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Abstract

:

Classifying digital images using neural networks is one of the most fundamental tasks within the field of artificial intelligence. For a long time, convolutional neural networks have proven to be the most efficient solution for processing visual data, such as classification, detection, or segmentation. The efficient operation of convolutional neural networks requires the use of data augmentation and a high number of feature maps to embed object transformations. Especially for large datasets, this approach is not very efficient. In 2017, Geoffrey Hinton and his research team introduced the theory of capsule networks. Capsule networks offer a solution to the problems of convolutional neural networks. In this approach, sufficient efficiency can be achieved without large-scale data augmentation. However, the training time for Hinton’s capsule network is much longer than for convolutional neural networks. We have examined the capsule networks and propose a modification in the routing mechanism to speed up the algorithm. This could reduce the training time of capsule networks by almost half in some cases. Moreover, our solution achieves performance improvements in the field of image classification.
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1. Introduction


For processing visual data, convolutional neural networks (CNNs) are proving to be the best solutions nowadays. The most popular applications of convolutional neural networks in the field of image processing are image classification [1,2], object detection [3,4], semantic segmentation [5,6] and instance segmentation [7,8]. However, the biggest challenge of convolutional neural networks is their inability to recognize pose, texture and deformations of an object, caused by the pooling layers. Pooling layers are used in the feature maps. Where we can find several types of this layer: max pooling, min pooling, average pooling and sum pooling are the most common types of pooling layers [9]. Due to this layer, the efficiency of the convolutional neural network to recognize the same object in different input images under different conditions is high. At the same time, the size of the tensors is reduced due to the pooling layer, thus reducing the computational complexity of the network. In most cases, pooling layers are one of the best tools for feature extraction; however, they introduce spatial invariance in convolutional neural networks. Due to the nature of the pooling layer, a great amount of information is lost, which in some cases may even be important features in the image. To compensate for this, the convolutional neural network needs a substantial amount of training data where data augmentation is necessary.



Geoffrey Hinton and his research team introduced capsule network theory as an alternative to convolutional neural networks. Hinton et al. published the first paper in the field of capsule networks in 2011 [10], where the potential of the new theory is explained, but the solution for effective training it is not yet available. The next important milestone came in 2017, when Sabour et al. introduced the dynamic routing algorithm between capsule layers [11]. Thanks to this dynamic routing algorithm, the training and optimization of capsule-based networks can be performed efficiently. Finally, Hinton et al. published a matrix capsule-based approach in 2018 [12]. These are the three most important results that the inventors of the theory have published in the field of capsule networks. The basic building block of convolutional neural networks is the neuron, while capsule networks are made up of so-called capsules. A capsule is a group of related neurons, where each neuron’s output represents a different property of the same feature. Hence, the input and output of the capsule networks are both vectors (n-dimensional capsules), while the neural network works with scalar values (neurons). Instead of pooling layers, a dynamic routing algorithm was introduced in capsule networks. In this approach, the lower-level features (lower-level capsules) will only be sent to higher-level capsules that match its contents. This property makes capsule networks a more effective solution than convolutional neural networks in some use cases.



However, the training process for capsule networks can be much longer than for convolutional neural networks, where due to the high number of parameters, the memory requirements of the network can be much higher. Therefore, for complex datasets (e.g., large input images, high number of output classes), presently, capsule networks do not perform well yet. This is due to the complexity of the dynamic routing algorithm. For this reason, we have attempted to make modifications to the dynamic routing algorithm. Our primary aim was to reduce the time of the training process, and secondly to achieve a higher efficiency. In our method, we reduced the weight of the input capsule vector during the optimization in the routing process. We also proposed a parameterizable activation function interpreted in terms of vectors, based on the squash function. In this paper, we demonstrate the effectiveness of our proposed modified routing algorithm and compare it with other capsule network-based methods and convolutional neural network-based approaches.



This paper is structured as follows. In Section 2, we provide the theoretical background of the capsule network theory proposed by Hinton et al. [10] and Sabour et al. [11]. Section 3 clarifies our improved routing mechanism for capsule network and our parameterizable activation squash function. Section 4 describes the capsule network architecture used in this research. In Section 5, we present the datasets used to compare the dynamic routing algorithm and our proposed solution. Our results are summarized in Section 6, where we compare our improved routing solution with Sabour et al.’s method, and with some recently published neural network-based solutions. Finally, our conclusions based on our results are summarized in Section 7.




2. Theory of Capsule Network


The capsule network [10,11,12] (or CapsNet) is very similar to the classical neural network. The main difference is the basic building block. In the neural network, we use neurons, but in the capsule network, we can find capsules. Figure 1 and Figure 2 show the main differences between the classical artificial neurons and the capsules.



A capsule is a group of neurons that perform a multitude of internal computation and encapsulate the results of the computations into an n-dimensional vector. This vector is the output of the capsule. The length of this output vector is the probability and the direction of the vector, indicating certain properties about the entity.



In a capsule-based network, we use routing-by-agreement, where the output vector of any capsule is sent to all higher-level capsules. Each capsule output is compared with the actual output of the higher-level capsules. Where the outputs match, the coupling coefficient between the two capsules are increased.



Let  i  be a lower-level capsule and  j  be a higher-level capsule. The prediction vector is calculated as follows:


    u ^    (  j | i  )    =  W  i j    u i   



(1)




where    W  i j     is a trainable weighting matrix and    u i    is an output pose vector from the  i -th capsule to the  j -th capsule. The coupling coefficients are calculated with a simple SoftMax function, as follows:


   c  i j   =   e x p  (   b  i j    )     ∑ k  e x p  (   b  i k    )     



(2)




where    b  i j     is the log probability of capsule  i  coupled with capsule  j , and it is initialized with zero values. The total input to capsule  j  is a weighted sum over the prediction vectors, calculated as follows:


   s j  =   ∑  i   c  i j     u ^   j | i    



(3)







In capsule networks, we use the length of the output vector to represent the probability for the capsule. Therefore, we use a non-linear activation function, which is called the squashing function. The squashing function is the next:


   v j  = s q u a s h  (   s j   )  =   ‖  s j   ‖ 2    1 + ‖  s j   ‖ 2       s j    ‖  s j  ‖    



(4)







We can use the dynamic routing algorithm (by Sabour et al. [11]) to update the    c  i j     values in every iteration. In this case, the goal is to optimize the    v j    vector. In the dynamic routing algorithm, the    b  i j     vector is updated in every iteration, as follows:


   b  i j   =  b  i j   +   u ^   j | i    v j   



(5)








3. Improved Routing Algorithm


Our experiments on capsule network theory have shown that the     u ^    (  j | i  )      input tensor in the dynamic routing algorithm has too large an impact on the output tensor and greatly increaes the processing time. When calculating the output vector    v j   , the formula includes the input     u ^    (  j | i  )      twice:


   v j  = squash  (    ∑  i  softmax  (   b  i j   +   u ^   j | i    v j   )    u ^   j | i    )   



(6)







To improve the routing mechanism between lower-level and higher-level capsules, the following modifications to the routing algorithm are proposed:


   v j  = squash  (    ∑  i  softmax  (   b  i j   +   ∑  j  ‖  v j  ‖  )    u ^   j | i    )   



(7)







Let


   v j  =  [       c  11      ⋯     c  1 m        ⋮   ⋱   ⋮       c  n 1      ⋯     c  n m        ]   



(8)




where    c  k l     is the value of the  l -th neuron of the  k -th capsule. If    v j    is an intermediate capsule layer, then  n  is the number of output capsules. If    v j    is an output capsule layer, then  n  is the number of possible object categories.



Let


   v j  =  [           𝓋 1         𝓋 2               ⋮       𝓋 n           ]   



(9)




where   ∀   x ∈  {  1 ,   2 ,   … ,   n  }   , let


   𝓋 x  =     ∑   y = 1  n   c  x y      



(10)







This minimal modification makes the routing algorithm simpler and faster to compute. Our other proposed change concerns the squashing function. In the last capsule layer, we use a modified squashing function, as follows:


  s q u a s  h  o u r    ( s )  =   s −  e  − ‖ s ‖   s   ‖ s ‖ + ε    



(11)




where  ε  is a fine-tuning parameter. Based on our experience, we used   ε = 1 ×   10   − 7     in this work. Figure 3 shows a simple example of our squash function in a one-dimensional case for different values of  ε .



Figure 4 and Figure 5 show a block diagram of the dynamic routing algorithm and our improved routing solution, where the main differences between the two methods are clearly visible.




4. Network Architecture


In this work, we have used the network architecture proposed by Sabour et al. [11] to compare our proposed routing mechanism with other optimization solutions in the field of capsule networks. This capsule network architecture is shown in Figure 6. The original paper used a fixed   32 × 32 × 1  -sized input tensor, because they only tested the network efficiency for the MNIST [13] dataset. In contrast, we trained and tested the capsule networks for six fundamentally different datasets in the field of image classification. In our work, the shape of the input layer varies depending on the dataset. We used the following input shapes:   28 × 28 × 1  ,   48 × 48 × 1   and   32 × 32 × 3  . After the input layer, the capsule network architecture consisted of three main components: the first is a convolutional layer, the next is the primary capsule layer, and the last one is the secondary capsule layer.



The convolution layer contains   256   convolution kernels of size   9 × 9   with a stride of  1 , and a ReLU (rectified linear unit) [14] activation layer. This convolutional layer generates the main visual features based on intensities for the primary capsule layer.



The primary capsule block contains a convolutional layer, where both the input and the output are of the size   256  . This capsule block also contains a squash layer. In this case, the original squash function (Equation (4)) is used for both implementations. The output of this block contains   32   capsules, where each capsule has  8  dimensions. This capsule block contains advanced features, which are passed onto the secondary capsule block.



The secondary capsule block has one capsule per class. As mentioned earlier, we worked with several different datasets, so the number of capsules in this capsule block varied, always according to the class number of the dataset:  5 ,   10   or   43  . This capsule block contains the routing mechanism, which is responsible for determining the connection weights between the lower and higher capsules. Therefore, this capsule block represents the main difference between the solution of Sabour et al. and our presented method. In this block, we applied our proposed squash function (Equation (11)). The secondary capsule block contains a trainable matrix, called  W  (Equation (14)). The shape of the  W  matrix, for both solutions, is   p c × n × 16 × 8  , where  n  is the number of output classes and   p c   depends on the input image shape as follows:


  p c =  {            32 × 6 × 6 ,       i  m  s i z e   =  (  28 ,   28  )              32 × 8 × 8 ,       i  m  s i z e   =  (  32 ,   32  )        32 × 16 × 16 ,       i  m  s i z e   =  (  48 ,   48  )         



(12)




where   i  m  s i z e     is the size of the input image. The routing algorithm was run through   r = 3   iterations in both cases. The output of this capsule block is a   16  -dimensional vector per each class. This means that the block produces  n    16  -dimensional capsules, where  n  is the number of output classes. The length of the output capsules represents the probability values belonging to the given class.




5. Datasets


In this work,   six   different datasets were used. A classification task was performed for each dataset in our work. The datasets needed to have different levels of complexity. This allowed us to test as wide a range of datasets as possible. The selected datasets include grayscale and color images. The number of classes also varies, from  5  to   43  . The size of the images is typically small, but here, again, we tried to experiment with different sizes. The datasets included a fixed background which had been used, as well as a variable color background which had been applied. Table 1 shows the main properties of the   six   datasets that we used in this research.



5.1. MNIST


The MNIST dataset (Modified National Institute of Standards and Technology dataset) is a large set of handwritten digits (from  0  to  9 ) that is one of the most widely used datasets in the field of image classification. The MNIST dataset contains   60,000   training images and   10,000   testing images, where every image is grayscale with a   28   pixel width and   28   pixel height. Figure 7 shows some samples from this dataset.




5.2. Fashion-MNIST


The Fashion-MNIST (or F-MNIST) dataset is very similar to the MNIST dataset. The main parameters are the same. It contains   60,000   training and   10,000   testing examples. Every sample is   28   pixels in width and   28   pixels in height, and a grayscale image where colors are inverted (an intensity value of   255   represents the darkest color). The Fashion-MINST dataset contains   10   fashion categories: t-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag and ankle boot. Figure 8 shows some samples from this dataset.




5.3. SmallNORB


The SmallNORB dataset contains images of 3D objects. The specialty of this dataset is that the images were taken under several different lighting conditions and poses. This dataset contains images of toys belonging    to   five    different categories: four-legged animals, human figures, airplanes, trucks and cars. The images were taken with two cameras under   six   lighting conditions,   nine   elevations and   eighteen   azimuths. All images are grayscale, with a size of   96   pixels in width by   96   pixels in height. However, in this work, we resized the images to   48 × 48   pixels. Figure 9 shows some samples from this dataset.




5.4. CIFAR10


The CIFAR10 (Canadian Institute for Advanced Research) dataset is one of the most widely used datasets in the field of machine learning-based image classification. This dataset is composed of   60,000   RGB colored images, where   50,000   images are the training samples and   10,000   images are the testing samples. Each image is   32   pixels wide and   32   pixels high. The object categories are the following: airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships and trucks. Figure 10 shows some samples from this dataset.




5.5. SVHN


The SVHN (Street View House Numbers) dataset contains small, cropped digits, like the MNIST dataset. However, the SVHN dataset is slightly more complex than the MNIST dataset. The SVHN is obtained from house numbers in Google Street View, where the background of the digits is not homogeneous and images may also include part of the adjacent digit. This property makes the SVHN dataset more difficult to classify than the MNIST dataset. The size of the images in this dataset is   32   pixels wide and   32   pixels high. The SVHN dataset contains   73,257   training samples and   26,032   testing samples. Figure 11 shows some samples from this dataset.




5.6. GTSRB


The GTSRB (German Traffic Sign Recognition Benchmark) dataset includes   43   classes of traffic signs. Each image contains one traffic sign with varying light conditions and rich backgrounds. Images are   32   pixels wide and   32   pixels high. The traffic sign classes are the following: speed limit {  20  ,   30  ,   50  ,   60  ,   70  ,   80  ,   100  ,   120  } km/h, end of speed limit (80 km/h), no passing, no passing for vehicles over 3.5 metric tons, right-of-way at the next intersection, priority road, yield, stop, no vehicles, vehicles over 3.5 metric tons prohibited, no entry, general caution, dangerous curve to the {left, right}, double curve, bumpy road, slippery road, road narrows on the right, road work, traffic signals, pedestrians, children crossing, bicycles crossing, beware of ice/snow, wild animals crossing, end of all speed and passing limits, turn {right, left} ahead, ahead only, go straight or {right, left}, keep {right, left}, roundabout mandatory, end of no passing and end of no passing by vehicles over 3.5 metric tons. Figure 12 shows some samples from this dataset.





6. Results


In this work, the network architecture presented in Section 4 has been designed in three different ways and trained separately on the datasets presented in Section 5. The difference between the three networks is the routing algorithm used: the first is the original capsule network by Sabour et al., the second is our modified capsule network with some improvements, and the third is the efficient vector routing by Heinsen [20]. Capsule networks are trained separately on the   six   presented dataset. For the implementation, we used Python 3.9.16 [21] programming language with PyTorch 1.12.1 [22] machine learning framework and CUDA toolkit 11.6 platform. The capsule networks are trained on the Paperspace [23] online artificial intelligence platform with an Nvidia Quadro RTX4000 series graphical processing unit.



We trained all networks for   35   epochs with the Adam [24] optimizer algorithm where the train and test batch size are both   128  . We also attempted to train the networks over many more epochs, but found that the difference between the three solutions does not change significantly after   35   epochs. In this study, we used   5 ×   10   − 4     initial learning rate. In each epoch, we reduced the learning rate as follows:


  l  r i  = l  r  i n i t   ×   0.97  i   



(13)




where   l  r  i n i t     is the initial learning rate and   l  r i    is the learning rate in the  i -th epoch. We used    β 1  = 0.9   and    β 2  = 0.999   hyperparameter values to control the exponential decay, and   ε = 1 ×   10   − 8     to prevent any division by zero in the implementation. In the training process, we used the same loss function as proposed by Sabour et al.


  ℒ =  T k  × max    (  0 ,    m +  − p  )   2  + λ ×  (  1 −  T k   )  × max    (  0 ,   p −  m −   )   2   



(14)




where


   T k  =  {      1 ,      if   object   of   class    k   present       0 ,     otherwise        



(15)







   m +   ,    m −    and  λ  are hyperparameters. In the present work, we used the same values for these   three   hyperparameters as proposed by Sabour et al., in this case,    m +  = 0.9  ,    m −  = 0.1   and   λ = 0.5  . The original study also used reconstruction in the training process; however, we did not apply this in our work. During training without reconstruction, the efficiency of the capsule network is reduced. In the long term, we want to translate our results in the field of capsule networks into real-world applications. In this respect, reconstruction of the input image is a rarely necessary step. Therefore, we explicitly investigated the ability of capsule networks without reconstruction.



Figure 13, Figure 14, Figure 15, Figure 16, Figure 17 and Figure 18 show the accuracy of the training processes for the test sets of the   six   presented datasets with different numbers of routings. The value of  r  indicates the number of iterations which the routing algorithm has optimized the coefficients. Based on Sabour et al.’s experiment, the   r = 3   is a good choice; however, we showed the efficiency with   r = 1   and   r = 10  . This makes the difference more visible between the routing methods. As can be seen, for all   six   datasets, we have achieved efficiency gains compared to the two other capsule network solutions. The difference in efficiency between our and Sabour et al.’s solutions is minimal for about the first   10   epochs; however, after that, there is a noticeable difference in the learning curve. Although Heinsen’s solution also proves to be effective in most cases; its performance is slightly lower than the other two solutions. It is also noticeable that changing the number of iterations has a much larger impact on Sabour et al.’s solution and that of Heinsen. Our proposed solution is less sensitive to the iteration value chosen during the optimization.



Figure 19, Figure 20, Figure 21, Figure 22, Figure 23 and Figure 24 show the test losses (Equation (14)) during the training processes with different numbers of routings. There is not much difference in the loss function, but it is noticeable that our solution is less noisy and converges more smoothly.



Figure 25 shows the processing times for the three capsule-based networks. It can be seen that for all   six   datasets, the capsule network was faster with our proposed routing algorithm than with the dynamic routing algorithm introduced by Sabour et al. The smallest increase was achieved for the Fashion-MNIST and MNIST datasets, but this still represents an   18.60 %   and a   19.33 %   speedup. For more complex datasets, much higher speed increases were achieved. A running time reduction of 25.55% was achieved for SVHN and 26.54% for CIFAR10. The best results were observed for the SmallNORB and GTSRB datasets. For SmallNORB it was 35.28%, while for GTSRB, it was 48.30%. Compared to Heinsen’s solution, our proposed algorithm performed worse, but the difference in efficiency between the two solutions is significant.



The test errors during the training process are shown in Table 2, where the capsule-based solutions were compared with the recently released neural network-based approaches. It can be clearly seen that our proposed modifications to the routing algorithm have led to efficiency gains. It is important to note that our capsule-based solution does not always approach the effectiveness of the state-of-the-art solutions, however, the capsule network used consists of only three layers with a very minimal number of parameters (  < 5.4    M   ). Its architecture is quite simple, but with further improvements, a higher efficiency can be achieved. Prior to this, we felt it necessary to improve the efficiency of the routing algorithm. Experience has shown that designing deep network architecture in the area of capsule networks is too resource-intensive. For this reason, it is necessary to increase the processing speed of the routing algorithm.



Figure 26 shows the confusion matrices for the capsule network-based approaches in the case of the   six   datasets used. It can be seen that for simpler datasets, such as MNIST, the difference between the three optimization algorithms is minimal. For more complex datasets, the differences are more pronounced. Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 show the efficiencies achieved by capsule networks for each class, separately. This table also shows that our proposed method is in most cases able to provide a more effective solution than the other solutions tested. However, there are cases where our solution falls short compared with solutions by Sabour et al. and Heinsen.



Table 9 summarizes the percentage of classes per dataset that were able to provide the best result for a given solution. From this approach as well, our solution performed the best. Only in the case of the GTSRB dataset was the method proposed by Sabour et al. more efficient. For the other   five   datasets, our proposed method was able to achieve the best accuracy for most classes. Table 10, Table 11 and Table 12 summarize the recall score, dice score and F1-score for the capsule-based implementations under study. It can be observed that, according to all three metrics, our proposed method performs the best. The solution by Sabour et al. performs better only for the Fashion-MNIST dataset, but there was no difference in accuracy of this dataset. The solution by Heinsen underperforms the other two solutions in the cases studied. It can also be seen that, where the method of Sabour et al. and our approach perform worse, the score of Heinsen’s solution also decreases in a similar way.




7. Conclusions


Our work involved research in the field of capsule networks. We showed the main differences between classical convolutional neural networks and capsule networks, highlighting the new potential of capsule networks. We have shown that the dynamic routing algorithm for capsule networks is too complex and that the training time makes it difficult to build more deep and complex networks. At the same time, capsule networks can achieve very good efficiency, but their practical application is difficult due to the complexity of routing. Therefore, it is important to improve the optimization algorithm and introduce novel solutions.



We proposed a modified routing algorithm for capsule networks and a parameterizable activation function for capsules, based on the dynamic routing algorithm introduced by Sabour et al. In this approach, we aimed to reduce the computational complexity of the current dynamic routing algorithm. Thanks to our proposed routing algorithm and activation function, the training time can be reduced. In our work, we have shown its effectiveness on   six   different datasets, compared with neural network-based solutions and capsule-based solutions. As can be seen, the training time was reduced in all cases, by almost   30 %   on average. Even in the worst case, a speed increase of almost   20 %   was achieved. And in some cases, an increase in speed of almost   50 %   can be seen. Despite the increase in speed, the efficiency of the network has not decreased. For several different metrics, our proposed solution was compared with other capsule-based methods. As we have shown, our proposed approach can increase the efficiency of the routing mechanism. For all six datasets tested in this research, our solution provided the highest results in almost all cases.



In the future, we would like to perform further research on routing algorithms and capsule networks to be able to achieve even greater improvements. We would like to carry out more complex studies on larger datasets, compared with other solutions. We would like to further optimize our solution based on the test results. Our goal is to be able to provide an efficient and fast solution for more complex tasks, such as instance segmentation or reconstruction, in the field of capsule networks. This is necessary to create much deeper and more complex capsule networks, so it is important to address the issue of optimization. This will allow us to apply the theory of capsule networks to real practical applications with great efficiency.
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Figure 1. Typical structure of a neuron. (green: inputs, blue: operations, yellow: output, purple: neuron). 
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Figure 2. Typical structure of a capsule. (green: inputs, red: prediction vectors, blue: operations, yellow: output, purple: capsule). 
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Figure 3. Our squash activation function with different  ε  values. 
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Figure 4. Block diagram of the dynamic routing algorithm by Sabour et al. [11]. (green: inputs, yellow: operations, blue: activations, purple: internal tensors). 
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Figure 5. Block diagram of our proposed routing algorithm. (green: inputs, yellow: operations, blue: activations, purple: internal tensors). 
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Figure 6. The capsule network architecture used in the research, based on work by Sabour et al. [11]. (green: input, purple: convolutional layer, yellow: primary capsule layer, red: secondary capsule layer, gray: prediction). 
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Figure 7. Sample data from MNIST dataset. 
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Figure 8. Sample data from Fashion-MNIST dataset. 
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Figure 9. Sample data from SmallNORB dataset. 
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Figure 10. Sample data from CIFAR10 dataset. 
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Figure 11. Sample data from SVHN dataset. 
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Figure 12. Sample data from GTSRB dataset. 
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Figure 13. Classification test accuracy on MNIST dataset. 
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Figure 14. Classification test accuracy on Fashion-MNIST dataset. 
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Figure 15. Classification test accuracy on SmallNORB dataset. 
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Figure 16. Classification test accuracy on CIFAR10 dataset. 
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Figure 17. Classification test accuracy on SVHN dataset. 
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Figure 18. Classification test accuracy on GTSRB dataset. 
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Figure 19. Classification test loss on MNIST dataset. 
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Figure 20. Classification test loss on Fashion-MNIST dataset. 
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Figure 21. Classification test loss on SmallNORB dataset. 
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Figure 22. Classification test loss on CIFAR10 dataset. 
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Figure 23. Classification test loss on SVHN dataset. 
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Figure 24. Classification test loss on GTSRB dataset. 
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Figure 25. Comparison of training time on the same hardware (Nvidia Quadro RTX4000 series). 
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Figure 26. Confusion matrices for the capsule-based networks. 
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Table 1. Main properties of the datasets used.
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	Dataset
	Image Size
	Channels
	Classes
	Train Set
	Test Set
	Background





	MNIST [13]
	(28, 28)
	1
	10
	60,000
	10,000
	false



	F-MNIST [15]
	(28, 28)
	1
	10
	60,000
	10,000
	false



	SmallNORB [16]
	(48, 48)
	1
	5
	48,600
	48,600
	true



	CIFAR10 [17]
	(32, 32)
	3
	10
	50,000
	10,000
	true



	SVHN [18]
	(32, 32)
	3
	10
	73,257
	26,032
	true



	GTSRB [19]
	(32, 32)
	3
	43
	26,640
	12,630
	true
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Table 2. Classification test errors on the different datasets, compared with other methods.
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	MNIST
	F-MNIST
	S.NORB
	CIFAR10
	SVHN
	GTSRB





	Goyal et al. [25]
	0.58%
	-
	-
	10%
	13.6%
	9.29%



	Taylor et al. [26]
	2.09%
	10.95%
	-
	-
	-
	-



	Phaye et al. [27]
	-
	-
	5.57%
	-
	-
	-



	Remerscheid et al. [28]
	-
	-
	-
	26.5%
	-
	-



	Dupont et al. [29]
	1.8%
	-
	-
	39.4%
	16.5%
	-



	Abad et al. [30]
	0.6%
	-
	-
	31.7%
	-
	-



	Sabour et al. [11]
	0.45%
	8.35%
	9.15%
	29.36%
	8.05%
	2.67%



	Heinsen [20]
	0.7%
	9.25%
	10.18%
	41.18%
	11.36%
	9.79%



	Ours
	0.41%
	8.35%
	8.54%
	28.26%
	6.90%
	2.22%
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Table 3. Classification test accuracy by class for capsule networks on the MNIST dataset.
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	Sabour et al. [11]
	Ours
	Heinsen [20]





	0
	0.9969
	0.9980
	0.9980



	1
	0.9974
	0.9974
	0.9965



	2
	0.9932
	0.9961
	0.9932



	3
	0.9941
	0.9950
	0.9941



	4
	0.9908
	0.9929
	0.9847



	5
	0.9933
	0.9933
	0.9944



	6
	0.9916
	0.9948
	0.9896



	7
	0.9971
	0.9961
	0.9893



	8
	0.9959
	0.9969
	0.9918



	9
	0.9891
	0.9921
	0.9851
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Table 4. Classification test accuracy by class for capsule networks on the Fashion-MNIST dataset.
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	Sabour et al. [11]
	Ours
	Heinsen [20]





	T-shirt/top
	0.8920
	0.9060
	0.8410



	Trouser
	0.9780
	0.9800
	0.9780



	Pullover
	0.8560
	0.8800
	0.8710



	Dress
	0.9230
	0.9190
	0.8900



	Coat
	0.8370
	0.8390
	0.8400



	Sandal
	0.9810
	0.9810
	0.9740



	Shirt
	0.7320
	0.6770
	0.6340



	Sneaker
	0.9790
	0.9780
	0.9820



	Bag
	0.9840
	0.9820
	0.9750



	Ankle boot
	0.9600
	0.9620
	0.9530
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Table 5. Classification test accuracy by class for capsule networks on the CIFAR10 dataset.
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	Sabour et al. [11]
	Ours
	Heinsen [20]





	Airplane
	0.6280
	0.7100
	0.6110



	Automobile
	0.7780
	0.6810
	0.6260



	Bird
	0.4630
	0.5180
	0.4230



	Cat
	0.4660
	0.4440
	0.3670



	Deer
	0.6930
	0.5970
	0.4340



	Dog
	0.5480
	0.6450
	0.5110



	Frog
	0.8110
	0.7530
	0.5380



	Horse
	0.6710
	0.7300
	0.5830



	Ship
	0.8480
	0.7590
	0.6260



	Truck
	0.7810
	0.8600
	0.5920
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Table 6. Classification test accuracy by class for capsule networks on the SmallNORB dataset.
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	Sabour et al. [11]
	Ours
	Heinsen [20]





	Animal
	0.8496
	0.8645
	0.8681



	Human
	0.9295
	0.9513
	0.7709



	Plane
	0.9206
	0.9210
	0.8175



	Truck
	0.9958
	0.9932
	0.9610



	Car
	0.7075
	0.7973
	0.8192
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Table 7. Classification test accuracy by class for capsule networks on the GTSRB dataset.
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	Sabour et al. [11]
	Ours
	Heinsen [20]





	Speed limit 20 km/h
	0.8667
	0.8167
	0.6500



	Speed limit 30 km/h
	0.9889
	0.9917
	0.9458



	Speed limit 50 km/h
	0.9920
	0.9893
	0.9707



	Speed limit 60 km/h
	0.9889
	0.9756
	0.9333



	Speed limit 70 km/h
	0.9758
	0.9758
	0.8727



	Speed limit 80 km/h
	0.9619
	0.9810
	0.8000



	Speed limit 100 km/h
	0.8533
	0.8533
	0.8067



	Speed limit 120 km/h
	0.9133
	0.8822
	0.8289



	End of speed limit (80 km/h)
	0.9444
	0.9511
	0.9000



	No passing
	0.9958
	1.0000
	0.9458



	No passing for vehicles over 3.5 metric t
	0.9924
	0.9955
	0.9697



	Right-of-way at the next intersection
	0.9619
	0.9714
	0.8929



	Priority road
	0.9812
	0.9884
	0.9087



	Yield
	0.9972
	0.9972
	0.9861



	Stop
	1.0000
	1.0000
	0.9630



	No vehicles
	1.0000
	1.0000
	0.9762



	Vehicles over 3.5 metric tons prohibited
	0.9933
	0.9933
	0.9533



	No entry
	0.9972
	0.9972
	0.8806



	General caution
	0.9385
	0.9410
	0.7231



	Dangerous curve to the left
	1.0000
	1.0000
	0.4833



	Dangerous curve to the right
	0.9889
	0.9889
	0.8889



	Double curve
	0.7667
	0.7000
	0.6778



	Bumpy road
	0.9833
	0.9917
	0.9083



	Slippery road
	0.9467
	0.9267
	0.6667



	Road narrows on the right
	0.9444
	0.9444
	0.5333



	Road work
	0.9542
	0.9500
	0.9438



	Traffic signals
	0.8278
	0.8167
	0.7833



	Pedestrians
	0.5000
	0.5667
	0.5000



	Children crossing
	0.9933
	0.9933
	0.9200



	Bicycles crossing
	1.0000
	1.0000
	0.9222



	Beware of ice/snow
	0.7667
	0.7733
	0.5000



	Wild animals crossing
	0.9815
	0.9741
	0.9074



	End of all speed and passing limits
	1.0000
	1.0000
	1.0000



	Turn right ahead
	0.9952
	0.9952
	0.9476



	Turn left ahead
	0.9917
	0.9917
	0.9833



	Ahead only
	0.9923
	0.9974
	0.9538



	Go straight or right
	0.9750
	0.9667
	0.9417



	Go straight or left
	1.0000
	1.0000
	0.9000



	Keep right
	0.9739
	0.9870
	0.9087



	Keep left
	1.0000
	1.0000
	0.8000



	Roundabout mandatory
	0.9667
	0.9778
	0.8000



	End of no passing
	0.8000
	0.7667
	0.5500



	End of no passing by vehicles over 3.5 t
	0.9778
	0.9778
	0.9778
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Table 8. Classification test accuracy by class for capsule networks on the SVHN dataset.
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	Sabour et al. [11]
	Ours
	Heinsen [20]





	0
	0.9151
	0.8928
	0.9002



	1
	0.9686
	0.9547
	0.9280



	2
	0.9393
	0.9549
	0.9152



	3
	0.8636
	0.8550
	0.7696



	4
	0.9080
	0.9164
	0.9045



	5
	0.8624
	0.8968
	0.8335



	6
	0.8402
	0.8720
	0.8255



	7
	0.8579
	0.8742
	0.8757



	8
	0.7861
	0.8193
	0.7657



	9
	0.8245
	0.8621
	0.8301
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Table 9. Best efficiency ratio per class for the presented capsule networks.
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	MNIST
	F-MNIST
	SmallNORB
	CIFAR10
	SVHN
	GTSRB





	Sabour et al. [11]
	15%
	35%
	50%
	20%
	30%
	51.94%



	Heinsen [20]
	15%
	20%
	0%
	40%
	10%
	0.77%



	Ours
	70%
	45%
	50%
	40%
	60%
	47.29%
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Table 10. Recall scores for the capsule networks.
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	MNIST
	F-MNIST
	SmallNORB
	CIFAR10
	SVHN
	GTSRB





	Sabour et al. [11]
	0.9939
	0.9159
	0.9056
	0.6790
	0.8958
	0.9513



	Heinsen [20]
	0.9916
	0.8937
	0.8419
	0.5311
	0.8532
	0.8304



	Ours
	0.9948
	0.9124
	0.9138
	0.6925
	0.9012
	0.9519
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Table 11. Dice scores for the capsule networks.
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	MNIST
	F-MNIST
	SmallNORB
	CIFAR10
	SVHN
	GTSRB





	Sabour et al. [11]
	0.9940
	0.9153
	0.9052
	0.6748
	0.9012
	0.9576



	Heinsen [20]
	0.9916
	0.8945
	0.8419
	0.5350
	0.8546
	0.8396



	Ours
	0.9949
	0.9118
	0.9131
	0.6882
	0.9046
	0.9576
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Table 12. F1-scores for the capsule networks.
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	MNIST
	F-MNIST
	SmallNORB
	CIFAR10
	SVHN
	GTSRB





	Sabour et al. [11]
	0.9940
	0.9159
	0.9056
	0.6790
	0.9084
	0.9711



	Heinsen [20]
	0.9916
	0.8937
	0.8419
	0.5311
	0.8667
	0.8920



	Ours
	0.9949
	0.9124
	0.9138
	0.6925
	0.9122
	0.9727
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