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Abstract: Sudden air pollution accidents (explosions, fires, leaks, etc.) in chemical industry parks
may result in great harm to people’s lives, property, and the ecological environment. A gas tracking
network can monitor hazardous gas diffusion using traceability technology combined with sensors
distributed within the scope of a chemical industry park. Such systems can automatically locate the
source of pollutants in a timely manner and notify relevant departments to take major hazards into
their control. However, tracing the source of the leak in a large area is still a tough problem, especially
within an urban area. In this paper, the diffusion of 79 potential leaking sources with consideration of
different weather conditions and complex urban terrain is simulated by AERMOD. Only 61 sensors
are used to monitor the gas concentration within such a large scale. A fully connected network
trained with a hybrid strategy is proposed to trace the leaking source effectively and robustly. Our
proposed model reaches a final classification accuracy of 99.14%.

Keywords: source tracking; multi-class classification; AERMOD; fully connected network; hybrid
training strategy

1. Introduction

A chemical industrial park refers to a certain area with close connections, a mutual
supply of raw and auxiliary materials, common use of public works, unified control of
environmental pollution, and efficient logistics supporting services. The concentration
of industries in chemical parks, increasing numbers of enterprises, and the expansion of
production scales have brought about increasingly significant environmental problems [1,2],
such as regional complex air pollution.

This issue has recently been taken seriously. However, such source leaking accidents
are still happening every year even with the improvement of safety measures. Due to the
suddenness of explosions, it is important to find and locate the source of gas leakage as
soon as possible to protect the surrounding residents from danger. The source tracking
problem can be divided into a forward diffusion model and a data-based estimation
algorithm. As for the forward model, Gaussian diffusion models and CFD (computational
fluid dynamics) are both widely in use. Many researchers use CFD to take complex
terrains into consideration while ordinary Gaussian diffusion models cannot do such
things. However, in this paper, the Gaussian-based model AERMOD is chosen to simulate
the gas diffusion process for its advantages including high efficiency and being able to
handle building downwash. It is widely used in the world today for the modeling of the
emission and dispersion of pollutants. AERMOD is also recommended by both the U.S.
Environmental Protection Agency (EPA) and the ‘Technical Guidelines for Environmental
Impact Assessment Atmospheric Environment’ (HJ 2.2-2018) released by the Ministry of
Ecology and Environment of China. The effectiveness of AERMOD has been evaluated in
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many previous works [3–5]. Amoatey et al. [6] state that the performance of AERMOD
in the prediction of measured values is better than that of CALPUFF. In other words, the
performance of AERMOD agrees with the observed values. AERMOD performs well under
various terrain conditions. In a study by Macêdo et al. [7], AERMOD is used to model air
quality in Aracaju, Brazil, for the monitoring of ambient pollutant concentrations in the city.
Siahpour et al. [8] estimate the environmental pollutants emitted from a thermal power
plant’s chimney using AERMOD. Pandey et al. [9] improve the performance of AERMOD
by modifying AERMET outputs within a major U.S. airport located on a shoreline.

To track a leaking source, different models and methods are used in various situations.
Qiu et al. [10] localized the leak source in an obstacle-free area without the informa-
tion of source localization, using particle swarm optimization (PSO) [11] and expectation
maximization (EM) [12]. However, in most circumstances, the source distribution of the
industrial park is registered. Thus, under the condition of knowing the leakage source
distribution, the most traditional way to find the leaking source is traversing all source
leaking cases with a forward diffusion model and comparing the results with real sensor
data. However, this approach is computationally intensive.

The past decade has seen the rapid development of machine learning (ML) in many
fields. Artificial neural networks (ANNs) appear in many recent works for gas leaking
incidents. For example, Seung-Kuon Seo et al. [13] proposed an evacuation route system
using the structure of encoder–decoder to extract the geometric features of the affected
area. Denglong Ma and Zaoxiao Zhang discussed a series of prediction models based on
different MLAs (machine learning algorithms) including ANN, RBF, and SVM [14]. To cope
with the temporal feature of gas diffusion data, Selvaggio, André Zamith et al. [15] applied
a long short-term memory recurrent neural network to locate the leaking source with four
possible leaking points and 11 monitoring points in a 3-D region.

However, the methods mentioned above use the data without obstacles, which means
that practical situations are always much more complicated. There are shops and residential
buildings with different heights in or around the chemical parks. Buildings result in turbu-
lence and the distribution of the gas concentration will be distorted. Qiaoyi Xu et al. [16]
utilized a CFD simulation dataset with obstacles to achieve results that are closer to the real
diffusion mode. Shikuan Chen et al. [17] proposed a CNN method to find both the location
of a leaking source and wind direction with obstacles including the tanks in the park. Six
possible leaking sources and five possible wind directions are considered in their work.

Here, the main contributions of this paper are summarized as follows:

• A fully connected network is proposed, trained with the data generated by AER-
MOD, taking consideration of complex urban terrain, wind direction, wind speed,
temperature, total cloud cover, and low cloud cover.

• It is the first attempt to incorporate the self-attention mechanism into the leaking gas
source tracking problem. The self-attention module shows its strong fitting ability
when the input data are normalized.

• To the best of our knowledge, it is the first time a hybrid training strategy is proposed
with the combination of raw data and normalized data by manually adjusting the
parameters of the deep network.

• The effectiveness and generalizability of the proposed model is measured by utilizing
random perturbation, which aims to simulate the differences between the measured
values and the real ones.

2. Generation of Sensors Data by AERMOD

In this section, we introduce the basic features and principles of AERMOD. Some
figures which show the estimation of the concentration distribution will be displayed. Then,
some different data preprocessing methods will be introduced which can help the model
reach better predictions of the leaking source.
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2.1. Basic Features of AERMOD

The complete AERMOD modeling system consists of two preprocessors and the dif-
fusion model itself. AERMOD meteorological preprocessor (AERMET) is a stand-alone
program which provides the state of the surface and the mixed layer, and the vertical struc-
ture of the PBL (planetary boundary layer). The AERMOD mapping program (AERMAP)
is a stand-alone terrain preprocessor, which is used to both characterize the terrain and
generate receptor grids for AERMOD.

Different from an ordinary Gaussian diffusion model, AERMOD incorporates a build-
ing downwash algorithm called PRIME. In this way, AERMOD has the ability to handle
diffusion problems within complex terrain with fast inference speed. Its features are
summarized as follows:

• AERMOD is easy to be implemented on computing devices.
• AERMOD provides robust and reasonable concentration predictions under plenty

of circumstances.
• AERMOD can effectively handle gas diffusion problems with complex terrain such as

factories and buildings.

2.2. Basic Principle of AERMOD

AERMOD adopts an approach that defines two plume states, one taking building
downwash into consideration, and the other just corresponding to a plume that is not
influenced by building downwash. The contributions from these two states are combined
using a weighting factor as shown in Equation (1).

χTOTAL = γχPRIME + (1− γ)χAERMOD (1)

The weighting function, γ, is equal to 1.0 within the wake region, and beyond the
wake region is calculated as Equation (2):

γ = exp(
−(x− σxg)2

2σ2
xg

) exp(
−(y− σyg)2

2σ2
yg

) exp(
−(z− σzg)2

2σ2
zg

) (2)

where

x = downwind distance of receptor from upwind edge of the building;
y = lateral distance of receptor from building centerline;
z = receptor height above stack base, including terrain and flagpole;
σxg = maximum of 15R (the wake length scale and a function of the building dimensions)
and the distance to transition from wake to ambient turbulence;
σyg = lateral distance from building centerline to lateral edge of the wake at receptor location;
σzg = height of the wake at the receptor location.

2.3. Introduction of Data

The modeling scope is a region of 38 km × 18 km which includes all the four factories
and all the sensors. A total of 79 sources and 61 sensors are irregularly distributed in this
area. The 79 potential sources are detected manually through on-the-spot investigation and
the locations of the 61 sensors have been decided by the relevant departments. A random
perturbation acting on the input data is experimented with to simulate the differences
between the measured values and the real ones. Due to the short distances between the four
factories there is some trouble in predicting the leaking sources, the key region occupies an
area of 2 km × 2 km. In this simulation, the assumption is made as follows:

• The weather conditions and the state of the leaking source remains unchanged.
• The wind speed is set to more than 0.5 m/s since AERMOD cannot handle the situation

that the wind speed is less than 0.5 m/s.
• There is no more than one leakage source leaking during the forward diffusion process.



Algorithms 2023, 16, 342 4 of 16

Figure 1 shows a schematic diagram of the key region. The light blue points represent
the potential leaking sources and tracking these sources is the main task of this issue. The
small yellow ‘+‘s represent the sensors distributed in the region. Different from some
previous studies, the distribution of the sensors is tailored to the needs of urban residents’
living quality rather than to making monitoring data fit more easily. The buildings circled
by a dark blue bounding box are taken into consideration during the modeling procedure,
including their widths, lengths, and heights.

Figure 1. Schematic diagram of the key region. The small yellow ‘+‘s indicate the locations of the
sensors. The light blue points represent the potential leaking sources.

The input of AERMOD contains geographic data (digital elevation model), meteorolog-
ical data, and pollution source data. Several atmospheric features including wind direction,
wind speed, temperature, total cloud cover, and low cloud cover help to model the diffusion
procedure in AERMOD. The unit of wind direction is degrees, ranging from 10 degrees
to 360 degrees, with intervals of 10. The unit of wind speed is meter per second, ranging
from 0.5 to 13 m/s (strong breeze), with intervals of 0.5. The unit of temperature is degrees
Celsius, ranging from −5 to 45 ◦C, with intervals of 5. Total cloud cover and low cloud
cover are treated as constant, with values of 7 and 3, respectively. There are 79 potential
leaking sources and 61 sensors in the region of diffusion simulation. Thus, in total, the data
table contains 36 (wind directions) × 26 (wind speeds) × 11 (temperature) = 10,296 rows
and 79 (number of potential leaking sources) × 61 (number of sensors) = 4819 columns.
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Figure 2 is an example of the diffusion result when one of the 79 sources is leaking.
The gas concentration is represented in the form of contour lines. The bold character ‘X’
represents the position of the highest concentration.

Figure 2. An example of a diffusion result. The warmer the region’s color, the higher the gas concentration.

2.4. Preprocessing of Data

Several widely used preprocessing methods are discussed in this paper. After receiving
the raw data, the preprocessing steps are as follows:

1. Data normalization is widely used in related work. The min–max scale is adopted to
reduce the numerical differences between the data. The formula is as below:

CNORMALIZED =
CSENSOR − CMIN

CMAX − CMIN
(3)

where CNORM represents the normalized concentration, CSENSOR represents the con-
centration received by the sensors, and CMIN and CMAX are the minimum and maxi-
mum values of the concentration among the raw data.

2. After random shuffling, the dataset is randomly divided into two parts, a training
set and test set, in a ratio of 5:1. The training set is used to train the fully connected
model. Then, the model is evaluated by the test set to verify its effectiveness.

3. Since the source leaking speed is fixed during the forward modeling procedure, data
augmentation is adopted to make the dataset larger and more robust. The data are
mixed up and down, ranging from −20 to 20%, with intervals of 1%. This method is
not applied to the testing process.
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4. To ensure the robustness of the forward model, data perturbation is applied to the
test set. A random perturbation from −1 to 1% is added to simulate the inaccurate
measurement of the sensors. This method is only applied to the model testing process.

3. A Large-Region Sensor-Based Source Tracking Model Based on a Fully
Connected Network
3.1. Main Structure

The input of the source tracking model is the concentration data of the 61 sensors
distributed in the modeling region. In this section, every part of the model will be described
in detail.

The proposed fully connected network aims to find out the position of the leaking
sources after an accident has happened. It is not necessary to treat this as a regression
problem because the positions of every potential leaking source are known for sure. Thus,
a classification model can handle this problem well. At present, there are two main kinds
of classification models in neural networks, the FCN (fully connected network) and CNN
(convolutional neural network). CNNs shows a great ability to handle spatial information
such as image classification. However, taking 61 sensors’ concentration information as
61 points of data distributed irregularly in such a large region (2 km × 2 km) makes this
concentration image too sparse. The advantage of CNNs being able to extract spatial
features is gone. In this paper, an FCN model is trained to learn the relations among
the 61 pieces of concentration data and track the leaking source.

In this paper, the proposed FCN model contains several parts: a fully connected
layer, drop out layer, and activation function layer. The structure of the model is shown in
Figure 3.

Figure 3. The overall structure of the proposed model with 61 sensors’ gas concentration data as the
input and 79-class identification as the output.

The input of the 61 sensors’ data is fed into a drop out layer [18]. The dropout layer
deactivates the gas concentration of a certain sensor with a fixed probability. Dropout is
a technique for improving neural networks by reducing overfitting. Implemented in this
model, dropout can not only improve the performance of model but naturally simulate the
situation of sensor failure. Then, FC layer 1, FC layer 2, FC layer 3, and FC layer 4 are four
fully connected layers with 61 × 1024 neurons, 1024 × 2048 neurons, 2048 × 256 neurons,
and 256 × 79 neurons.

All the fully connected layers are followed by the activation function exponential
linear unit, ELU [19], after comparing with other functions such as ReLu [20], SoftPlus [21],
and sigmoid [22]. The expression of ELU with 0 < α is as follows:

f (x) =

{
x if x > 0
α(exp(x)− 1) if x ≤ 0

(4)

The ELU hyperparameter α controls the value to which an ELU saturates for negative
net inputs.
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Cross-entropy loss [23], balanced cross-entropy loss, and focal loss [24] were evaluated
to choose one as the loss function of our model. They are all widely used in deep learning
for multi-class classification. Their expressions are as follows:

H(p, q) = −
n

∑
i=1

p(xi)log(q(xi)) (5)

The parameter p represents the target distribution and the parameter q represents
the approximation of the target distribution. In a word, the cross-entropy loss shows the
difference of distribution between the outputs and the ground truth. The key of balanced
cross-entropy loss is adding weight coefficients for each category separately on top of the
classical cross-entropy loss. The focal loss is defined as:

FL(Pt) = −αt(1− pt)
γlog(pt) (6)

where αt and γ are both adjustable hyper-parameters. We set αt = 0.25 and γ = 2 as default.
pt is a parameter revealing the quality of a certain category classification. The closer the
value of this parameter is to 1, the better the classification result is.

As for the optimizer, Adam is chosen due to its better performance in convergence
compared with the other two methods, SGD, and Adamax.

3.2. Self-Attention Module

The conception of self-attention is carried out by a popular model, transformer [25].
Although transformer is an outstanding model which was first used in translation, the
powerful performance of the self-attention module allows it to be applied to other fields as
well. The module can be visualized as shown in Figure 4.

Figure 4. The basic components of the self-attention module.

Where x represents the raw inputs, and W Q, WK , WV are the weight matrices of query,
key, and value, respectively. Their relations are written as below:

q = xW Q k = xWK v = xWV (7)

Attention(q, k) = so f tmax(
qkT
√

dk
) (8)

output = Attention(q, k)v (9)
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Self-attention in this task aims to build an inner relation among the concentration
data from the 61 sensors. It seems like integrating information from various sensors and
paying more attention to some significant sensors will help to improve the performance.
The multi-head mechanism is also implemented, as shown in Figure 5, to further improve
the module’s performance:

Figure 5. Multi-head mechanism in self-attention module to focus on different feature spaces.

In brief, this structural design allows each attention head to learn features through
(qi, ki, vi) mapping to different feature spaces, focusing on various potential leaking
sources, and, thus, balancing the biases that may arise from the single-head attention
mechanism. The visualization of our main structure with a self-attention module is shown
in Figure 6.

Figure 6. Main structure with self-attention module.

3.3. Another Popular Model for Comparison

Support vector machine (SVM) is a widely used classical model for classification in
machine learning. The basic model of SVM is the linear classifier, with the largest interval
defined in the feature space. SVM also includes kernel techniques, which makes it a
nonlinear classifier. Its basic idea is to find the separation hyperplane that can correctly
partition the data and has the largest geometric interval. The decision function of this
multi-class classification method is written as follows:

f (x) = arg max
x∈{1,...,M}

[wT
mφ(x) + bm] (10)

where M represents the total number of classes that need to be classified and m represents
the mth class. All of the bold characters are vectors.
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3.4. Evaluation Indicators

The evaluation indicators used for classification in this paper are Accuracy, Precision,
Recall, and F1-score. Not only the whole dataset but every single potential leaking source
is evaluated. The definitions of the indicators are as follows:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(11)

Precision =
TP

(TP + FP)
(12)

Recall =
TP

(TP + FN)
(13)

F1-score =
2 · Precision · Recall
(Precision + Recall)

(14)

where TP represents true positive, TN represents true negative, FP represents false positive,
and FN represents false negative. In summary, accuracy is the ratio of the correctly
predicted sample size to the total sample size, precision refers to the ratio of the number of
correctly predicted positive samples to the number of all predicted positive samples, recall
means the ratio of the correctly predicted number of positive samples to the total number
of positive samples, and the F1-score is equivalent to the harmonic average of precision
and recall.

4. Experiments and Discussion
4.1. Environment and Platform

The experiments were all run on the deep learning platform Pytorch 1.10.2 in the
environment of Python 3.6.6, CUDA V10.2.89, cudnn 7.6.5 and training with an RTX
2080Ti. The random seed of each environment package was set to a fixed value and
torch.backends.cudnn.deterministic(a common flag for CUDA convolution operations in
GPU) was set to true to ensure the stable reproduction of the model.

4.2. Experiment of Sensor Failure and Model Robustness

In the real world, sensors can lose their ability to detect gas concentration for a variety
of reasons. The model may produce bad results when some of the input concentrations are
lost if such a condition is not considered. Thus, to simulate sensor failure, three kinds of
dropout are tested to find the most suitable one:

1. Only set a dropout layer before the first fully connected layer and keep the layer active
while testing.

2. Set a dropout layer before every fully connected layer but only keep the first one
active while testing.

3. Model without any dropout is set as a control group.

For a more intuitive observation, the probability of sensor failure is uniformly set to
10%. The accuracy of the scenarios above are shown in Table 1:

Table 1. The training accuracy and test accuracy of models when sensors have a probability of 10%
for failure.

Model Train Acc. Test Acc.

Only dropout the input 97.34% 96.62%
Dropout before every FC layer 90.28% 93.03%

Without dropout layers 99.98% 98.86%
All the models above are trained for 3000 epochs.
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Under the circumstances that 10% of the sensors fail, due to the high effectiveness and
strong fitting ability of our proposed model, the classification accuracy on the test set is
still above 96%, which is enough for ordinary leaking source tracking. Setting a dropout
layer before every fully connected layer can enhance the generalization performance of the
model, which makes the test accuracy even higher than the train accuracy. However, the
final result is still worse than that of the model only dropping out the input data.

Actually, most of the time the probability of sensor failure will not be as high as 10%.
It is rare to have three sensors fail at the same time, which means the probability of sensor
failure in this issue is less than 5%, for there are 79 potential leaking sources in total. A
further test was carried out and it was found that with 5% of sensors failing, the proposed
model achieves an accuracy of 97.41%.

For further verifying the robustness, a random data noise from −1 to 1% is added to
each sensor’s concentration separately. This data perturbation only leads to an accuracy
decline of 1.75% compared with the original model. The model’s prediction accuracy is still
greater than 97%.

4.3. Analysis of the Performance of Normalization

Figure 7 shows the accuracy curve for the test set after 3000 epochs of training. The
fully connected model with input data scaled and batchnorm layers reaches a final accuracy
of 95.82%, while the model which does not utilize those methods performs better, with
a final accuracy of 98.86%. Additionally, according to the experiment, under the same
conditions, normalizing the input data makes the convergence speed of the model slower.
Even if 1000 more training epochs are given, the accuracy curve on the left side will not
continue to increase, which means there is no room for improvement. As for the attention-
based fully connected model, the situation is approximately the same with or without
data normalization. However, with the input data normalized, the attention-based model
improves a lot compared to the model without attention. The attention module is indeed
more suitable for catching the inner relationship of the normalized data. There remains an
advantage of data normalization: it makes the training curve smoother and more stable.

Figure 7. Accuracy curve with/without normalization and batchnorm.
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Thus, to only keep the most relevant data, a hybrid method is proposed in this paper.
The big difference among concentrations in the raw data lets the network easily find a
certain path to decrease the loss fast. Then, normalization helps the model to search for local
optimal solutions smoothly and precisely. The normalization methods will be implemented
right after 1000 epochs training without normalization. As a bridge connecting the two
training stages, a 100 step warm-up learning rate is proposed and is visualized in Figure 8a.

Figure 8. Our hybrid strategy.

The learning rate ranges from 0 to 8× 10−4 letting parameters suitable for the new
normalized input. One significant thing is preventing the final output of the network from
being disturbed by the normalized input since the original aim of the first training stage
is fitting the raw data. To continue fitting normalized data, all the weight parameters
(bias parameters are not included) of the first layer are normalized synchronously but
in an opposite direction such as in Figure 9. Utilizing this hybrid training strategy, the
classification accuracy improves from 98.86 to 99.14%. When the prediction accuracy of
the model reaches a relatively high value, further improvement becomes more and more
difficult, as the prediction accuracy of the sources easily predicted is close to 100%. After
applying our proposed hybrid training strategy, although the overall accuracy has only
improved by 0.28%, this 0.28% means a big step for sources that were previously difficult
to classify. For sources no. 40 and no. 41, the accuracy increased from 92% to 96%. For
sources no. 52 and no. 53, the accuracy increased from 88% to 92%.

Figure 9. How the output is kept unchanged.

A warm-up strategy can also solve the problem of a sudden increase in the first layer
parameters. For further refining the normalization strategy by clipping large values in the
data, the distribution of them is summarized in Figure 10.
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Figure 10. Histogram of large concentrations.

This histogram reveals that there are 3 datapoints greater than 30,000 µg/m3,
57 datapoints greater than 25,000 µg/m3, etc. Under the consideration that scaling with
the maximum data directly may result in other data tending to zero, a filtering operation is
adopted to reduce the variance of the data by clipping the high values. The result is that
the more data that are clipped, the worse the performance of the model.

4.4. Analysis of the Performance of the Self-Attention Module and SVM

As a universal module, the self-attention mechanism and SVM are widely used in
various research fields. We also evaluate their performance in both situations with and
without sensor failure, as shown in Table 2.

Table 2. The test accuracy of three models with and without sensor failure.

Model Without Sensor Failure
(Acc.)

With 10% Sensor Failure
(Acc.)

SVM 28.32% /
Attention-based model 98.67% 94.93%
Fully connected model 98.86% 96.62%

All the models above are trained for 3000 epochs.

SVM only achieves an accuracy of 28.32%, which means it is really hard for SVM
to track the leaking source in this case. It confuses SVM classifying 79 potential leaking
sources in different weather conditions with only 61 sensors’ concentration data as input.
These are the conclusions from several experiments:

1. The 79 sources are divided into four groups since there are four chemical parks
macroscopically. Then, we use the same 61 sensors’ data to train a linear-SVM model
tracking from which chemical park the gas is leaking. It achieves an accuracy of 99+%
on the test set.

2. The accuracy of RBF-SVM is 2% lower than that of linear-SVM using the same data
for training and testing.

3. With the same configuration, the linear-SVM reaches a training accuracy of 95.9%
while its test accuracy is 28.5% tracking 79 sources separately.

The attention-based fully connected model finally reaches an accuracy of 98.67% while
the model without attention reaches 98.86%, which is 0.19% higher. On the surface there
is little gap between the performances of the two models with and without attention,
the attention-based model uses more parameters but achieves a worse result. Under
the situation that some sensors fail, this gap becomes wider, up to 1.69%. However,
the introduction of the attention mechanism aims to solve the sensor failure problem
through finding the inner relationship among the sensors’ data and recovering the original
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concentration distribution. However, it fails to complete the work obviously. This may
result from the concentration data not being suitable for normalization. The data from some
popular research fields, such as CV and NLP, in which the attention mechanism works,
are always normalized before feeding them into the model. As shown in Figure 7, after
applying data normalization the models perform worse.

4.5. Effectiveness of Data Augmentation

Data augmentation is a popular method to improve model performance. When there
is less data, it is significant to use data augmentation, increasing the amount of data to
prevent overfitting. When the amount of data is large, there is also a need to rely on data
enhancement to increase the diversity, so as to further improve the prediction accuracy and
robustness of the model outside the training sets. In this experiment, during training, all of
the data are copied and scaled within the selected range, floating up or down by 20% with
an interval of 1%. This method enlarges the datasets by a factor of 41, but at the same time,
it extends the training time by 40 times. After 1000 epochs of training, the classification
accuracy improves by 0.19% compared to before.

4.6. Focus on the Hard-to-Track Sources

As mentioned above, there are four indicators used to evaluate the model. They are
mainly utilized to figure out which leaking source is tough to track.

Table 3 shows the potential leaking sources whose indicator values are less than
0.99. Sources with indicator values less than 0.95 are marked by ‘-’. In large-scale data
classification, precision and recall tend to be mutually restrictive, which means in most
cases, if precision is high, recall will be low, and if recall is high, precision will be low.
However, from the table above, the values of precision, recall, and F1-score are close to each
other. This means the model learns well from the datasets and it can balance the precision
and recall.

Thus, to improve the overall performance of classifying the tough classes above,
different weights are set for them when the cross-entropy loss is calculated. The model
tends to fit classes with higher weights theoretically. However, implementing balanced
cross-entropy loss makes all classes indicator values decrease. Its poor performance may
result from setting a priori weights, which is clumsy for such a complex model. Focal
loss can dynamically adjust weight coefficients. Via experiments, it can exactly further
improve the overall performance of the model from 98.86 to 98.93%. The corresponding
indicators for each bad-performance class also improve, as shown in Table 4. Although
some indicators decrease compared to Table 3, there are still more of them that improve
from a global perspective.

Table 3. The indicators of some potential sources with indicator values less than 0.99. Sources with
indicator values less than 0.95 are marked by ‘-’.

Source No. Precision Recall F1-score

25 0.97 0.97 0.97
27 0.96 0.97 0.97
38 0.97 0.97 0.97
39 0.98 0.98 0.98
40- 0.92 0.93 0.93
41- 0.93 0.92 0.92
42 0.98 0.98 0.98
44 0.96 0.97 0.96
46 0.97 0.96 0.97
47 0.97 0.97 0.97
50 0.97 0.97 0.97
51 0.97 0.97 0.97
52- 0.88 0.89 0.89
53- 0.88 0.89 0.88
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Table 4. Performance after applying focal loss as the loss function. Sources with indicator values less
than 0.95 are marked by ‘-’.

Source No. Precision Recall F1-score

25 0.97 0.97 0.97
27 0.97 (+0.01) 0.97 0.97
38 0.97 0.97 0.97
39 0.98 0.98 0.98
40- 0.93 (+0.01) 0.92 (−0.01) 0.93
41- 0.92 (−0.01) 0.93 (+0.01) 0.93 (+0.01)
42 0.98 0.98 0.98
44 0.97 (+0.01) 0.97 0.97 (+0.01)
46 0.97 0.97 (+0.01) 0.97
47 0.96 (−0.01) 0.97 0.97
50 0.98 (+0.01) 0.97 0.97
51 0.96 (−0.01) 0.97 0.97
52- 0.89 (+0.01) 0.90 (+0.01) 0.89
53- 0.89 (+0.01) 0.89 0.89 (+0.01)

5. Conclusions

This paper proposed a sensor-based fully connected model trained with a hybrid
strategy to track a leaking source in chemical parks within an urban region of 2 km × 2 km.
The forward gas diffusion model is AERMOD with complex terrain simulated. It takes
many weather parameters into consideration such as varying wind direction, wind speed,
temperature, and fixed total cloud cover and low cloud cover. However, the real atmo-
spheric situation is much more complex than the simulation, so there is still a long way to
go in handling the diffusion process.

Utilizing a refined hybrid training strategy, the proposed source tracking model
achieves a final accuracy of 99.14% classifying 79 dispersed sources using only 61 gas
concentrations as input. Our proposed model performs well without prior information
such as wind speed and direction. Except for two sources, whose tracking accuracy is 91%
and 92%, the others are all above 95%, as shown in Figure 11. Figure 12 shows the average
and standard deviation of the accuracy, recall, and F1-score achieved by our best model,
the model with 10% sensor failure, and the model with ±1% random perturbation. The
definition of standard deviation is shown below:

Stdev =

√
∑n

i=1(Acci − Acc)2

n− 1
(15)

Figure 11. The proportion of sources whose classification accuracy were greater than 90%, 95%, 97%,
and 99% under three different conditions.
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Figure 12. The average and standard deviation of the accuracy, recall, F1-score under three
different conditions.

Even with a 10% sensor failure probability or ±1% random perturbation, the corre-
sponding results still show the effectiveness and robustness of our proposed model.

Although the source release rate is fixed in our dataset, with the introduction of the
normalization method in the second training stage, the proposed model is able to handle
this issue to some extent. Once a gas leakage event occurs, relevant departments can rapidly
and accurately track the location of the leaking source through this model.
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