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Abstract: In contemporary wireless communication networks, base stations are organized into
coordinated clusters (called cells) to jointly serve the users. However, such fixed systems are plagued
by the so-called cell-edge problem: near the boundaries, the interference between neighboring
clusters can result in very poor interference-to-signal power ratios. To achieve a high-quality service,
it is an important objective to minimize the sum of these ratios over the cells. The most common
approach to solving this minimization problem is arguably the spectral clustering method. In this
paper, we propose a new clustering approach, which is deterministic and computationally much
less demanding than current methods. Simulating on synthetic instances indicates that our methods
typically provide higher quality solutions than earlier methods.

Keywords: next-generation cellular system; network decomposition; cell-edge problem; spectral
clustering; k-means clustering

MSC: 05C70; 05C85; 05C90; 68W25; 94C15

1. Introduction

One of the most fundamental pillars of modern life is telecommunication in general,
and wireless telecommunication networks in particular. These serve literally billions of
requests every week, and not only for phones, but also devices from the Internet of Things
(IoT). In this paper, we refer to all these different units as users.

The first wireless networks were constructed around 1970, and were envisaged to be
built from small cells, each cell served by one base station (BS for short), so the network was
decomposed into smaller parts that served the users independently from each other. (At
this time the users were bulky mobile phones; see, for example [1]). While this idea is simple,
the design is afflicted by the well-known cell-edge problem: users located in the overlapping
area of two cells suffer from strong interference from the neighboring BSs. This problem
has created a considerable challenge for service providers.

In the current coordinated multipoint (CoMP) transmission technology, several (typically
physically close) base stations are organized, permanently or dynamically, into one cell,
and the BSs in the same cell jointly serve all the users in this cell. The goal of this approach
is again to decompose a large-scale network into smaller parts: the constructed clusters
(again called cells) have less engineering complexity than the original network and they
can operate in parallel.

Currently, considering the enormous number of base stations and users, and in spite of
the multi-cell approach, the cell-edge problem stubbornly remains with us (see [2]). For 5G
networks, the cell-edge problem can become even more pronounced because more users
fall into the cell-edge area as the size of each cell shrinks (see [3]).

Mathematically speaking, minimizing the cell-edge problem belongs to the family of
clustering problems: given a set of (not necessarily) homogeneous objects, we want to divide
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the objects into pairwise disjoint classes while optimizing some “measure” of the resulting
set of classes.

Myriads of theoretical and practical problems belong to the clustering framework.
They come from classical combinatorial optimization problems to printed circuit board
designs, from VLSI CAD applications to distributing tasks among processors for supercom-
puting processes, and from pattern recognition to computer vision problems and image
retrieval. The computational complexity of these problems varies from easy to very hard.
For example, the minimum number of edges whose deletion places two predefined vertices
into separate components in a simple graph (minimum cut problem [4]) can be computed
in polynomial time. The situation changes dramatically if we want to separate three
predefined vertices (the multiway cut problem). In the general case, this generalization of
the problem was shown to be NP-hard [5], while the problem becomes fixed parameter
tractable if the input is restricted to planar graphs [5,6].

Probably, the very first engineering problem of a clustering nature was the following:
we want to place a complicated electronic design on printed circuit boards, where each
board can contain at most k components and where the electronic connections among the
boards are expensive compared to connections inside a board ([7], see also [8]). It can be
seen that in such a real-world problem, an upper bound on the possible size of the clusters
is given too. While the notion of NP-completeness was being developed at the time, the
authors correctly placed the problem into the NP-hard class.

The majority of the clustering problems are NP-hard, so there is no chance to solve
them exactly. Sometimes there are known performance guarantees on the solution; for
example, in [5], there is a polynomial time algorithm with a 2(1− 1/k) approximation ratio
for the multiway-cut problem, while in [9], a polynomial time (1.5− 1/k) approximation
algorithm was developed for the same problem.

The interference minimization problem in wireless networks is a known NP-hard
problem, and so far a constant factor approximation algorithm has not been found. In the
literature, there are several approaches to solve this problem, see [1,10–14]. Because of the
intractability of the problem, all of these approaches are heuristic in nature. In practice,
these methods still do not satisfactorily solve the cell-edge problem [2].

Essentially, all of these method use one of the general clustering methods: the kernel
k-means or the spectral clustering method. The former method was developed in [15,16].
However, as was proved in [17], the two approaches are essentially equivalent with each
other (for a survey on these methods, see [18]). Consequently, we compare our algorithm
to the spectral clustering method (as it is used in [3]). This approach attacks this clustering
problem as an undivided one, partitioning the base stations and users simultaneously.
However, the two sets of agents typically have different cardinalities, and their elements
have very different functions and properties in the network.

In this paper, we propose a simple and fast clustering algorithm to deal with the cell-
edge problem. (An earlier version of this algorithm was reported in [19]). Our algorithm
runs significantly faster than the spectral clustering method, and simulations on synthetic
instances indicate that our proposed method typically provides higher quality solutions
than the application of the spectral clustering method in [3]. In contrast with the spectral
clustering methods, our proposed heuristic method is deterministic.

We divide the interference minimization problem into three subproblems. In the first
phase, a new, so-called dot-product similarity measure is introduced on pairs of base stations.
This similarity measure is based on the dynamically changing signal strengths between the
users and the base stations. The two subsequent phases are two clustering problems. The
second phase partitions the base stations into clusters, and the third phase assigns the users
to base station clusters. The solution to the whole problem is given as a pairing between
the base station clusters and user clusters.

Our reason for this handling is the following observation: the roles of the base stations
and the users are different, and so they require different considerations. We emphasize this
asymmetry with our notation system as well. The clusters of the entire system appear as
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pairs of clusters: one on the index set of base stations, and one on the index set of the users;
cluster classes of the same subscript serve together as a cluster class of the entire system.

The novelty of our method, which is responsible for the superior performance, lies in
the usage of the dynamical similarity function between the base stations. The second and
third phases can use off-the-shelf clustering algorithms, which can allow possible further
fine-tuning of our method.

2. The Total Interference Minimization Problem

The formulation of the total interference minimization problem that we use in this paper
was proposed and studied by Dai and Bai in their influential paper [3]. We give our
description of their formulation in the following paragraphs.

There is a collection B := {bi : i ∈ I} of distinct base stations and there is a collection
U := {uj : j ∈ J} of distinct users, where b = |B| and u = |U|, and the base stations
and the users are indexed by the sets of the first b and u natural numbers, respectively.
As we mentioned earlier, the users can be mobile phones, but can also be devices of the
IoT. Therefore, their numbers altogether can be rather large compared to the number of
base stations. (However, in future 6G networks, the ratio of these numbers may change
considerably. We do not consider this case here.)

The model depicts the network with a bipartite graph: one class contains the BSs,
while the other class consists of the users. Let G = (V; E) := (B ∪U; E) where E consists of
ordered pairs of form (bi, uj). We use the shorthand (i, j) as well.

We define a weight function w : B×U → R+
0 , where each wi,j is a positive real number

if and only if (i, j) is an edge in G, otherwise we set wi,j = 0. The weight of an edge of the
bipartite graph represents the signal strength between its endpoints (one BS and one user).

Let M be a positive integer, and let [M] be the set of the integers from 1 to M. Let
I = (I1, . . . , IM) and J = (J1, . . . , JM) be partitions of I and J, respectively. Finally, let P
be the set of partition pairs: P := {P` = (I`, J`) : ` ∈ [M]}.

Let us define the following quantities: for each integer ` ∈ [M], let

w(P`) := ∑
i∈I`,j∈J`

wi,j and w̄(P`) := ∑
i∈I`,j∈J\J`

wi,j + ∑
i∈I\I`,j∈J`

wi,j. (1)

In graph theoretical terms, the first quantity is the weight of the partition class, while the
second one is the cut value of the partition class.

Definition 1 (IF-cluster system). A partition P is an IF-cluster system (or IF-cluster for short;
IF abbreviates interference), if

(i) there is no partition class P` such that I` = ∅, and
(ii) for any user, there is a base station in its cluster to which it is joined by an edge in G.

The total interference (see [3]) of a given P IF-cluster system is defined as

tinf(P) = ∑
`∈[M]

∗ w̄(P`)
w(P`)

, (2)

where the star superscript denotes that if a partition class Jk is empty, then the index ` skips k, so
that the formula in (2) is well-defined.

Condition (ii) above covers the requirement that all users must be served in a solution.
The omission of a partition class in the sum (2) is due to the technical ability that some base
stations that do not serve any users can be switched off temporarily.

Engineering complexity. Typically, in clustering problems, the smaller the number
of clusters, the more “efficient” the best available solution is with the given number of
clusters. In our problem, this is indeed the case: Dai and Bai showed (see [3], Theorem 1)
that the optimum value of the total interference monotone increases as the number of
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clusters increases. It follows that if the number of clusters is not restricted, then the best
solution is to consider one giant cluster containing every base station and user.

However, the engineering necessity of managing the coordination between base
stations of a large cluster is usually quite prohibitive and depends heavily on the boundary
conditions. In this paper, the number of clusters is treated as part of the input.

The main result of this paper is a new and fast heuristic algorithm (the DOT-PRODUCT

CLUSTERING algorithm) for the following problem.

Problem 1 (Total interference minimization problem). Find an IF-cluster system P that
minimizes (2).

As we mentioned earlier, the majority of the clustering problems in general, and the
total interference minimization problem in particular, are NP-hard. However, our Problem 1
lives on bipartite graphs, so the complexity results on general clustering problems do not
apply to it automatically. However, incidentally, Problem 1 is also NP-hard. There are a vast
number of graph partitioning problems that are similarly naturally defined on bipartite
graphs. For example, the typical machine learning and data mining applications, such as
product recommendation in e-commerce, topic modeling in natural language processing,
etc., are all naturally represented on bipartite graphs.

Thus, it is not surprising that already in 2001, in [20], the spectral graph partitioning
algorithm was used to co-cluster documents and words (in bipartite graphs). From that
time on, the spectral clustering method has also often been applied to solve other bipartite
partitioning problems.

As we mentioned earlier, the model above was introduced by Dai and Bai [3]. Their
approach was static: they evaluated the input, then they clustered the base stations and the
users simultaneously to minimize the total interference. For that end, the spectral clustering
method was applied to construct the cluster system. The developed method solves a
relaxed quadratic programming problem and constructs the clusters by discretizing the
continuous solution. If a derived solution contains a partition class without base stations,
then the solution is dismissed. This approach is static since it does not provide an efficient
method to deal with small, dynamic changes as time passes.

However, this static approach leaves much to be desired since we should consider
some additional objectives: for initialization of the base station/user clustering in our
wireless communication network, we want a fast, centralized algorithm, as our proposed
algorithm for clustering for the total interference minimization problem is. Furthermore,
during the routine operation of the network, dynamic changes may occur: some users may
move away from the BSs of a given cluster, some may finish calls, while others (currently not
represented in the bipartite graph) may initiate calls. While these changes can be managed
in a centralized fashion, this would not be practical. Instead, we need an incremental
algorithm that is able to adaptively change the edge weights and/or can update the actual
vertices, and can manage the reclustering of the affected users. It is propitious to manage
these local changes distributively by the users. Finally, every few seconds, it is useful to
run the centrally managed algorithm again to find a new clustering solution. Since the
proposed algorithm has a low complexity, this approach is clearly beneficial. We return to
this question at the end of Section 4.1.

Our proposed DP-SIMILARITY CLUSTERING algorithm can handle all these issues as
well. As the simulations in Section 4 show, it is fast and provides high-quality solutions,
compared to the spectral clustering algorithm.

3. Dot-Product Clustering Algorithm for Total Interference Minimization Problem

In this section, we describe our new and simple heuristic algorithm for the total
interference minimization problem. As we already mentioned, our algorithm runs in three
phases. In the first, a similarity function is introduced. This phase contains the novelty of
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our approach. Our similarity measure depends on the relations between the base stations
and the users.

In the second phase, the base stations are clustered on the basis of the similarity
measure. Here we have significant freedom to choose our clustering algorithm. The
simplest possible method is arguably a hierarchical clustering method. For simplicity
we use such a method in this paper, but this choice may badly affect the stability of the
solutions. It may provide unbalanced cluster sizes, and it can also introduce too much
engineering complication. It is possible that some back-step or averaging approach can
amend the variance in the quality of the solutions.

Finally, the third phase assigns users to the base station clusters. By design, the output
of our algorithm is always an IF-cluster system. However, it would be beneficial to study
methods to balance the number of users in the cluster classes.

3.1. Phase 1: The Dot-Product Similarity Measure

A superficial study of Equation (2) says that we want to decompose the graph in such
a way that clusters contain heavy (high weight) edges, and the cuts among the clusters
consist of light edges. The weight function is described via the matrix W where the rows
correspond to the BSs, and the columns correspond to the users:

W = (wi,j)i∈I ,j∈J

Let wi,• denote the row vector of bi (the ith BS), and let w•,j denote the column vector of
uj (the jth user). Hence, we can write W = [wi,•]i∈I = [w•,j]j∈J . Our heuristic is that the
higher the correlation between the weight distribution of two BSs, the more beneficial it is
to include them in the same cluster. We define the similarity function as

ρ : I × I → R≥0 with ρ(i, k) :=
wi,• · wT

k,•
‖wi,•‖ · ‖wk,•‖

(3)

among the BSs, where ‖ · ‖ is the Euclidean norm. The name dot-product is in reference to
the enumerator of Equation (3). The similarity ρ depends only on the relations between
the users and the BSs. We envisage that the larger the value of ρ, the greater the similarity
between the BSs.

In the total interference minimization model, an ensemble of BSs in a cluster behave as
one base station. Indeed, if the IF-cluster system {P1, . . . , PM}minimizes Equation (2), then
replacing the ensemble of BSs in cluster I` with just one new BS bnew, whose weight to user
j is ∑k∈I` wk,j, preserves the optimum, and the total interference metric takes this optimum
on the partition pair I ′,J where the `th class I` is replaced with the index of bnew in I ′.
Let us define

vec(I`) = ∑
i∈I`

wi,• (4)

as the sum of the signal strength vectors of the base stations in Bk. The similarity function ρ
can be naturally extended to ensembles of BSs:

ρ : 2I × 2I → R≥0 with

ρ(Ik, Im) :=
vec(Ik) · vec(Im)

T

‖vec(Ik)‖ · ‖vec(Im)‖
.

(5)

3.2. Phase 2: Defining BS Clusters

As we discussed earlier, we have great freedom to determine the BS clusters. However,
for simplicity, here we apply a hierarchical clustering algorithm: we call it DPH-CLUSTERING,
short for dot-product hierarchical clustering. The fixed integer M, which is the size of the
cluster system, is part of the input. At the beginning, we assign a cluster to each BS
containing it. Then we recursively merge the two clusters that have the highest similarity ρ
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between them until the prescribed number of clusters is reached. As we will soon see, this
works reasonably well. Here we want to draw attention to the fact that using normalization
in Equations (3) and (5) is a natural idea.

We start with the finest partition: let I0 consist of the individual clusters for each BS
in I (thus |I| = |I0|). We combine two clusters in each of the |I| −M rounds iteratively to
derive a sequence of partitions I0, I1, . . . , I|I|−M of I, where |Ir| = |I| − r. Ir is obtained
from Ir−1 by combining the two clusters of Ir−1 with the largest similarity ρ between them
as defined by Equation (5).

In Algorithm 1, we maintain the similarity measure ρ(Ik, Im) for every pair of clusters
Ik, Im ∈ Ir as follows. Let us define the symmetric function dot for every k = 1, . . . , M as

dot(Ik, Im) = vec(Ik) · vec(Im)
T . (6)

If dot is already computed for every pair in Ir × Ir, then the similarity measure ρ can be
computed via three scalar operations for any pair of clusters in Ir × Ir since

ρ(Ik, Im) =
dot(Ik, Im)√

dot(Ik, Ik) · dot(Im, Im)
. (7)

Algorithm 1 Hierarchical clustering based on the similarity function ρ

function DPH-CLUSTERING(I, W, M)
I0 ← ( I

1)

dot←W ·WT . matrix multiplication
for r = 0 to |I| −M− 1 do
{I′, I′′} ← arg max

{Ik ,Im}∈(Ir
2 )

ρ(Ik, Im) . (7)

Ir+1 = Ir − {I′, I′′}+ {I′ ∪ I′′}
update dot . O(b) scalar operations

end for
return I|I|−M

end function

Lemma 1. Let the time complexity of the matrix multiplication W ·WT be f (W). Using a max-
heap data structure, DPH-CLUSTERING runs in f (W) +O((b−M)b log b) time.

Proof. It is easy to see that the running time of Algorithm 1 is in the range of f (W) +
O
(
b2u + (b−M) · b2) because when two clusters are combined, dot can be updated by

summing the corresponding two rows and two columns. Moreover, we can store the
ρ-values of pairs in Ir × Ir in a max-heap: when two clusters are merged, at most 2b values
need to be removed and at most b new values need to be inserted into the heap that contains
the at most (b

2) elements of the set {ρ(Ik, Im) | {Ik, Im} ∈ (Ir
2 )}. With these optimizations,

the for-loop takes at most O((b−M) · b log b) steps.

In theory, the running time of Algorithm 1 is dominated by the matrix multiplication
W ·WT , unless the magnitude of b and u are of different orders. There are many techniques
to accelerate the multiplication of matrices, which we do not discuss here. In practice,
a plethora of efficient off-the-shelf implementations that take advantage of hardware-
accelerated vector instruction are available, so much so that f (W) can be contained in
O((b−M)b log b) for some combination of the CPU and practical instances of the problem.

3.3. Phase 3: Assigning Users to BS Clusters

Let I := Ib−M = {I1, . . . , IM} be the final partition produced by the hierarchical
clustering on the primary class. We are looking for the desired final graph partition in
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the form of P = {(Ik, Jk) | k ∈ [M]}, so it only remains to find an appropriate clustering
J = {J1, . . . , JM} of J.

We assign each user j ∈ J to the cluster J` where ` is defined by

` = arg max
k∈[M]

∑
i∈Ik

wi,j. (8)

The choice described by Equation (8) is easy to compute. A high-level pseudo-code can be
found in Algorithm 2. If no element of U is isolated in G, then Algorithm 2 ensures that
there are no isolated users in the subgraph induced by the base station of Ik and users Jk.
However, this is not necessarily the case for elements of Ik. However, the definition of ∑∗

in Equation (2) takes care of this. This completes the description of our algorithm.

Algorithm 2 Dot-product hierarchical clustering on I then assigning each element of J to
the best cluster.

function DP-SIMILARITY CLUSTERING(G, W, M)
I, J ← index sets of B and U
{I1, . . . , IM} ← DPH-CLUSTERING(I, W, M)
J1, . . . , JM ← empty clusters
for all j ∈ J do

`← arg maxk∈[M] ∑i∈Ik
wi,j

add j to J`
end for
return {(Ik, Jk) | Jk 6= ∅}

end function

Lemma 2. Let the time complexity of the matrix multiplication W ·WT be f (W). Then DP-
SIMILAIRTY-CLUSTERING runs in f (W) +O(b · ((b−M) log b + u)) time.

Proof. Follows from Lemma 1 and a cursory analysis of Algorithm 2.

3.4. Engineering Complexity (Revisited)

In this subsection, we discuss, in short, some practical considerations in real-life
applications. One of the most important ones is that the clusters cannot be arbitrarily
complex (from an engineering point of view) because of the computational overhead of the
synchronization of too many base stations. Therefore, it may be necessary to consider an
upper bound T on the possible numbers of the BSs in any cluster.

The number of clusters is part of the input of the clustering method. One can ask
whether there is a way to optimize M. A heuristic attempt is given in [3], using a binary
search wrapper over the spectral clustering method to determine an optimal M. The idea
is based on a theorem of Dai and Bai that the optimal solution is monotone increasing
in M; however, no such guarantee is given for the approximate solution found by the
heuristic algorithms constructing the M-part clusters. For this reason, we do not consider
this alternate optimization problem.

4. Experiments

We compared the performance of DP-SIMILARITY CLUSTERING (Algorithm 2) and
SPECTRAL CLUSTERING [3] in several scenarios.

We studied and compared our algorithm to a representative of the existing algorithms
in two main scenarios that model different distributions of the users. In both scenarios,
users are randomly and uniformly distributed, and independently placed into [0, 1000]2



Algorithms 2023, 16, 341 8 of 15

or [0, 3000]2 (squares with an area of 1 km2 and 9 km2, respectively). The weight (or signal
strength) between a base station (BS) and a user bi, uj ∈ R2 is determined by

wi,j =


‖distmin‖−α if ‖bi − uj‖ ≤ distmin,
‖bi − uj‖−α if distmin ≤ ‖bi − uj‖ ≤ distmax,
0 if distmax < ‖bi − uj‖,

where distmin = 1, distmax = 200, and the path attenuation (path loss) exponent α is set
according to the modeled scenario (the value of α depends heavily on the environment; for
further details, see ([1], Section 2)). In other words, a user cannot connect to a base station
that is farther away than distmax. We assume that in real-world applications, the signal
strength values are readily available.

• Scenario 1 (urban environment): the first scenario models a city center as a space
[0, 1000]2, where base stations are also randomly and uniformly distributed, and
independently placed (see Figure 1a); we assume that the path loss attenuation factor
is α = 2 as suggested by ([1], Section 2).

• Scenario 2 (rural environment): the second scenario models an unevenly occupied
rural environment, where the placement of base stations is less restricted: the BSs
are placed into [0, 3000]2 with density function proportional to the sum of the signal
strengths of the users, where the path loss attenuation factor is α = 3, again, as
suggested by ([1], Section 2).

DPH-CLUSTERING (Algorithm 1) is guaranteed to return an M-part clustering of
the base stations (if M ≤ b). Consequently, the output of DP-SIMILARITY CLUSTERING

(Algorithm 2) is always an IF-cluster system (Definition 1) because it assigns each user to
the cluster with the largest weight to the user; consequently, every user is served by at
least one base station. However, this is not the case for SPECTRAL CLUSTERING, which, in
certain scenarios, is very likely to create a cluster with some users but zero base stations;
see Figures 2a and 3a.

4.1. Analysis of the Running Times

If the order of magnitude of M is reasonable, i.e., b−M = Ω(b), then the running
times of neither DP-SIMILARITY CLUSTERING nor SPECTRAL CLUSTERING depend too
much on the exact value of M; in fact, the difference in running time between M = 20
clusters and M = 40 clusters with b = 200 BSs and 20 ≤ u ≤ 500 users is about 5%. Thus,
the running times on Figures 2d and 3d are measured for reasonable values of M.

Recall Lemma 2. Theoretically, the running time of DP-SIMILARITY CLUSTERING is
dominated by the matrix multiplication W ·WT (computing the similarity measure), but this
operation takes less than 0.5 ms even for a 200× 500 matrix (thanks to the accelerated vector
operations in the x86-64 instruction set). In this regime of b ≤ 200, most of the running
time of DPH-CLUSTERING (Algorithm 1) is spent after the matrix multiplication, which is
log-quadratic in the number of base stations, but the constant factor of the main term is
probably quite large. Thus, to improve the efficiency of the DP-SIMILARITY CLUSTERING

algorithm, further development should be focused on DPH-CLUSTERING.
The running time of SPECTRAL CLUSTERING is a combination of computing the eigen-

vectors of a matrix of order b + u and subsequently clustering the normalized eigenvectors
via the k-means algorithm. Considering the large base matrix and the complex operations
performed on it, it is not surprising that SPECTRAL CLUSTERING is an order of magnitude
slower than DP-SIMILARITY CLUSTERING.

Let us refer back to our considerations after Problem 1. In real-world applications,
users are constantly entering and leaving the network, and some of them may move out of
the range of their cells. For this reason, the clustering needs to be frequently updated, but
the time complexity may be prohibitive if the number of BSs is very large. However, if the
overall changes to W are not large, it is possible to reuse I|I|−M, and thus DPH-CLUSTERING
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need not be called upon every time G or W is updated. Practically, DPH-CLUSTERING

is called upon only if the tinf value of the solution increases beyond a preset threshold.
Since users are joined to the respective best cluster by Algorithm 2, if the users know the
current I|I|−M, they can decide for themselves individually (locally) when to leave and join
another cell.

4.2. Observations (Scenario 1)

Let us start with comparing the two algorithms (DP-SIMILARITY CLUSTERING and
SPECTRAL CLUSTERING) on an arbitrarily chosen clustering problem in the setting of
Scenario 1; after that, we turn to a quantitative comparison. Figure 1a shows a randomly
and uniformly generated placement of 100 BSs and 200 users. The scaling of the tinf

(see Equation (2)) of the solutions provided by SPECTRAL CLUSTERING and SPECTRAL

CLUSTERING algorithm as a function of the number of clusters M is shown in Figure 1b.
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Scenario 1; after that, we turn to a quantitative comparison. Figure 1a shows a randomly
and uniformly generated placement of 100 BSs and 200 users. The scaling of the tinf

(see Equation (2)) of the solutions provided by SPECTRAL CLUSTERING and SPECTRAL

CLUSTERING algorithm as a function of the number of clusters M is shown in Figure 1b.
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Figure 1. Scenario 1: A demonstration of the output of the two clustering algorithms on 100 BSs and
200 users. Clustering solutions shown for M = 20 (so that the clusters are fairly large and visible).
Triangles and circles represent BSs and users, respectively. (a) A total of 100 BSs and 200 users,
randomly and uniformly distributed. (b) Comparison of the tinf values of the solution provided by
the two algorithms as M increases; SPECTRAL CLUSTERING failed for M = 27, 30 because it assigned
a couple of users to a cluster without a base station. (c) DP-Similarity Clustering into M = 20 clusters,
Algorithm 2; tinf ≈ 5.04. (d) Spectral Clustering into M = 20 clusters, see [3]; tinf ≈ 7.12.

Figure 1. Scenario 1: A demonstration of the output of the two clustering algorithms on 100 BSs and
200 users. Clustering solutions shown for M = 20 (so that the clusters are fairly large and visible).
Triangles and circles represent BSs and users, respectively. (a) A total of 100 BSs and 200 users,
randomly and uniformly distributed. (b) Comparison of the tinf values of the solution provided by
the two algorithms as M increases; SPECTRAL CLUSTERING failed for M = 27, 30 because it assigned
a couple of users to a cluster without a base station. (c) DP-Similarity Clustering into M = 20 clusters,
Algorithm 2; tinf ≈ 5.04. (d) Spectral Clustering into M = 20 clusters, see [3]; tinf ≈ 7.12.
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Figures 2 and 3 compare the performance of the algorithms for b = 50 and 200 BSs.
The plots correspond to the mean tinf values of the solutions provided by the algorithms
over 100 random samples of BSs–user placements.
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Figure 2. Scenario 1: Analyzing the output of DP-SIMILARITY CLUSTERING and SPECTRAL CLUS-
TERING for b = 50 BSs and u = 200 users; samples obtained over 100 randomly generated problems.
(a) For larger M, many of the solutions provided by SPECTRAL CLUSTERING have a cluster that
contains some users but zero BSs. (b) Mean tinf (see Equation (2)) values as a function of the
number of clusters M; the ribbons show the standard deviation over the samples. Note that the failed
samples were not included in the sample mean and sample deviation. (c) For each M = 1, . . . , 20, the
figure shows the ratios of those samples where DP-SIMILARITY CLUSTERING and where SPECTRAL

CLUSTERING provided the solution with the smaller tinf value. Because of the high number of
failures produced by SPECTRAL CLUSTERING for moderately large values of M, this ratio tends to 1
for DP-SIMILARITY CLUSTERING (as M increases). (d) Running times for b = 50 BSs and M = 20
clusters, as the number of users grows; the y-axis is logarithmic.

Figure 2. Scenario 1: Analyzing the output of DP-SIMILARITY CLUSTERING and SPECTRAL CLUS-
TERING for b = 50 BSs and u = 200 users; samples obtained over 100 randomly generated problems.
(a) For larger M, many of the solutions provided by SPECTRAL CLUSTERING have a cluster that
contains some users but zero BSs. (b) Mean tinf (see Equation (2)) values as a function of the
number of clusters M; the ribbons show the standard deviation over the samples. Note that the failed
samples were not included in the sample mean and sample deviation. (c) For each M = 1, . . . , 20, the
figure shows the ratios of those samples where DP-SIMILARITY CLUSTERING and where SPECTRAL

CLUSTERING provided the solution with the smaller tinf value. Because of the high number of
failures produced by SPECTRAL CLUSTERING for moderately large values of M, this ratio tends to 1
for DP-SIMILARITY CLUSTERING (as M increases). (d) Running times for b = 50 BSs and M = 20
clusters, as the number of users grows; the y-axis is logarithmic.
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Figure 3. Scenario 1: Analyzing the output of DP-SIMILARITY CLUSTERING and SPECTRAL CLUS-
TERING for b = 200 BSs and u = 500 users; samples obtained over 100 randomly generated problems.
Although SPECTRAL CLUSTERING performs slightly better then DP-SIMILARITY CLUSTERING for
M ≤ 26, its running time is prohibitive in this regime of the total numbers of BSs and users. (a) For
M ≥ 65, more than half of the solutions provided by SPECTRAL CLUSTERING have a cluster that only
contains users but zero BSs. (b) Mean tinf values as a function of the number of clusters M; the
ribbons show the standard deviation over the successfully solved samples. (c) For each M = 1, . . . , 66,
the graph shows the ratios of those samples where DP-SIMILARITY CLUSTERING and where SPEC-
TRAL CLUSTERING provided the solution with the smaller tinf value. Although DP-SIMILARITY

CLUSTERING provides the better solution in the majority of cases, it should be noted that the mean
tinf values are about 30%− 50% larger for the SPECTRAL CLUSTERING algorithm. (d) Running times
for b = 200 BSs and M = 40 clusters, as the number of users grows; the y-axis is logarithmic. Note
that even for a moderate u ≈ 100 users, the running time of SPECTRAL CLUSTERING grows to 50 ms,
which may be prohibitive in applications.

4.3. Observations (Scenario 2)

To cover a wider spectrum of parameters, for Scenario 2, we chose a non-uniform
distribution for the base stations and set α = 3 to model a rural environment (see ([1],
Section 2)). The measured running times were not plotted because they mostly depend
on the size of the matrix W (and very weakly on M). In fact, it turns out that the overall
picture in Scenario 2 is very similar to Scenario 1. Figures 4a and 5a show that as the
number of clusters grow, the higher the probability that spectral clustering generates an
infeasible solution (containing a cluster without a base station). Even when a feasible
solution is found by spectral clustering, most of them have a higher tinf value than the
solution produced by Algorithm 2; see Figures 4b and 5b. An example problem generated
in the setting of Scenario 2 is visualized in Figure 6, along with the solutions provided by
similarity clustering and spectral clustering.

Figure 3. Scenario 1: Analyzing the output of DP-SIMILARITY CLUSTERING and SPECTRAL CLUS-
TERING for b = 200 BSs and u = 500 users; samples obtained over 100 randomly generated problems.
Although SPECTRAL CLUSTERING performs slightly better then DP-SIMILARITY CLUSTERING for
M ≤ 26, its running time is prohibitive in this regime of the total numbers of BSs and users. (a) For
M ≥ 65, more than half of the solutions provided by SPECTRAL CLUSTERING have a cluster that only
contains users but zero BSs. (b) Mean tinf values as a function of the number of clusters M; the
ribbons show the standard deviation over the successfully solved samples. (c) For each M = 1, . . . , 66,
the graph shows the ratios of those samples where DP-SIMILARITY CLUSTERING and where SPEC-
TRAL CLUSTERING provided the solution with the smaller tinf value. Although DP-SIMILARITY

CLUSTERING provides the better solution in the majority of cases, it should be noted that the mean
tinf values are about 30%− 50% larger for the SPECTRAL CLUSTERING algorithm. (d) Running times
for b = 200 BSs and M = 40 clusters, as the number of users grows; the y-axis is logarithmic. Note
that even for a moderate u ≈ 100 users, the running time of SPECTRAL CLUSTERING grows to 50 ms,
which may be prohibitive in applications.

4.3. Observations (Scenario 2)

To cover a wider spectrum of parameters, for Scenario 2, we chose a non-uniform
distribution for the base stations and set α = 3 to model a rural environment (see ([1],
Section 2)). The measured running times were not plotted because they mostly depend
on the size of the matrix W (and very weakly on M). In fact, it turns out that the overall
picture in Scenario 2 is very similar to Scenario 1. Figures 4a and 5a show that as the
number of clusters grow, the higher the probability that spectral clustering generates an
infeasible solution (containing a cluster without a base station). Even when a feasible
solution is found by spectral clustering, most of them have a higher tinf value than the
solution produced by Algorithm 2; see Figures 4b and 5b. An example problem generated
in the setting of Scenario 2 is visualized in Figure 6, along with the solutions provided by
similarity clustering and spectral clustering.
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Figure 4. Scenario 2: Analyzing the output of DP-SIMILARITY CLUSTERING and SPECTRAL CLUS-
TERING for b = 50 BSs and u = 200 users; samples obtained over 100 randomly generated problems.
(a) For M ≥ 33, more than half of the solutions provided by SPECTRAL CLUSTERING have a cluster
that only contains users but zero BSs. (b) Mean tinf values as a function of the number of clusters
M; the ribbons show the standard deviation over the successfully solved samples.
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Figure 5. Scenario 2: Analyzing the output of DP-SIMILARITY CLUSTERING and SPECTRAL CLUS-
TERING for b = 200 BSs and u = 500 users; samples obtained over 100 randomly generated problems.
(a) For M ≥ 48, more than half of the solutions provided by SPECTRAL CLUSTERING have a cluster
that only contains users but zero BSs. (b) Mean tinf values as a function of the number of clusters
M; the ribbons show the standard deviation over the successfully solved samples.



Algorithms 2023, 16, 341 13 of 15Algorithms 2023, 1, 0 13 of 15

0 1000 2000 3000
0

1000

2000

3000
users

stations

(a)

0 1000 2000 3000
0

1000

2000

3000

(b)

0 1000 2000 3000
0

1000

2000

3000

(c)

Figure 6. Scenario 2: A demonstration of the output of the two clustering algorithms on 50 BSs and
200 users. Clustering solutions shown for M = 40. Triangles and circles represent BSs and users,
respectively. The difference between the solutions produced by similarity clustering and spectral
clustering are subtle: one-one larger cluster from each solution is subdivided into two-two smaller
clusters by the other solution. (a) A total of 50 BSs and 200 users, randomly distributed according
to Scenario 2 (users with zero signal strength to any base station are not shown). (b) DP-Similarity
Clustering into M = 40 clusters, Algorithm 2; tinf ≈ 0.438. (c) Spectral clustering into M = 40
clusters, see [3]; tinf ≈ 0.406.

5. Conclusions

We proposed a robust and deterministic algorithm to solve the total interference
minimization problem. We demonstrated through analysis and simulation that it provides
higher quality solutions than the popular SPECTRAL CLUSTERING method (quality as
measured by the tinf value of the solution). The algorithm runs quickly enough to be
considered in real-world applications.

The results of the different simulations plotted on the figures in the previous section
demonstrate that our heuristic DP-SIMILARITY CLUSTERING algorithm provides high-
quality solutions with low time complexity for the total interference minimization problem
in bipartite graphs. Applying it for typical wireless networks, it nicely optimizes the
total interference in the overall communication network. Compared with the state-of-

Figure 6. Scenario 2: A demonstration of the output of the two clustering algorithms on 50 BSs and
200 users. Clustering solutions shown for M = 40. Triangles and circles represent BSs and users,
respectively. The difference between the solutions produced by similarity clustering and spectral
clustering are subtle: one-one larger cluster from each solution is subdivided into two-two smaller
clusters by the other solution. (a) A total of 50 BSs and 200 users, randomly distributed according
to Scenario 2 (users with zero signal strength to any base station are not shown). (b) DP-Similarity
Clustering into M = 40 clusters, Algorithm 2; tinf ≈ 0.438. (c) Spectral clustering into M = 40
clusters, see [3]; tinf ≈ 0.406.

5. Conclusions

We proposed a robust and deterministic algorithm to solve the total interference
minimization problem. We demonstrated through analysis and simulation that it provides
higher quality solutions than the popular SPECTRAL CLUSTERING method (quality as
measured by the tinf value of the solution). The algorithm runs quickly enough to be
considered in real-world applications.

The results of the different simulations plotted on the figures in the previous section
demonstrate that our heuristic DP-SIMILARITY CLUSTERING algorithm provides high-
quality solutions with low time complexity for the total interference minimization problem
in bipartite graphs. Applying it for typical wireless networks, it nicely optimizes the
total interference in the overall communication network. Compared with the state-of-
the-art spectral clustering method, it is clear that the proposed algorithm achieves better
performance with much less (computational) complexity.
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Next, we list two suggestions for future research problems, whose solutions can
considerably increase the usefulness of our algorithm in the wireless network domain.

The first problem is this: suppose that the clustering problem is restricted so that any
cluster may contain at most T BSs; assume also that we want to have (at most) M clusters
in the solution. However, prescribing both the upper bounds M and T may prevent the
existence of feasible solutions, for example, if the number of base stations is more than
M× T. It is easy to construct examples where the greedy DPH-CLUSTERING algorithm
(Algorithm 2) is not able to satisfy the two conditions simultaneously, even though many
feasible solutions exist. It is very probable that some form of backtracking capability could
help tremendously, but we have not tried to address this problem yet.

A more particular problem can be described as follows: our proposed algorithm
assigns every BS to some cluster in the total interference minimization problem. However,
it is possible that using a certain BS in any cluster causes more interference than not using
it at all. This problem can be dealt with a trivial post-processing procedure: after the
clustering P = {P1, . . . , PM} is determined, delete base station i from Pk if the removal
decreases w̄(Pk)/w(Pk), since removing a BS from a cluster cannot increase the interference
fractions of other clusters.
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19. Erdős, P.L.; Mezei, T.R.; Yu, Y.; Chen, X.; Han, W.; Bai, B. Algorithms for Interference Minimization in Future Wireless Network

Decomposition. arXiv 2021, arXiv:2111.00885.
20. Dhillon, I.S. Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the Seventh ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’01, San Francisco, CA, USA, 26–29 August
2001; Association for Computing Machinery: New York, NY, USA, 2001; pp. 269–274. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSP.2013.2238933
http://dx.doi.org/10.1109/TWC.2010.05.090936
http://dx.doi.org/10.1109/TIT.2012.2232966
http://dx.doi.org/10.1109/MWC.2006.1678166
http://dx.doi.org/10.1109/TWC.2009.080180
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1145/1014052.1014118
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1145/502512.502550

	Introduction
	The Total Interference Minimization Problem
	Dot-Product Clustering Algorithm for Total Interference Minimization Problem
	Phase 1: The Dot-Product Similarity Measure
	Phase 2: Defining BS Clusters
	Phase 3: Assigning Users to BS Clusters
	Engineering Complexity (Revisited)

	Experiments
	Analysis of the Running Times
	Observations (Scenario 1)
	Observations (Scenario 2)

	Conclusions
	References

