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Abstract: Nowadays, graph theory is one of the most exciting fields of mathematics due to the
tremendous developments in modern technology, where it is used in many important applications.
The orthogonal double cover (ODC) is a branch of graph theory and is considered as a special class of
graph decomposition. In this paper, we decompose the complete bipartite graphs Kx,x by caterpillar
graphs using the method of ODCs. The article also deals with constructing the ODCs of Kx,x by
general symmetric starter vectors of caterpillar graphs such as stars–caterpillar, the disjoint copies of
cycles–caterpillars, complete bipartite caterpillar graphs, and the disjoint copies of caterpillar paths.
We decompose the complete bipartite graph by the complete bipartite subgraphs and by the disjoint
copies of complete bipartite subgraphs using general symmetric starter vectors. The advantage of
some of these new results is that they enable us to decompose the giant networks into large groups
of small networks with the comprehensive coverage of all parts of the giant network by using the
disjoint copies of symmetric starter subgraphs. The use case of applying the described theory for
various applications is considered.

Keywords: decomposition; bipartite graphs; networks; symmetric starter; orthogonal double covers;
symmetric graphs; on-chip network

1. Introduction

Graph theory occupies a special place in mathematics and is used in many areas of
engineering to solve various problems, from describing the topologies of communication
networks of autonomous vehicles [1] to medical research in eating disorders [2] and social
interaction during pandemics [3].

Caterpillar graphs [4] are emphasized in graph theory due to their properties. They
have gained their popularity since the 1970s and are still being studied. Moreover, they
are studied not only in the context of their mathematical properties [5–9], but are also
especially popular in chemistry [10], where they are used to describe benzenoid hydro-
carbon molecules under the names benzenoid trees [11,12], alkane graphs, and Gutman
trees [10,13]. Caterpillar graphs are also used to describe more complex graphs (for example,
corona graphs [14]), leaf realization problems on graphs [15], and minimum spanning tree
problems on graphs [16]. Currently, the use of such graphs in coding theory [17–20] is very
popular, especially in the development of technologies for post-quantum cryptography [21].
The designations used in the paper are shown in Table 1.

Consider that H ∼= Kx,x and G = {T0 , T1, . . . , Tx−1, A0, A1, . . . , Ax−1} be a collection
that describes the 2x isomorphic subgraphs, then we can call G an orthogonal double cover
(ODC) of Kx,x by G, if the following two conditions are satisfied: (i) every edge of Kx,x exists
in two isomorphic subgraphs of G and (ii) for α, β ∈ {0, 1, . . . , x− 1},

∣∣E(Tα) ∩ E
(

Aβ

)∣∣ = 1,
and for α 6= β,

∣∣E(Tα) ∩ E
(
Tβ

)∣∣ = ∣∣E(Aα) ∩ E
(

Aβ

)∣∣ = 0.
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Table 1. Designations used in the paper.

Nomenclature

Kx,y A complete bipartite graph with independent sets of sizes x and y.
gcd The greatest common divisor.
mG m disjoint copies of G.

G ∪ H The disjoint union of G and H.
Sx A star with x edges on x + 1 vertices.
Px A path with x vertices.
K1 An isolated vertex.

C(N; s1, s2, s3) Three-dimensional circulant graph. N–number of nodes; s1, s2, s3–generators.

The significance of graph decompositions can be exemplified as follows. By recog-
nizing a graph’s structure through dividing a graph into more easily understood parts,
decompositions can aid in our understanding of its structure [22]. By breaking down a
graph into its connected parts, the number of distinct subgraphs present in the network can
be defined. Via decompositions, the degree distribution and clustering coefficient of a graph
can be identified. By breaking a graph down into its degree sequence, the distribution of
degrees among the graph’s vertices can also be determined.

Decompositions can be applied to algorithms for the network flow analysis and graph
coloring [23]. It is possible to find the maximum flow in a graph by breaking it down into
its edge-disjoint path ways.

Decompositions are a topic of ongoing research in a graph theory causing numer-
ous unanswered questions. Decompositions can be studied to gain new knowledge and
understanding in this field. Furthermore, decompositions of graphs are a useful tool for
understanding and analyzing graphs in general, and they have many real-world uses in
many disciplines, including computer science [24], mathematics [25,26], and social science.

The existence of ODCs has been considered and generalized by many authors [27–29].
The importance of ODC problems stems from solving database optimization problems; for
example, when we look for specific information in a very large database, it takes too much
time to find that information [30]. In [24], ODCs are related to several problems such as
the statistical design of experiments and design theory. It can also be used to solve the
routing problem in various network systems whose topologies are large regular graphs;
for example, see works [31,32]. The specialists have solved the ODC problem for various
graphs such as circulant graphs, complete graphs, and complete bipartite graphs [33]. Note
that these graphs are usually very large.

Definition 1. Letl ≥ 2 be integer. A caterpillar graph Cl(w1, w2, . . . , wl) was obtained from a
path Pl = u1u2 . . . ul by appending wi ≥ 0 necklace vertices to each ui, 1 ≤ i ≤ l.

Example 1. Figure 1 illustrates the path graph P4 and how the graphs C4(2, 2, 1, 1) and C4(1, 3, 2, 2)
can be obtained from P4.

The following definition has been proposed in [34]. Let H be a certain graph, the
graph G-Path denoted by Pm+1(G), is a path of a set of vertices V = {Vi : 0 ≤ i ≤ m} and a
set of edges E = {Ei : 0 ≤ i ≤ m− 1} if and only if there exists the following two bijective
mappings:

1. φ: E→ H defined by φ(Ei) = Hi, where H = {H0, H1, . . . , Hm−1} is a collection of
m graphs; each one is isomorphic to the graph G.

2. ψ : V→ A defined by ψ(Vi) = Xi, where A = {Xi : 0 ≤ i ≤ m : ∩iXi = ϕ} is a class
of disjoint sets of vertices.
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Figure 1. The graphs 𝑃 , 𝐶 (2, 2, 1, 1) and 𝐶 (1, 3, 2, 2). 

The following definition has been proposed in [34]. Let 𝐻 be a certain graph, the 
graph G-Path denoted by ℙ (𝐺), is a path of a set of vertices 𝕍 = {𝑉 ∶  0 ≤  𝑖 ≤  𝑚 } 
and a set of edges 𝔼 =  {𝐸 ∶  0 ≤  𝑖 ≤  𝑚 − 1} if and only if there exists the following 
two bijective mappings: 
1. ϕ: 𝔼 →  ℋ defined by 𝜙 (𝐸 )  =  𝐻 , where ℋ =  { 𝐻 , 𝐻 , … , 𝐻 } is a collection of 𝑚 graphs; each one is isomorphic to the graph 𝐺.  
2. 𝜓: 𝕍 →  𝒜 defined by 𝜓 (𝑉 )  =  𝑋 , where 𝒜 =  { 𝑋 ∶  0 ≤  𝑖 ≤  𝑚 ∶ ∩  𝑋  =  𝜑} is 

a class of disjoint sets of vertices. 
The graph ℙ (𝐾 , ), the path of six sets of vertices and five edges of 𝐾 , , is shown in 

Figure 2. 

 
Figure 2. ℙ6(𝐾1,3), the path of six sets of vertices and five edges of 𝐾 , . 

Similarly, the caterpillar graph definition can be shown by replacing the path graph 
with the caterpillar graph in the previous definition. The caterpillar graph corresponding 
to the caterpillar 𝐶 (𝑤 , 𝑤 , . . . , 𝑤 ) will be denoted by ℂ , ,..., (𝐺). 

In the main results section, several examples for the caterpillar graph are presented.  
There are extensive studies in the literature for the 𝑂𝐷𝐶  of complete bipartite 

graphs such as the technique for constructing the 𝑂𝐷𝐶s of 𝐾 ,  by copies of a graph, 

Figure 1. The graphs P4, C4(2, 2, 1, 1) and C4(1, 3, 2, 2).

The graph P6(K1,3), the path of six sets of vertices and five edges of K1,3, is shown in
Figure 2.
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Figure 2. P6(K1,3), the path of six sets of vertices and five edges of K1,3.

Similarly, the caterpillar graph definition can be shown by replacing the path graph
with the caterpillar graph in the previous definition. The caterpillar graph corresponding
to the caterpillar Cl(w1, w2, . . . , wl) will be denoted by Cw1,w2,...,wl

l (G).
In the main results section, several examples for the caterpillar graph are presented.
There are extensive studies in the literature for the ODC of complete bipartite graphs

such as the technique for constructing the ODCs of Kx,x by copies of a graph, which is
called the one-edge algorithm [35]. Additionally, there are many studies for constructing
the ODCs of Kx,x by special graphs such as the union of a cycle and a star, a special class of
six caterpillars [36], and the disjoint union of complete bipartite graphs.

Several results of the ODCs of complete bipartite graphs can be generalized to mu-
tually orthogonal graph squares that have many applications in design theory, graph-
orthogonal arrays, and authentication codes [37]. Additionally, the techniques of construct-
ing the ODCs are considered a tool for graph labeling called orthogonal labeling, which
have many applications (for example, see [38]).
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Motivated by all the previous results and the important applications of caterpillar
graphs [4–21], in this paper, we aim to decompose giant graphs for the special type of net-
works (complete bipartite graphs) by joint and disjoint copies of new generally symmetric
graphs called caterpillar graphs.

The design of the study can be explained as follows: large complete bipartite networks
and a symmetric starter vector method are applied to represent caterpillar graphs, which
can be generated and used in many applications such as the analysis and decomposition of
the large complete bipartite graphs (networks). The caterpillar graph used to decompose
the complete bipartite graph are: the stars–caterpillar graph; the disjoint copies of cycles–
caterpillars; the complete bipartite caterpillar graphs; and the disjoint copies of caterpillar
paths. Additionally, we decompose the complete bipartite giant graph by the complete
bipartite subgraphs and by the disjoint copies of complete bipartite subgraphs using
general symmetric starter vectors. Note that the decomposition of a complete bipartite
giant graph network through various joint and disjoint symmetric graphs manages to solve
many relational database problems and analyze the relational database to speed up the
information research. The symmetric starter vectors are chosen based on the nature of
the problem to be solved or analyzed. This paper is the first to construct the ODCs by
caterpillar graphs using general symmetric starter vectors. We obtained general results of
a caterpillar graph for constructing the decompositions and ODCs of complete bipartite
graphs while El-Shanawany et al. [36] constructed the ODCs of complete bipartite graphs
by only a special class of six caterpillars. Based on works [39–41], we will use our new
results (obtained in this paper) to design new kinds of topological structures in our future
work.

In this paper, all graphs are undirected, without loops or multiple edges, and finite.
We assume that H ∼= Kx,x with two sets of sizes x each. For the complete bipartite graph
Kx,x, the notation vi

j refers to the vertex vi, i ∈ Zx = {0, 1, . . . , x− 1} that belongs to the set
of vertices with number j where j ∈ {0, 1} for Kx,x, which have two independent sets of
vertices. Throughout the paper and for simplicity, we use the notation ij to represent the
vertex vi

j. The length of an edge γ0χ1 in Kx,x is defined to be the difference χ− γ, where
χ, γ ∈ Zx = {0, 1, 2, . . . , x− 1}. Note that differences and sums are calculated in Zx (i.e.,
sums and differences are calculated modulo x). For more illustration, the labeling of the
vertices of K3,3 is shown in Figure 3.
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Several papers have generalized the ODCs to the mutually orthogonal graph squares;
see, e.g., [42] and the references therein.

The rest of the paper is divided as follows. In Section 2, we show the definition and
the construction of symmetric starters. The main results in eight theorems are presented in
Section 3. An illustrative example of applying the proposed graph decomposition approach
in a practical example for on-chip networks is given in Section 4. Finally, in Section 5, we
provide the conclusion and summary of new results obtained.
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2. Symmetric Starters

Let A be a subgraph of Kx,x and δ ∈ Zx. Then, the graph A + δ with E(A+ δ) =
{(λ + δ, µ + δ) : (λ, µ) ∈ E(A)} is called the δ-translate of A. A is called a half starter with
respect to Zx, if (i) |E(A)| = x and (ii) the lengths of all edges in A are mutually dissimilar
and equal to Zx; that is, {d(e) : e ∈ E(A)} = Zx. The following results have already been
proven in the literature [22]:

1. IfA is a half starter, then the union of all translates of A forms an edge decomposition
of Kx,x; that is, ∪δ∈Zx E(A+ δ) = E(Kx,x). Hereafter, a half-starter A can be repre-
sented by the vector u(A) =

(
uω0 , . . . ., uωx−1

)
∈ Zx

x. Two half-starter vectors u(A0)
and u(A1) are said to be orthogonal if {uα(A0)− uα(A1) : α ∈ Zx} = Zx.

2. If two half-starter vectors u(A0) and u(A1) are orthogonal, then G = {Aδ,β : (δ, β) ∈
Zx × Z2} with Aδ,β = Aβ + δ is an ODC of Kx,x. The subgraph As of Kx,x with
E(As) = {(λ0, µ1) : (µ0, λ1) ∈ E(A)} is called the symmetric graph of A. If A is a
half starter, then As is also a half starter. A half starter A is called a symmetric starter
with respect to Zx if the following vectors u(A) and u(As) are orthogonal.

3. Let x be a positive integer and A a half starter represented by the vector u(A) =(
uω0 , ...., uωx−1

)
. Then, A is the symmetric starter if {uω − u−ω + ω : ω ∈ Zx} = Zx.

The symmetric starter can be used to decompose the balanced complete bipartite
graphs Kx,x by several graphs and relies on the idea of δ-translate and half starters that are
strongly related to Rosa’s labeling and his cyclic decompositions of the complete graph [25].
The symmetric starter vectors method is an easy method compared to the direct method,
function-half starter method, and matrices method. Some graphs do not have a symmetric
starter vector; so, the orthogonal double covers cannot be constructed by these graphs
based on the symmetric starter method. Hence, the limitation of the method is that some
classes of graphs cannot be represented by vectors; thus, we try to apply the methods
above.

3. Main Results

In Theorem 1, we construct and prove the existence of the symmetric starter of an
ODC of Kxy,xy by C1,y−2

2 (Sx) using a general symmetric vector. For more information, see
Figure 4.
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Theorem 1. For all integers y ≥ 3 and x ≥ 2, then the vector v(C1,y−2
2 (Sx)) = (0, 0, . . . , 0, x, x,

. . . , x) ∈ Zyx
yx, is a symmetric starter vector of an ODC of Kxy,xy by C1,y−2

2 (Sx).

Proof. From the vector v
(
C1,y−2

2 (Sx)
)

, we can define:

vi =

{
0 if i < x, or
x otherwise.

(1)

Hence,

v−i =

{
x if 1 ≤ i ≤ x(y− 1), or
0 otherwise.

(2)

Then,

vi − v−i + i =


0 if i = 0, or
i− x if 1 ≤ i < x, or
i if x ≤ i ≤ x(y− 1), or
i + x otherwise.

(3)

Note that
{

vi − v−i + i : i ∈ Zyx
}
= Zyx. �

Example 2 is a direct application of Theorem 1.

Example 2. Let y = 4 and x = 3; so, the vector v
(
C1,2

2 (S3)
)
= (0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3).

Then, there exists an ODC of K12,12 by C1,2
2 (S3). The edge set of v

(
C1,2

2 (S3)
)

is defined by

E(C1,2
2 (S3)) = {((vi)0, (vi + i)1) : i ∈ Z12} = {(00, 01), (00, 11), (00, 21), (30, 61), (30, 71),

(30, 81), (30, 91), (30, 101), (30, 111), (30, 01), (30, 11), (30, 21)}, see Figure 5.
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vector of an 𝑂𝐷𝐶 of 𝐾 ,  by 2ℂ , (𝑆 ). 
Proof. From the vector 𝑣(2ℂ , (𝑆 )), we can define: 
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Figure 5. Symmetric starter of an ODC of K12,12 by C1,2
2 (S3).

In Theorem 2, we construct the symmetric starter of an ODC of K2xy,2xy by 2C1,y−2
2 (Sx)

using a general symmetric vector. There are two cases depending on the value of x. For
more information, see Figures 6 and 7.

Theorem 2. For all integers y ≥ 3 and x ≥ 2, then the vector v(2C1,y−2
2 (Sx)) = (x, x − 2, x,

x− 2, . . . , x, x− 2, 3x, 3x− 2, 3x, 3x− 2, . . . , 3x, 3x− 2) ∈ Z2xy
2xy, is a symmetric starter vector

of an ODC of K2xy,2xy by 2C1,y−2
2 (Sx).
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Proof. From the vector v
(

2C1,y−2
2 (Sx)

)
, we can define:

vi =


x if i = 0, 2, 4, . . . , 2x− 2, or
x− 2 if i = 1, 3, 5, . . . , 2x− 1, or
3x if i = 2x, 2x + 2, 2x + 4, . . . , 2yx− 2, or
3x− 2 if i = 2x + 1, 2x + 3, 2x + 5, . . . , 2yx− 1.

(4)

Hence,

v−i =


3x− 2 if i = 1, 3, 5, . . . , 2yx− 2x− 1, or
3x if i = 2, 4, 6, . . . , 2yx− 2x, or
x− 2 if i = 2yx− 2x + 1, 2yx− 2x + 3, . . . , 2yx− 1, or
x if i = 2yx− 2x + 2, 2yx− 2x + 4, . . . , 2yx.

(5)

Then,

vi − v−i + i =


0 if i = 0, or
i− 2x if i = 1, 2, 3, . . . , 2x− 1, or
i if i = 2x, 2x + 1, 2x + 2, . . . , 2x(y− 1), or
i + 2x otherwise.

(6)

Note that {vi − v−i + i : i ∈ Z2yx
}
= Z2yx. �

Example 3 is a direct application of Theorem 2.

Example 3. Let y = 3 and x = 3; so, the vector v(2C1,1
2 (S3)) = (3, 1, 3, 1, 3, 1, 9, 7, 9, 7, 9, 7, 9, 7,

9, 7, 9, 7). Then, there exists an ODC of K18,18 by 2C1,1
2 (S3); for more information, see Figure 8.
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Figure 8. Symmetric starter of an ODC of K18,18 by 2C1,1
2 (S3).

Theorem 3. Let y ≥ 3 and x ≥ 2 be integers, then, the vector v(C1,y−2
2 (K2,x)) = (0, 1, 0, 1, . . . , 0,

1, 2x, 2x + 1, 2x, 2x + 1, . . . , 2x, 2x + 1) ∈ Z2xy
2xy, is a symmetric starter vector of an ODC of

K2xy,2xy by C1,y−2
2 (K2,x).

Proof. From the vector v
(
C1,y−2

2 (K2,x)
)

, we can define:

vi =


0 if i = 0, 2, 4, . . . , 2x− 2, or
1 if i = 1, 3, 5, . . . , 2x− 1, or
2x if i = 2x, 2x + 2, 2x + 4, . . . , 2yx− 2, or
2x + 1 if i = 2x + 1, 2x + 3, 2x + 5, . . . , 2yx− 1.

(7)

Hence,

v−i =


2x + 1 if i = 1, 3, 5, . . . , 2yx− 2x− 1, or
2x if i = 2, 4, 6, . . . , 2yx− 2x, or
1 if i = 2yx− 2x + 1, 2yx− 2x + 3, . . . , 2yx− 1, or
0 if i = 2yx− 2x + 2, 2yx− 2x + 4, . . . , 2yx.

(8)

Then,

vi − v−i + i =


0 if i = 0, or
i− 2x if i = 1, 2, 3, . . . , 2x− 1, or
i if i = 2x, 2x + 1, 2x + 2, . . . , 2x(y− 1), or
i + 2x otherwise.

(9)

Note that {vi − v−i + i : i ∈ Z2yx
}
= Z2yx. �

Example 4. Let y = 3 and x = 3, so the vector v(C1,1
2 (K2,3)) = (0, 1, 0, 1, 0, 1, 6, 7, 6, 7, 6, 7, 6, 7,

6, 7, 6, 7). Then, there exists an ODC of K18,18 by C1,1
2 (K2,3); see Figure 9.
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Figure 9. Symmetric starter of an ODC of K18,18 by C1,1
2 (K2,3).

Theorem 4. For all integers x and y ≥ 3, and gcd(x, 3) = 1, then the vector v(xC1,y−2
2 (K2,2)) =

(0, 1, 2, . . . , 2x− 1, 0, 1, 2, . . . , 2x− 1, 4x, 4x + 1, 4x + 2, . . . , 6x− 1, . . . , 4x, 4x + 1, 4x + 2, . . . ,
6x− 1) ∈ Z4xy

4xy is a symmetric starter vector of an ODC of K4xy,4xy by xC1,y−2
2 (K2,2).
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Proof. From the vector v
(

xC1,y−2
2 (K2,2)

)
, we can define:

vi =



0 if i = 0 and i = 2x, or
1 if i = 1 and i = 2x + 1, or
: : :
2x− 1 if i = 2x− 1 and i = 4x− 1, or
4x if i = 4x, i = 6x, . . . , i = 4yx− 2x, or
4x + 1 if i = 4x + 1, i = 6x + 1, . . . , i = 4yx− 2x + 1, or
: : :
6x− 1 if i = 6x− 1, i = 8x− 1, . . . , i = 4yx− 1.

(10)

Hence,

v−i =



6x− 1 if i = 1, i = 1 + 2x, . . . , i = 4yx− 6x + 1, or
6x− 2 if i = 2, i = 2 + 2x, . . . , i = 4yx− 6x + 2, or
: : :
4x if i = 2x, i = 4x, . . . , i = 4yx− 4x, or
2x− 1 if i = 4yx− 4x + 1 and i = 4yx− 2x + 1, or
2x− 2 if i = 4yx− 4x + 2 and i = 4yx− 2x + 2, or
: : :
0 if i = 4yx− 2x and i = 4yx.

(11)

Then,

vi − v−i + i =



0 if i = 0, or
2− 6x + i if i = 1 and i = 2x + 1, or
4− 6x + i if i = 2 and i = 2x + 2, or
: : :
i− 2x− 2 if i = 2x− 1 and i = 4x− 1, or
i− 4x if i = 2x, or
i if i = 4x, i = 6x, . . . , i = 4yx− 4x, or
i− 2x + 2 if i = 4x + 1, i = 6x + 1, . . . , i = 4yx− 6x + 1, or
i− 2x + 4 if i = 4x + 2, i = 6x + 2, . . . , i = 4yx− 6x + 2, or
: : :
i + 2x− 2 if i = 6x− 1, i = 8x− 1, . . . , i = 4yx− 4x− 1, or
i + 4x if i = 4yx− 2x, or
i + 2x + 2 if i = 4yx− 4x + 1 and i = 4yx− 2x + 1, or
i + 2x + 4 if i = 4yx− 4x + 2 and i = 4yx− 2x + 2, or
: : :
6x− 2 + i if i = 4yx− 2x− 1 and i = 4x− 1.

(12)

Note that {vi − v−i + i : i ∈ Z4yx
}
= Z4yx. �

Example 5. Let y = 3 and x = 2; so, the vector v(2C1,1
2 (K2,2)) = (0, 1, 2, 3, 0, 1, 2, 3, 8, 9, 10, 11,

8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11). Then, there exists an ODC of K24,24 by 2C1,1
2 (K2,2); see

Figure 10.
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In Theorem 5, we construct a symmetric starter of an ODC of Kxy,xy by x
2C

1,y−2
2 (P3)

using a symmetric vector. For more illustration, see Figure 11.
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Theorem 5. Let y ≥ 3 and x ≡ 2, 4 mod 6 be integers, then, the vector v
(

x
2C

1,y−2
2 (P3)

)
=

(0, 1, 2, . . . , x− 1, x, x + 1, x + 2, . . . , 2x− 1, . . . , x, x + 1, x + 2, . . . , 2x− 1) ∈ Zyx
yx is a sym-

metric starter vector of an ODC of Kxy,xy by x
2C

1,y−2
2 (P3).

Proof. From the vector v
(

x
2C

1,y−2
2 (P3)

)
, we can define:

vi =



0 if i = 0, or
1 if i = 1, or
: : :
x− 1 if i = x− 1, or
x if i = x, i = 2x, . . . , i = (y− 1)x, or
x + 1 if i = x + 1, i = 2x + 1, . . . , i = (y− 1)x + 1, or
: : :
2x− 1 if i = 2x− 1, i = 3x− 1, . . . , i = yx− 1.

(13)

Hence,

v−i =



2x− 1 if i = 1, i = x + 1, . . . , i = yx− 2x + 1, or
2x− 2 if i = 2, i = x + 2, . . . , i = yx− 2x + 2, or
: : :
x if i = x, i = 2x, . . . , i = yx− x, or
x− 1 if i = yx− x + 1, or
x− 2 if i = yx− x + 2, or
: : :
0 if i = yx.

(14)
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Then,

vi − v−i + i =



0 if i = 0, or
3− 2x if i = 1, or
6− 2x if i = 2, or
: : :
i− 2 if i = x− 1, or
i if i = x, i = 2x, . . . , i = yx− x, or
i− x + 2 if i = x + 1, i = 2x + 1, . . . , i = yx− 2x + 1, or
i− x + 4 if i = x + 2, i = 2x + 2, . . . , i = yx− 2x + 2, or
: : :
i + x− 2 if i = 2x− 1, i = 3x− 1, . . . , i = yx− x− 1, or
i + 2 if i = yx− x + 1, or
i + 4 if i = yx− x + 2, or
: : :
i + 2x− 2 if i = yx− 1.

(15)

Note that {vi − v−i + i : i ∈ Zyx
}
= Zyx. �

Example 6 is a direct application of Theorem 5.

Example 6. Let y = 4 and x = 4; so, the vector v(2C1,2
2 (P3)) = (0, 1, 2, 3, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5,

6, 7). Then, there exists an ODC of K16,16 by 2C1,2
2 (P3); see Figures 12 and 13.
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Theorem 6. Let y, x ≥ 3 be integers, then the vector v(C1,y−2
2 (C2(1, x− 2))) = (0, 1, 1, . . . , 1, x,

x + 1, x + 1, . . . , x + 1, . . . , x, x + 1, x + 1, . . . , x + 1) ∈ Zxy is a symmetric starter vector of an
ODC of Kxy,xy by C1,y−2

2 (C2(1, x− 2)).



Algorithms 2023, 16, 320 12 of 19

Proof. From the vector v
(
C1,y−2

2 (C2(1, x− 2))
)

, we can define:

vi =


0 if i = 0, or
1 if 1 ≤ i < x, or
x if i = x, i = 2x, i = 3x, . . . , i = yx− x, or
x + 1 otherwise.

(16)

Hence,

v−i =


0 if i = 0, or
x if i = x, i = 2x, i = 3x, . . . , i = yx− x, or
1 if yx− x < i ≤ yx, or
x + 1 otherwise.

(17)

Then,

vi − v−i + i =


0 if i = 0, or
i− x if 1 ≤ i < x, or
i if x ≤ i ≤ yx− x, or
i + x if yx− x < i < yx.

(18)

Note that {vi − v−i + i : i ∈ Zyx
}
= Zyx.

Example 7 is a direct application of Theorem 6. �

Example 7. Let y = 3 and x = 5; so, the vector v(C1,1
2 (C2(1, 3))) = (0, 1, 1, 1, 1, 5, 6, 6, 6, 6, 5, 6,

6, 6, 6). Then, there exists an ODC of K15,15 by C1,1
2 (C2(1, 3)); see Figure 14.
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Figure 14. Symmetric starter of an ODC of K15,15 by C1,1
2 (C2(1, 3)).

In Theorem 7, we construct a symmetric starter of an ODC of K2xy,2xy by Ky,2x using
symmetric vectors. For more information, see Figure 15.
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Example 8 is a direct application of Theorem 7. 

Figure 15. General symmetric starter of an ODC of K2xy,2xy by Ky,2x.
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Theorem 7. Let y, x ≥ 2 be integers, then the vector v(Ky,2x) = ((x − 1), (x − 2), (x − 3),
. . . , 0, (2x− 1), (2x− 2), (2x− 3), . . . , x, . . . , (x− 1), (x− 2), (x− 3), . . . , 0, (2x− 1), (2x− 2),
(2x− 3), . . . , x) ∈ Z2yx

2yx, is a symmetric starter vector of an ODC of K2xy,2xy by Ky,2x.

Proof. From the vector v
(
Ky,2x

)
, we can define:

vi =



x− 1 if i = 0, i = 2x, . . . , i = 2yx− 2x, or
x− 2 if i = 1, i = 2x + 1, . . . , i = 2yx− 2x + 1, or
: : :
0 if i = x− 1, i = 3x− 1, . . . , i = 2yx− x− 1, or
2x− 1 if i = x, i = 3x, . . . , i = 2yx− x, or
2x− 2 if i = x + 1, i = 3x + 1, . . . , i = 2yx− x + 1, or
: : :
x if i = 2x− 1, i = 4x− 1, . . . , i = 2yx− 1.

(19)

Hence,

v−i =



x if i = 1, i = 1 + 2x, . . . , i = 2yx− 2x + 1, or
x + 1 if i = 2, i = 2 + 2x, . . . , i = 2yx− 2x + 2, or
: : :
2x− 1 if i = x, i = 3x, . . . , i = 2yx− x, or
0 if i = x + 1, i = 3x + 1, . . . , i = 2yx− x + 1, or
1 if i = x + 1, i = 3x + 1, . . . , i = 2yx− x + 2, or
: : :
x− 1 if i = 2x, i = 4x, . . . , i = 2yx.

(20)

Then,

vi − v−i + i =



0 if i = 0, or
i− 2 if i = 1, i = 1 + 2x, . . . , i = 2yx− 2x + 1, or
i− 4 if i = 2, i = 2 + 2x, . . . , i = 2yx− 2x + 2, or
: : :
i− 2x + 2 if i = x− 1, i = 3x− 1, . . . , i = 2yx− x− 1, or
i if i = x, i = 2x, . . . , i = 2yx− x, or
i + 2x− 2 if i = x + 1, i = 3x + 1, . . . , i = 2yx− x + 1, or
i + 2x− 4 if i = x + 2, i = 3x + 2, . . . , i = 2yx− x + 2, or
: : :
i + 2 if i = 2x− 1, i = 4x− 1, . . . , i = 2yx− 1.

(21)

Note that
{

vi − v−i + i : i ∈ Z2yx
}
= Z2yx. �

Example 8 is a direct application of Theorem 7.

Example 8. Let y = 2 and x = 4; so, the vector v(K2,8) = (3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4).
Then, there exists an ODC of K16,16 by K2,8; see Figure 16.
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In Theorem 8, we construct a symmetric starter of an ODC of Ky2,y2 by y
2 K2,y using a

general symmetric vector. For more illustration, see Figure 17.
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Theorem 8. Let y ≡ 2 mod 6 and y ≡ 4 mod 6, then the vector v( y
2 K2,y) = (0, 0, .., 0, y, y, .., y, 2y,

2y, .., 2y, 3y, 3y, .., 3y, . . . . . . , y(y− 1), y(y− 1), .., y(y− 1)) ∈ Zy2

y2 , is a symmetric starter vector

of an ODC of Ky2,y2 by y
2 K2,y.

Proof. From the vector v
( y

2 K2,y
)
, we can define:

vi =



0 if i < y, or
y if y ≤ i < 2y, or
2y if 2y ≤ i < 3y, or
3y if 3y ≤ i < 4y, or
: : :
y(y− 1) if y(y− 1) ≤ i < y2.

(22)

Hence,

v−i =



y(y− 1) if 1 ≤ i ≤ y, or
y(y− 2) if y < i ≤ 2y, or
y(y− 3) if 2y < i ≤ 3y, or
y(y− 4) if 3y ≤ i < 4y, or
: : :
y(y− y) if y(y− 1) < i ≤ y2.

(23)

Then,

vi − v−i + i =



0 if i = 0, or
0− y(y− 1) + i if 1 ≤ i < y, or
y− y(y− 2) + i if y < i < 2y, or
2y− y(y− 3) + i if 2y < i < 3y, or
: : :
y(y− 1)− y(y− y) + i if y(y− 1) < i < y2, or
y− y(y− 1) + i if i = y, or
2y− y(y− 2) + i if i = 2y, or
3y− y(y− 3) + i if i = 3y, or
4y− y(y− 4) + i if i = 4y, or
: : :
y(y− 1)− y(y− (y− 1)) + i if i = y(y− 1).

(24)
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Note that {vi − v−i + i : i ∈ Zy2

}
= Zy2 . �

Example 9 is a direct application of Theorem 8.

Example 9. Let y = 4; so, the vectorv(2K2,4) = (0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12). Then,
there exists anODC of K16,16 by2K2,4; see Figure 18.
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Finally, we constructed the decompositions and ODCs of complete bipartite graphs H
by graphs G. The results obtained in Section 3 are united in Table 2 as follows:

Table 2. Summary of results based on Section 3.

H G

Ky2,y2
y
2 K2,y

K2xy,2xy Ky,2x
Kxy,xy C1,y−2

2 (C2(1, x− 2))
Kxy,xy x

2C
1,y−2
2 (P3)

K4xy,4xy xC1,y−2
2 (K2,2)

K2xy,2xy C1,y−2
2 (K2,x)

K2xy,2xy 2C1,y−2
2 (Sx)

Kxy,xy C1,y−2
2 (Sx)

It should be emphasized again that the main advantage of the symmetric starter
vectors method is that it is much easier to implement than, for example, the direct method,
function-half starter method, and matrices method. However, it also has the limitation that
some graphs do not have a symmetric starter; so, the orthogonal double covers cannot be
constructed by these graphs based on the symmetric starter method. In these cases, it is not
applicable, and alternative methods must be used.

4. Use Case

Consider various examples of how the developed theory can be applied in practice.

4.1. Local-to-Global Governments Public Elections

In the ‘Application’ section of work [43], an example of a task to analyze the election
procedure of local governments in some countries is described. A model of relations
between participants in the election process based on their portfolio and desired positions
in the local government was built in the form of a graph, and a competition graph under
interval-valued m-polar fuzzy environment to solve this problem was applied. Fuzzy
competition graphs have a widespread use in various fields [44,45]. Using the proposed
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approach, the authors convincingly demonstrate how it is possible to plan the distribution
of candidates for the appropriate positions in the local government so that they suit them
best.

This task can be complicated and expanded if we accept the thesis that local govern-
ments (for example, from the level of cities or states) can win delegates to positions in the
“global” government at the level, for example, of a country (parliament, council of a country,
etc.). That is, if the basic approach is maintained, the problem can first be solved at the level
of graphs of relations between local governments and then at the level of the graph above.
However, if we represent the local relationship graph as a caterpillar graph, the description
of the global relationship graph can be reduced to constructing ODCs by caterpillar graphs
using general symmetric starter vectors described and solved in this article (in general, a
symmetric starter may not only be a caterpillar graph; ODS is good because the circulant
is completely symmetrical to its vertices, i.e., all vertices are completely equal in terms
of the election procedure). This means that the method from [43] can be applied to the
entire global graph. This approach has the advantage that candidates for seats in local
governments will be able to apply for positions in the governments of neighboring regions,
thereby increasing variability and the ability to better match the right candidates for the
right positions, as well as it is (theoretically) possible to achieve an acceleration of the
calculations themselves.

4.2. On-Chip Communication Networks

Complete bipartite graphs are widely used in various areas of communication net-
works [26,46]. At the same time, if the network is large, there is a problem of finding
routes and managing traffic in such networks [1,47]. It is solved, for example, by using the
principle of small-world networks [48,49] by grouping nodes on a regular basis that are
interconnected by the intensive communication traffic [32]. When referring to on-chip com-
munication networks, the principles of organizing global networks using network-on-chip
technology are then still supplemented by the use of communication buses [50–52], which
have a very developed support at the level of CAD, IP cores, and their interfaces, and also
are well-standardized.

The mathematical apparatus proposed in this paper allows for performing the decom-
position of large graphs into simpler caterpillar graphs, whose features are the presence of
the main route between nodes and branches from it. This route is very suitable for its im-
plementation as a bus [53]. That is, in large graphs, separate sections (caterpillar subgraphs)
which can be organized locally using communication buses can be distinguished.

Let us observe this concept with an example. It is known that in on-chip networks,
there can be communication links of different bandwidths designed to transmit the traffic
of different priorities and implement different levels of virtual channels [54]. The natural
structure for complete bipartite graphs is to allocate circulant subgraphs for such tasks [55].
For example, in K12,12, a circulant subgraph of the form C(12; 1, 3, 5) can be distinguished.
The use of a ring circulant allows reflecting the local connectivity of neighboring routers in
terms of location on the chip. Although such a circulant is much simpler than a complete
bipartite graph, it nevertheless contains quite a lot of links, and the question is how to
implement it as a communication environment on chip. Additionally, to implement routing,
each router must store a routing table [56] for 12 nodes.

We propose to segment the graph along the outer ring into pairs of nodes, selecting
from them C2(3, 3); the main path is implemented by a high-performance bus [53], and the
outer connections are implemented by links with a lower bandwidth. Thus, it is possible
to reduce the size and number of routing tables (the number of segments (I, II, III, etc.)
become 2-times less than nodes; one common table is stored per segment for two nodes).
An illustration of such a partition is shown in Figure 19.
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This approach can be applied to graphs with an even number of nodes. The length
of the main path in caterpillar graphs must be less than the length of the second circulant
generator.

5. Conclusions

We construct ODCs of Kx,x by new general symmetric starter graphs and disjoint
copies of symmetric starter graphs using general symmetric starter vectors of caterpillar
graphs such as stars–caterpillar, the disjoint copies of cycles–caterpillars, the complete
bipartite caterpillar graphs, and the disjoint copies of caterpillar paths. To the best of our
knowledge, this paper is the first to construct the ODCs and decompositions of complete
bipartite graphs using the caterpillar graph. The decomposition of giant graphs into large
groups of small graphs allows us to quickly access information due to the ever-expanding
growth of information represented by giant networks stored on massive servers using
the disjoint copies of symmetric starter graphs compared to using one symmetric starter
graph. The general symmetric starter vectors are very useful in many applications such
as comprehensive coverage and the analysis of large networks relational databases, the
statistical design of experiments, and design theory. It should be noted that not all the
graphs have a symmetric starter. An illustrative example of applying the proposed graph
decomposition approach in a practical example for on-chip networks is given. In the future,
we will try to generalize the results obtained in this paper to the mutually orthogonal graph
squares that have several applications in combinatorial design theory.
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