fields.
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After the images were collected by the UAV, they were separated depending on
what field they originated from and images from the same field were stitched together
to create an orthomosaic. Every created field orthomosaic was then cut in tiles of size
3000 × 2000 (pixels) and was annotated with the use of the Labelimg package (Figure 3) to
create the data that were provided to the YOLO algorithm.

Figure 3. Annotating trees with bounding boxes through the Labelimg graphical interface.

The annotations were produced in the YOLO format, where for each image a text file
with the same name storing the results of the annotation was created, and in every text
file, each instance (tree) was represented as a line of text. The annotations had the form
of bounding rectangles, and were represented in text as follows: the first number in the
line conveyed the class to which the instance belonged, encoded as an integer, while the
next four numbers represented the coordinates of the bounding boxes, with the first two
being the centers of the bounding box in the X and Y axis divided by the height and width
of the image, respectively, and the last two being the width and height of the bounding box
divided by the height and width of the image, respectively.

The classes that every tree was classified into were two: either damaged or healthy.
The annotation process had two parts: initially, the bounding boxes were created by visually
determining the borders of each tree, while the second part—the class annotation—was
performed by experts based on what constitutes as damage caused by the verticillium
wilt—the damaged trees had a visibly altered color, the result of the withering effect that
the wilt has on olive tree leaves (Figure 4).

Figure 4. Comparison of a damaged tree (left) and a healthy one (right).
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The annotated images were randomly split into train, validation and test datasets.
The split happened so that the training dataset contained 60% of the data while validation
and testing contained 20% each. To avoid providing the algorithm with datasets of dif-
ferent percentages of damaged trees, and thus to ensure that the three fields were equally
represented in the splits, the splitting of the data was stratified to account for the field from
which the tiles originated.

The YOLOv5n, YOLOv5s and YOLOv5m models were applied on the dataset at
two different image scales, utilizing network weights created from pretraining on the
COCO128 dataset. The models were trained on a desktop computer equipped with an
Intel(R) Core(TM) i7-10700 CPU running at 2.90 GHz and 16 GB of RAM. The results were
evaluated with the metrics commonly used in evaluating YOLO model performance that
are described in detail below:

1. Precision:
TP

TP + FP
, (1)

2. Recall:
TP

TP + FN
, (2)

where TP = true positives, FP = false positives, FN = false negatives.
3. Mean Average Precision, or mAP, which is the mean of Average Precision (AP) values

calculated for a certain threshold (e.g., mAP [0.5]: mAP for threshold value of 0.5) or
range of thresholds (e.g., mAP [0.5:0.95]: mAP for threshold values of 0.5 up to 0.95
with a step of 0.05) for all classes:

mAP =
1
n ∑

n
APn (3)

with
APn =

1
101 ∑

r∈{0.0,...,1.0}
max
r̃≥r

PRC(r̃), (4)

where PRC is the precision–recall curve, r̃ is the 101-point interpolated recall value
and n is the class.

The thresholds above are referring to the minimum value of IoU (Intersection over
union) over which a classification is considered correct. The IoU is defined as the intersec-
tion area of the real bounding box and the predicted bounding box divided by the union
area of the two boxes.

5. Results
5.1. Data Collection and Dataset Processing

The three fields that were the subject of our research were photographed at different
times between the 5th of October and the 4th of November of 2022, shown in detail below,
in Figure 5.

In total, 429 images were captured out of which 137 were in Field A, 152 were in Field
E, and 140 where in Field K. The images had a high level of overlap and were captured in
sequence. These images created three orthomosaics, one for each field, and then cut into
tiles. The tiles created were 160 with almost every field having the same number of them
(Field A: 50, Field E: 55, Field K: 55).
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Figure 5. Date and time when images where captured.

The total number of annotation instances (trees or parts of trees) that were created
originally was 3038. However, the three fields varied greatly in terms of percentage of
damage inflicted by the verticillium wilt (Table 3).

Table 3. Number and percentage of damaged trees for every field.

Field A Field E Field K

Number and
percentage of healthy

instances
804 (92.94%) 927 (98.82%) 1102 (89.23%)

Number and
percentage of

damaged instances
61 (7.05%) 11 (1.17%) 133 (10.76%)

To tackle this problem, stratified shuffling, available through the Scikit-Learn Python
library [35] was employed during the train–test–validation split and its use resulted in
datasets of almost equal percentage of damaged trees (Table 4). The stratified shuffling
method creates datasets by sampling without replacement from the original dataset while
also taking into account the class of the samples so that every resulting dataset contains the
same distribution of classes. The created train, validation and test datasets contained 60%,
20% and 20% of the total images (train: 96 images, validation: 32 images, test: 32 images),
respectively.

Table 4. Number and percentage of damaged trees for every dataset after stratified splitting of data.

Train Validation Test

Number and
percentage of healthy

instances
1610 (92.36%) 591 (93.95%) 631 (94.74%)

Number and
percentage of

damaged instances
133 (7.63%) 38 (6.04%) 35 (5.25%)

5.2. Application of the YOLOv5 Algorithm

The training, validation and testing datasets whose creation was described above were
provided to three architectures of the YOLOv5 algorithm to train and make predictions
on. The architectures were YOLOv5n, YOLOv5s and YOLOv5m with the last letter of the
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model name referring to the size of the model architecture (nano, small, medium). Given
that the dataset had high class imbalance (see Table 4), in order to ensure that the frequency
of occurrence of the dominant class does not cause the model to optimise only for that class,
this paper weights the penalty for false predictions by multiplying the loss of each class by
the inverse frequency of that class. This technique is often adopted in classification tasks
with high class imbalance to ensure equal performance metrics between classes [36–39].
Additionally, the build-in method of --image-weights was employed that sampled images
by taking into account the proportion of each class’s instances present in each image, thus
downsampling images with high proportional content of the dominant class and vice versa.

The models were trained for 300 epochs (Table 5) with early stopping enabled with a
patience of 100 epochs. The patience mechanism restored the best weights of the models if
for 100 epochs no advancement was made in the model fitness metric. The model fitness
metric in this case was calculated as the weighted sum of the mAP [0.5] and mAP [0.5:0.95]
metrics, a combination widely used in the literature [40–42], as shown below:

model f itness =
[
0.0 0.0 0.1 0.9

]
Precision

Recall
mAP@0.5

mAP@0.5:0.95

. (5)

The model batch size used was 16, and the three models were trained with two
different model input sizes each, with one size being 1216 × 1216 and the other 640 × 640.
The model input translates to size of input image in pixels.

Table 5. Model training fitness statistics.

Architecture Model Input Size Max Fitness Epoch Max Model Fitness
Reached

Nano 640 × 640 282 0.577714
Nano 1216 × 1216 300 0.569750
Small 640 × 640 208 0.587946
Small 1216 × 1216 269 0.616960

Medium 640 × 640 263 0.640254
Medium 1216 × 1216 262 0.652587

The evaluation of the models was performed on the testing set that was held aside for
that purpose. The models’ performances are shown in Figure 6, where model YOLOv5m
with model input of size 640× 640 managed to outperform all other models in every metric
and for every class.

Figure 6. Model performances on testing data.

The speed statistics of the model application pipeline are shown below, in Table 6.
The three columns displayed are the preprocessing speed, which refers to the time it took
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for the model to transform the input image into a pytorch array and rescale its values,
the inference speed, that is, the time the model spent detecting bounding boxes within the
image and predicting the corresponding class, and, lastly, the NMS speed, showing the
time Non Max Suppression needed to be performed on the predicted bounding boxes of
the previous step to exclude overlapping boxes.

Table 6. Model application on the testing set speed statistics (in milliseconds, per image).

Architecture Model Input
Size

Preprocessing
Speed Inference Speed NMS Speed

Nano 640 × 640 1.0 94.7 5.9
Nano 1216 × 1216 1.0 77.5 2.5
Small 640 × 640 1.0 178.9 2.4
Small 1216 × 1216 1.0 168.0 1.5

Medium 640 × 640 1.3 328.8 1.5
Medium 1216 × 1216 1.0 318.0 2.0

Since depending on the hardware these speeds are bound to change, we should focus
on the relative difference between each model’s speed. The table showcases an interesting
detail: models using the reduced input size of 640 × 640 required longer to infer the
contents of the images. Also, we can see that as the model architecture increases in size,
inference time also increases, while the NMS time drops. This is an expected outcome, as
with larger models, more calculations must be performed, but since these calculations tend
to lead to better results, the NMS time is decreased as it is not needed as much to sort out
the erroneous predicted bounding boxes.

6. Discussion

All YOLO models tested were close in terms of performance, with model m640 outper-
forming them all by a small margin in most cases. A possible explanation as to why model
m640 managed to do that could be attricuted to a pattern shown in the results. We can
generally see that as input size decreases and model capacity increases, the performance
increases. This pattern indicates that for the task at hand, models with high capacity are
needed to capture the necessary information for a successful classification. This also works
in reverse: input of a smaller size reduces the needed model capacity. Few things should be
noted relative to the models’ performances: The first general pattern observed is that every
YOLO model consistently achieved lesser scores when it came to predicting the damaged
class. That could be something that can be attributed to the relatively few instances of that
class present in the training set. This is a known problem that affected previous research
efforts, even those that had datasets of considerable size. In [7], even though a total of
40,697 trees were used to train the model, the class that was the most underrepresented
consistently achieved the lowest scores. More precisely, instances of that class achieved
precision, recall, mAP@0.5 and mAP@0.5:0.95 of 0.546, 0.40, 0.45 and 0.24, respectively,
with the instances themselves making up 4% of the total cases. That was in contrast to
the metrics of the other classes that outperformed the metrics of the underrepresented one
by 12% to 38%. Nevertheless, the metrics reached in our case were satisfactory, especially
considering that the algorithm was trained with so few training images, and showed that
YOLOv5 models of varying architectures can be utilised to detect trees in UAV imagery and
classify their health status effectively. This was an indication that depending on the specific
dataset used, the same version of the YOLO algorithm can have quite different results.

The second pattern of the models’ performances that should be noted is that the
metrics of the damaged class were the most sensitive to the choice of model architecture,
with the highest variability in precision, recall, mAP@0.5 and mAP@0.5:0.95. This could be
due to the nature of the appearance of the damaged class that is more dependent on model
architecture to be detected correctly.
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YOLO and YOLO-based models have shown that they can be effectively used for
real-time agricultural applications. In [43], researchers came up with a model based on
the lightweight YOLO v4-tiny model that could detect seedling maise weeds in real time,
with the detection speed reaching 57.33 f/s. It is necessary to note that real-time applications
also depend on the available and used hardware, as inference times are highly dependent
on processing power. Especially in UAVs, the ability of the YOLO model to be lightweight
enough but at the same time capable of high quality inference is of critical importance, since
typically, hardware of higher processing power are of larger size and weight, requiring
larger and thus more expensive UAVs. With our model’s inference speed (77.5–328.8 ms),
we can deduce that the trained model can be used in real-time or near-real-time applications
in precision agriculture tasks.

As an extension of the current research effort, future work will include application of
the presented machine learning object detection and classification pipeline on thermal and
near-infrared images, with the final aim of early detection of the existence of Verticillium
wilt on olive trees, as well as a comparison of the current algorithm with other similar ones,
such as the Fast R-CNN algorithm.
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