
Citation: Ciccolella, S.; Della Vedova,

G.; Filipović, V.; Soto Gomez, M.

Three Metaheuristic Approaches for

Tumor Phylogeny Inference: An

Experimental Comparison.

Algorithms 2023, 16, 333. https://

doi.org/10.3390/a16070333

Academic Editors: Luca Mariot and

Luca Manzoni

Received: 3 June 2023

Revised: 29 June 2023

Accepted: 4 July 2023

Published: 12 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Three Metaheuristic Approaches for Tumor Phylogeny
Inference: An Experimental Comparison
Simone Ciccolella 1 , Gianluca Della Vedova 1,* , Vladimir Filipović 2 and Mauricio Soto Gomez 3

1 Department of Computer Science, University of Milan-Bicocca, 20126 Milan, Italy; simone.ciccolella@unimib.it
2 Faculty of Mathematics, University of Belgrade, 11000 Belgrade, Serbia; vladimir.filipovic@math.rs
3 Department of Computer Science, Università degli Studi di Milano, 20133 Milan, Italy; mauricio.soto@unimi.it
* Correspondence: gianluca.dellavedova@unimib.it

Abstract: Being able to infer the clonal evolution and progression of cancer makes it possible to devise
targeted therapies to treat the disease. As discussed in several studies, understanding the history
of accumulation and the evolution of mutations during cancer progression is of key importance
when devising treatment strategies. Given the importance of the task, many methods for phylogeny
reconstructions have been developed over the years, mostly employing probabilistic frameworks.
Our goal was to explore different methods to take on this phylogeny inference problem; therefore, we
devised and implemented three different metaheuristic approaches—Particle Swarm Optimization
(PSO), Genetic Programming (GP) and Variable Neighbourhood Search (VNS)—under the Perfect
Phylogeny and the Dollo-k evolutionary models. We adapted the algorithms to be applied to this
specific context, specifically to a tree-based search space, and proposed six different experimental
settings, in increasing order of difficulty, to test the novel methods amongst themselves and against a
state-of-the-art method. Of the three, the PSO shows particularly promising results and is comparable
to published tools, even at this exploratory stage. Thus, we foresee great improvements if alternative
definitions of distance and velocity in a tree space, capable of better handling such non-Euclidean
search spaces, are devised in future works.

Keywords: particle swarm optimization; genetic programming; variable neighbourhood search;
cancer phylogeny; metaheuristic

1. Introduction

Inferring phylogenies is one of the key problems in bioinformatics, and its importance
has increased more and more in recent years, as the availability of genetic data extracted
from cancer samples has allowed researchers to examine how somatic mutations occur
and, most importantly, accumulate during the progression of cancer. Furthermore, recent
improvements in targeted therapies for cancer treatment require an accurate inference of
the clonal evolution and progression of the disease to provide effective therapy [1,2].

Given the importance of the problem [3], several methods [4–20] designed to infer
cancer progression from next-generation sequencing data have been published. The field
has also recently witnessed the development of pipelines [21] and preprocessing steps.

Cancer cells proliferate in a highly constrained environment under very strong evo-
lutionary pressure—for example, due to low levels of oxygen and the reaction of the
immune system. This leads to frequently observed mutations that are very unusual in
healthy cells [22], such as copy number aberrations, gene duplications, and ploidy changes.
Some tools try to incorporate these mutational events when inferring tumoral evolutions
(see, for example, [8,23]). While the predictions should become more accurate with such
events included, the models become more complicated. Because the focus of this paper is a
computational comparison, we do not consider these events, only the acquisition and loss
of mutations.

Algorithms 2023, 16, 333. https://doi.org/10.3390/a16070333 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16070333
https://doi.org/10.3390/a16070333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-6469-4887
https://orcid.org/0000-0001-5584-3089
https://orcid.org/0000-0002-5943-8037
https://orcid.org/0000-0001-5977-9467
https://doi.org/10.3390/a16070333
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16070333?type=check_update&version=1

Algorithms 2023, 16, 333 2 of 20

On the other hand, single-cell sequencing data have provided clear evidence that muta-
tion losses and (less frequently) mutation recurrences are common [24,25]. In fact, allowing
only mutation accumulation corresponds to the directed perfect phylogeny problem on bi-
nary characters, which has a linear-time algorithm [26], while more general models (where
mutation losses or recurrences are also allowed) result in NP-complete problems, with a
much larger solution space. The perfect phylogeny model has found several applications
in bioinformatics, most notably in haplotyping [27–30], and has been deeply investigated.
For example, the combinatorial properties of perfect phylogenies are instrumental in the
development of efficient algorithms, including the graph-theoretical characterization of
genotype matrices that admit a tree representation [27,28,30,31].

In this paper, we focus on the Dollo-k model [5,32–34], which is a generalization of
the perfect phylogeny model that incorporates the potential loss of characters. Under the
Dollo-k model, each mutation can only be acquired once and lost at most k times in the
entire evolutionary process. The restriction on the number of losses is motivated by the
fact that even if character losses are possible, they are not frequent [24,35]. Variants of
the Dollo-k model are considered in some recent tools, such as TRaIT [36], SiFit [37] and
SPhyR [15], SASC [6], and ScisTree [38].

Notice that we are considering the binary case, where each mutation is either present
or missing. The phylogeny inference problem under the Dollo-k model is NP complete [39],
motivating the use of specialized metaheuristic strategies [6,15] which work well in practice
even with fairly large instances. The fact that practical cases have incomplete or noisy
information makes the use of heuristics more relevant [40,41]. Nonetheless, at least an exact
solution for the problem, based on ILP, has been proposed [4], but it is too slow to be used
in practice. To mitigate this problem, that tool has a hill climbing final step to guarantee
that a local optimum is returned.

Given the success of nature-inspired metaheuristics in attacking various combinatorial
problems and of a Simulated Annealing approach [6,42,43] to attacking the tumor phy-
logeny inference problem, we further investigate some additional approaches for inferring
tumor phylogenies under the Dollo-k model, with the main goal of understanding which
metaheuristics might be amenable to being the basis of future tools. More precisely, we
investigate Particle Swarm Optimization [44], Genetic Programming [45], and Variable
Neighbourhood Programming [46]: the first two are population-based, while the third is
trajectory-based. We test the proposed methods on six different synthetic datasets with
different levels of complexity and evaluate their performance according to three different
quality metrics, including one specifically designed for the evaluation of cancer progres-
sion [47]. The results show that Particle Swarm Optimization is roughly comparable with
Simulated Annealing, while the results obtained via the other methods do not achieve the
same level of accuracy.

2. Preliminaries

In this paper, we consider the computational problem of inferring a tumor phylogeny
from single cell data in the presence of partial information. The input of the problem is
an n×m ternary matrix Iij that represents the presence/absence of m mutations in n cells.
The entries of I can assume three potential values: an entry Iij = 0 indicates that cell i does
not have mutation j, Iij = 1 indicates the presence of mutation j in cell i, and a ? indicates
uncertainty about the presence/absence of mutation j in cell i. The uncertainty in mutation
presence within a cell is typically caused by insufficient coverage during sequencing.

Moreover, our models account for potential false positive and false negative entries
in the input matrix, which are parameterized with a false positive/negative rate value.
Specifically, let E denote the final n×m output matrix, which is the binary matrix without
errors and noise estimated by the algorithm. We denote αj as the false negative rate of
mutation j, and β as the false positive rate, similarly to [11,15,37,48]. Hence, for each entry
Eij, the following holds:

Algorithms 2023, 16, 333 3 of 20

P(Iij = 0|Eij = 0) = 1− β P(Iij = 0|Eij = 1) = αj
P(Iij = 1|Eij = 0) = β P(Iij = 1|Eij = 1) = 1− αj.

Notice that, due to the nature of the experimental measure, the false positive rate
is usually low (around 10−6), while the false negative rate can be considerably higher
(even 40%) [11,37,48]. Furthermore, each mutation can have a different false negative
rate; for instance, a highly expressed gene will have significantly higher coverage than an
under-expressed gene.

Similar to previous reconstruction methods ([6]), the objective of the reconstruction
problem is to compute a matrix that maximizes the likelihood of the observed matrix I [48],
assuming we know the probability rates of false positives, false negatives, and missing
entries. This is conducted under the hypothesis that mutations in samples are acquired and
lost following a specific evolutionary model.

A tumor phylogeny T on a set C of m mutations and n cells is defined as a rooted tree
whose internal nodes are labeled by the acquisitions or losses of mutations from C, while
the leaves are labeled by the cells.

The state of a node x is defined as the set of mutations c such that: (1) there is an
ancestor of x where c is acquired, and (2) for each ancestor y of x where c is lost, there is
a node of the path from y to x where c is acquired. Therefore, the state of each node x in
the tree T can be represented as a binary vector of length m, called genotype profile and
denoted by D(T, x), where D(T, x)c = 1 if and only if the node x has the mutation j and
0 otherwise.

Given a binary matrix E, we say that a tree T encodes E if there exists a mapping σ of
the rows (cells) of E to the leaves of T such that Ei = D(T, σi) for each row i of E, where
σi denotes the image of row i through the mapping σ. Informally, σi is the node in the
phylogenetic tree corresponding to the node where the cell i is attached. It is important
to note that, given an input matrix I, the pair (T, σ) fully characterizes the output matrix
E. Consequently, the reconstruction problem can be formulated as finding a tree T that
maximizes the following objective function:

max
m

∑
j

n

∑
i

log(P(Iij|D(T, σi)j))

To simplify the computation of the likelihood, we make a slight abuse of notation
by assuming that P(Iij = ?|Eij = 1) = P(Iij = ?|Eij = 0) = 1. Furthermore, given a tumor
phylogeny T, we can define the mapping σ as the one that maximizes the objective function.
This means that σ can be computed directly from T, with T being the only variable in the
optimization problem [6].

The Dollo-k Model

In this paper, we employ the Dollo-k evolutionary model, where each mutation can
be acquired exactly once and lost at most k times throughout the entire tumor phylogeny
tree [4]. The Dollo-0 and Dollo-1 models correspond to the perfect [26] and persistent [34]
phylogeny models, respectively. The phylogeny reconstruction problem under a Dollo-k
model is NP-hard [39] for any k > 1.

Experimental evidence suggests that only a small number of mutation losses occur
during the evolutionary process of each tumor [24]. To account for this observation, we
introduce an additional constraint to our models, limiting the total number of mutation
losses throughout the progression to a maximum of d occurrences. Alongside k, d is a
parameter provided by the user.

In most of the cases studied, we set k ≤ 2 and d ≤ 5. Furthermore, in our experiments,
when the number of mutations is not too small, setting d ≤ 5 effectively implies that k ≤ 1,
making the parameter k redundant. However, we choose to retain it as it ensures that
certain degenerate trees will never be computed.

Algorithms 2023, 16, 333 4 of 20

3. Methods
3.1. Particle Swarm Optimization

The main idea of Particle Swarm Optimization [49] (PSO) revolves around maintaining
a population of n feasible solutions (called particles). These particles move within the search
space under the influence of the best overall solutions encountered by the entire population
and the individuals themselves. Each particle is characterized by its position and its velocity.
The population moves synchronously, with all individuals updating their positions and
velocities simultaneously, until either convergence is achieved or a specified timeout is
reached. The general outline of PSO is provided by Algorithm 1.

Algorithm 1: Particle Swarm Optimization
Data: n: number of particles, m: number of dimensions

1 foreach particle xi do
2 xi ← a random Dollo-k phylogeny;
3 pi ← xi // pi is the best position seen so far
4 if f (pi) > f (g) then
5 g← pi // Currently the best global solution

6 while halting criterion not reached yet do
7 for i← 1 to n do
8 rp, rg ∼ U(0, 1);
9 vi ← rp(pi − xi) + rg(g− xi) // Update velocity modulus

10 with probability 0.1
// The operation is a transplant

11 with probability 0.5
12 q← a subtree of pi with vi nodes
13 else
14 q← a subtree of g with vi nodes

15 xi ← remove a subtree of xi with vi and attach q;
16 Remove all excess mutation losses in xi;
17 Add to xi at random all missing mutation acquisitions;
18 else
19 With uniform probability, pick one of the other operations and apply it

to T;

20 if f (xi) > f (pi) then
21 pi ← xi;
22 if f (pi) > f (g) then
23 g← pi

In our approach, each phylogeny is represented as a particle, with its topology serving
as its position. Initially, positions are generated as random binary trees representing Perfect
Phylogeny. At each iteration, particles can move using some of the following operations on
a tree T and a node i, where ρ(i) denotes the parent of i in T:

• Subtree Prune and Reattach: Given two internal nodes, u, v ∈ T, that are not ancestors
of each other, we prune the subtree of T rooted in u by removing the edge (u, ρ(u)).
We then reattach this pruned subtree as a new child of v by adding the edge (u, v);

• Add a deletion: Given two nodes u, v ∈ T such that v is an ancestor of u, we insert a
node v− in T to represent the loss of mutation v. The new node becomes the parent of
u. Note that this operation is only performed if the resulting tree satisfies the desired
phylogeny model. For the Dollo-k model, we must check that the mutation v has been
lost in the tree at most k− 1 times.

Algorithms 2023, 16, 333 5 of 20

• Remove a deletion: Given a node u ∈ T labeled as a loss, we simply remove it from
the tree. All children of u are added as children of ρ(u), then the node u is deleted.

• Swap node labels: Given two internal nodes u, v ∈ T, the labels of u and v are swapped.
If this operation renders a previously added loss invalid—because a mutation c is lost
in a node c−, but the node where the mutation c is acquired is no longer an ancestor
of c−—we remove the deletion c−.

• Subtree transplant: This operation requires an additional tree Q which does not
necessarily contain the acquisition of all characters of T. The transplant involves:
(1) deleting the subtree of T rooted at i (i.e., removing i and all its descendants),
(2) making the root of Q a new child of ρ(i) (i.e., attaching Q to T), and (3) adjusting
the resulting tree to ensure it is a Dollo-k phylogeny for the input mutations. The
adjustment consists of two parts: (a) contracting a node corresponding to the loss of
mutation c for each mutation c that has been lost more than k times, until c is lost k
times in the tree, and (b) randomly adding a node for each input mutation that is not
acquired in the tree. The resulting tree is guaranteed to be a Dollo-k phylogeny and a
feasible solution to our problem.

To guide the update of particle positions, we introduce a new notion of distance. This
distance, represented by Equation (1), is experimentally assessed and must be computed
very rapidly to avoid degrading the performance of the method. This distance is computed
by constructing a graph G whose vertex set is the union of vertices of two trees, T1 and
T2. Each edge e = (v, w) of G connects a vertex v of T1 with a vertex w of T2. The edge is
weighted with the number of mutations that are shared by the subtree of T1 rooted at v and
the subtree of T2 rooted at w. To determine the distance between two trees, we compute
a maximum weight matching M of the graph G. This matching establishes a one-to-one
correspondence between the vertices of the trees, maximizing the overall number of shared
mutations. To transform a matching into a suitable distance measure, we subtract the
weight of M from the maximum number of mutations in either input tree, resulting in the
following distance formulation:

dist(T1, T2) = max
{

∑
x∈T1

m(x), ∑
x∈T2

m(x)
}
−max_weight_matching(T1, T2). (1)

This notion of distance is utilized to compute the velocity of the particles. The idea is
that particles that are far from the local or the global optimum should have higher speed to
encourage exploration. This higher velocity is determined by swapping subtrees within
the tree, where the size of the swapped subtree is equal to the velocity. In other words,
the higher the velocity of a particle, the larger the portion of the tree that gets replaced or
modified during the optimization process.

3.2. Genetic Programming

Genetic programming (GP), introduced by Koza in 1992 [50], is population-based
metaheuristics that has been successfully applied in various problem domains, including
bioinformatics [51,52]. It is inspired by Genetic Algorithm (GA) and mimics natural
selection and reproduction processes [53]. Both GP and GA imitate some spontaneous
optimization processes in natural selection and reproduction. At each iteration (generation),
GP manipulates a set (population) of encoded solutions (individuals). These individuals
are evaluated using a fitness function, which represents the objective function. Based on
their fitness, good individuals are selected to produce new solutions (offspring) through
operators such as crossover and mutation. The offspring then replace some individuals
in the current population. Extensive computational experience on several optimization
problems shows that GA often produces high-quality solutions in a reasonable time [54,55].
We refer the interested reader to [56].

In this section, we present a GP approach (Algorithm 2) where each individual repre-
sents a feasible solution—a Dollo-k phylogeny. The same approach can be viewed as a GA,

Algorithms 2023, 16, 333 6 of 20

where the main difference between the two approaches is the representation of a solution.
An individual in GA can be a string, while for GP, each individual is Dollo-k phylogeny.

In our implementation, a population size of 20 is used for smaller instances and 200
for larger instances. The halting criterion is a timeout of 3000 s on all instances. To maintain
population diversity and avoid premature convergence, all individuals in the population
are unique, meaning any duplicates are discarded.

Algorithm 2: Genetic Programming
Data: population size n
Result: A Dollo-k phylogeny

1 pop← n random Dollo-k phylogenies;
2 while halting condition not reached do
3 best← the fittest individual in pop;
4 Remove best from pop;
5 S← {best}∪ selection(pop)// See Algorithm 3
6 C ← crossover(S)// See Algorithm 4
7 M←mutation(o f f);
8 pop← remove duplicates from M;

9 return the fittest individual in pop

3.2.1. Representation and Initialization

The initialization process of the GP approach ensures that only feasible solutions
(Dollo-k phylogenies) are generated, similar to the PSO approach. The initialization starts by
generating a random tree with a specific number of nodes, equal to the number of mutations
(m), where no character is lost. This guarantees a fast and correct initialization, because
each mutation is assigned one-to-one to a node. It is important to note that the initialization
process allows for the exploration of the entire search space of feasible solutions. Any initial
feasible solution can reach any other feasible solution in the search space through crossover
and mutation operations. This property ensures that the GP approach has the capability to
explore and search the space of Dollo-k phylogenies effectively.

3.2.2. Fitness Calculation

The fitness of an individual in the GP approach is primarily determined by its log-
likelihood value, as described in Section 2. However, to prioritize simpler and smaller
phylogenies over larger and more complicated ones, we consider some additional factors,
such as the number of nodes size(T) and the depth of the tree T depth(T) in the definition
of fitness. The fitness equation for an individual is as follows:

fitness(T) = LogLikelihood(T) +
size(T)
1000

+
depth(T)
100000

. (2)

This definition of fitness helps prevent the occurrence of a phenomenon called bloat [57],
which is the progressive growth of solutions, generation after generation, leading to larger
and more complex individuals without a significant improvement in fitness.

3.2.3. Selection

The selection operator in GP determines which individuals will produce offspring
in the next generation, based on their fitness. More precisely, individuals with higher
fitness have a higher probability of being selected. Additionally, we employ an elitist
strategy, where a few (in our case, one) highly fit individuals are directly passed to the new
generation, while the selection process is applied to the remaining individuals to determine
the rest of the population in the new generation. The individuals directly passed to the
new generations are referred to as elite, while the others are classified as non-elite. The main

Algorithms 2023, 16, 333 7 of 20

effect of the elitist strategy is an emphasis on the exploitation phase. However, both elite
and non-elite individuals play an equal role in the subsequent phases of the GP algorithm.

The selection procedure has a huge impact on the balance between the exploration
phase, which focuses on finding new solutions, and the exploitation phase, which concen-
trates on the portion of the search space that has already been visited in the exploration
phase. Finding an optimal balance between exploration and exploitation is crucial for the
effectiveness of the GP algorithm.

The literature on selection operators [53] for GA and GP is rich and includes roulette
wheel selection, ranking selection, and tournament selection. In this paper, we employ
FGTS (fine-grained tournament selection [54]), which is an enhanced version of the standard
tournament selection.

In the standard tournament selection, a tournament round is conducted for each non-
elite individual that needs to be selected for the next generation. In each tournament round,
a random subset of Ntour non-elite individuals is chosen, and the fittest individual among
them is selected as the winner. The winner is then passed on to the next generation, and a
new tournament round begins. This process continues until the selection is complete. No-
tice that an individual can participate in multiple tournaments within a generation, which
allows for fair competition among individuals and provides opportunities for selection
based on their fitness in different contexts.

The tournament size Ntour is typically an integer value that determines the balance
between exploration and exploitation. Choosing an appropriate value for Ntour can be
challenging, as smaller sizes lead to slower convergence, while larger sizes result in faster
convergence. To overcome this problem, FGTS introduces a rational (i.e., not necessarily
integral) parameter Ftour, which represents the desired average tournament size. In FGTS,
tournaments can have different sizes, but the average size is maintained close to Ftour. In
our implementation, we have set Ftour = 2.4. The pseudocode for the selection operator is
Algorithm 3.

Algorithm 3: Fine-grained tournament selection (FGTS)
Data: A population pop;
the desired average tournament size Ftour
Result: pop∗: the selected population;
// the number of selected individuals is | pop | −1

1 n←| pop |;
2 F−tour ← bFtourc;
3 F+

tour ← dFtoure;
4 m← bn(F+

tour − Ftour)c;
5 pop∗ ← ∅;
6 for i← 2 to m do
7 X ← F−tour random elements from pop;
8 Append to pop∗ the fittest individual in X;

9 for i← m + 1 to n do
10 X ← F+

tour random elements from pop;
11 Append to pop∗ the fittest individual in X;

12 return pop∗

3.2.4. Crossover

The crossover operator, also known as sexual recombination, introduces some variation
in the population by combining genetic material from the parent individuals [56]. In the
context of GP [50] for our problem, the crossover operator selects a random node—the
crossover point—in each parent tree T1 and T2. The crossover fragment for a parent Ti
is the subtree rooted at the crossover point. The offspring is created by replacing the
crossover fragment of T1 with the crossover fragment of T2—this operation can be seen

Algorithms 2023, 16, 333 8 of 20

as an extension to a pair of trees of the Subtree Prune and Regraft operation of the PSO.
Additionally, a symmetric offspring is created by replacing the crossover fragment of T2
with the crossover fragment of T1.

Designing a crossover operator for our problem is challenging because we need to
guarantee that all offspring generated are feasible solutions. The crossover procedure
involves the use of the function mate_individual() to create two offspring from the parents.
The mating procedure must maintain the validity of the individuals in the population. The
crossover procedure (Algorithm 4) starts by randomly selecting a mutation and checking if
it can identify a valid crossover point in each tree. In other words, the crossover operation
should result in two valid tumor phylogenies. If the check is successful, the offspring are
created, and the procedure terminates. If the check fails, another mutation is selected, and
the procedure is iterated.

It is important to note that the crossover operation is performed with a certain proba-
bility, known as the crossover probability, set to 0.9 in our approach.

Algorithm 4: Crossover
Data: A population pop; a crossover probability c
Result: pop∗: the population after crossover

1 pop∗ ← a copy of pop;
2 n←| pop |;
3 for i← 1 to n/2 do
4 with probability c
5 i1, i2 ← two random distinct individuals from pop;
6 repeat
7 x1, x2 ← a random crossover point for i1 and i2 respectively;
8 j1, j2 ← the result of swapping the crossover fragments identified by x1

and x2;
9 until j1, j2 are both feasible solutions;

10 Replace i1 with j1 and i2 with j2 in pop;

11 return pop∗

3.2.5. Mutation

Mutation is an asexual operator that operates on a single individual by modifying a
specific mutation point. Many variants of the standard GP mutation have been presented
in the literature.

In our approach, we have chosen one of the simplest mutation operations: the insertion
of a new child of a given node and the deletion of a node—deleting a node x involves
adding all its children as new children of the parent of the node x, then removing the
node itself.

During the mutation process, each node of the individual is selected with a mutation
probability that is smaller than the crossover probability. In our approach, the mutation
probability is set to 0.1. If a node is selected for mutation, there is an equal probability of
either inserting a new child or deleting the node. This choice helps maintain the number of
nodes in the individual and prevents excessive growth (bloat). If the resulting individual
after a mutation is not a feasible solution, the mutation is discarded and the individual
remains unchanged.

3.2.6. Additional Info about GP Algorithm and Implementation

We have implemented the GP algorithm in Python 3, using the DEAP library [58] for
genetic programming, anytree for tree-like structures manipulation, and bitstring for the
efficient manipulation of bit-arrays.

Algorithms 2023, 16, 333 9 of 20

3.3. Variable Neighbourhood Programming

Genetic Programming and Particle Swarm Optimization are two population-based
metaheuristics that explore the search space to find a near-optimal solution. However, they
often converge slowly to a such a solution [59]. To address this issue, local search-based
algorithms—where we apply a sequence of local changes to the current solution—have been
developed. Variable Neighbourhood Programming (VNP) [60] is such a technique. VNP is
inspired by automatic programming solution representation and Variable Neighbourhood
Search (VNS) metaheuristics, combining the concept of neighborhood change with local
search methods to ensure the discovery of local optima. Since VNP is based on non-binary
representations, it should be more suited to problems on tree-like objects.

The main idea of VNS [46] and VNP is to change neighborhoods as the search pro-
gresses and incorporate local search methods to guarantee the identification of local optima.
We refer the interested reader to [61]. The neighborhood structure plays a crucial role in
defining the search space, both during the descent to local minima and in the escape from
the valleys which contain them.

A fundamental ingredient of VNS and VNP is to define a suitable neighborhood
structure for the solution space. In our case, we define four different neighborhoods for a
given tumor phylogeny T. The first neighborhood, denoted by N1(T), consists of all valid
Dollo-k phylogenies that differ from T in a subtree whose root is a leaf, or a parent of a leaf,
or a grandparent of a leaf. In other words, the root of such subtree has distance of at most 2
to a leaf. The second and third neighborhoods, N2(T) and N3(T) respectively, consist of
all valid Dollo-k phylogenies that differ from T in a subtree whose root has a maximum
distance of 5 (resp. 8) to a leaf. Finally, the last neighborhood, denoted as N4(T), consists of
all valid Dollo-k phylogenies. Notice that the cardinality of the neighborhoods decreases
with increasing index (that is, |Ns(T)| < |Ns+1(T)| for each 1 ≤ s ≤ 3). To facilitate the
presentation of the algorithm, we introduce the function z(), where z(1) = 2, z(2) = 5 z(3) = 8,
and z(4) = +∞. Each set Ns(T) consists of all valid Dollo-k phylogenies that differ from T
only in nodes with a distance at most z(s) to a leaf in T.

The main idea of VNP is alternating exploration of the current neighborhood through a
local search, and the shaking, where we move to another neighborhood and different parts
of the solution space can be explored. The pseudocode of VNP is given in Algorithm 5.

Algorithm 5: Variable Neighbourhood Programming
Result: T: the phylogeny computed

1 s← 1;
2 T ← a random Dollo-k phylogeny;
3 while halting condition not reached do
4 T1 ← shaking(T, s); // See Algorithm 6
5 T2 ← local_search(T1); // See Algorithm 7
6 s← (s mod 4) + 1;
7 if f it(T2) > f it(T) then
8 T ← T2;
9 s← 1;

10 return T

The VNP follows a main loop that is iterated until a halting condition is met. Usually,
this condition includes a limit on the number of iterations and a timeout for the overall
execution time. In our case, the timeout is set to 3000 s for all instances. An important
invariant of the algorithm is that T always is the best solution visited so far. The main
loop consists of two phases: the shaking phase and the local search. In the shaking phase,
a new solution T1 is generated by exploring the current neighborhood, while the local
search produces a solution T2. If T2 is better than T, then T2 becomes the new incumbent
and the next search begins at the first neighborhood N1. However, if T2 does not improve

Algorithms 2023, 16, 333 10 of 20

upon T, the algorithm progresses to the next neighborhood in the sequence to attempt
further improvement. If the last neighborhood N4 is explored and a solution better than
the incumbent is found, the search restarts from the first neighborhood. Notice that the
initial solution is a feasible solution computed as in Section 3.1 and that the fitness of a
solution is computed as described in Section 3.2.2.

3.3.1. Shaking

The shaking phase in the VNP serves to introduce diversity and explore the current
neighborhood Ns(T) in search of a feasible solution T1. The shaking procedure typically
involves the random extraction of a feasible solution. In our case, the definition of neighbor-
hood classes, as described earlier, is tailored for the phylogeny sizes we expect to manage.
Larger datasets would require a different definition of neighborhoods; for example, chang-
ing the subtree depth or introducing new classes.

Algorithm 6: Shaking
Data: s: current neighbourhood class. T: current solution.
Result: T1: a feasible solution

1 T1 ← copy(T) ;
2 r ← a random vertex of T1 that has distance at most z(s) to a leaf;
3 T|r ← the subtree of T1 rooted at r;
4 T∗ is a random tree with the same edge labels as T|r;
5 T2 is obtained from T1 by replacing T|r with T∗;
6 Contract in T2 all edges of T∗ labeled by a mutation loss c− such that none of its

ancestors is labeled c+;
7 return T2

In Algorithm 6, the shaking procedure selects a subtree T|r from the current solution T
and permutes its edges. The selected subtree is denoted as T∗, and its edges are randomly
rearranged to generate a new solution T2. Since T∗ is a permutation of the edges of T|r,
the set of mutation acquisitions and losses is preserved. The only possible case when T2 is
not valid only can happen when some mutation loss precedes a mutation acquisition. Line
6 of the algorithm explicitly removes such losses. The resulting tree is, therefore, a valid
Dollo-k phylogeny.

The shaking procedure is designed to guarantee that all solutions in the search space
can be potentially reached. This means that there are no feasible solutions that cannot be
reached through the shaking procedure.

3.3.2. Local Search

Local search is performed on a shaken solution T1 to potentially find an improved
solution T2. Local search strategies commonly used in VNS and VNP include best improve-
ment (highest descent) and first improvement (first descent). In our implementation, we
have chosen the first improvement strategy for the local search. This means that the local
search terminates as soon as the first improvement is found. The pseudocode for the local
search with the first improvement strategy is presented in Algorithm 7.

3.3.3. Additional Info about VNP Algorithm and Implementation

The VNP algorithm is implemented as a Python 3 program using the anytree library for
tree-like structures manipulation and the bitstring library for efficient bit-array manipulation.

Algorithms 2023, 16, 333 11 of 20

Algorithm 7: Local search, first improvement strategy
Data: the current neighbourhood size s, the current solution S
Result: a Dollo-k phylogeny T

1 do
2 i← 0;
3 T ← S;
4 do
5 i← i + 1;
6 T1 ← next tree in Ns(X);
7 if f it(T1) > f it(T) then
8 T ← T1;
9 break

10 while i < size(Ns(X));
11 while f it(T) ≤ f it(S);
12 return T

4. Experimental Comparison

We conducted a total of seven experiments on simulated data. Each experiment
involved generating 50 random trees with varying numbers of clonal expansions. These
trees represented tumoral sub-populations sharing the same set of mutations. We further
explored the impact of varying the number of losses randomly applied to the simulated
phylogenies. This allowed us to evaluate the performance of the three methods described
earlier in comparison to the reference method, SASC [6]. We notice that SASC is a heuristic
based on Simulated Annealing.

4.1. Generation of the Datasets

To conduct our experiments, we followed the same generation methodology used
in [4,6,62]. We generated 50 random clonal trees for each experimental setting. The
generation process involved creating a random tree topology of S nodes. We iteratively
added a new vertex as a child of a randomly selected node already in the tree, chosen
uniformly at random. Once the topology was constructed, we randomly assigned N
mutations as labels to the nodes. Each node was assigned at least one mutation. To allow
deletions, we added up to k new nodes to the phylogeny. These new nodes were labeled as
the loss of a random mutation acquired along the path from the node to the root. Next, we
placed M cells in the tree by randomly selecting nodes. We computed the genotype profiles
of these cells, which allowed us to obtain the profiles for our input matrix. Finally, we
introduced random false negatives and false positive values into the input matrix, based
on the probabilities α and β, respectively.

Since our main focus was on evaluating the performance of different meta-heuristics
methods and their scalability on the Dollo-k and the Perfect Phylogeny model, we fixed the
number of β to 0.00001 and varied the other parameters as described in Table 1.

4.2. Evaluation of the Results

Following established methodology [4–6,62], we evaluated the quality of the tree
reconstruction inferred with the three novel algorithms using the following accuracy
measures: Ancestor–Descendant accuracy and Different Lineage accuracy. Furthermore,
we used the MP3 tree similarity measure [47], which is one of several recent notions of tree
distances specifically designed for cancer phylogeny comparison in the literature [63–66].
We have chosen MP3, since it has already been used to test the accuracy of novel cancer
inference methods [67].

Algorithms 2023, 16, 333 12 of 20

Table 1. Parameters used for dataset generation. S is the size of the subclonal population, N is the
total number of mutations generated, M is the total number of cells, and k is the value of the Dollo-k
model, i.e., in our experiments we have considered either a Perfect Phylogeny or a Dollo-3 Phylogeny.

Experiment # S N M k α

1 5 15 50 0 0.15, 0.20

2 5 15 50 3 0.15, 0.20

3 7 30 100 0 0.15, 0.20

4 7 30 100 3 0.15, 0.20

5 9 50 200 0 0.15, 0.20

6 9 50 200 3 0.15, 0.20

7 9 100, 200 200 3 0.15

4.2.1. Ancestor-Descendant Accuracy

For each pair of mutations (a, b) that are in an ancestor-descendant relationship in
the simulated ground truth tree, we check if the same relationship is conserved in the
inferred solution. If a pair is maintained, we consider it as a true positive; otherwise, it
is considered a false negative; symmetrically pairs of nodes that are not in an ancestor-
descendant relationship in the simulated ground truth tree can be true negatives or false
positives. The accuracy is then defined as the F1 measure over all pairs.

4.2.2. Different-Lineage Accuracy

As in the previous measure, we consider all pairs of mutation that are not in an
ancestor-descendant relationship, i.e., they are on different evolutionary branches. Similarly
to the previous measure, the score is the resulting F1 measure over all pairs.

4.2.3. MP3 Tree Similarity

We also utilize the MP3 [47] similarity measure that is specifically designed to compare
cancer phylogenies, and it is computed using the number of conserved triplets of mutations
between the ground and the inferred trees.

4.3. Results

The three heuristics are compared against themselves and against SASC [6], which
is considered the base reference for accuracy. Some interesting patterns clearly emerge as
the complexity of the experimental setting increases. In general, when considering smaller
input sizes, GP and VNS showed lower accuracy in all measures compared to PSO and
SASC (Figures 1 and 2). This difficulty in effectively exploring the search space became
even more pronounced as the input size increased.

On the other hand, in all experiments, PSO exhibited ancestor–descendant and dif-
ferent lineages accuracy scores that were very close to those obtained by SASC. However,
when considering the MP3 similarity measure, which is specifically tailored to tumor
phylogenies, we observe a clear drop in performance (Figures 1–6). Furthermore, none of
the three methods are as accurate as SASC when employing a Dollo-3 model instead of a
Perfect Phylogeny, again highlighting the need for better handling of the increasingly large
search space.

In terms of efficiency, PSO was significantly faster than the other approaches, being
1 2 orders of magnitude more efficient in all experimental settings, except Experiment 7
(Figure 7. Experiment 7 was used in larger instances with a number of mutations increasing
to 100 and 200. In this case, the faster execution of PSO was penalized by lower accuracy,
according to all measures. Since no time constraint has been imposed on the algorithm, we
conjecture that this drop in accuracy is due to difficulty in the exploration of the search

Algorithms 2023, 16, 333 13 of 20

space. In this experiment, we excluded GP and VNS due to the lack of performance in the
previous results.

These results suggest that PSO could be a viable alternative to the Simulated Annealing
heuristic. However, it may require a different definition of tree distance and more refined
tuning to effectively manage the exploration phase.

SASC PSO GP VNS
0.0

0.2

0.4

0.6

0.8

Ancestor-Descendant

SASC PSO GP VNS

0.75

0.80

0.85

0.90

0.95

Different Lineages

SASC PSO GP VNS
0.0

0.1

0.2

0.3

0.4

0.5

0.6
MP3

SASC PSO GP VNS

101

102

103

Time (s) (log)

SASC PSO GP VNS
0.0

0.2

0.4

0.6

0.8

Ancestor-Descendant

SASC PSO GP VNS

0.75

0.80

0.85

0.90

0.95

Different Lineages

SASC PSO GP VNS
0.0

0.1

0.2

0.3

0.4

0.5

0.6
MP3

SASC PSO GP VNS

101

102

103

Time (s) (log)

Figure 1. Experiment 1: Perfect Phylogeny, Subclonal population size 5, Total number of mutations
15, Total number of cells 50, and (Top) α = 0.15 (Bottom) α = 0.20. SASC and PSO score very similar
in all measures. While there is a large gap between VNS and the other, GP is able to compare with the
others. Running times vary between the methods, with PSO being at one to two orders of magnitude
faster than the others.

SASC PSO GP VNS
0.0

0.2

0.4

0.6

0.8

Ancestor-Descendant

SASC PSO GP VNS

0.75

0.80

0.85

0.90

0.95
Different Lineages

SASC PSO GP VNS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

MP3

SASC PSO GP VNS
101

102

103

Time (s) (log)

SASC PSO GP VNS
0.0

0.2

0.4

0.6

0.8

Ancestor-Descendant

SASC PSO GP VNS
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
Different Lineages

SASC PSO GP VNS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
MP3

SASC PSO GP VNS
101

102

103

Time (s) (log)

Figure 2. Experiment 2: Dollo-3 Phylogeny, Subclonal population size 5, Total number of mutations
15, Total number of cells 50 and (Top) α = 0.15 (Bottom) α = 0.20. SASC and PSO score very similar in
all measures. While there is a large gap between VNS and the other, GP is able to compare with the
others. Running times vary between the methods, with PSO being at one to two orders of magnitude
faster than the others.

Algorithms 2023, 16, 333 14 of 20

SASC PSO GP VNS
0.0

0.2

0.4

0.6

0.8

Ancestor-Descendant

SASC PSO GP VNS
0.75

0.80

0.85

0.90

0.95

Different Lineages

SASC PSO GP VNS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
MP3

SASC PSO GP VNS
101

102

103

Time (s) (log)

SASC PSO GP VNS
0.0

0.2

0.4

0.6

0.8

Ancestor-Descendant

SASC PSO GP VNS

0.80

0.85

0.90

0.95

Different Lineages

SASC PSO GP VNS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
MP3

SASC PSO GP VNS
101

102

103

Time (s) (log)

Figure 3. Experiment 3: Perfect Phylogeny, Subclonal population size 7, Total number of mutations
30, Total number of cells 100 and (Top) α = 0.15 (Bottom) α = 0.20. SASC and PSO score very similar
in all measures. On the other hand, GP and VNS start to show a clear drop in performance. Running
times vary between the methods, with PSO being at one to two orders of magnitude faster than
the others.

SASC PSO GP VNS
0.0

0.2

0.4

0.6

0.8

Ancestor-Descendant

SASC PSO GP VNS

0.800
0.825
0.850
0.875
0.900
0.925
0.950

Different Lineages

SASC PSO GP VNS
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MP3

SASC PSO GP VNS

102

103

Time (s) (log)

SASC PSO GP VNS
0.0

0.2

0.4

0.6

0.8

Ancestor-Descendant

SASC PSO GP VNS

0.80

0.85

0.90

0.95

Different Lineages

SASC PSO GP VNS
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MP3

SASC PSO GP VNS

102

103

Time (s) (log)

Figure 4. Experiment 4: Dollo-3 Phylogeny, Subclonal population size 7, Total number of mutations
30, Total number of cells 100 and (Top) α = 0.15 (Bottom) α = 0.20. SASC and PSO score very similarly
in all measures, except for MP3, in which we start to see a decrease in performance for the PSO. On
the other hand, GP and VNS start to show a clear drop in performance. Running times vary between
the methods, with PSO being at one to two orders of magnitude faster than the others.

Algorithms 2023, 16, 333 15 of 20

SASC PSO GP VNS
0.0

0.2

0.4

0.6

0.8

Ancestor-Descendant

SASC PSO GP VNS
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975
Different Lineages

SASC PSO GP VNS
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MP3

SASC PSO GP VNS

102

103

Time (s) (log)

SASC PSO GP VNS
0.0

0.2

0.4

0.6

0.8

Ancestor-Descendant

SASC PSO GP VNS

0.80

0.85

0.90

0.95

Different Lineages

SASC PSO GP VNS
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MP3

SASC PSO GP VNS

102

103

Time (s) (log)

Figure 5. Experiment 5: Perfect Phylogeny, Subclonal population size 9, Total number of mutations
50, Total number of cells 200 and (Top) α = 0.15 (Bottom) α = 0.20. SASC and PSO score very similarly
in all measures, except for MP3, in which we see a decrease in performance for the PSO. On the other
hand, GP and VNS do not perform comparably to the other two algorithms. Running times vary
between the methods, with PSO being at one to two orders of magnitude faster than the others.

SASC PSO GP VNS
0.0

0.2

0.4

0.6

0.8

Ancestor-Descendant

SASC PSO GP VNS

0.80

0.85

0.90

0.95

Different Lineages

SASC PSO GP VNS
0.0

0.2

0.4

0.6

MP3

SASC PSO GP VNS

102

103

104

Time (s) (log)

SASC PSO GP VNS
0.0

0.2

0.4

0.6

0.8

Ancestor-Descendant

SASC PSO GP VNS

0.825

0.850

0.875

0.900

0.925

0.950

0.975
Different Lineages

SASC PSO GP VNS
0.0

0.2

0.4

0.6

MP3

SASC PSO GP VNS

102

103

104

Time (s) (log)

Figure 6. Experiment 6: (Top) Dollo-3 Phylogeny, Subclonal population size 9, Total number of
mutations 50, Total number of cells 200 and (Top) α = 0.15 (Bottom) α = 0.20. SASC and PSO score
very similarly in all measures, except for MP3, in which we see a decrease in performance for the PSO.
On the other hand, GP and VNS do not perform comparably to the other two algorithms. Running
times vary between the methods, with PSO being at one to two orders of magnitude faster than
the others.

Algorithms 2023, 16, 333 16 of 20

SASC PSO

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ancestor-Descendant

SASC PSO

0.86

0.88

0.90

0.92

0.94

0.96

Different Lineages

SASC PSO

0.2

0.3

0.4

0.5

0.6

0.7

MP3

SASC PSO

103

Time (s) (log)

SASC PSO
0.5

0.6

0.7

0.8

0.9
Ancestor-Descendant

SASC PSO
0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96
Different Lineages

SASC PSO
0.1

0.2

0.3

0.4

0.5

0.6

MP3

SASC PSO

103

104

Time (s) (log)

Figure 7. Experiment 7: (Top) Dollo-3 Phylogeny, Subclonal population size 9, Total number of
mutations 100, Total number of cells 200 and α = 0.15. (Bottom) Dollo-3 Phylogeny, Subclonal
population size 9, Total number of mutations 200, Total number of cells 200 and α = 0.15. While
PSO is significantly faster than SASC (one order of magnitude) it lacks in performance according
to all measures when compared to SASC. On the other hand, GP and VNS were excluded from the
experiments due to low accuracy in previous experiments.

4.4. Real Data

While the goal of this manuscript is the empirical analysis of different meta-heuristic
approaches on simulated data, we also tested the PSO on a real dataset to show the
applicability of the model in a real case scenario. Based on the previous experiments, we
excluded GP and VNS. We selected an oligodendroglioma tumor; in particular, on patient
MGH36 from [68], consisting of 77 SNVs, distinguished from PCR false positives using
matched WES, over 579 cells. This tumor was already examined in [6].

Using PSO, we generated a Dollo-3 phylogeny for the patient, producing the solution
shown in Figure 8. As depicted, the method infers a solution containing one deletion of
IDH1; while no curated tree is available to compare it against, this shows the potential
applicability of the PSO heuristic to real datasets.

Algorithms 2023, 16, 333 17 of 20

germline

HLA-DQB2

LINC00937

ABCA7

FAM182B

KAT6A

CPEB4

HEATR4

RFX3

IDH1

MCM8

CYP27A1

IFT81

CTNNA2

NR3C1

MAN1B1

NRN1

ANKRD30B

CACNA1G

PIK3CA

SH3BP5

TBC1D10A

ENO3

ZNF526

MIR4477B

ST8SIA3

AGAP2

MLYCD

RP11-356C4.3

EP400 VGLL4

PHLDB3

SVEP1

KIF2A

TRPM3

NR5A2 ARHGEF3 SOX5

TRIOBP

ZNF721

HELZ2

KIAA0907

APC2

CCDC181

UBE2Z

STXBP1

ZNF451

IL33

NOTCH2

DGCR6L

NPEPL1

TXNDC2

EEF1B2

KMT2C

SLC26A11

ORC3

EMR2

IDH1

RTTN

TRPM2

RUNX2

KHSRP

USP36

ZNF462

ZZEF1

TFAP2A

CPAMD8

PLEKHM1

RP11-403I13.8

CLEC18B VPS9D1

CNNM2

CEBPZ

RIN2

SLC16A7

CEP55 NBPF10

PCDHA1 AS3MT

Figure 8. Tree inferred by PSO for the oligodendroglioma MGH36 from [68]. The tree was computed
employing a Dollo-3 phylogeny model. In this picture, a red node indicates a loss of mutation.

5. Discussion

In this paper, we have presented and experimentally assessed three different meta-
heuristics (PSO, GP, and VNP) to infer tumor phylogenies under the Dollo model. We have
compared these methods to the state-of-the-art Simulated Annealing approach (SASC).

Among the three metaheuristics, PSO showed the most promising results, although
it was not able to outperform SASC. PSO demonstrated accuracy comparable to SASC in
most experiments and measures, but its performance dropped as the complexity of the
problem increased.

The main challenges faced by these methods stem from the fact that trees are not
inherently a numeric space, which poses difficulties in defining distance, velocity, and
direction on trees. Consequently, the design of appropriate definitions for these parameters
is a crucial area for future research. These definitions should be computationally efficient
and capable of capturing the properties that the PSO approach can exploit. Successful
developments in this research direction have the potential to significantly enhance the
accuracy of PSO. Moreover, we expect the parallelism capabilities of PSO to allow us to
exploit many-cores infrastructures to allow an even larger exploration of the search space,
leading to higher-accuracy tumor phylogenies.

Author Contributions: Conceptualization, S.C., G.D.V., V.F. and M.S.G.; methodology, S.C., G.D.V.,
V.F. and M.S.G.; software, V.F. and S.C.; validation, S.C.; formal analysis, S.C., G.D.V. and V.F.;
investigation, S.C., G.D.V. and V.F.; resources, S.C. and G.D.V.; data curation, S.C. and G.D.V.;
writing—original draft preparation, S.C., G.D.V. and V.F.; writing—review and editing, S.C., G.D.V.,
V.F. and M.S.G.; visualization, S.C.; supervision, G.D.V. and V.F.; project administration, G.D.V. and
V.F.; funding acquisition, G.D.V. and V.F. All authors have read and agreed to the published version
of the manuscript.

Algorithms 2023, 16, 333 18 of 20

Funding: This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No 872539. Also,
this research was partially supported by the Serbian Ministry of Education and Science under
projects 174010.

Data Availability Statement: The implementation of the PSO is open source and available at https:
//github.com/IAL32/pso-cancer-evolution. The implementation of the GP and VNS is open source
and available at https://github.com/vladofilipovic/documents-science-public within directory
/journals/mdpi-algorithms-2023/prog. All the data used in the experimentation is available and
reproducible at https://github.com/AlgoLab/meta_cancer, all accessed on 11 June 2023.

Acknowledgments: We thank Paola Bonizzoni, Aleksandar Kartelj and Murray Patterson for many
enlightening discussions on this topic.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

PSO Particle Swarm Optimization.
GP Genetic Programming.
GA Genetic Algorithms.
FGTS Fine-Grained Tournament Selection.
SA Simulating Annealing.
VNP Variable Neighbourhood Programming.
VNS Variable Neighbourhood Search.

References
1. Morrissy, A.S.; Garzia, L.E.A. Divergent clonal selection dominates medulloblastoma at recurrence. Nature 2016, 529, 351–357.

[CrossRef] [PubMed]
2. Wang, J.; Cazzato, E.; Ladewig, E.; Frattini, V.; Rosenbloom, D.I.S.; Zairis, S.; Abate, F.; Liu, Z.; Elliott, O.; Shin, Y.J.; et al. Clonal

evolution of glioblastoma under therapy. Nat. Genet. 2016, 48, 768–776. [CrossRef] [PubMed]
3. Beerenwinkel, N.; Greenman, C.D.; Lagergren, J. Computational Cancer Biology: An Evolutionary Perspective. PLoS Comput.

Biol. 2016, 12, e1004717. [CrossRef]
4. Ciccolella, S.; Soto Gomez, M.; Patterson, M.D.; Della Vedova, G.; Hajirasouliha, I.; Bonizzoni, P. gpps: An ILP-based approach

for inferring cancer progression with mutation losses from single cell data. BMC Bioinform. 2020, 21, 413. [CrossRef]
5. Bonizzoni, P.; Ciccolella, S.; Della Vedova, G.; Soto Gomez, M. Does relaxing the infinite sites assumption give better tumor

phylogenies? An ILP-based comparative approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 16, 1410–1423. [CrossRef]
6. Ciccolella, S.; Ricketts, C.; Soto Gomez, M.; Patterson, M.; Silverbush, D.; Bonizzoni, P.; Hajirasouliha, I.; Della Vedova, G.

Inferring cancer progression from Single-Cell Sequencing while allowing mutation losses. Bioinformatics 2020, 37, 326–333.
[CrossRef]

7. Zaccaria, S.; Raphael, B.J. Accurate quantification of copy-number aberrations and whole-genome duplications in multi-sample
tumor sequencing data. Nat. Commun. 2020, 11, 4301. [CrossRef]

8. Satas, G.; Zaccaria, S.; Mon, G.; Raphael, B.J. SCARLET: Single-Cell Tumor Phylogeny Inference with Copy-Number Constrained
Mutation Losses Cell Syst. 2020, 10, 323–332.e8. [CrossRef]

9. Malikic, S.; McPherson, A.W.; Donmez, N.; Sahinalp, C.S. Clonality inference in multiple tumor samples using phylogeny.
Bioinformatics 2015, 31, 1349–1356. [CrossRef]

10. Donmez, N.; Malikic, S.; Wyatt, A.W.; Gleave, M.E.; Collins, C.C.; Sahinalp, S.C. Clonality Inference from Single Tumor Samples
Using Low Coverage Sequence Data. In Research in Computational Molecular Biology, Proceedings of the 20th Annual Conference,
RECOMB 2016, Santa Monica, CA, USA, 17–21 April 2016; Singh, M., Ed.; Springer International Publishing: Cham, Switzerland,
2016; pp. 83–94.

11. Ross, E.M.; Markowetz, F. OncoNEM: inferring tumor evolution from single-cell sequencing data. Genome Biol. 2016, 17, 69.
[CrossRef]

12. Zafar, H.; Wang, Y.; Nakhleh, L.; Navin, N.; Chen, K. Monovar: Single-nucleotide variant detection in single cells. Nat. Methods
2016, 13, 505. [CrossRef]

13. Zafar, H.; Navin, N.; Chen, K.; Nakhleh, L. SiCloneFit: Bayesian inference of population structure, genotype, and phylogeny of
tumor clones from single-cell genome sequencing data. Genome Res. 2019, 29, 1847–1859. [CrossRef] [PubMed]

https://github.com/IAL32/pso-cancer-evolution
https://github.com/IAL32/pso-cancer-evolution
https://github.com/vladofilipovic/documents-science-public
https://github.com/AlgoLab/meta_cancer
http://doi.org/10.1038/nature16478
http://www.ncbi.nlm.nih.gov/pubmed/26760213
http://dx.doi.org/10.1038/ng.3590
http://www.ncbi.nlm.nih.gov/pubmed/27270107
http://dx.doi.org/10.1371/journal.pcbi.1004717
http://dx.doi.org/10.1186/s12859-020-03736-7
http://dx.doi.org/10.1109/TCBB.2018.2865729
http://dx.doi.org/10.1093/bioinformatics/btaa722
http://dx.doi.org/10.1038/s41467-020-17967-y
http://dx.doi.org/10.1016/j.cels.2020.04.001
http://dx.doi.org/10.1093/bioinformatics/btv003
http://dx.doi.org/10.1186/s13059-016-0929-9
http://dx.doi.org/10.1038/nmeth.3835
http://dx.doi.org/10.1101/gr.243121.118
http://www.ncbi.nlm.nih.gov/pubmed/31628257

Algorithms 2023, 16, 333 19 of 20

14. El-Kebir, M.; Satas, G.; Oesper, L.; Raphael, B.J. Inferring the Mutational History of a Tumor Using Multi-state Perfect Phylogeny
Mixtures. Cell Syst. 2016, 3, 43–53. [CrossRef]

15. El-Kebir, M. SPhyR: tumor phylogeny estimation from single-cell sequencing data under loss and error. Bioinformatics 2018,
34, i671–i679.

16. Strino, F.; Parisi, F.; Micsinai, M.; Kluger, Y. TrAp: A tree approach for fingerprinting subclonal tumor composition. Nucleic Acids
Res. 2013, 41, e165. [CrossRef] [PubMed]

17. Sadeqi Azer, E.; Rashidi Mehrabadi, F.; Malikić, S.; Li, X.C.; Bartok, O.; Litchfield, K.; Levy, R.; Samuels, Y.; Schäffer, A.A.;
Gertz, E.M.; et al. PhISCS-BnB: A fast branch and bound algorithm for the perfect tumor phylogeny reconstruction problem.
Bioinformatics 2020, 36, i169–i176. [CrossRef]

18. Satas, G.; Raphael, B.J. Tumor phylogeny inference using tree-constrained importance sampling. Bioinformatics 2017, 33, i152–i160.
[CrossRef]

19. Hajirasouliha, I.; Mahmoody, A.; Raphael, B. A combinatorial approach for analyzing intra-tumor heterogeneity from high-
throughput sequencing data. Bioinformatics 2014, 30, i78–i86. [CrossRef]

20. Popic, V.; Salari, R.; Hajirasouliha, I.; Kashef-Haghighi, D.; West, R.; Batzoglou, S. Fast and scalable inference of multi-sample
cancer lineages. Genome Biol. 2015, 16, 91. [CrossRef]

21. Ali, S.; Ciccolella, S.; Lucarella, L.; Della Vedova, G.; Patterson, M. Simpler and Faster Development of Tumor Phylogeny Pipelines.
J. Comput. Biol. 2021, 28, 1142–1155. [CrossRef] [PubMed]

22. Storchova, Z.; Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 2004, 5, 45–54.
[CrossRef] [PubMed]

23. Zaccaria, S.; Raphael, B. Characterizing allele- and haplotype-specific copy numbers in single cells with CHISEL. Nat. Biotechnol.
2021, 39, 207–214. [CrossRef] [PubMed]

24. Kuipers, J.; Jahn, K.; Raphael, B.J.; Beerenwinkel, N. Single-cell sequencing data reveal widespread recurrence and loss of
mutational hits in the life histories of tumors. Genome Res. 2017, 27, 1885–1894. [CrossRef]

25. Gawad, C.; Koh, W.; Quake, S. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics.
Proc. Natl. Acad. Sci. USA 2014, 111, 17947–17952. [CrossRef] [PubMed]

26. Gusfield, D. Efficient algorithms for inferring evolutionary trees. Networks 1991, 21, 19–28. [CrossRef]
27. Gusfield, D. Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. In Proceedings of the 6th

Annual Conference on Research in Computational Molecular Biology (RECOMB 2002), Washington, DC, USA, 18–21 April 2002;
pp. 166–175.

28. Bonizzoni, P. A Linear-Time Algorithm for the Perfect Phylogeny Haplotype Problem. Algorithmica 2007, 48, 267–285. [CrossRef]
29. Satya, R.V.; Mukherjee, A. An Optimal Algorithm for Perfect Phylogeny Haplotyping. J. Comput. Biol. 2006, 13, 897–928.
30. Ding, Z.; Filkov, V.; Gusfield, D. A Linear Time algorithm for Perfect Phylogeny Haplotyping (PPH) problem. J. Comput. Biol.

2006, 13, 522–553. [CrossRef]
31. Gysel, R.; Gusfield, D. Extensions and Improvements to the Chordal Graph Approach to the Multistate Perfect Phylogeny

Problem. IEEE/Acm Trans. Comput. Biol. Bioinform. 2011, 8, 912–917. [CrossRef] [PubMed]
32. Farris, J.S. Phylogenetic Analysis Under Dollo’s Law. Syst. Biol. 1977, 26, 77–88. [CrossRef]
33. Rogozin, I.; Wolf, Y.; Babenko, V.; Koonin, E. Dollo parsimony and the reconstruction of genome evolution. In Parsimony,

Phylogeny, and Genomics; Oxford University Press: Oxford, UK, 2006.
34. Bonizzoni, P.; Braghin, C.; Dondi, R.; Trucco, G. The binary perfect phylogeny with persistent characters. Theor. Comput. Sci. 2012,

454, 51–63. [CrossRef]
35. Brown, D.; Smeets, D.; Székely, B.; Larsimont, D.; Szász, A.M.; Adnet, P.Y.; Rothé, F.; Rouas, G.; Nagy, Z.I.; Faragó, Z.; et al.

Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat.
Commun. 2017, 8, 14944. [CrossRef] [PubMed]

36. Ramazzotti, D.; Graudenzi, A.; De Sano, L.; Antoniotti, M.; Caravagna, G. Learning mutational graphs of individual tumor
evolution from multi-sample sequencing data. BMC Bioinform. 2019, 20, 210. [CrossRef] [PubMed]

37. Zafar, H.; Tzen, A.; Navin, N.; Chen, K.; Nakhleh, L. SiFit: Inferring tumor trees from single-cell sequencing data under finite-sites
models. Genome Biol. 2017, 18, 178. [CrossRef]

38. Wu, Y. Accurate and efficient cell lineage tree inference from noisy single cell data: The maximum likelihood perfect phylogeny
approach. Bioinformatics 2019, 36, 742–750. [CrossRef]

39. Goldberg, L.A.; Goldberg, P.W.; Phillips, C.A.; Sweedyk, E.; Warnow, T. Minimizing phylogenetic number to find good
evolutionary trees. Discret. Appl. Math. 1996, 71, 111–136. [CrossRef]

40. Benham, C.; Kannan, S.; Paterson, M.; Warnow, T. Hen’s teeth and whale’s feet: Generalized characters and their compatibility.
J. Comput. Biol. 1995, 2, 515–525. [CrossRef]

41. Steel, M. The complexity of reconstructing trees from qualitative characters and subtrees. J. Classif. 1992, 9, 91–116. [CrossRef]
42. Černý, V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J. Optim. Theory

Appl. 1985, 45, 41–51. [CrossRef]
43. Kirkpatrick, S.; Gelatt, C.; Vecchi, M. Optimization by simulated annealing. Science 1983, 4598, 671–680. [CrossRef]
44. Moscato, P. An introduction to population approaches for optimization and hierarchical objective functions: A discussion on the

role of tabu search. Ann. Oper. Res. 1993, 41, 85–121. [CrossRef]

http://dx.doi.org/10.1016/j.cels.2016.07.004
http://dx.doi.org/10.1093/nar/gkt641
http://www.ncbi.nlm.nih.gov/pubmed/23892400
http://dx.doi.org/10.1093/bioinformatics/btaa464
http://dx.doi.org/10.1093/bioinformatics/btx270
http://dx.doi.org/10.1093/bioinformatics/btu284
http://dx.doi.org/10.1186/s13059-015-0647-8
http://dx.doi.org/10.1089/cmb.2021.0271
http://www.ncbi.nlm.nih.gov/pubmed/34698531
http://dx.doi.org/10.1038/nrm1276
http://www.ncbi.nlm.nih.gov/pubmed/14708009
http://dx.doi.org/10.1038/s41587-020-0661-6
http://www.ncbi.nlm.nih.gov/pubmed/32879467
http://dx.doi.org/10.1101/gr.220707.117
http://dx.doi.org/10.1073/pnas.1420822111
http://www.ncbi.nlm.nih.gov/pubmed/25425670
http://dx.doi.org/10.1002/net.3230210104
http://dx.doi.org/10.1007/s00453-007-0094-3
http://dx.doi.org/10.1089/cmb.2006.13.522
http://dx.doi.org/10.1109/TCBB.2011.27
http://www.ncbi.nlm.nih.gov/pubmed/21301033
http://dx.doi.org/10.1093/sysbio/26.1.77
http://dx.doi.org/10.1016/j.tcs.2012.05.035
http://dx.doi.org/10.1038/ncomms14944
http://www.ncbi.nlm.nih.gov/pubmed/28429735
http://dx.doi.org/10.1186/s12859-019-2795-4
http://www.ncbi.nlm.nih.gov/pubmed/31023236
http://dx.doi.org/10.1186/s13059-017-1311-2
http://dx.doi.org/10.1093/bioinformatics/btz676
http://dx.doi.org/10.1016/S0166-218X(96)00060-1
http://dx.doi.org/10.1089/cmb.1995.2.515
http://dx.doi.org/10.1007/BF02618470
http://dx.doi.org/10.1007/BF00940812
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/BF02022564

Algorithms 2023, 16, 333 20 of 20

45. Forsyth, R. BEAGLE A Darwinian Approach to Pattern Recognition. Kybernetes 1981, 10, 159–166. [CrossRef]
46. Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [CrossRef]
47. Ciccolella, S.; Bernardini, G.; Denti, L.; Bonizzoni, P.; Previtali, M.; Della Vedova, G. Triplet-based similarity score for fully

multilabeled trees with poly-occurring labels. Bioinformatics 2020, 37, 178–184. [CrossRef]
48. Jahn, K.; Kuipers, J.; Beerenwinkel, N. Tree inference for single-cell data. Genome Biol. 2016, 17, 86. [CrossRef]
49. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
50. Koza, J.R. Genetic programming as a means for programming computers by natural selection. Stat. Comput. 1994, 4, 87–112.

[CrossRef]
51. Taylor, J.; Rowland, J.J.; Gilbert, R.J.; Jones, A.; Winson, M.K.; Kell, D.B. Genetic Algorithm Decoding for the Interpretation of

Infra-red Spectra in Analytical Biotechnology. In Proceedings of the Late Breaking Papers at EuroGP’98: The First European
Workshop on Genetic Programming, Paris, France, 14–15 April 1998; Poli, R., Langdon, W.B., Schoenauer, M., Fogarty, T., Banzhaf,
W., Eds.; CSRP-98-10; The University of Birmingham: Birmingham, UK, 1998; pp. 21–25.

52. Langdon, W.B.; Buxton, B.F. Genetic Programming for Mining DNA Chip data from Cancer Patients. Genet. Program. Evolvable
Mach. 2004, 5, 251–257. [CrossRef]

53. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence; MIT Press: Cambridge, MA, USA, 1992.

54. Filipović, V. Fine-grained tournament selection operator in genetic algorithms. Comput. Inform. 2003, 22, 143–161.
55. Kratica, J.; Kostić, T.; Tošić, D.; Dugošija, D.; Filipović, V. A genetic algorithm for the routing and carrier selection problem.

Comput. Sci. Inf. Syst. 2012, 21, 49–62. [CrossRef]
56. Rozenberg, G.; Bäck, T.; Kok, J.N. Handbook of Natural Computing; Springer: Berlin/Heidelberg, Germany, 2012.
57. Langdon, W.B.; Soule, T.; Poli, R.; Foster, J.A. The evolution of size and shape. Adv. Genet. Program. 1999, 3, 163–190.
58. Fortin, F.A.; De Rainville, F.M.; Gardner, M.A.; Parizeau, M.; Gagné, C. DEAP: Evolutionary Algorithms Made Easy. J. Mach.

Learn. Res. 2012, 13, 2171–2175.
59. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102.
60. Elleuch, S.; Mladenovic, N.; Jarboui, B. Variable Neighborhood Programming: A New Automatic Programming Method in Artificial

Intelligence; GERAD HEC Montréal: Montreal, QC, Canada, 2016.
61. Hansen, P.; Mladenović, N. Variable neighborhood search: Principles and applications. Eur. J. Oper. Res. 2001, 130, 449–467.

[CrossRef]
62. Malikic, S.; Jahn, K.; Kuipers, J.; Sahinalp, S.C.; Beerenwinkel, N. Integrative inference of subclonal tumour evolution from

single-cell and bulk sequencing data. Nat. Commun. 2019, 10, 2750. [CrossRef] [PubMed]
63. Karpov, N.; Malikic, S.; Rahman, M.; Sahinalp, S.C. A Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of

Tumor Progression. In Proceedings of the 18th International Workshop on Algorithms in Bioinformatics (WABI 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Helsinki, Finland, 20–22 August 2018.

64. Karpov, N.; Malikic, S.; Rahman, M.K.; Sahinalp, S.C. A multi-labeled tree dissimilarity measure for comparing “clonal trees” of
tumor progression. Algorithms Mol. Biol. 2019, 14, 17. [CrossRef] [PubMed]

65. DiNardo, Z.; Tomlinson, K.; Ritz, A.; Oesper, L. Distance measures for tumor evolutionary trees. Bioinformatics 2019, 36, 2090–2097.
[CrossRef]

66. Jahn, K.; Beerenwinkel, N.; Zhang, L. The Bourque distances for mutation trees of cancers. Algorithms Mol. Biol. 2021, 16, 9.
[CrossRef]

67. Sollier, E.; Kuipers, J.; Takahashi, K.; Beerenwinkel, N.; Jahn, K. Joint copy number and mutation phylogeny reconstruction from
single-cell amplicon sequencing data. bioRxiv 2022. [CrossRef]

68. Tirosh, I.; Venteicher, A.S.; Hebert, C.; Escalante, L.E.; Patel, A.P.; Yizhak, K.; Fisher, J.M.; Rodman, C.; Mount, C.; Filbin, M.G.;
et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 2016, 539, 309. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1108/eb005587
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1093/bioinformatics/btaa676
http://dx.doi.org/10.1186/s13059-016-0936-x
http://dx.doi.org/10.1007/BF00175355
http://dx.doi.org/10.1023/B:GENP.0000030196.55525.f7
http://dx.doi.org/10.2298/CSIS100425067K
http://dx.doi.org/10.1016/S0377-2217(00)00100-4
http://dx.doi.org/10.1038/s41467-019-10737-5
http://www.ncbi.nlm.nih.gov/pubmed/31227714
http://dx.doi.org/10.1186/s13015-019-0152-9
http://www.ncbi.nlm.nih.gov/pubmed/31372179
http://dx.doi.org/10.1093/bioinformatics/btz869
http://dx.doi.org/10.1186/s13015-021-00188-3
http://dx.doi.org/10.1101/2022.01.06.475205
http://dx.doi.org/10.1038/nature20123

	Introduction
	Preliminaries
	Methods
	Particle Swarm Optimization
	Genetic Programming
	Representation and Initialization
	Fitness Calculation
	Selection
	Crossover
	Mutation
	Additional Info about GP Algorithm and Implementation

	Variable Neighbourhood Programming
	Shaking
	Local Search
	Additional Info about VNP Algorithm and Implementation

	Experimental Comparison
	Generation of the Datasets
	Evaluation of the Results
	Ancestor-Descendant Accuracy
	Different-Lineage Accuracy
	MP3 Tree Similarity

	Results
	Real Data

	Discussion
	References

