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Abstract: The rapid development of speech synthesis technology has significantly improved the
naturalness and human-likeness of synthetic speech. As the technical barriers for speech synthesis
are rapidly lowering, the number of illegal activities such as fraud and extortion is increasing, posing
a significant threat to authentication systems, such as automatic speaker verification. This paper
proposes an end-to-end speech synthesis detection model based on audio feature fusion in response
to the constantly evolving synthesis techniques and to improve the accuracy of detecting synthetic
speech. The model uses a pre-trained wav2vec2 model to extract features from raw waveforms and
utilizes an audio feature fusion module for back-end classification. The audio feature fusion module
aims to improve the model accuracy by adequately utilizing the audio features extracted from the
front end and fusing the information from timeframes and feature dimensions. Data augmentation
techniques are also used to enhance the performance generalization of the model. The model is
trained on the training and development sets of the logical access (LA) dataset of the ASVspoof
2019 Challenge, an international standard, and is tested on the logical access (LA) and deep-fake
(DF) evaluation datasets of the ASVspoof 2021 Challenge. The equal error rate (EER) on ASVspoof
2021 LA and ASVspoof 2021 DF are 1.18% and 2.62%, respectively, achieving the best results on the
DF dataset.

Keywords: deep learning; wav2vec 2.0; automatic speaker verification; deep-fake detection;
ASVspoof Challenge

1. Introduction

In recent years, many researchers have proposed end-to-end speech synthesis systems
based on deep learning, such as Tacotron2 [1], Deep Voice 3 [2], Transformer TTS [3], and
FastSpeech 2 [4]. Synthesized speech has dramatically improved in human-likeness, realism,
and naturalness. Speech synthesis software for different languages (such as Chinese,
English, Vietnamese, etc.) has been made available to the public, with reduced barriers to
entry and difficulty. The highly authentic synthetic speech segments mentioned will pose
significant challenges to human auditory perception. Moreover, if these synthesized speech
segments are maliciously exploited in authentication systems such as ASV, they can pose a
grave security threat.

Training a traditional ASV system that is robust to attacks with synthetic speech
requires a dataset that includes various types of synthetic speech generated by different
algorithms. However, it is not practical to construct a training dataset that contains all
possible attack scenarios, as attackers will always use unknown attack methods to target
ASV systems. Therefore, when designing ASV systems, reliability in the face of various
and unpredictable attacks [5] needs to be considered, and the generalization ability of ASV
systems needs to be improved.

The ASVspoof Challenge has collected a large amount of speech segment data suitable
for training ASV systems and constructed a public dataset [5–8] to improve the detection
capability of ASV systems against unknown spoofing attacks. The task of the ASVspoof
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2019 Challenge includes two scenarios: logical access (LA) and physical access (PA). The
LA scenario consists of two attacks against ASV systems: speech synthesis and conversion.
The PA scenario explicitly refers to the attack method of recording and replaying. The
ASVspoof 2021 Challenge adds a deep-fake (DF) partition aimed at addressing the scenario
of speech synthesis using deep-fake technology. This research mainly focuses on the LA
and DF scenarios.

In recent years, more and more researchers have attempted to improve the detection
capability of ASV systems by building deep learning models. Many studies [9–11] have
proposed effective network architectures, such as using raw waveforms as input to obtain
better representations. However, the robustness of the model is still limited by the insuffi-
ciency of the training data. To address this issue, some recent studies [12,13] have focused
on using a pre-trained model at the front end of the existing model and using transfer
learning to obtain more generalized feature representations.

However, most recent research has focused solely on the ASVspoof 2019 dataset, with
very little attention given to ASVspoof 2021, particularly the DF partition. ASVspoof 2021
DF is a new task within ASVspoof, which extends the focus of the ASVspoof Challenge
beyond ASV scenarios to detecting spoofed speech in non-ASV contexts. The DF task
reflects scenarios in which attackers access victims’ speech data, such as data published
by victims on social media. Attackers may use public data and deep-fake technologies to
generate synthetic speech with the voice of a victim and use such fake speech to engage in
fraudulent activities, such as spreading false information, blackmailing, and causing social
unrest and panic. They may also generate synthetic speeches of influential figures in social
media or politics to spread fake news and sow discord or create artificial voices of ordinary
individuals to deceive their family members of fraud. Additionally, attackers may generate
harmful speech data to defame their victims. Therefore, developing better techniques for
detecting synthetic speech generated using deep-fake technologies is an urgent problem
that needs to be addressed.

The main contribution of this paper is designing a model with a lower equal error rate
(EER) on both the ASVspoof 2021 LA and DF partitions. We use a pre-trained feature ex-
traction model and a designed audio feature fusion mechanism for back-end classification.

The evaluation results on the ASVspoof 2021 LA and DF databases [8] show that
our proposed model outperforms most of the previous works in terms of the minimum-
detection cost function (min t-DCF) [14] and equal error rate (EER) evaluation criteria. In
particular, it surpasses the best results mentioned in [15] on the DF dataset.

2. Methods

The model presented in this paper consists of two main components: wav2vec 2.0 and
a feature fusion module. Our model architecture is illustrated in Figure 1. We first input
the raw audio wave into wav2vec 2.0 to extract corresponding audio features. Then, the
obtained audio features were embedded with positional information through an embedding
module. The resulting hidden layer features were subsequently fed into the audio feature
fusion module, which consists of two parts: remix and fusion. Finally, the output results
were obtained through a fully connected (FC) layer.

2.1. Wav2vec 2.0

Traditional detection methods often use carefully designed handcrafted features, such
as MFCC, LFCC, CQCC, and other mathematically-based audio feature maps. These audio
features can be easily and quickly obtained and contain valuable information.

In [16], the authors used LFCC and CQT as inputs to an end-to-end dual-branch
network using a multitask learning method to detect different types of synthetic speech.
Specifically, each branch added a forgery-type classifier as an additional task. Then, through
adversarial training between the network and the forgery-type classifier, the learned fea-
tures did not contain specific forgery information associated with a particular forgery type.
Additionally, the convolutional block attention module (CBAM) was used to improve
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the representation ability of the learned features. Using handcrafted features effectively
reduces the number of parameters in the model and speeds up the training process, but it
may decrease the model accuracy.

Figure 1. Overall framework diagram of our model. From the figure, it can be seen that the original
waveform was input into wav2vec 2.0 for feature extraction. Then, the features obtained through
embedding were input into the feature fusion stage. The feature fusion stage is composed of four
repeated remix and feature fusion blocks. The final output was obtained through a fully connected
(FC) layer.

With the continuous development of deep learning, a SincNet-based audio feature ex-
traction method has emerged, which is an interpretable neural network structure designed
to process temporal speech signals and directly learn more meaningful filters. Generally,
for processing temporal signals, the extraction capability of the first-layer network is crucial
because the effectiveness of the low-dimensional features extracted in the first layer is a
prerequisite for the high-dimensional feature information learned by the higher layers
of the network to be meaningful. In RawGAT-ST [10], for instance, the model directly
operates on the raw waveform and uses a Sinc convolutional filter for front-end feature
learning. This approach of utilizing neural networks to extract front-end features effectively
improves the accuracy of the model.

However, both of the above feature extraction methods have certain limitations. Hand-
crafted features based on mathematical principles inevitably need to be aware of hidden
information. Although neural network-based feature extraction can effectively extract
hidden information, it is limited by the model parameters and training data size, leading to
suboptimal performance.

The emergence of transfer learning can effectively solve the above problems. Using
pre-trained models can significantly reduce training time, and ideal results can be achieved
with a small amount of data. Therefore, more and more researchers are using pre-trained
models to extract features [12,13,17,18] to improve model performance.

Wav2vec 2.0 [19] is a self-supervised learning framework proposed by Facebook
AI, which introduces a transformer to replace RNN structures. The potent ability of the
transformer makes wav2vec 2.0 much better than previous models. Although wav2vec 2.0
was initially used for automatic speech recognition (ASR), recent research, such as speech
error detection [20,21], speaker recognition [22,23], emotion recognition [24], and deception
detection [12,25], has shown that wav2vec 2.0 can also achieve good performance in other
speech-related tasks. In this paper, we also used the wav2vec 2.0 model to perform synthetic
speech recognition using the pre-trained model.

Since the pre-trained model only uses natural speech data (without synthetic speech
data) for training, according to the research [12], fine-tuning with training data containing
synthetic speech can potentially improve the model detection performance. To better
adapt to downstream training tasks, we added a fully connected layer to the output of the
wav2vec 2.0 encoder.
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2.2. Remix

The well-known Swin-transformer [26] consists of four stages in patch merging and
attention. Our model drew on this architecture, where the remix and feature fusion in
the audio feature model correspond to patch merging and the transformer block in the
Swin-transformer, respectively.

Patch merging in the Swin-transformer is a pooling-like operation that does not lose
information. It consists of two steps: first, four adjacent patches are combined into one
patch, with the channel number doubled to match the neural network; second, a 1D
convolution is applied to the channel dimension to reduce the channel number.

However, in our model, the input audio features were not partitioned into patches, so
there were no adjacent parts to concatenate. Therefore, we evenly divided the entire audio
feature into four patches in this module, and the audio features (T, F) were composed of
two dimensions: timeframe (T) and feature dimension (F), as shown in Figure 2, denoted
as X1, X2, X3, and X4. These four patches were then fused using addition, resulting in
a patch size of (T/2, F/2). To ensure consistency between the input and output as well
as feature fusion, we fed the features obtained through addition into a two-dimensional
Conv1d, resulting in features with a size of (4, T/2, F/2). The input channel number of the
two-dimensional convolution was 1, and the output channel number was 4. The resulting
feature map (4, T/2, F/2) was finally reshaped to the same size as the input feature (T, F).

Figure 2. Schematic diagram of remix. We segmented and summed the features and then restored
them through convolution and reshaping.

2.3. Feature Fusion

Google proposed a transformer in [27]. It relies solely on the attention mechanism and
has made significant breakthroughs in NLP. Meanwhile, the transformer has also shown good
performance in the computer vision (CV) area. Various variants of the transformer [26,28]
based on the attention mechanism have continuously set new state-of-the-art records in CV,
surpassing the SOTA models.

The original transformer was primarily based on the self-attention mechanism. The
self-attention mechanism first multiplies the input vector by three matrices (representing
three different weights) to obtain three new vectors (QKV). Then, the attention output is
obtained using the dot product:

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (1)

The attention mechanism used in the transformer structure is complex dot-product
attention. Instead, a multi-head attention mechanism was designed to improve the perfor-
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mance of the model. This mechanism divides the QKV vectors into n segments along the
last dimension and performs attention operations on each segment, separately. The results
are then concatenated and passed through a fully connected layer to obtain the final output.
Multi-head attention consists of n heads, where the weights for the i-th head are denoted
as Wi,q, Wi,k, and Wi,v:

headi= Attention(q×Wq
i , k×Wk

i , v×Wv
i ) (2)

Multihead(Q, K, V) = Concat(head 1, . . . , headh)WO (3)

Audio is a different kind of data from text sequences and images. In the past, when
processing audio signals, most of the analyses would start from both the time domain
and the frequency domain, and the audio features extracted by wav2vec2 also have two
dimensions, timeframe and feature dimension. Therefore, after the pre-training model in
wav2vec2 extracts the input audio, the feature map size is (T, F), where T represents the
timeframe dimension, and F represents the feature dimension.

The original transformer would have focused on the information in the input feature
map from only one perspective. This is due to the nature of natural language processing
(NLP), where the input data are temporal. However, audio data are not only temporal, but
frequency domain information is also important.

Transformer variants in the computer vision (CV) domain, such as those of [26,28],
cannot effectively handle audio features with one less dimension. This is because the
feature map of image data is three-dimensional, with height, width, and channels (H, W,
C), whereas audio features are usually two-dimensional. Therefore, we cannot, in most
cases, directly use these models for audio features.

Many studies [13,29] have chosen to adapt audio features to models in the CV domain
by increasing the dimensionality of the features, for example, through convolution, so that
two-dimensional audio features become three-dimensional and can thus be directly used
with models in the CV domain. In most cases, good results have been achieved in this way.

In our model, however, we wanted to try to keep the dimensionality of the audio
features the same. Therefore, we redesigned the attention blocks in the overall framework
of the Swin-transformer. Unlike NLP, which is overly concerned with temporal information,
we treated the timeframe and feature dimension equally.

Unlike other feature fusion approaches, we could not fuse feature maps from different
inputs since we only had one feature map as our input. Inspired by [28], we took a
single-input feature map and fused the output of the branch by feeding it into different
branches. At the same time, we added part of the self-attention to the weight matrix as
additional information.

Firstly, the input audio feature (T, F) (denoted as XT) was linearly transformed into
the corresponding QKV, marked as Qf, Kf, and Vf, by multiplying with the weight matrix,
Wt. Meanwhile, the audio feature was transposed to (F, T) (denoted as XF) and similarly
linearly transformed into Qt, Kt, and Vt using the weight matrix, Wf:

(Q, K, V) = X× (Wq, Wk, Wv) (4)

where X represents the input audio feature matrix (including XT and XF), and W repre-
sents the corresponding weight matrix (including WT and WF). The modified attention
mechanism was then applied for feature fusion.

To better integrate the timeframe and feature dimension information, a transformation,
as shown in Figure 3, was applied to the V in each set of Q, K, and V. V was input into
a one-dimensional convolution, Conv1d. After passing through BatchNorm and GELU
functions, it was passed through another one-dimensional convolution, Conv1d, to obtain
the output, V′. Finally, we obtained the matrix V required by the attention mechanism by
performing a dot product between the transpose of V′ and the V in another set of QKV.
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Figure 3. We fused V from two different sets of QKV and used the fused V′ for multi-attention. We
also use the weights at linear transformation as input to the third multi-attention and its output as
additional information.

The required attention matrix was obtained by inputting the obtained V and the
corresponding Q and K into the attention formula, denoted as at and af, corresponding to
the input XT and XF, respectively.

Meanwhile, for the weight matrix, W, used in linear transformation, the following
operations were performed:

(a) The size of the weight matrix WT corresponding to XT was (T, T). After linear
transformation, W′T with a size of (T, 1) was obtained. Therefore, the three weight matrices,
WT,q, WT,k, and WT,v, corresponding to XT, were obtained as W′T,q, W′T,k, and W′T,v,
respectively. Similarly, the three weight matrices, WF,q, WF,k, and WF,v, corresponding to
XF, were obtained as W′F,q, W′F,k, and W′F,v:

w1,1 . . . . . . . . . w1,T
...

. . .
...

...
. . .

...
...

. . .
...

wT,1 . . . . . . . . . wT,T





a1
...
...
...

aT


=



w′1
...
...
...

w′T




w1,1 . . . . . . . . . w1,F
...

. . .
...

...
. . .

...
...

. . .
...

wF,1 . . . . . . . . . wF,F





b1
...
...
...

bF


=



w′1
...
...
...

w′F



(5)
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(b) W′T,q and W′F,q were multiplied to obtain the matrix Qs of size (T, F). Similarly,
Ks and Vs were obtained:w′1

...
w′T

[w′1 . . . w′F
]
=

w′1,1 . . . . . . w′1,F
...

...
w′T,1 . . . . . . w′T,F

 (6)

(c) The attention calculation was performed on Qs, Ks, and Vs to obtain the correspond-
ing matrix as:

as = Multihead(Qs, Ks, Vs) (7)

Finally, three attention matrices, at, af, and as, were obtained, and the transpose matrix
of at was dot-multiplied with af, and the result was then added to as to obtain the final
output matrix:

attention = (a f × at
T + as) (8)

2.4. Data Augmentation

Data augmentation (DA) alleviates the issue of insufficient data in deep learning, which
was initially widely used in the image domain and then extended to NLP, achieving success
in many tasks. DA can reduce overfitting, thus improving generalization [30–33], and is
particularly effective in LA scenarios involving large amounts of encoding, transmission,
and acquisition equipment. Although many DA solutions have been proposed, such as
in [34] and SpecMix [35], they are only suitable for detection models operating on 2D
front-end representations.

The model here used RawBoost DA [33] tools, a data augmentation and enhancement
method used to design more robust models that directly takes raw waveform inputs,
meeting the needs of the model. RawBoost has developed various data augmentation
methods. Mode 1 is the processing of data through convolutional noise, mode 2 processes
the data through impulse noise, mode 3 processes the data through colored additive noise,
and mode 4 is where the three algorithms of modes 1, 2, and 3 are concatenated together
for data processing. Mode 5, conversely, is the data processing of two algorithms of
modes 1 and 2 in series. Based on [13], we conducted experiments on our model using
modes 3 and 5.

3. Experimental Setup and Details

The ASVspoof database consists of three partitions for evaluating logical access (LA),
physical access (PA), and deep-fake (DF), with the DF partition being newly added in
ASVspoof 2021. The model experiments were based on the ASVspoof partitions.

3.1. Dataset and Evaluation Criteria

The ASVspoof 2019 LA database corresponds to a synthesized deception attack sce-
nario, which includes genuine and spoofed speech data generated by 17 different TTS
and VC systems. The speech data in the ASVspoof 2019 LA dataset is based on the VCTK
corpus, including natural speech from 107 speakers: 46 males and 61 females. The nat-
ural speech all has the same recording configuration without channel and background
noise interference. The LA partition is divided into three subsets: training, development,
and evaluation, with each subset consisting of genuine and spoofed speech. Six different
TTS/VC algorithms are used to generate spoofed speech in the training and development
subsets, while thirteen different TTS/VC algorithms are used to generate spoofed speech
in the evaluation subset.

ASVspoof 2021 LA aims to reduce the gap between ideal laboratory conditions and
expected field conditions. It includes a collection of genuine and spoofed speech transmit-
ted through various telephone systems, including IP telephony (VoIP) and public switched
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telephone networks (PSTN). Speech data may undergo a series of unknown changes when
transmitted across different telephone systems, which can result in artefacts not only from
forgery but also from coding and transmission. Therefore, the challenge in the 2021 LA
task is to investigate the robustness against harmful changes caused by artefacts resulting
from compression, packet loss, and variations in bandwidth, transmission facilities, and
bit rates. The speech data are sourced from the ASVspoof 2019 LA evaluation database,
which originates from the VCTK database. The spoofing experiments are generated us-
ing 1 of 13 different VC, TTS, or hybrid spoofing attack algorithms.

ASVspoof 2021 DF extends the detection of spoofed speech to non-ASV scenarios. The
DF evaluation data collect genuine and spoofed speech segments generated using different
lossy codecs. The evaluation source data are taken from the ASVspoof 2019 LA evaluation
set and other sources, and the ASVspoof 2021 DF evaluation data are generated using over
100 different spoofing algorithms.

According to the rules of the ASVspoof Challenge, the model in this paper was trained
on the ASVspoof 2019 LA training and development sets and evaluated on the ASVspoof
2021 LA and ASVspoof 2021 DF evaluation subsets. The evaluation criteria used the tools
provided by ASVspoof, including the equal error rate (EER) and the minimum-detection
cost function (min t-DCF).

3.2. Experimental Details

All model implementations in this paper were conducted using the PyTorch frame-
work, explicitly utilizing the wav2vec 2.0 XLS-R (0.3B) model. Raw audio was input into
the wav2vec 2.0 XLS-R model in approximately 4-second segments containing 64,600 sam-
pling points, resulting in a feature representation size of (201, 1024). After embedding, the
resulting feature size was (256, 512) and was input into an audio feature fusion module.

A classification token (CLS) was added to the feature embedding to improve the
classification accuracy. The CLS was then passed through a linear layer to obtain the
necessary classification output.

The model utilized four back-end classification layers, each containing a feature mixing
module and n feature fusion modules. The value of n for each of the four layers was 3, 3, 9,
and 3, respectively.

During training, the model utilized the standard Adam optimizer with a fixed learning
rate of 0.0001. The weighted cross-entropy loss was used to mitigate the impact of data
imbalance between natural and synthetic speech in the training dataset, with a weight ratio
of 9:1. The batch size was set at 16. All models were trained for 50 epochs on a single
GeForce Tesla v100.

3.3. Simple Back-End Classification Model

In our model, some modifications were made to the self-attention mechanism. To verify
that our changes to the self-attention mechanism were effective compared to the original
self-attention mechanism, we chose to replace the modified self-attention mechanism in
the feature fusion blocks (as shown in Equation (8)) with a simple multi-head attention
mechanism, while the remaining components remained unchanged:

attention = Multihead(Q, K, V) (9)

where Q, K, and V are the Qf, Kf, and Vf, corresponding to XF, as mentioned in Section 2.3.

4. Results

This section is divided into five subsections. The first presents the results of our model
on the ASVspoof 2021 LA partition and DF partition using different Rawboost modes.
The second and third subsections compare the results of our model with other models
on the ASVspoof 2021 LA and DF partitions. The model in the second subsection does
not use the wav2vec2 pre-training model, while the model in the third subsection uses
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the wav2vec2 pre-training model. The fourth subsection shows the results for the simple
back-end classification model mentioned in Section 3.3, and the fifth subsection shows the
results obtained with the wav2vec2 pre-training model and Rawboost, but without the
back-end classification model.

4.1. Data Augmentation Results

We report the experimental results of our model on both LA and DF partitions using
two data augmentation techniques of Rawboost (mode 3 and mode 5), which are presented
in Table 1. From the experimental results, it can be seen that on the LA partition, Rawboost
with mode 5 achieved better results, while on the DF partition, Rawboost with mode
3 achieved better results. Therefore, we used the optimal results corresponding to the
respective partitions in the subsequent experimental results.

Table 1. Our model obtained these results using two different Rawboost data augmentation methods,
mode 3 and mode 5, on LA and DF partitions, respectively.

Partition EER (%) Min t-DCF

LA (3) 3.71 0.2880

LA (5) 1.18 0.2171

DF (3) 2.62

DF (5) 4.72

4.2. Comparison with Models That Do Not Use the Pre-Trained Model

As shown in Table 2, in this study, we used the experimental results provided by the
ASVspoof 2021 LA partition to compare our model with the baseline models, including
Rawnet2 [36], LFCC-LCNN, CQCC-GMM, and LFCC-GMM. Among these models, LFCC-
LCNN had the best performance, with an EER of 8.90%, while the worst model, LFCC-
GMM, had an EER of 21.13%. Our proposed model showed significant improvements
compared to LFCC-LCNN and LFCC-GMM, indicating good performance on the ASVspoof
2021 LA partition.

Table 2. The results of our model and other studies on the ASVspoof 2021 LA partition.

Model EER (%) Min t-DCF

SSL_Anti-spoofing [13] 0.82 0.2066

ours 1.18 0.2171

T23 [8] 1.32 0.2177

wav2+FF layer [37] 3.54 0.2780

fusion [38] 4.66 0.2882

wav2+LLGF [12] 7.18 0.3590

LFCC-LCNN 8.90 0.3152

Rawnet2 [36] 9.49 0.4192

AASIST [29] 11.47 0.5081

CQCC-GMM 15.80 0.4948

LFCC-GMM 21.13 0.5836

AASIST [29] is a model that performed well in the ASVspoof 2019 LA partition. It
applies heterogeneous graphs for synthetic speech recognition and has the characteristics
of few parameters and a high recognition accuracy. Due to the excellent performance of
AASIST in the ASVspoof 2019 LA partition, many current studies, including SASV [39],
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use AASIST as the baseline. However, the EER of AASIST on the ASVspoof 2021 LA task
was 11.47%, which is much worse than our model’s performance.

According to the results on the official website of ASVspoof 2021 LA, the best result
was achieved by team T23 [8], with 1.32%, and our model also outperformed this result.

4.3. Comparison with Models Using the Pre-Trained Model

Since our model uses the wav2vec2 pre-training model, we compared it with other
models [12,37] that also use wav2vec2. We used the same wav2vec2 pre-trained model
for feature extraction as these models. We differed in using our respective back-end
classification modules and different data augmentation techniques. As can be seen from
the results in Table 2, the model in [12] had an EER of 7.18% on the ASVspoof 2021 LA
partition, and that in [37] had an EER of 3.54% on the ASVspoof 2021 LA partition, both of
which are higher than our EER of 1.18%. As can be seen in Table 3, the model in [37] had an
EER of 4.98% on the ASVspoof 2021 DF partition, which is also higher than ours of 2.62%.
Therefore, our back-end classification module showed an improvement compared to the
other back-end classification modules.

Table 3. The results of our model and other studies on the ASVspoof 2021 DF partition.

Model EER (%)

ours 2.62

SSL_Anti-spoofing 2.85

wav2+FF layer [37] 4.98

Rawnet2 [36] 6.10

T23 [8] 15.64

SSL_Anti-spoofing [13] is a model proposed in 2022, which is a synthetic speech
recognition model that also uses Rawboost data augmentation techniques and wav2vec2
pre-trained models. Our model differs from it in the back-end used. According to the
latest literature on ASVspoof 2021 [15], it is the best-performing model for both LA and
DF partitions. No model has so far been able to surpass it in effectiveness. Our model also
failed to reach its performance on the ASVspoof 2021 LA partition.

However, the proposed model yielded highly satisfactory results on the ASVspoof
2021 DF partition, exhibiting an EER of merely 2.62%, which was slightly higher, by 0.23%,
than the SSL_Anti-spoofing model and outperformed all the models mentioned in [15], as
displayed in Table 3.

4.4. Results of the Simple Back-End Classification Model

The results in Table 4 are the experimental results of the simple back-end we mentioned
in Section 3.3. The Rawboost mode is optimal for both the LA and DF partitions. As seen
from Table 4, the EER of the model was 1.58% on the LA partition and 3.18% on the DF
partition. Neither performed better than our modified model. However, the results of the
simple back-end model outperformed some of the other back-end models [12,37].

Table 4. Results of the simple back-end classification model on LA and DF partitions.

Partition EER (%) Min t-DCF

LA (5) 1.58 0.2286

DF (3) 3.18

4.5. Results of a Model without Back-End Classification

Table 5 shows the experimental results obtained without using the back-end classifica-
tion of our design. Since no back-end was used, the features extracted by the pre-trained
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model would be directly passed through an averaging pooling layer (AdaptiveAvgPool2d)
to obtain the final output.

Table 5. Results of a model without back-end classification on LA and DF partitions.

Partition EER (%) Min t-DCF

LA (5) 24.84 0.8038

DF (3) 16.91

The results showed that the effect of not using the back-end was much worse than
that using the back-end.

5. Conclusions

In this work, we modified the self-attention mechanism to make it more suitable for
speech tasks by incorporating features from different dimensions. The results showed
that our improvement in the self-attention mechanism was effective. We utilized self-
supervised pre-training and data augmentation to enhance the performance of the proposed
model. Our model achieved promising results on both ASVspoof 2021 LA and DF datasets,
especially in the DF partition, where it outperformed the current state-of-the-art model.
This study fills the gap in the research on the ASVspoof 2021 DF dataset. However, due
to the use of pre-trained models and self-attention mechanisms, our model has a large
number of parameters, which may not be suitable for resource-limited scenarios. Future
work will focus on reducing the model size, retaining its effectiveness, and making it more
widely applicable.
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