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Abstract: In this paper we exploit concepts from Information Theory to improve the classical Chvatal
greedy algorithm for the set covering problem. In particular, we develop a new greedy procedure,
called Surprisal-Based Greedy Heuristic (SBH), incorporating the computation of a “surprisal” mea-
sure when selecting the solution columns. Computational experiments, performed on instances from
the OR-Library, showed that SBH yields a 2.5% improvement in terms of the objective function value
over the Chvatal’s algorithm while retaining similar execution times, making it suitable for real-time
applications. The new heuristic was also compared with Kordalewski’s greedy algorithm, obtaining
similar solutions in much shorter times on large instances, and Grossmann and Wool’s algorithm for
unicost instances, where SBH obtained better solutions.

Keywords: set covering; greedy; heuristic; real-time applications

1. Introduction

The Set Covering Problem (SCP) is a classical combinatorial optimization problem
which, given a collection of elements, aims to find the minimum number of sets that
incorporate (cover) all of these elements. More formally, let I be a set of m items and
J = {S1, S2. . . , Sn} a collection of n subsets of I where each subset Sj (j = 1, . . . , n) is
associated to a non-negative cost cj. The SCP finds a minimum cost sub-collection of J that
covers all the elements of I at minimum cost, the cost being defined as the sum of subsets
cost.

The SCP finds applications in many fields. One of the most important is crew schedul-
ing, where SCP provides a minumum-cost set of crews in order to cover a given set of
trips. These problems include airline crew scheduling (see, for example, Rubin [1] and Mar-
chiori [2]) and railway crew scheduling (see, example, Caprara [3]). Other applications are
the winner determination problem in combinatorial auctions, a class of sales mechanisms
(Abrache et al. [4]) and vehicle routing (Foster et al. [5], Cacchiani et al. [6] and Bai et al. [7]).
The SCP is also relevant in a number of production planning problems, as described by
Vemuganti in [8], wherein solving is often required in real-time. In addition, it is worth
noting that the set covering problem is equivalent to the hitting set problem [9]. Indeed,
we can view an instance of set covering as a bipartite graph in which vertices on the left
represent the items, whilst vertices on the right represent the sets, and edges represent the
inclusion of items in sets. The goal of the hitting set problem is to find a subset with the
minimum number of right vertices such that all left vertices are covered.

Garey and Johnson in [10] have proven that the SCP is NP-hard in the strong sense.
Exact algorithms are mostly based on branch-and-bound and branch-and-cut techniques.
Etcheberry [11] utilizes sub-gradient optimization in a branch-and-bound framework.
Balas and Ho [12] present a procedure based on cutting planes from conditional bounds, i.e.,
valid lower bounds if the constraint set is amended by certain inequalities. Beasley [13]
introduces an algorithm which blends dual ascent, sub-gradient optimization and linear
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programming. In [14], Beasley and Jornsten incorporate the [13] algorithm into a La-
grangian heuristic. Fisher and Kedia [15] use continuous heuristics applied to the dual
of the linear programming relaxation, obtaining lower bounds for a branch-and-bound
algorithm. Finally, we mention Balas and Carrera [16] with their procedure based on a
dynamic sub-gradient optimization and branch-and-bound. These algorithms were tested
on instances involving up to 200 rows and 2000 columns in the case of Balas and Fisher’s
algorithms and 400 rows and 4000 columns in [13,14,16]. Among these algorithms the
fastest one is the Balas and Carrera’s algorithm, with an average time in the order of 100 s
on small instances and 1000 s on the largest ones (on a Cray-1S computer). Caprara [17]
compared these methods with the general-purpose ILP solvers CPLEX 4.0.8 and MINTO
2.3, observing that the latter ones have execution times competitive with that of the best
exact algorithms for the SCP in the literature.

In most industrial applications it is important to rely on heuristic methods in order to
obtain “good” solutions quickly enough to meet the expectations of decision-makers. To
this purpose, many heuristics have been presented in the literature. The classical greedy
algorithm proposed by Chvatal [18] sequentially inserts the set with a minimum score
in the solution. Chvatal proved that the worst case performance ratio does not exceed
H(d) = ∑d

i=1
1
i , where d is the size of the largest set. More recently, Kordalewski [19]

described a new approximation heuristics for the SCP. His algorithm involves the same
scheme of Chvatal’s procedure, but modifies the score by including a new parameter,
named difficulty. Wang et al. [20] presented the TS-IDS algorithm designed for deep web
crawling and, then, Singhania [21] tested it in a resource management application. Feo and
Resende [22] presented a Greedy Randomized Adaptive Procedure (GRASP), in which they
first constructed an initial solution through an adaptive randomized greedy function and
then applied a local search procedure. Haouari and Chaouachi [23] introduced PROGRES,
a probabilistic greedy search heuristic which uses diversification schemes along with a
learning strategy.

Regarding Lagrangian heuristics, we mention the algorithm developed by Beasley [24]
and later improved by Haddadi [25], which consists of a sub-gradient optimization pro-
cedure coupled with a greedy algorithm and Lagrangian cost fixing. A similar procedure
was designed by Caprara et al. [26], which includes three phases, sub-gradient, heuristic and
column fixing, followed by a refining procedure. Beasley and Chu [27] proposed a genetic
algorithm in which a variable mutation rate and two new operators are defined. Similarly
Aickelin [28] describes an indirect genetic algorithm. In this procedure actual solutions
are found by an external decoder function and then another indirect optimization layer is
used to improve the result. Lastly, we mention Meta-Raps, introduced by Lan et al. [29], an
iterative search procedure that uses randomness as a way to avoid local optima. All the
mentioned heuristics present calculation times not compatible with real contexts. For exam-
ple, Caprara’s algorithm [26] produces solutions with an average computing time of about
400 s (on a DECstation 5000/240 CPU), if executed on non-unicost instances from Beasley’s
OR Library, with 500× 5000 and 1000× 10,000 as matrix sizes. Indeed, the difficulty of
the problem leads to very high computational costs, which has led academics to research
heuristics and meta-heuristics capable of obtaining good solutions, as close as possible to
the optimal, in a very short time, in order to tackle real-time applications. In this respect,
it is worth noting the paper by Grossman and Wool [30], in which a comparative study
of eight approximation algorithms for the unicost SCP are proposed. Among these there
were several greedy variants, fractional relaxations and randomized algorithms. Other
investigations carried out over the years include the following: Galinier et al. [31], who
studied a variant of SCP, called the Large Set Covering Problem (LSCP), in which sets
are possibly infinite; Lanza-Gutierrez et al. [32], who were interested in the difficulty of
applying metaheuristics designed for solving continuous optimization problems to the
SCP; Sundar et al. [33], who proposed another algorithm to solve the SCP by combining an
artificial bee colony (ABC) algorithm with local search; Maneengam et al. [34], who, in order
to solve the green ship routing and scheduling problem (GSRSP), developed a set covering
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model based on route representation which includes berth time-window constraints; finally,
an empiric complexity analysis over the set covering problem, and other problems, was
recently conducted by Derpich et al. [35].

In this paper, we exploit concepts from Information Theory (see Borda [36]) to improve
Chvatal’s greedy algorithm. Our purpose is to devise a heuristic able to improve the quality
of the solution while retaining similar execution times to those of Chvatal’s algorithm,
making it suitable for real-time applications. The main contributions of the current work
can be summarized as follows.

• The development of a real-time algorithm, named Surprisal-Based Greedy Heuris-
tic (SBH), for the fast computation of high quality solutions for the set covering
problem. In particular, our algorithm introduces a surprisal measure, also known
as self-information, to partly account for the problem structure while constructing
the solution.

• A comparison of the proposed heuristic with three other greedy algorithms, namely
Chvatal’s greedy procedure [18], Kordalewski’s algorithm [19] and the Altgreedy
procedure [30] for unicost problems. SBH improves the classical Chvatal greedy
algorithm [18] in terms of objective function and has the same scalability in computa-
tion time, while Kordalewski’s algorithm produces slightly better solutions but has
computation times that are much higher than those of the SBH algorithm, making it
impractical for real-time applications.

We emphasize that there is a plethora of other methods in the literature for solving the
SCP, but most of them are time-consuming. We are only interested in fast heuristics that are
compatible with real-time applications.

The remainder of the article is organized as follows. In Section 2 we describe the three
algorithms involved in our analysis and illustrate SBH. Section 3 presents an experimental
campaign which compares the greedy algorithms mentioned above. Finally, Section 4
reports on some of the conclusions.

2. Surprisal-Based Greedy Heuristic
2.1. Problem Formulation

The SCP can be formulated as follows. In addition to the notation introduced in
Section 1, let aij be a constant equal to 1 if item i is covered by subset j and 0 otherwise.
Moreover, let xj denote a binary variable defined as follows:

xj =

{
1 if column j is selected,
0 otherwise.

An SCP formulation is:

minimize ∑
j∈J

cjxj (1)

∑
j∈J

aijxj ≥ 1 i ∈ I, (2)

xj ∈ {0, 1} j ∈ J, (3)

where (1) aims to minimize the total cost of the selected columns and (2) imposes the
condition that every row is covered by at least one column.

2.2. Greedy Algorithms

As we explained in the previous section, we were interested in greedy procedures in
order to produce good solutions in a very short time, suitable for real-time applications.
SCP greedy algorithms are sequential procedures that identify the best unselected column
with respect to a given score and then insert this in the solution set.
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Let Ij be the set of rows covered by column j and Ji the set of columns covering row i.
Algorithm 1 shows the pseudocode of Chvatal’s greedy algorithm [18]. Each column j is
given a score equal to the column cost cj divided by the number of rows Ij covered by j. At
each step, the algorithm inserts the column j∗ with the minimum score in the solution set.

Algorithm 1 Chvatal’s greedy algorithm

1: S← ∅ . initially empty set
2: while I 6= ∅ do

3: j∗ ← arg min
j∈J

cj

|Ij|
. selection of the best column

4: add j∗ to S
5: I ← I \ Ij∗

6: for j ∈ J do . remove the already covered rows
7: Ij ← Ij \ Ij∗

A variant of Chvatal’s procedure for unicost problems was suggested by Grossman
and Wool [30], named Altgreedy. This algorithm is composed of two main steps: in the first
phase, the column with the highest number of covered rows is inserted in the solution;
then, in the secomd phase, some columns are removed from the solution set according to
lexicographic order, as long as the number of the new uncovered rows remains smaller
than the last number of new rows covered.

More recently, Kordalewski [19] proposed a new greedy heuristic which is a recursive
procedure that introduces two new terms: valuation and difficulty. In the first step, valuation
is computed for all columns j by dividing the number of rows, covered by j, by the column
cost, as in Chvatal’s score. For each row i is defined a parameter, difficulty, which is the
inverse of the sum of the valuations of the sets covering i, used to indicate how difficult it
might be to cover that row. This is based on the observation that a low valuation implies a
low probability of selection. The valuation v can be computed as:

vj =
∑i∈Ij

di

cj

while difficulty d will be only updated with the new valuations.

2.3. The SBH Algorithm

In this section, we describe the SBH greedy heuristic, that constitutes an improvement
on the classic Chvatal greedy procedure. As illustrated in Section 2.2, Chvatal’s algorithm
assigns each column j a score equal to the unit cost to cover the rows in Ij. Then it iteratively
inserts the columns with the lowest score in the solution set. However, this approach is
flawed when rows in Ij are poorly covered. Indeed, it does not consider the probability
that rows i ∈ Ij are covered by other columns j′ ∈ Ji. Our algorithm aims to correct this
by introducing an additional term expressing the “surprisal” that a column j is selected.
Therefore, our score considers two aspects: the cost of a column j and the probability that
the rows in Ij can be covered by other columns.

To formally describe our procedure, we introduce some concepts from Information
Theory. The term information refers to any message which gives details in an uncertain
problem and is closely related with the probability of occurrence of an uncertain event.
Information is an additive and non-negative measure which is equal to 0 when the event is
certain and it grows when its probability decreases. More specifically, given an event A
with probability to occur pA, the self-information IA is defined as:

IA = − log(pA). (4)
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Self-information is also called surprisal because it expresses the “surprise” of seeing event
A as the outcome of an experiment. In the SBH algorithm, at each stage we compute the
surprisal of each column. The columns containing row i are considered independent of
each other, so the probability of selecting one of them (denoted as event Ā) is

pĀ =
1
|Ji|

. (5)

Therefore, the opposite event, i.e., selecting row i with a column different from the current
one, is:

pA = 1− 1
|Ji|

=
|Ji| − 1
|Ji|

. (6)

The self-information measure contained in this event is:

Ii = − log
(
|Ji| − 1
|Ji|

)
. (7)

Thanks to the additivity of the self-information measure, surprisal of a column j can be
written as:

Ij = ∑
i∈Ij

Ii = ∑
i∈Ij

− log
(
|Ji| − 1
|Ji|

)
. (8)

We modify Chvatal’s cost of column j, i.e.,
cj

|Ij|
, by introducing the surprisal of j to the

denominator, in order to favor columns with high self-information. In particular, at each
step we select the column that minimizes:

min
j∈J

cj

|Ij| · Ij
, (9)

which is equivalent to

min
j∈J

cj

|Ij|∏i∈Ij

|Ji| − 1
|Ji|

. (10)

This formulation is the same as minimizing the probability of the intersection of indepen-
dent events, each of which selects a column, other than the current one, covering row i.
Two extreme cases can occur:

• if column j is the only one covering a row i ∈ Ij, it is no surprise that it is selected:
in this case Ij is high and the modified cost (9) of column j is 0 so that column j is
included in the solution;

• if, on the other hand, all rows i ∈ Ij are covered by a high number of other columns
j′ ∈ Ji, surprisal Ij is very low. In this case, the cost attributed to column j is greater
than its Chvatal’s cost.

To illustrate this concept, we now present a numerical example. Let

(aij) =


1 1 0 0
0 0 0 1
1 1 1 0
1 0 1 1

, (cj) = [3 1 2 5]

be the coverage matrix and the column cost vector. We denote, with CHi
score and SBHi

score,
respectively, as the Chvatal and SBH scores vectors, at the i-th iteration. A hyphen is
inserted to indicate that the corresponding column can no longer be considered because
it either has already been selected or it is empty, meaning that the column does not cover
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rows that still need to be covered. At the first iteration of Chvatal’s algorithm we have the
following scores:

CH1
score =

[
1;

1
2

; 1;
5
2
]
. (11)

The second column (the one with lowest score) is selected. Subsequently, at the second
iteration the scores are as follows:

CH2
score =

[
3; −; 2;

5
2
]
. (12)

At this point, the third column is selected. Finally, it is worth noting that the first column
covers only rows already covered by the other selected columns. Then, at the third iteration,
the scores become:

CH3
score =

[
−; −; −; 5

]
. (13)

Therefore, column 4 is selected and the total cost for the current solution (columns 2, 3
and 4) amounts to 8 units. On the other hand, computing the SBH score for each column j
according to (10): our SBH algorithm, at the first iteration, produces:

SBH1
score =

[2
9

;
1
6

;
4
9

; 0
]
. (14)

The fourth column has the least score, and is embedded in the current solution. At the
second iteration, the scores are the following:

SBH2
score =

[1
2

;
1
6

;
4
3

; −
]
. (15)

Column 2 is selected and the procedure ends. In conclusion, our algorithm selects only two
columns (4 and 2), with a total cost of 6 units, in contrast to Chvatal’s greedy algorithm
which ends up with a greater solution cost. Therefore, SBH outperforms Chvatal’s pro-
cedure because the latter cannot recognize the column 4 that must necessarily be part of
the solution.

It is worth noting that SBH has the same computational complexity as Chvatal’s algo-
rithm, since they require the same number of steps in order to compute the score measure.

3. Experimental Results

The aim of our computational experiments was to assess the performance of the SBH
heuristic procedure with respect to the other greedy heuristics proposed in literature. We
implemented the heuristics in C++ and performed our experiments on a stand-alone Linux
machine with a 4 core processor clocked at 3 GHz and equipped with 16 GB of RAM. The
algorithm was tested on 77 instances from Beasley’s OR Library [37]. Table 1 describes the
main features of the test instances and, in particular, the column density, i.e., the percentage
of ones in matrix a and column range, i.e., the minimum and maximum values of objective
function coefficients. The remaining column headings are self-explanatory. Instances are
divided into sets having sizes ranging from 200× 1000 to 1000× 10,000. Set E contains
small unicost instances of size 50× 500. Sets 4, 5 and 6 were generated by Balas and Ho [12]
and consist of small instances with low density, while sets A to E come from Beasley [13].
The remaining instances (sets NRE to NRH) are from [24]. Such instances are significantly
larger and optimal solutions are not available. Similarly, Table 2 reports features of seven
large scale real-word instances derived from the crew-scheduling problem [26].

We compared SBH with Chvatal’s procedure [18] (CH) and the heuristic by Ko-
rdalewski [19] (KORD). Tables 3–5 report the computational results for each instance
under the following headings:

• Instance: the name of the instance where the string before “dot” refers to the set which
the instance belongs to;

• BS: objective function value of the best known solution;
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• SOL: the objective function value of the best solution determined by the heuristic;
• TIME: the execution time in seconds;
• GAP: percentage gap between BS and the SOL value, i.e.,

GAP = 100× SOL− BS
BS

Columns “SBH vs. CH” and “SBH vs. KORD” report the percentage improvement of
SBH w.r.t. CH and KORD, respectively. Regarding Table 3, it is worth noting that our
heuristic, compared to Chvatal’s greedy procedure, had a smaller gap, ranging from 12.65%
to 11.03%, with an average improvement of 1.42%. Among these instances, SBH provided
a better solution than [18] in 19 out of 24 instance problems. We point out that the best
objective function value was given by Kordalewski’s algorithm, which was slightly better
than our SBH procedure (by only 0.59%), but was slower.

Table 1. Instances features: sets 4–6, A-E and NRE-NRH.

Set |I| |J| Density Range Count

4 200 1000 2% 1–100 10
5 200 2000 2% 1–100 10
6 200 1000 5% 1–100 5
A 300 3000 2% 1–100 5
B 300 3000 5% 1–100 5
C 400 4000 2% 1–100 5
D 400 4000 5% 1–100 5
E 50 500 20% 1–100 5

NRE 500 5000 10% 1–100 5
NRF 500 5000 20% 1–100 5
NRG 1000 10,000 2% 1–100 5
NRH 1000 10,000 5% 1–100 5

Table 2. Instance features: rail sets.

Instance |I| |J| Range Density

rail516 516 47,311 1–2 1.3%
rail582 582 55,515 1–2 1.2%
rail2536 2536 1,081,841 1–2 0.4%
rail507 507 63,009 1–2 1.3%
rail2586 2586 920,683 1–2 0.3%
rail4284 4284 1,092,610 1–2 0.2%
rail4872 4872 968,672 1–2 0.2%

Similar observations can be derived from Table 4. Here, SBH performed better, even
though it differed from the Kordalewski algorithm by only 0.07%. Comparing SBH with
CH, it is worth noting that only in 4 instances out of 45 did SBH obtain a worse solution.
SBH came close to the optimal solution, with an average gap of 10.69%, and was better than
CH by 2.62%. The execution time for all the instances averaged 0.113 s for CH, 0.230 s for
the Kordalewski procedure and 0.564 s for SBH. Increasing the size of the instances (which
is the case in rail problems), Kordalewski’s algorithm became much slower. Consequently,
on these instances we compared only the CH and SBH heuristics. On these instances,
our SBH algorithm provided an average objective function improvement of 5.82% with
comparable execution times. In conclusion, this first analysis showed that the new SBH
heuristic generally produced very similar results with respect to Kordalewski’s heuristic.
This is due to the fact that both heuristics consider the degree of row coverage, although
in different ways, and, thus, the difficulty in covering them. However, the large amount of
time the KORD algorithm took to solve rail instances points out that the use of SBH meets
the requirements of real-time applications. Finally, the average percentage improvement
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of SBH with respect to CH, taking into account all instances, i.e., sets 4–6, scp and rail,
amounted to 2.5%.

Table 3. Results for instance sets 4–6.

Instance BS CH KORD SBH SBH vs. CH SBH vs. KORDSOL TIME GAP SOL TIME GAP SOL TIME GAP

4.1 429 463 0.002 7.93% 458 0.011 6.76% 471 0.002 9.79% 1.73% 2.84%
4.2 512 582 0.002 13.67% 569 0.010 11.13% 587 0.002 14.65% 0.86% 3.16%
4.3 516 598 0.002 15.89% 576 0.011 11.63% 577 0.003 11.82% −3.51% 0.17%
4.4 494 548 0.002 10.93% 540 0.009 9.31% 542 0.002 9.72% −1.09% 0.37%
4.5 512 577 0.002 12.70% 572 0.009 11.72% 571 0.003 11.52% −1.04% −0.17%
4.6 560 615 0.002 9.82% 603 0.008 7.68% 599 0.002 6.96% −2.60% −0.66%
4.7 430 476 0.003 10.70% 480 0.008 11.63% 474 0.002 10.23% −0.42% −1.25%
4.8 492 533 0.003 8.33% 520 0.009 5.69% 553 0.002 12.40% 3.75% 6.35%
4.9 641 747 0.003 16.54% 721 0.010 12.48% 723 0.003 12.79% −3.21% 0.28%
4.10 514 556 0.002 8.17% 551 0.010 7.20% 548 0.002 6.61% −1.44% −0.54%
5.1 253 289 0.005 14.23% 289 0.016 14.23% 289 0.005 14.23% 0.00% 0.00%
5.2 302 348 0.005 15.23% 345 0.019 14.24% 337 0.006 11.59% −3.16% −2.32%
5.3 226 246 0.004 8.85% 246 0.017 8.85% 243 0.005 7.52% −1.22% −1.22%
5.4 242 265 0.004 9.50% 264 0.016 9.09% 266 0.004 9.92% 0.38% 0.76%
5.5 211 236 0.004 11.85% 228 0.016 8.06% 230 0.004 9.00% −2.54% 0.88%
5.6 213 251 0.004 17.84% 249 0.016 16.90% 245 0.004 15.02% −2.39% −1.61%
5.7 293 326 0.004 11.26% 314 0.017 7.17% 322 0.004 9.90% −1.23% 2.55%
5.8 288 323 0.004 12.15% 316 0.016 9.72% 315 0.005 9.38% −2.48% −0.32%
5.9 279 312 0.004 11.83% 304 0.015 8.96% 304 0.005 8.96% −2.56% 0.00%
5.10 265 293 0.003 10.57% 285 0.016 7.55% 286 0.008 7.92% −2.39% 0.35%
6.1 138 159 0.004 15.22% 156 0.010 13.04% 156 0.006 13.04% −1.89% 0.00%
6.2 146 170 0.004 16.44% 164 0.009 12.33% 167 0.007 14.38% −1.76% 1.83%
6.3 145 161 0.004 11.03% 152 0.009 4.83% 163 0.006 12.41% 1.24% 7.24%
6.4 131 149 0.004 13.74% 147 0.009 12.21% 138 0.007 5.34% −7.38% −6.12%
6.5 161 196 0.004 21.74% 190 0.009 18.01% 194 0.006 20.50% −1.02% 2.11%

Average 0.003 12.65% 0.012 10.42% 0.004 11.03% −1.42% 0.59%

We next compared the algorithms on unicost instances, obtained by setting the cost of
all columns equal to 1, as in Grossman and Wool’s paper [30]. In particular, we compared
SBH with the Altgreedy (ALTG) algorithm proposed by Grossman and Wool [30], introduced
in Section 2.2. The results are shown in Tables 6–8, where the subdivision of instances
was the same as before. The additional column “SBH vs. ALTG” reports the percentage
improvement of SBH with respect to ALTG algorithm. Looking at Tables 6, it is worth
noting that the heuristic which performed better was that of Kordalewski. Indeed, our
heuristic SBH was worse than KORD by about 3.49%, while it was better than the other
two greedy procedures, with a gap of 1.15%. Here, computation times were all comparable
and ranged between 0.002 and 0.007 s. SBH improved its performance in larger instances,
as shown in Tables 7 and 8. We would like to point out that ALTG and CH produced
the same solution cost for all of the instances, except for the rail ones. In particular, SBH
yielded an average improvement of 1.50% on CH and ALTG ([30]) on scp instances, and,
respectively, 1.39% and 12.97% on rail instances. Comparing SBH and KORD on the scp
instances, we observed that they were very similar with a 0.07% improvement. In the largest
instances (Table 8), as said before, it emerged that the computational time of KORD maade
it impractical for real-time applications. The analysis showed that, in most cases, SBH
produced better solutions than classical Chvatal’s algorithm. However, in a few instances
CH presented a better solution. This phenomenon was attributable to the features of the
instances. As shown in the example provided in Section 2.3, SBH immediately recognizes
columns that must necessarily be present in the solution, while CH only selects them when
they exhibit the lowest unit cost. In conclusion, the computational campaign revealed that
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SBH generally outperformed CH when considering instances containing columns with few
covered rows.

Table 4. Results for instance sets scp.

Instance BS CH KORD SBH SBH vs. CH SBH vs. KORDSOL TIME GAP SOL TIME GAP SOL TIME GAP

A.1 253 288 0.008 13.83% 279 0.033 10.28% 281 0.012 11.07% −2.43% 0.72%
A.2 252 284 0.008 12.70% 276 0.035 9.52% 282 0.011 11.90% −0.70% 2.17%
A.3 232 270 0.008 16.38% 253 0.037 9.05% 253 0.012 9.05% −6.30% 0.00%
A.4 234 278 0.008 18.80% 265 0.037 13.25% 273 0.012 16.67% −1.80% 3.02%
A.5 236 271 0.008 14.83% 255 0.033 8.05% 258 0.012 9.32% −4.80% 1.18%
B.1 69 77 0.019 11.59% 75 0.044 8.70% 75 0.034 8.70% −2.60% 0.00%
B.2 76 86 0.018 13.16% 84 0.036 10.53% 86 0.051 13.16% 0.00% 2.38%
B.3 80 89 0.019 11.25% 85 0.039 6.25% 85 0.038 6.25% −4.49% 0.00%
B.4 79 89 0.021 12.66% 89 0.046 12.66% 87 0.035 10.13% −2.25% −2.25%
B.5 72 78 0.019 8.33% 78 0.037 8.33% 79 0.052 9.72% 1.28% 1.28%
C.1 227 258 0.014 13.66% 254 0.059 11.89% 255 0.028 12.33% −1.16% 0.39%
C.2 219 258 0.017 17.81% 251 0.061 14.61% 249 0.023 13.70% −3.49% −0.80%
C.3 243 276 0.014 13.58% 271 0.059 11.52% 270 0.021 11.11% −2.17% −0.37%
C.4 219 257 0.014 17.35% 252 0.059 15.07% 256 0.030 16.89% −0.39% 1.59%
C.5 215 233 0.013 8.37% 229 0.060 6.51% 230 0.026 6.98% −1.29% 0.44%
D.1 60 74 0.049 23.33% 68 0.066 13.33% 71 0.086 18.33% −4.05% 4.41%
D.2 66 74 0.042 12.12% 70 0.070 6.06% 71 0.088 7.58% −4.05% 1.43%
D.3 72 83 0.037 15.28% 81 0.081 12.50% 79 0.104 9.72% −4.82% −2.47%
D.4 62 71 0.042 14.52% 67 0.071 8.06% 65 0.085 4.84% −8.45% −2.99%
D.5 61 69 0.037 13.11% 70 0.070 14.75% 74 0.098 21.31% 7.25% 5.71%
E.1 5 5 0.002 0.00% 5 0.001 0.00% 5 0.005 0.00% 0.00% 0.00%
E.2 5 5 0.003 0.00% 6 0.002 20.00% 5 0.003 0.00% 0.00% −16.67%
E.3 5 5 0.002 0.00% 5 0.002 0.00% 5 0.003 0.00% 0.00% 0.00%
E.4 5 6 0.002 20.00% 5 0.001 0.00% 5 0.005 0.00% −16.67% 0.00%
E.5 5 5 0.002 0.00% 5 0.002 0.00% 5 0.003 0.00% 0.00% 0.00%

NRE.1 29 30 0.150 3.45% 32 0.217 10.34% 30 0.772 3.45% 0.00% −6.25%
NRE.2 30 36 0.163 20.00% 34 0.202 13.33% 35 0.836 16.67% −2.78% 2.94%
NRE.3 27 31 0.145 14.81% 31 0.204 14.81% 30 0.661 11.11% −3.23% −3.23%
NRE.4 28 32 0.153 14.29% 33 0.211 17.86% 31 0.622 10.71% −3.13% −6.06%
NRE.5 28 33 0.151 17.86% 31 0.202 10.71% 32 0.579 14.29% −3.03% 3.23%
NRF.1 14 16 0.324 14.29% 15 0.312 7.14% 16 2.216 14.29% 0.00% 6.67%
NRF.2 15 16 0.316 6.67% 16 0.369 6.67% 16 2.544 6.67% 0.00% 0.00%
NRF.3 14 17 0.318 21.43% 15 0.328 7.14% 16 2.346 14.29% −5.88% 6.67%
NRF.4 14 17 0.322 21.43% 16 0.318 14.29% 16 2.510 14.29% −5.88% 0.00%
NRF.5 13 16 0.320 23.08% 15 0.312 15.38% 15 2.465 15.38% −6.25% 0.00%
NRG.1 176 203 0.120 15.34% 197 0.545 11.93% 197 0.287 11.93% −2.96% 0.00%
NRG.2 154 182 0.136 18.18% 176 0.512 14.29% 171 0.297 11.04% −6.04% −2.84%
NRG.3 166 192 0.123 15.66% 186 0.549 12.05% 186 0.322 12.05% −3.13% 0.00%
NRG.4 168 191 0.137 13.69% 191 0.518 13.69% 193 0.307 14.88% 1.05% 1.05%
NRG.5 168 194 0.120 15.48% 188 0.528 11.90% 190 0.312 13.10% −2.06% 1.06%
NRH.1 63 76 0.330 20.63% 74 0.826 17.46% 72 1.453 14.29% −5.26% −2.70%
NRH.2 63 74 0.340 17.46% 72 0.824 14.29% 74 1.432 17.46% 0.00% 2.78%
NRH.3 59 65 0.335 10.17% 71 0.785 20.34% 67 1.516 13.56% 3.08% −5.63%
NRH.4 58 69 0.322 18.97% 65 0.784 12.07% 65 1.610 12.07% −5.80% 0.00%
NRH.5 55 63 0.327 14.55% 61 0.779 10.91% 61 1.399 10.91% −3.17% 0.00%

Average 0.113 13.78% 0.230 10.83% 0.564 10.69% −2.62% −0.07%
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Table 5. Results for instance set rail.

Instance BS CH SBH SBH vs. CHSOL TIME GAP SOL TIME GAP

rail507 174 216 0.193 24.14% 199 0.277 14.37% −7.87%
rail516 182 204 0.160 12.09% 196 0.211 7.69% −3.92%
rail582 211 251 0.214 18.96% 240 0.310 13.74% −4.38%
rail2536 691 894 7.276 29.38% 828 10.206 19.83% −7.38%
rail2586 952 1166 5.521 22.48% 1089 8.224 14.39% −6.60%
rail4284 1065 1376 8.284 29.20% 1311 12.165 23.10% −4.72%
rail4872 1538 1902 7.318 23.67% 1790 10.199 16.38% −5.89%

Average 4.138 22.84% 5.942 15.64% −5.82%

Table 6. Results for unicost instance sets 4–6.

Instance CH ALTG KORD SBH SBH vs. CH SBH vs. ALTG SBH vs. KORDSOL TIME SOL TIME SOL TIME SOL TIME

4.1 41 0.003 41 0.001 41 0.005 42 0.003 2.44% 2.44% 2.44%
4.2 41 0.002 41 0.001 38 0.004 42 0.002 2.44% 2.44% 10.53%
4.3 43 0.002 43 0.001 39 0.004 43 0.002 0.00% 0.00% 10.26%
4.4 44 0.002 44 0.001 42 0.005 45 0.002 2.27% 2.27% 7.14%
4.5 44 0.002 44 0.001 40 0.004 41 0.002 −6.82% −6.82% 2.50%
4.6 43 0.003 43 0.001 40 0.006 42 0.002 −2.33% −2.33% 5.00%
4.7 43 0.002 43 0.001 41 0.005 43 0.003 0.00% 0.00% 4.88%
4.8 42 0.002 42 0.001 40 0.005 39 0.003 −7.14% −7.14% −2.50%
4.9 42 0.002 42 0.001 42 0.005 42 0.003 0.00% 0.00% 0.00%
4.10 43 0.002 43 0.001 41 0.006 41 0.002 −4.65% −4.65% 0.00%
5.1 37 0.007 37 0.002 37 0.009 38 0.005 2.70% 2.70% 2.70%
5.2 38 0.005 38 0.004 36 0.008 37 0.007 −2.63% −2.63% 2.78%
5.3 37 0.004 37 0.003 35 0.012 38 0.005 2.70% 2.70% 8.57%
5.4 39 0.003 39 0.002 36 0.008 37 0.004 −5.13% −5.13% 2.78%
5.5 37 0.004 37 0.002 37 0.008 37 0.007 0.00% 0.00% 0.00%
5.6 40 0.004 40 0.002 36 0.008 37 0.005 −7.50% −7.50% 2.78%
5.7 38 0.005 38 0.002 37 0.008 36 0.006 −5.26% −5.26% −2.70%
5.8 39 0.005 39 0.002 37 0.010 39 0.005 0.00% 0.00% 5.41%
5.9 38 0.003 38 0.002 37 0.009 39 0.005 2.63% 2.63% 5.41%
5.10 39 0.003 39 0.002 36 0.009 38 0.004 −2.56% −2.56% 5.56%
6.1 23 0.004 23 0.002 22 0.005 23 0.006 0.00% 0.00% 4.55%
6.2 22 0.005 22 0.003 21 0.005 21 0.006 −4.55% −4.55% 0.00%
6.3 23 0.005 23 0.002 23 0.005 23 0.007 0.00% 0.00% 0.00%
6.4 22 0.004 22 0.002 22 0.005 23 0.008 4.55% 4.55% 4.55%
6.5 23 0.005 23 0.002 22 0.006 23 0.006 0.00% 0.00% 4.55%

Average 0.003 0.002 0.007 0.004 −1.15% −1.15% 3.49%
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Table 7. Results for unicost instance sets scp.

Instance CH ALTG KORD SBH SBH vs. CH SBH vs. ALTG SBH vs. KORDSOL TIME SOL TIME SOL TIME SOL TIME

A.1 42 0.009 42 0.004 41 0.019 43 0.011 2.38% 2.38% 4.88%
A.2 42 0.008 42 0.005 41 0.020 42 0.011 0.00% 0.00% 2.44%
A.3 43 0.009 43 0.004 41 0.020 42 0.011 −2.33% −2.33% 2.44%
A.4 41 0.008 41 0.005 39 0.018 41 0.011 0.00% 0.00% 5.13%
A.5 43 0.007 43 0.004 41 0.017 41 0.011 −4.65% −4.65% 0.00%
B.1 24 0.019 24 0.010 23 0.027 23 0.044 −4.17% −4.17% 0.00%
B.2 23 0.020 23 0.013 24 0.028 22 0.038 −4.35% −4.35% −8.33%
B.3 23 0.019 23 0.011 23 0.026 23 0.036 0.00% 0.00% 0.00%
B.4 24 0.024 24 0.011 23 0.031 23 0.037 −4.17% −4.17% 0.00%
B.5 25 0.021 25 0.011 24 0.029 24 0.038 −4.00% −4.00% 0.00%
C.1 47 0.015 47 0.008 46 0.041 46 0.023 −2.13% −2.13% 0.00%
C.2 47 0.018 47 0.009 47 0.037 45 0.023 −4.26% −4.26% −4.26%
C.3 47 0.017 47 0.007 46 0.038 46 0.023 −2.13% −2.13% 0.00%
C.4 46 0.013 46 0.008 45 0.036 46 0.023 0.00% 0.00% 2.22%
C.5 47 0.013 47 0.012 46 0.040 46 0.023 −2.13% −2.13% 0.00%
D.1 27 0.036 27 0.020 26 0.047 27 0.078 0.00% 0.00% 3.85%
D.2 26 0.037 26 0.021 26 0.048 27 0.082 3.85% 3.85% 3.85%
D.3 27 0.040 27 0.020 27 0.049 26 0.077 −3.70% −3.70% −3.70%
D.4 26 0.038 26 0.020 26 0.048 27 0.080 3.85% 3.85% 3.85%
D.5 27 0.039 27 0.020 26 0.050 27 0.091 0.00% 0.00% 3.85%
E.1 5 0.002 5 0.001 5 0.001 5 0.003 0.00% 0.00% 0.00%
E.2 5 0.002 5 0.001 6 0.001 5 0.004 0.00% 0.00% −16.67%
E.3 5 0.002 5 0.001 5 0.001 5 0.003 0.00% 0.00% 0.00%
E.4 6 0.002 6 0.001 5 0.001 5 0.004 −16.67% −16.67% 0.00%
E.5 5 0.002 5 0.001 5 0.001 5 0.003 0.00% 0.00% 0.00%

NRE.1 18 0.144 18 0.089 18 0.178 18 0.577 0.00% 0.00% 0.00%
NRE.2 18 0.150 18 0.088 18 0.188 18 0.570 0.00% 0.00% 0.00%
NRE.3 18 0.145 18 0.089 18 0.172 18 0.560 0.00% 0.00% 0.00%
NRE.4 18 0.142 18 0.087 18 0.174 18 0.552 0.00% 0.00% 0.00%
NRE.5 18 0.148 18 0.088 18 0.180 18 0.551 0.00% 0.00% 0.00%
NRF.1 11 0.311 11 0.201 11 0.321 11 2.513 0.00% 0.00% 0.00%
NRF.2 11 0.309 11 0.214 11 0.315 11 2.609 0.00% 0.00% 0.00%
NRF.3 11 0.307 11 0.211 11 0.309 11 2.560 0.00% 0.00% 0.00%
NRF.4 11 0.299 11 0.203 11 0.339 11 2.313 0.00% 0.00% 0.00%
NRF.5 11 0.309 11 0.204 11 0.306 11 2.320 0.00% 0.00% 0.00%
NRG.1 65 0.116 65 0.077 64 0.463 64 0.262 −1.54% −1.54% 0.00%
NRG.2 65 0.115 65 0.125 65 0.402 65 0.258 0.00% 0.00% 0.00%
NRG.3 66 0.125 66 0.110 64 0.442 64 0.273 −3.03% −3.03% 0.00%
NRG.4 66 0.124 66 0.136 65 0.437 65 0.279 −1.52% −1.52% 0.00%
NRG.5 66 0.115 66 0.076 64 0.490 64 0.271 −3.03% −3.03% 0.00%
NRH.1 36 0.340 36 0.217 36 0.712 35 1.460 −2.78% −2.78% −2.78%
NRH.2 36 0.327 36 0.247 35 0.658 35 1.424 −2.78% −2.78% 0.00%
NRH.3 36 0.323 36 0.236 35 0.640 35 1.458 −2.78% −2.78% 0.00%
NRH.4 36 0.334 36 0.216 35 0.653 35 1.436 −2.78% −2.78% 0.00%
NRH.5 36 0.324 36 0.211 35 0.644 35 1.427 −2.78% −2.78% 0.00%

Average 0.110 0.075 0.193 0.544 −1.50% −1.50% −0.07%



Algorithms 2023, 16, 321 12 of 13

Table 8. Results for unicost instance sets rail.

Instance CH ALTG KORD SBH SBH vs. CH SBH vs. ALTG SBH vs. KORDSOL TIME SOL TIME SOL TIME SOL TIME

rail2536 894 7.263 975 5.561 821 126.091 847 10.030 −5.26% −13.13% 3.17%
rail2586 1166 5.562 1253 4.539 1112 172.448 1139 7.300 −2.32% −9.10% 2.43%
rail4284 1376 8.372 1563 6.637 1285 260.187 1339 12.740 −2.69% −14.33% 4.20%
rail4872 1902 7.399 2137 6.178 1848 315.863 1860 11.312 −2.21% −12.96% 0.65%
rail507 216 0.193 237 0.144 211 1.276 211 0.267 −2.31% −10.97% 0.00%
rail516 204 0.156 259 0.121 232 1.432 211 0.218 3.43% −18.53% −9.05%
rail582 251 0.215 289 0.148 265 1.729 255 0.300 1.59% −11.76% −3.77%

Average 4.166 3.333 125.575 6.024 −1.39% −12.97% −0.34%

4. Conclusions

In this paper, we proposed a new greedy heuristic, SBH, an improvement on the
classical greedy algorithm proposed by Chvatal [18]. We showed that, in the vast majority
of the test instances, SBH generated better solutions than other greedy algorithms, such
as Kordalewski’s algorithm [19] and Altgreedy [30]. Computational tests also showed
that Kordalewski’s algorithm is not suitable for real-time application, since it presents
very large execution times, while our SBH algorithm runs in a few seconds, even on very
large instances.
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