fj algorithms

Article

Mind the O: Asymptotically Better, but Still Impractical,
Quantum Distributed Algorithms

Phillip Kerger >3*, David E. Bernal Neira >3*(9, Zoe Gonzalez Izquierdo >* and Eleanor G. Rieffel >*

check for
updates

Citation: Kerger, P; Bernal Neira,
D.E.; Gonzalez Izquierdo, Z.; Rieffel,
E.G. Mind the O: Asymptotically
Better, but Still Impractical, Quantum
Distributed Algorithms. Algorithms
2023, 16, 332. https://doi.org/
10.3390/a16070332

Academic Editor: Vangelis Th.

Paschos

Received: 16 June 2023
Revised: 8 July 2023
Accepted: 9 July 2023
Published: 11 July 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
2 Quantum Artificial Intelligence Laboratory, NASA Ames Research Center, Moffett Field, CA 94035, USA
Research Institute of Advanced Computer Science, Universities Space Research Association,

Mountain View, CA 94043, USA

4 Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA

* Correspondence: pkerger@hu.edu (P.K.); eleanor.rieffel@nasa.gov (E.G.R.)

Abstract: We present two algorithms in the quantum CONGEST-CLIQUE model of distributed
computation that succeed with high probability: one for producing an approximately optimal Steiner
tree, and one for producing an exact directed minimum spanning tree, each of which uses O(n!/4)
rounds of communication and O (n°/#) messages, achieving a lower asymptotic round and message
complexity than any known algorithms in the classical CONGEST-CLIQUE model. At a high level,
we achieve these results by combining classical algorithmic frameworks with quantum subroutines.
Additionally, we characterize the constants and logarithmic factors involved in our algorithms as
well as related classical algorithms, otherwise obscured by O notation, revealing that advances are
needed to render both the quantum and classical algorithms practical.

Keywords: quantum computing; distributed computing; complexity; Steiner tree; directed minimum
spanning tree; arborescence

1. Introduction

The classical CONGEST-CLIQUE model (henceforth referred to as cCCM) in dis-
tributed computing has been carefully studied as a model central to the field, e.g., [1-6].
In this model, processors in a network solve a problem whose input is distributed across
the nodes under significant communication limitations, described in detail in Section 2.
For example, a network of aircraft or spacecraft, satellites, and control stations, all with
large distances between them, may have severely limited communication bandwidth to be
modeled in such a way. The quantum version of this model, in which quantum bits can be
sent between processors, the quantum CONGEST-CLIQUE model (qCCM), as well as the
quantum CONGEST model, have been the subjects of recent research [7-10] in an effort to
understand how quantum communication may help in these distributed computing frame-
works. For the quantum CONGEST model, however, ref. [10] showed that many problems
cannot be solved more quickly than in the classical model. These include shortest paths,
minimum spanning trees, Steiner trees, min-cut, and more; the computational advantages
of quantum communication are, thus, severely limited in the CONGEST setting, though a
notable positive result is sub-linear diameter computation in [11]. No comparable negative
results exist for the qCCM, and in fact, ref. [7] provides an asymptotic quantum speedup
for computing all-pairs shortest path (APSP, henceforth) distances. Hence, it is apparent
that the negative results of [10] cannot transfer over to the qCCM, so investigating these
problems in the qCCM presents an opportunity for contributing to the understanding of
how quantum communication may help in these distributed computing frameworks. In
this paper, we contribute to this understanding by formulating algorithms in the qCCM for
finding approximately optimal Steiner trees and exacting directed minimum spanning trees
using O(n'/*) rounds—asymptotically fewer rounds than any known classical algorithms.

Algorithms 2023, 16, 332. https:/ /doi.org/10.3390/a16070332

https:/ /www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16070332
https://doi.org/10.3390/a16070332
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8308-5016
https://doi.org/10.3390/a16070332
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16070332?type=check_update&version=2

Algorithms 2023, 16, 332

2 of 25

This is done by augmenting the APSP algorithm of [7] with an efficient routing table scheme,
which is necessary to make use of the shortest path information instead of only the APSP
distances, and using the resulting subroutine with existing classical algorithmic frameworks.
Beyond asymptotics, we also characterize the complexity of our algorithms as well as
those of [2,3,7,12] to include the logarithmic and constant factors involved to estimate the
scales at which they would be practical, which was not included in the previous work.
It should be noted that, similar to APSP, these problems cannot see quantum speedups
in the CONGEST (non-clique) setting, as shown in [10]. Our Steiner tree algorithm is
approximate and based on a classical polynomial-time centralized algorithm of [13]. Our
directed minimum spanning tree problem algorithm follows an approach similar to [3],
which effectively has its centralized roots in [14].

2. Background and Setting

This section provides the necessary background for our algorithms’ settings and the
problems they solve.

2.1. The CONGEST and CONGEST-CLIQUE Models of Distributed Computing

In the standard CONGEST model, we consider a graph of n processor nodes whose
edges represent communication channels. Initially, each node knows only its neighbors
in the graph and associated edge weights. In rounds, each processor node executes com-
putation locally and then communicates with its neighbors before executing further local
computation. The congestion limitation restricts this communication, with each node able
to send only one message of O(log(n)) classical bits in each round to its neighbors, though
the messages to each neighbor may differ. In the cCCM, we separate the communication
graph from the problem’s input graph by allowing all nodes to communicate with each
other, though the same O(log(n)) bits-per-message congestion limitation remains. Hence,
a processor node could send n — 1 different messages to the other n — 1 nodes in the graph,
with a single node distributing up to O(n - log(n)) bits of information in a single round.
Taking advantage of this way of dispersing information to the network is paramount
in many efficient CONGEST-CLIQUE algorithms. The efficiency of algorithms in these
distributed models is commonly measured in terms of the round complexity, or the number
of rounds of communication used in an algorithm to solve the problem in question. A good
overview of these distributed models can be found in [15].

2.2. Quantum Versions of CONGEST and CONGEST-CLIQUE

The quantum models we work in are obtained via the following modification: Instead
of restricting to messages of O(log(n)) classical bits, we allow messages to consist of
O(log(n)) quantum bits, i.e., qubits. For background on qubits and the fundamentals of
quantum computing, we refer the reader to [16]. We formally define the qCCM, the setting
for our algorithms, as follows:

Definition 1 (Quantum CONGEST-CLIQUE). The quantum CONGEST-CLIQUE model (qCCM)
is a distributed computation model in which an input graph G = (V,E, W) is distributed over a
network of n processors, where each processor is represented by a node in V. Each node is assigned a
unique ID number in [n]. Time passes in rounds, each of which consists of the following:

1. Each node may execute unlimited local computation.

2. Each node may send a message consisting of either a register of O(logn) qubits or a string
of O(logn) classical bits to every other node in the network. Each of those messages may
be distinct.

3. Each node receives and saves the messages the other nodes send it.

The input graph G is distributed across the nodes as follows: Each node knows its own ID
number, the ID numbers of its neighbors in G, the number of nodes n in G, and the weights
corresponding to the edges it is incident upon. The output solution to a problem must be given by

Algorithms 2023, 16, 332

30f25

having each node v € V return the restriction of the global output to Ng(u) := {v : uv € E}, its
neighborhood in G. No entanglement is shared across nodes initially.

This is an analog of the cCCCM, except that quantum bits may be sent in place of classical
bits. To clarify the output requirement, in the Steiner tree problem, we require node u to
output the edges of the solution tree that are incident upon u. Since many messages in
our algorithms need not be sent as qubits, we define the qCCM slightly unconventionally,
allowing either quantum or classical bits to be sent. We specify those that may be sent
classically. However, even without this modification, the quantum versions of CONGEST
and cCCM are at least as powerful as their classical counterparts. This is because any n-bit
classical message can be instead sent as an n-qubit message of unentangled qubits; for a
classical bit reading 0 or 1, we can send a qubit in the state |0) or |1), respectively, and then
take measurements with respect to the {|0), |1) } basis to read the same message the classical
bits would have communicated. Hence, one can also freely make use of existing classical
algorithms in the qCCM. Further, the assumption that IDs are in [1], with n known, is not
necessary but is convenient; without this assumption, we could have all nodes broadcast
their IDs to the entire network and then assign a new label in [n] to each node according to
an ordering of the original IDs, resulting in our assumed situation.

Remark 1. Definition 1 does not account for how the information needs to be stored. In this paper,
it suffices for all information regarding the input graph to be stored classically as long as there is
quantum access to that data. We provide some details on this in Appendix A.4.

Remark 2. No initial entanglement being shared across nodes, as outlined in Definition 1, results
in quantum teleportation not being a straightforward method to solve problems in the gCCM.

Example 1. To provide some intuition on how allowing communication through qubits in this
distributed setting can be helpful, we now describe and give an example of the distributed Grover
search, first described in [11]. The high-level intuition for why quantum computing provides
an advantage for search is that quantum operations use quantum interference effects to have
canceling effects among non-solutions. Grover search has a generalization referred to as “amplitude
amplification” that we will use; see [16] for details on these algorithms. Now, for a processor node
u in the network and a Boolean function g : X — {0,1}, suppose that there exists a classical
procedure C in the cCCCM that allows u to compute g(x), for any x € X in r rounds. The quantum
speedup will come from computing C in a quantum superposition, which enables g to be evaluated
with inputs in superposition so that amplitude amplification can be used for inputs to g. Let
A {x € X:g(x) =i}, fori=0,1, and suppose that 0 < |Aq| < |X|/2. Classically, node u
can then find an x € Ay in ©(r|X|) rounds by checking each element of X. Using the quantum
distributed Grover search of [11] enables u to find such an x with high probability in only O (r+/]X|)
rounds by evaluating the result of computing g on a superposition of inputs.

We illustrate this procedure in an example case where node 1 wants to inquire whether
one of its edges uv is part of a triangle in G. We first describe a classical procedure for this,
followed by the corresponding quantum-distributed search version. For v € N (u), we
denote by Z, : V. — {0,1} the indicator function of N(v), and by gu» : Ng(u) — {0,1}
its restriction to inputs in Ng(u). Classically, node u can evaluate gy (w) in two rounds
for any w € Ng(u) by sending the ID of w (of length log 1) to v, and having v send back
the answer Z,(w). u can then check ¢,,(w) for each w € Ng(u) one at a time to determine
whether uv is part of a triangle in G or not in 2 - [N (u)| rounds.

For the distributed quantum implementation, u can instead initialize a register of log n

qubits as [¢)g = m YxeN(u) |X), all the inputs for gy, in equal superposition. To
conduct a Grover search, 1 needs to be able to evaluate g,, with inputs |¢) in superposition.

For the quantum implementation of C, u sends a quantum register in state |¢)|0) to node v,
and has node v evaluate a quantum implementation of Z,, which we will consider as a call

Algorithms 2023, 16, 332

4 of 25

to an oracle mapping |x)|0) to |x)|Z,(x)) for all x € V. Node v sends back the resulting
qubit register, and node u evaluates g, (|¢)) in two rounds. Now, since u can evaluate
Quv in superposition, node u may proceed using standard amplitude amplification, using
two rounds of communication for each evaluation of g,,, so that u can find an element
w € Ng(u) satisfying gu»(w) = 1 with high probability in O(r\/|Ng(u)|) rounds if one
exists. We note that in this example, v cannot execute this procedure by itself since it does
not know N (u) (and sending this information to v would take [N (u)| rounds), though it
is able to evaluate 7, in superposition for any w € N (u). For any classical procedure C
evaluating a different function from this specific g (which can be efficiently implemented
classically and, therefore, translated to an efficient quantum implementation), the same
idea results in the square-root advantage to find a desired element, such that g evaluates 1.

2.3. Notation and Problem Definitions

For an integer-weighted graph G = (V, E, W), we will denote n := |V|,m := |E|, and
W, the weight of an edge e € E throughout the paper. Let 6(v) C V be the set of edges
incident on node v, and Ng(u) := {v : uv € E} the neighborhood of u € G. Denote by
dg(u,v) the shortest-path distance in G from u to v. For a graph G = (V,E, W), given two
sets of nodes, U and U/, let Pg(U,U’) := {uv € E : u € U,w € U’} be the set of edges
connecting U to U’. Let P(U) := P(U, U) as shorthand. All logarithms will be taken with
respect to base 2, unless otherwise stated.

Definition 2 (Steiner tree problem). Given a weighted, undirected graph G = (V,E, W), and a
set of nodes Z C 'V, referred to as Steiner terminals, output the minimum weight tree in G that
contains Z.

Definition 3 (Approximate Steiner tree). For a Steiner tree problem with terminals Z and a
solution Sopr with edge set Es,, ., a tree T in G containing Z with edge set E, such that

Z Wy <1+ Z Wi

uveET uveESOPT
is called an approximate Steiner tree with approximation factor r.

Definition 4 (Directed minimum spanning tree problem (DMST)). Given a directed, weighted
graph G = (V,E, W) and a root node r € V, output the minimum weight directed spanning tree
for G rooted at r. This is also known as the minimum weight arborescence problem.

3. Contributions

We provide an algorithm for the qCCM that produces an approximate Steiner tree
with high probability (w.h.p.) in O(n'/#) rounds and an algorithm that produces an exact
directed minimum spanning tree w.h.p. in O(n'/#) rounds. To do this, we enhance the
quantum APSP algorithm of [7] in an efficient way to compute APSP distances as well
as the corresponding routing tables (described in Section 4) that our algorithms rely on.
Furthermore, in addition to these O results, in Sections 4.7, 5.4, and 6.3, we characterize the
constants and logarithmic factors involved in our algorithms as well as related classical
algorithms to contribute to the community’s understanding of their implementability.
This reveals that the factors commonly obscured by the O notation in related literature,
especially the logarithms, have a severe impact on practicality.

We summarize the algorithmic results in the following two theorems:

Theorem 1. There exists an algorithm in the quantum CONGEST-CLIQUE model that, given an

integer-weighted input graph G = (V,E, W), outputs a 2(1 — 1/1) approximate Steiner tree with

a probability of at least 1 — m, and uses O(n'/*) rounds of computation, where I denotes the

number of terminal leaf nodes in the optimal Steiner tree.

Algorithms 2023, 16, 332

50f 25

Theorem 2. There exists an algorithm in the quantum CONGEST-CLIQUE model that, given a
directed and integer-weighted input graph G = (V, E, W), produces an exact directed minimum
spanning tree with high probability, of at least 1 — m, and uses O (n'/*) rounds of computation.

4. APSP and Routing Tables

We first describe an algorithm for the APSP problem with routing tables in the qCCM,
for which we combine an algorithm of [7] with a routing table computation from [17]. For
this, we reduce APSP with routing tables to triangle finding by utilizing distance products,
as demonstrated in [12].

4.1. Distance Products and Routing Tables

Definition 5. A routing table for a node v is a function Ry, : V. — V mapping a vertex u to the
first node visited in the shortest path from v to u, other than v itself.

Definition 6. The distance product between two n X n matrices A and B is defined as the n X n
matrix A x B with entries:

(AxB);j = min{Ay + By} @)

The distance product is also sometimes referred to as the min-plus or tropical product.
For shortest paths, we will repeatedly square the graph adjacency matrix with respect to
the distance product. For a n X n matrix W and an integer k, let us denote W<* := W %
(Wx(...(WxW))...) as the k' power of the distance product. For a graph G = (V,E, W)
with weighted adjacency matrix W (assigning W, = oo if uv ¢ E), W is the length of the
shortest path from v to u in G using at most k hops. Hence, for any N > n, WN* contains all
the shortest-path distances between nodes in G. As these distance products obey standard
exponent rules, we may take N = 2/1°8"] to recursively compute the APSP distances by
taking [log n] distance product squares:

W2+ — WA W, WA — (WZ’*)Z’*,_ » Wzﬂogn“’* _ (W2(10g,,1,1’*>2,*')

This procedure reduces computing APSP distances to computing [log n| distance products.
In the context of the CONGEST-CLIQUE model, each node needs to learn the row of
W" that represents it. As we also require nodes to learn their routing tables, we provide
a scheme in Section 4.3 that is well-suited for our setting to extend [7] to also compute
routing tables.

4.2. Distance Products via Triangle Finding

Having established reductions to distance products, we turn to their efficient com-
putation. The main idea is that we can reduce distance products to a binary search in
which each step in the search finds negative triangles. This procedure corresponds to ([18]
Proposition 2), which we describe here, restricting to finding the distance product square
needed for Equation (2).

A negative triangle in a weighted graph is a set of edges A~ = (uv, vw,wu) C E3,
such that }°,co- W, < 0. Let us denote the set of all negative triangles in a graph G as A.
Specifically, we will be interested in each node v being able to output edges vu € 4(v), such
that vu is involved in at least one negative triangle in G. Let us call this problem FindEdges
, and define it formally as follows:

Algorithms 2023, 16, 332

6 of 25

FindEdges
Input: An integer-weighted (directed or undirected) graph G = (V,E, W) dis-
tributed among the nodes, with each node v knowing Ng(v), as well as the
weights Wy, for each u € Ng(v).
Output: For each node v, its output is all the edges vu € E that are involved in at
least one negative triangle in G.

Proposition 1. If FindEdges on an n-node integer-weighted graph G = (V, E, W) can be solved
in T(n) rounds, then the distance product A x B of two n X n matrices A and B with entries in
[M] can be computed in T(3n) - [log,(2M)| rounds.

Proof. Let A and B be arbitrary n X n integer-valued matrices, and D be an n X n matrix
initialized to 0. Let each u € V simulate three copies of itself, uy, up, u3, writing V4, V5, V3 as
the sets of copies of nodes in V. Consider the graph G’ = (V3 UV, U V3, E/, W), by letting
ujv; € E' for u; € V;,v; € Vj,i # j, taking Wy, ,,, = Ay for uy € Vy,02 € Vo, Wy, = B

forup € V,v3 € V3,and W}, = Dy for uz € V3,v1 € V. An edge zv is part of a negative

Uzv1
triangle in G exactly whenever

min{ Ay, + Buz} < —Dz.
uevVv

Assuming we can compute FindEdges for a k-node graph in T(n) rounds, with a non-
positive matrix D = 0 initialized, we can apply simultaneous binary searches on D,,, with

values between { —2M, 0}, updating it for each node v after each run of FindEdges to find

minycy { Aoy + Byz } for every other node zin T(3n) - [log(maxy ;ev{min,cv{Aou + Buo } })]
rounds, since G’ is a tripartite graph with 3n nodes. [

Remark 3. This procedure can be realized in a single n-node distributed graph by letting each node
represent the three copies of itself since G' is tripartite. The T (3n) stems from each processor node
possibly needing to send one message for each node it is simulating in each round of FindEdges
. If the bandwidth per message is large enough (i.e., three times the bandwidth needed for solving
FindEdges in T(n) rounds), then this can be conducted in T (n) rounds.

Thus, for this binary search, each node v initializes and locally stores D,, = 0 for each
other z € V; subsequently, we solve FindEdges on G’. The node then updates each D,
according to whether or not the edge copies of vz were part of a negative triangle in G,
after which, FindEdges is computed with the updated values for D. This is repeated until
all the min,cy {Ayy + Byz} are determined.

4.3. Routing Tables via Efficient Computation of Witness Matrices

For the routing table entries, we also need each node v to know the intermediate node
u that is being used to attain min,cy{ Wy, + Wz }.

Definition 7. For a distance product A x B of two n X n matrices A, B, a witness matrix C is an
n X n matrix, such that

Cij € argminge(, { A + Bij}

To put it simply, a witness matrix contains the intermediate entries used to attain
the values in the resulting distance product. We present here a simple way of computing
witness matrices along with the distance product by modifying the matrix entries appropri-
ately, first considered by [17]. The approach is well-suited for our algorithm, as we only
incur O(logn) additional calls to FindEdges for a distance product computation with a
witness matrix.

Algorithms 2023, 16, 332

7 of 25

Forann X n integer matrix W, obtain matrices W' and W" by taking Wj; = nWj; +j — 1
and W]’l’ = nWj. Set K = W'« W".

Claim 1. With W, W/, W”, and K as defined immediately above,
: K _ 2%

o [5]-w

(i) (K mod n) + 1is a witness matrix for W>*.

The claim follows from routine calculations of the quantities involved and can be
found in Appendix A.1.

Hence, we can obtain witness matrices by simply changing the entries of our matrices
by no more than a multiplicative factor of n and an addition of n. Since the complexity
of our method logarithmically depends on the magnitude of the entries of W, we only
logarithmically need many more calls to FindEdges to obtain witness matrices along with
the distance products, making this simple method well-suited for our approach. More

precisely, we can compute W? with a witness matrix using {log (Zn : max,-,j{Wl%- < oo})—‘ .
calls to FindEdges . We obtain the following corollary to Proposition 1 to characterize the
exact number of rounds needed:

Corollary 1. If FindEdges on an n-node integer-weighted graph G = (V, E, W) can be solved
in T(n) rounds, then the distance product square W*, along with a witness matrix H, can be
computed in T(3n) - [log, (n - max, ;e {min, ey {Wou + Wi} } + n)] rounds.

Proof. This follows from Claim 1 and Proposition 1 upon observing that
maxyey {min, ey {W/, + W/;,)}} < n-max,.cc{min ey {Wou + Wio}} +n. O

Once we obtain witness matrices along with the distance product computations,
constructing the routing tables for each node along the way of computing APSP is straight-
forward. In each squaring of W in Equation (2), each node updates its routing table entries
according to the corresponding witness matrix entry observed. It is worth noting that these
routing table entries only need to be stored and accessed classically so that we avoid using
unnecessary quantum data storage.

4.4. Triangle Finding

Given the results from Sections 4.2 and 4.3, we reduced finding both the routing
tables and distance product to having each edge learn the edges involved in a negative
triangle in the graph. This section will, thus, describe the procedure to solve the FindEdges
subroutine. We state here a central result from [7]:

Proposition 2. There exists an algorithm in the quantum CONGEST-CLIQUE model that solves
the FindEdges subroutine in O(n'/*) rounds.

We will proceed to describe each step of the algorithm to describe the precise round
complexity beyond the O(1!/4), to characterize the constants involved in the interest of
assessing the future implementability of our algorithms.

As a preliminary, we provide a message routing lemma of [5] for the congested clique,
which will be used repeatedly:

Lemma 1. Suppose each node in G is the source and destination for at most n messages of size
O(log n) and that the sources and destinations of each message are known in advance to all nodes.
All messages can then be routed to their destinations in 2 rounds.

We introduce the subproblem FindEdgesWithPromise (FEWP, henceforth). Let I'(u, v)
denote the number of nodes w € V, such that (1, v, w) forms a negative triangle in G.

Algorithms 2023, 16, 332

8 of 25

FEWP

Input: An integer-weighted graph G = (V, E, W) distributed among the nodes and a
set S C P(V), with each node v knowing N (v) and S.

Promise: For each uv € S,T'(u,v) < 90logn.

Output: For each node v, its outputs are the edges vu € S that satisfy I'(1,v) > 0.

We present here a description of the procedure of [7] to solve FindEdges , given an
algorithm A to solve FEWP. Let ¢ 4 be the failure probability of algorithm .4 for an instance
of FEWP.

FindEdgesViaFEWP
1. S=P,M:=0;i:=0.
2: WHILE 602 logn < n:

(a): Each node samples each of its edges with probability 60'2;10gn , so that we

obtain a distributed subgraph G’ of G consisting of the sampled edges.
(b): Run A on (G/,S). Denote the output by S'.
(€©: S« S\S;M«+ MUS;i+i+1.
3: Run.Aon (G,S), and call S” the output.
4: Output MUS.

From step 2 of this above algorithm, it is straightforward to check that this requires
a maximum of ¢, := [log (Wﬂ + 1 calls to the A subroutine to solve FEWP. Further, it

succeeds with a probability of at least 1 — ¢,/ nd —c,/n?8— (cn +1)e 4. We refer the reader
to ([7] Section 3) for the proof of correctness. We now turn toward constructing an efficient
algorithm for FEWP.

To solve this subroutine, we must first introduce an additional labeling scheme over
the nodes that will determine how the search for negative triangles will be split up to avoid
communication congestion in the network. Assume for simplicity that n'/4, \/n, n3/* are
integers. Let M = [n'/4] x [n1/4] x [/n]. Clearly, |[M| = n, and M admits a total ordering
lexicographically. Since we assume each node v; € V is labeled with a unique integer ID
i € [n], v; can select the element in M that has place i in the lexicographic ordering of M
without communication occurring. Hence, each node v € V is associated with a unique
triple (i,], k) € M. We will refer to the unique node associated with (i, j, k) € M as node
k)

The next ingredient is a partitioning scheme of the space of possible triangles. Let
U be a partition of V into n!/# subsets containing 73/# nodes each, by taking U; := {v;
je{i—=1)-n¥% . i-n¥*}fori = 1,...,nY% and U = {Uy,...,Up,}. Apply
the same idea to create a partition U’ of /n sets of size \/n, by taking U] := {v; : j €
{G=1)-vn,...,i-y/n}tfori=1,... V/nandU :={Uy,..., Uzt Let V=UxUxU"
Eachnode v ; ;) can then locally determine its association with the element (U, u;, up) e v
since |V| = n. Further, if we use one round to have all nodes broadcast their IDs to all
other nodes, each node v(; ;) can locally compute the (U;, Uj, U}) it is assigned to, so this
assignment can be conducted in one round.

We present here the algorithm ComputePairs used to solve the FEWP subroutine.

Algorithms 2023, 16, 332

9 of 25

ComputePairs

Input: An integer-weighted graph G = (V,E, W) distributed among the nodes, a
partition of V x V x V of (U, uj, U]’() associated with each node as above, and a set
S C P(V), such that for uv € S,T'(u,v) < 90logn.

Output: For each node v, its output is the edges vu € S that satisfy I'(u,v) > 0.

1: Every node V(i k) receives the weights Wy, Wy for all uv € P(U;, Uj) and
vw € P(U;, Uy).
2: Every node v(; ;) constructs the set Ay (U;, U;j) C P(U;, Uj) by selecting every

o € P(U; U;) with probability 10 - 1"5;. If [{v € Uy : uv € Ap(U;, Up)}| >
100114 log n for some u € Uj, abort the algorithm and report failure. Otherwise,
v k) keeps all pairs uv € A(U;, Uj) NS and receives the weights Wuw for all of

those pairs. Denote those elements of A (U;, U;) NS as ukok, . uk ok,

3: Every node v; ;i checks for each | € [m], whether there is some U € U’ that

contains a node w, such that (u;‘, v%‘, w) forms a negative triangle, and outputs all
pairs u;‘vlf for which a negative triangle was found.

With a probability of at least 1 — 2/n, the algorithm ComputePairs does not terminate
at step 2 and every pair (1,v) € S appears in at least one A (U;, U;). The details for this

result can be found in ([7] Lemma 2).
log W

Step 1 requires 2n1/4] Tog

| rounds and can be fully implemented classically without

log W

Tog | rounds and can also be

any qubit communication. Step 2 requires at most 200 log |

implemented classically. Step 3 can be implemented in O(n!/#) rounds, quantumly taking
advantage of the distributed Grover search, but would take O(y/n) steps to implement
classically. The remainder of this section is devoted to illustrating how this step can be
conducted in O(n'/4) rounds.

Define the following quantity:

Definition 8. For node v(; ;), let
A(i,j, k) := {(u,0) € P(U;, U;) NS : Fw € Uy with (u,v,w) forming a negative triangle in G}

For simultaneous quantum searches, we divide the nodes into different classes based
on the number of negative triangles that they are a part of with the following routine:

IdentifyClass

Input: An integer-weighted graph G = (V, E, W) distributed among the nodes, and a
set S C E, as in FEWP.

Output: For each node v, a class « to which the node belongs.

1: Every node u;;; € V samples each nodein {v € V : (u(;;5),v) € S} with

probability 101#, creating a set A(u) of sampled vertices. If max, |A(u)| >

20logn, abort the algorithm and report a failure. Otherwise, have each node
broadcast A(u) to all other nodes, and take R := U,cy{uv|v € A(u)}.

2: Eachv(;r) € V computes d;;; := [{uv € P(i,j) "R : Jw € Uj, such that
{u,v, w} forms a negative triangle in G }|, then determines its class « to be min{c €
N: di,j,k < 10-2°¢ IOng}.

This uses, at most, 201og n rounds (each node sends (at most) that many IDs to every
other node) and can be implemented so that all exchanged messages consist solely of
classical bits. Using a Chernoff bound, one can show that the procedure succeeds with a
probability of at least 1 — 1/n, as seen in ([18] Proposition 5).

Algorithms 2023, 16, 332

10 of 25

Let us make the convenient assumption that « = 0 for all Vi j ks which avoids some

technicalities around congestion in the forthcoming triangle search. Note that a < % logn,
s0 we can run successive searches for each « for nodes in class « in the general case. The
general case is discussed in Appendix A.2 and can also be found in [7], but this case is
sufficient to convey the central ideas.

We have all the necessary ingredients to describe the implementation of step 3 of the
ComputePairs procedure.

3.1: Each node executes the IdentifyClass procedure.

3.2: For each a, for every I € [m], every node v(; ;1) in class a executes a quantum
search to find whether there is a U}, € U’ with some w € U} forming a negative
triangle (u;‘, v;‘, w) in G, and then reports all the pairs u%‘v;‘ for which such a l,I,’< is
found.

This provides the basis of the triangle-searching strategy. To summarize the intuition
of the asymptotic speedup in this paper: Since U} has size \/n (recall that [U/'| = \/n), if
each node using a quantum search can search through its assigned U} in O(n'/*) rounds,
simultaneously, we will obtain our desired complexity. We will complete this argument in
Section 4.6 and first describe the quantum searches used therein in the following subsection.

4.5. Distributed Quantum Searches

With this intuition in mind, we now state two useful theorems of [7] for distributed
quantum searches. Let X denote a finite set throughout this subsection.

Theorem 3. Let g : X — {0,1}, if node u can compute g(x) in r rounds in the CONGEST-
CLIQUE model for any x € X, then there exists an algorithm in the quantum CONGEST-CLIQUE
that has u output some x € X with g(x) = 1 with high probability, using O(r+/]X]) rounds.

This basic theorem concerns only single searches; however, we need a framework that
can perform multiple simultaneous searches. Let g1,...,9m : X — {0,1} and

AV = {xe X:g(x) =0}, Al :={x € X:gi(x) =1},Vi € [m].

Assume that there exists an r-round classical distributed algorithm C,, that allows a node
u upon an input x = (x1,...,x,) € X" to determine and output (g1(x1),...,gm(xn)). In
our use of distributed searches, X will consist of nodes in the network, and searches will
need to communicate with those nodes for which the functions g; are evaluated. To avoid
congestion, we will have to carefully consider those x € X" that have many repeated
entries. We introduce a notation for this first. Define the quantity

a(x) = max {x; = x; Vi, jel}]
IC[m]
as the maximum number of entries in x that are all identical.

Next, given some € N, assume that in place of C;,;, we now have a classical algorithm
Cin,p, such that upon input x = (x1,..., %) € X™, anode u outputs g1(x1), ..., &m(xm) if
a(x) < B and an arbitrary output otherwise. The following theorem summarizes that such
a Cm,ﬁ with sufficiently large § is enough to maintain a quantum speedup as seen in the
previous theorem:

Theorem 4. For set X with |X| < m/(361logm), suppose there exists such an evaluation algo-
rithm C,y, g for some p > 8m/|X| and that a(x) < B forall x € A} x - -- x A},. Then, there is a

O(r\/|X]|)-round quantum algorithm that outputs an element of A1 x - - - x A}, with a probability
of at least 1 —2/m?.

The proof can be found in ([7] Theorem 3).

Algorithms 2023, 16, 332

11 0f 25

4.6. Final Steps of the Triangle Finding

We continue here to complete step 3.2 of the ComputePairs procedure, armed with
Theorem 4. We need simultaneous searches to be executed by each node v; ; 1) to determine
the triangles in U; x U; x Uy. We provide a short lemma first that ensures the conditions
for the quantum searches:

Lemma 2. The following statements hold with a probability of at least 1 — 2 /n?:
M 1AG, k) <2
(i): |Ax(U;, Uj) NA(,j, k)| <100 /nlogn fori,j € [n'/4].

The proofs of these statements are technical but straightforward, making use of a
Chernoff bound and union bounds; hence, we skip them here. To invoke Theorem 4,
we describe a classical procedure first, beginning with an evaluation step, EvaluationA,
implementable in O(1) rounds.

EvaluationA ™ ”
Input: Every node V(i j k) receives m elements (ul'] ., ulr,’f’)ofU’

k| < 800\/nlogn.

’k, such that there is a negative

Promise: For every node v; ik and every w € U " |L

Output: Each node outputs a list of exactly those u;"]

triangle in U; x U; x u;’j k.

1. Everynodev(;) foreachr € \/n routes the list Li,’é"t tonode v; ; ;).
Every node v(; ;) for each vu it received in step 1 sends the truth value of the
inequality

min {Wuw + Wwv} < Wou (3)

!
welly

to the node that sent vu.

Each node is the source and destination of up to 8007 log n messages in step 1, meaning
that this step can be implemented in 16001og n rounds. The same goes for step 2, noting
that the number of messages is the same, but they need to only be single-bit messages (the
truth values of the inequalities). Hence, the evaluations for Theorem 4 can be implemented
in 3200log rounds. Now, applying the theorem with X = /', B = 800+/nlogn, noting
that then the assumptions of the theorem hold with a probability of at least 1 — 2/n* due
to Lemma 2, implies that step 3.2 is implementable in O(n!/#) rounds, with a success
probability of at least 1 — 2/m?.

For the general case in which we do not assume & = 0 for all §, j, k in IdentifyClass,
covered in the appendix, one needs to modify the EvaluationA procedure in order to imple-
ment load balancing and information duplication to avoid congestion in the simultaneous
searches. These details can be found in the appendix, where a new labeling scheme and a
different evaluation procedure EvaluationB are described; more information can also be
found in [7].

4.7. Complexity

As noted previously and in [7], this APSP scheme uses O(n!/4) rounds. Let us
characterize the constants and logarithmic factors involved to assess this algorithm’s
practical utility. Suppose that in each round, 2 - log n qubits can be sent in each message (so
that we can send two IDs or one edge with each message), where 7 is the number of nodes.
For simplicity, let us assume W < n and drop W.

1. APSP with routing tables needs log () distance products with witness matrices.
2. Computing the i distance product square for Equation (2) with a witness matrix
needs up to log(2') = i calls to FindEdges , since the entries of the matrix being

Algorithms 2023, 16, 332

12 of 25

squared may double each iteration. APSP and distance products together make

y sl — [logm([los] 1) calls to FindEdges -

W) calls to FEWP, using FindEdgesViaFEWP.
1/4

Solving FindEdges needs log(

Step 1 of ComputePairs needs up to 2 - n'/* rounds and step 2 takes up to 200 log # rounds.
Step 1 of IdentifyClass needs up to 20log n rounds.

SANRCL S

In step 2 of IdentifyClass, the ¢,y are up to % log n large and, hence, « may range

up to % log .

7. Step 0 of the EvaluationB procedure needs n'/# rounds. Steps 1 and 2 of EvaluationB
(or Evaluation4, in the &« = 0 case) procedure use a total of 3200 log n rounds.

8. The procedure, EvaluationB (or EvaluationA), is called up to log(n)n!/# times for

each value of & in step 3.2 of ComputePairs.

Without any improvements, we have the following complexity, using 3n in place of n
for the terms of steps 3-8 due to Corollary 1:

[log(m)1(“;g(”ﬂ 1) 10g<60 1?;3;1) (2(3m)"/4 + 22010831 + 2(3m) 4+

élog 3n -log3n - (3n)'/43200(log 3n)), 4)

which we will call f(n), so that f(n) = O(n'/*10g®(n)), with the largest term being about
80010g®(1)n'/4, and we drop W to just consider the case W < 1. We can solve the problem
trivially in the (quantum or classical) CONGEST-CLIQUE within nlog(W) rounds by
having each node broadcast its neighbors and the weight on the edge. Let us again drop W
for the case W < n so that in order for the quantum algorithm to give a real speedup, we
will need

f(n) <mn,

which requires n > 10'® (even with the simpler under-approximation 800 log®(1)n'/ in
place of f). Hence, even with some potential improvements, the algorithm is impractical
for a large regime of values of #n, even when compared to the trivial CONGEST-CLIQUE
n-round strategy.

For the algorithm of [7] computing only APSP distances, the first term in 4 becomes
simply [log], so that when computing only APSP distances, the advantage over the trivial
strategy begins at roughly 1 ~ 101°.

Remark 4. In light of logarithmic factors commonly being obscured by O notation, we point out
that even an improved algorithm needing only log* (n)n/* would not be practical