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Abstract: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that can
reduce quality of life and burden families. However, there is a lack of objectivity in clinical diagnosis,
so it is very important to develop a method for early and accurate diagnosis. Multi-site data increases
sample size and statistical power, which is convenient for training deep learning models. However,
heterogeneity between sites will affect ASD recognition. To solve this problem, we propose a multi-
site anti-interference neural network for ASD classification. The resting state brain functional image
data provided by the multi-site is used to train the ASD classification model. The model consists of
three modules. First, the site feature extraction module is used to quantify the inter-site heterogeneity,
in which the autoencoder is used to reduce the feature dimension. Secondly, the presentation learning
module is used to extract classification features. Finally, the anti-interference classification module
uses the output of the first two modules as labels and inputs for multi-task adversarial training to
complete the representation learning that is not affected by the confounding of sites, so as to realize the
adaptive anti-interference ASD classification. The results show that the average accuracy of ten-fold
cross validation is 75.56%, which is better than the existing studies. The innovation of our proposed
method lies in the problem that the traditional single-task deep learning ASD classification model will
be affected by the heterogeneity of multi-site data and interfere with the classification. Our method
eliminates the influence of multi-site factors on feature extraction through multi-task adversarial
training, so that the model can better adapt to the heterogeneity of multi-site data. Meanwhile,
large-scale 1DconV is introduced to extract features of brain functional network, which provides
support for the interpretability of the model. This method is expected to take advantage of multiple
sites and provide reference for early diagnosis and treatment of ASD.

Keywords: anti-interference neural networks; multi-site data; autoencoder; large-scale 1DconV; ASD

1. Introduction

Autism spectrum disorder (ASD) is a generalized neurodevelopmental disorder char-
acterized by difficulty in social communication, repetitive patterns of behavior, and narrow
interests [1]. Recent studies show that 23 out of every 1000 eight-year-olds in the United
States have ASD [2]. Early diagnosis and intervention are key to preventing the exacerba-
tion of symptoms in ASD patients, improving the quality of life of patients and easing the
burden on families [3]. At present, the diagnosis of autism is based on symptom-based
clinical criteria, which requires a large number of behavioral assessments and requires
high professional knowledge of doctors. Moreover, the diagnosis results are affected by
doctors’ subjectivity, which may lead to misdiagnosis and delayed diagnosis [4]. Therefore,
it is necessary to develop an objective, accurate and rapid diagnostic method for ASD.
Neuroimaging has been shown to be useful in diagnosing brain diseases and explaining
underlying pathologic mechanisms [5]. Resting-state functional magnetic resonance imag-
ing (rs-fMRI) has become one of the commonly used imaging methods in ASD research
due to its non-invasiveness, easy acquisition, low patient effort and high generalization
ability [6–8].
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The amount of rs-fMRI data at a single site is usually small, leading to the possibility of
disputable reproducibility and universality of studies [9]; using multi-site data to compose
big data integration is an effective method to solve this problem. Autism Brain Imaging
Data Exchange (ABIDE) aggregates functional and structural brain imaging collected
by laboratories around the world, providing a public multi-site dataset for ASD-related
research. In specific ASD classification methods, the high dimension of the original image
may lead to model overfitting, and the derived functional connectivity dimension is low
and can reflect the specific characteristics of ASD [10], so most methods detect autism
spectrum disorders from functional connectivity. For example, Eslami et al. [11] designed a
joint learning program of autoencoder (AE) and single-layer perceptrons, connected these
networks with low-dimension representations in a mixed way with learning functions,
and completed classification on ABIDE multi-site data to reach an accuracy of 70.3%.
Wang et al. [12] first defined the graph structure based on functional connections, and
proposed a graph convolutional network (cGCN) based on functional connections for ASD
classification. This method can extract the spatial features of the neighbor domain of the
target brain region from the functional connections. The neighbors of the target brain area
are calculated by group functional connections, and each convolution result is the feature
of the target brain area. Therefore, the feature finally extracted is the result of all brain areas
after considering the functional neighbor information, which can be consistent with the
functional organization of the brain. The purpose of the design is to make the convolution
operation have brain physiological significance, so as to extract features more efficiently.
Finally, the accuracy rate reaches 71.6%.

However, different sites usually have differences in collection equipment, collection pa-
rameters and collection population, which results in the natural heterogeneity of multi-site
datasets [9,13]. The confounding effect caused by multiple sites will affect the relationship
between input data and output variables, leading to the correlation between site differ-
ences and biological predictions. Such correlations can hamper estimates of true biological
changes, or extrapolate non-biological differences to biological differences, resulting in
false or biased predictions from models [14]. For example, when the collection equipment
is different, the fMRI images obtained by the same subject will be different, which will
affect the analysis of physiological differences such as gender differences [15]. For example,
when the purpose of a neuroimaging study is to distinguish between healthy individuals
and patients with ASD, if the number of patients at one site is significantly higher than
that at another site, the characteristics of the differences in the data at that site may be the
criteria for the model to identify the disease. This heterogeneity has the result that although
many methods can obtain relatively high accuracy at a single site, when applied to datasets
at other sites, the trained models usually fail to achieve an acceptable performance [16,17],
which is not conducive to early intervention and auxiliary diagnosis of ASD. For example,
Nielsen et al. [16] achieve a maximum classification accuracy of 90% in the single-site ASD
classification experiment of ABIDE dataset, but only a maximum classification accuracy of
60% in the multi-site ASD classification experiment of 17 sites.

There are two methods to solve multi-site data heterogeneity: data processing and
model-based. The method based on data processing solves the problem of multiple sites by
eliminating the difference of data domain distribution between sites. For example, Wang
et al. [18] proposed a multi-site adaptive framework based on low-rank representation
decomposition, in which the data of one site are regarded as the target domain and the data
of other sites as the source domain, and the data in these domains are converted into a low-
rank representation public space, so as to reduce the difference in data distribution among
different sites. Model-based studies remove the influence of sites through the model itself.
For example, Dinsdale et al. [19] proposed a training scheme based on deep learning, which
uses iterative updating to remove scanner information and generate unchanged shared
features of sites, so as to realize the prediction of a site-free model. In addition, in the study
on removing the influence of confounding effects, Zhao et al. [20] proposed an end-to-end
method, which quantifies the statistical dependence between the features extracted from
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the model and confounding factors, so as to guide the elimination of confounding effects in
the process of feature extraction. The experimental results show that the model has a high
accuracy in AIDS classification after removing confounding factors.

In the above methods to solve the multi-site problem, the site data domain mapping
and classifier training based on data processing are independent of each other, which
may reduce the learning performance, so it is necessary to design a new framework to
make the two interrelated. The model-based approach may delete information related to
disease classification while removing scanner information, so it is necessary to improve
the architecture balance feature extraction and scanner information removal. To solve
the confounding effect problem, it is necessary to establish the statistical dependence of
confounding factors and other features. However, confounders from multiple sites cannot
be directly correlated with classification features.

In order to solve the confounding effect caused by data heterogeneity of multi-sites,
we propose a multi-site anti-interference neural network (MS-AINN) for multi-site autism
classification. First, MS-AINN extracts site features from functional connections through
AE, site average aging pool and feature selection, and instantiates abstract site confounding
factors into vector form to establish a mapping relationship between feature extraction and
site confounding. Secondly, the representation learning module designed by convolutional
neural network (CNN) uses a large-scale one-dimensional convolutional kernel, which can
directly extract features from functional connections and fully consider the physiological
significance of brain functional networks. The reason is that the receptive field of the
convolution kernel contains a whole row in the functional connection matrix, and each
convolution can extract domain information of all neighboring brain regions of the target
brain region. At the same time, the convolution result can be used as the feature of the
target brain region, which is convenient for visualization analysis of important brain
regions. It not only has advanced performance, but also makes the model physiologically
interpretable. Finally, in the adversarial training, the traditional zero-sum game method is
not used to train the adversarial task separately, but the objective function is used to train
the classification task and the adversarial task simultaneously, and the hyperparameter is
used to control the relative importance of the two tasks, so that the training of the two tasks
can achieve a certain balance. It is important to prevent adversarial task from excessively
restricting ASD classification feature extraction, which degrades classification performance.
This ensures that the performance of classification tasks is improved while the confounding
effect of sites is removed.

2. Materials and Methods
2.1. Dataset

The ABIDE public dataset is adopted in this experiment. ABIDE is a multi-site dataset
that collects the resting state fMRI data and corresponding phenotypic information of
17 international site subjects and contains 1112 datasets, including 539 autistic patients
(ASD) and 573 typical development (TD) controls. The 1112 datasets were composed of
structural and resting state fMRI data and corresponding phenotypic information. Of
these 1112 subjects, 1035 were screened as eligible study candidates because these subjects
had complete phenotypic information. Among the 1035 subjects, there were 505 ASD and
530 TDS, 157 women and 878 men.

Figure 1 shows the data distribution of NYU Langone Medical Center (NYU) and
University of Michigan (UM) sites in ABIDE dataset. Table 1 shows the data distribution
for the remaining 15 sites in the ABIDE dataset. Specifically, the first principal component
of all subjects at two sites was obtained through PCA, and then the frequency distribution
histogram of the first principal component of all subjects at each site was drawn. The PCA
algorithm maps functional connections in a high-dimensional space to a low-dimensional
space, where the first principal component is the direction of the maximum variance in the
data and is the line that best illustrates the shape of the point group. Therefore, the first
principal component can be used to reflect the distribution of functional connection data of
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different sites to the greatest extent. It can be seen that the data distribution of the different
sites is heterogeneous.
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Table 1. Distribution of the first principal component at different sites. The range of the first
principal component of the first behavior in the table. The first column in the table is the site
name. Respectively are University of Pittsburgh School of Medicine (PITT), Olin, Institute of Living at
Hartford Hospital (OLIN), Oregon Health and Science University (OHSU), San Diego State University
(SDSU), Trinity Centre for Health Sciences (TRINITY), University of Utah School of Medicine (USM),
Yale Child Study Center (YALE), Carnegie Mellon University (CMU), University of Leuven (LEUVEN),
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for Neurosciences (SBL). The percentage value in the table is the number of subjects as a percentage
of the total number of subjects at the site.
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OHSU 3.85% 11.54% 34.62% 19.23% 15.38% 11.54% 0.00% 3.85% 0.00%

SDSU 5.56% 2.78% 27.78% 25.00% 13.89% 8.33% 8.33% 5.56% 2.78%

TRINITY 0.00% 6.38% 25.53% 48.94% 8.51% 6.38% 4.26% 0.00% 0.00%

USM 0.00% 2.82% 15.49% 26.76% 33.80% 11.27% 5.63% 4.23% 0.00%

YALE 1.79% 14.29% 33.93% 30.36% 8.93% 10.71% 0.00% 0.00% 0.00%

CMU 3.70% 25.93% 33.33% 14.81% 11.11% 3.70% 3.70% 3.70% 0.00%
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2.2. rs-fMRI Data Preprocessing

The ABIDE dataset is derived from the abide dataset preprocessed by the preprocessed
connectome project (PCP) [21]. A configurable pipeline for analysis of connectomes (CPAC)
was selected for the preprocessing pipeline. The steps include slice timing correction, head
motion correction, intensity normalization, nuisance signal removals, band-pass filtered
(0.01–0.1 Hz), standard spatial registration. A pre-processed fMRI scan data is a 4D time
series, including three-dimensional space dimension and one-dimensional time dimension.
The time series used the mean time series signal or BOLD signal of voxels within the region
of interest (ROI) in the brain map. The brain mapping template we selected was Craddock
200 (CC200), with 200 ROIs defined. Pearson correlation coefficients were used to evaluate
the functional connections between the mean time series of each ROI pair, resulting in a
200 × 200 functional connection for the CC200 brain map.

2.3. Multi-Site Anti-Interference Neural Network

We propose a multi-site autism classification method with anti-interference neural
networks (MS-AINN). MS-AINN is composed of representation learning module, site
feature extraction module and anti-interference classification module, and adopts multi-
task adversarial design. The overall architecture is shown in Figure 2.
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Figure 2. Multi-site anti-interference neural network classification model. The black arrows in the
diagram represent the output of the previous module as the input of the next module. The red arrows
represent the output features of the representation learning module as input vectors for the two
tasks of the anti-interference classification module. The green arrow represents the site feature vector
obtained by the site feature extraction module as the label of the two tasks of the anti-interference
classification module.
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Firstly, multi-site fMRI images are extracted into functional connections after data
preprocessing, and functional connections are used as input data for the model. Then, the
site feature extraction module will extract site features from the functional connections of
the subjects to quantify the heterogeneity between sites, and the site features will be used as
labels in the multi-task. The specific process is to first extract low-dimensional subject level
feature vectors through AE, then use site average pooling to calculate the mean vector of
all subject level feature vectors in the site as site features, and finally select low-redundancy
site features through phenotypic information correlation features.

After the above two parts of the process, we have the input data functional connection
required for MS-AINN multitask design, as well as two kinds of labels, disease type labels
and site characteristics labels that quantify site heterogeneity. MS-AINN can then be used
for ASD classification training. Firstly, ASD classification features are extracted from func-
tional connections through the representation learning module. Specifically, large-scale
one-dimensional volume nuclei are used for feature extraction, because the weight of the
convolutional nuclei corresponds to brain regions, and the importance of each brain region
to ASD classification can be analyzed. The convolution result will be further classified
through the Fully Connected Layer (FC) for further feature extraction. Then, the obtained
classification features will perform two tasks of MS-AINN through the anti-interference
classification module, which are site feature regression task and anti-interference classifi-
cation task. The reason is that the objective function of the anti-interference classification
task is composed of ASD classification loss and site feature regression loss. However,
the direction of regression loss optimization in the anti-interference classification task is
opposite to that in the site feature regression task, that is, the anti-interference classification
task will increase the regression loss but the site feature regression task will reduce the
regression loss. The anti-interference classification module performs two kinds of tasks
with ASD classification features as input through the FC layer. When it comes to site feature
regression, both tasks also use the same FC layer for regression.

MS-AINN adopts the training mode of alternating iteration of two tasks, and the
updated parameters of each task are independent of each other and do not overlap each
other. After the adversarial training of the two tasks, the model can effectively remove
the influence of multi-site confounding effect (multi-site confounding effect refers to the
confounding effect caused by the heterogeneity of multi-site data) on feature extraction of
the representation learning module.

2.4. Site Feature Learning

We use autoencoder (AE) and site average pools to extract site image features from
functional connections. The low-dimensional vectors reflecting the individual character-
istics of the subject are obtained by using the autoencoder, and the average vectors of all
individual feature vectors in the site are calculated by using the site average pool. From
this, we can obtain low-dimensional feature vectors that can reflect site information. Au-
toencoder is a kind of feedforward neural network, which is composed of encoder and
decoder, where the encoder encodes the input data x into a low-dimensional representation,
as shown in Formula (1).

henc = φenc(x) = f (Wencx + benc) (1)

f is the activation function, Wenc and benc are the weight and bias of the encoder,
respectively. The decoder reconstructs the output of the encoder back to the original input
data, as shown in Formula (2), where Wdec and bdec are the weight and bias of the decoder,
respectively.

x′ = φdec(henc) = Wdechenc + bdec (2)

The autoencoder completes the model training by minimizing the reconstruction Error.
The loss function is the Mean Squared Error (MSE) between the input data x and the
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reconstruction result x′. After the encoder completes the training, the output of the encoder
can be regarded as a low-dimensional feature of the input data x.

Using the characteristics of unsupervised training and nonlinear dimensionality re-
duction of the autoencoder, the low-dimensional individual feature vector of the subject is
extracted first. Because the functional connection matrix is symmetric, the upper triangle
part of the matrix is repeated with the lower triangle part. In order to reduce the param-
eter number of the autoencoder and speed up the training efficiency, the lower triangle
part containing the main diagonal is deleted, and the upper triangle part is planar as a
one-dimensional vector as the input of the autoencoder. The autoencoder adopts a single
hidden-layer structure, and the encoder part and the decoder part are a single-layer fully
connected layer. The autoencoder weights are 19,900 × N and N × 19,900, respectively,
where N is the embedded dimension of the hidden layer, which is determined by hyperpa-
rameter optimization. The data of all site subjects are used as input to train the model, and
the optimal model is saved in the position with the least loss value. Then, the output vector
of the encoder is obtained by feeding the one-dimensional function connection vector into
the autoencoder, which is a low-dimensional vector reflecting the individual characteristics
of the subject. In order to further obtain the feature vector that can reflect the difference
information of the sites, the mean vector of the individual feature vector of all subjects
in each site is calculated by site average pooling. The reason is that we use the mean of
individual characteristics of the subjects in the site to reflect the characteristics of a site as a
whole. The process is shown in Figure 3.
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In addition to site heterogeneity in functional connections, site heterogeneity was
also included in subjects’ phenotypic information. However, the amount of phenotypic
information, such as age and gender, is much smaller than the number of site features ex-
tracted from functional connections. The dimension of the vector composed of phenotypic
information may be single digits while the dimension of the feature vector extracted from
functional connections is in the hundreds. Directly connecting the two vectors together may
make it difficult to reflect the site heterogeneity contained in the phenotypic information.
Therefore, we select features based on the cosine similarity between the site feature vector
extracted from the functional connection and the phenotype information, so that the final
site features contain the phenotype information indirectly. The site feature vector needs to
calculate the cosine similarity with the phenotypic information of the site, so we use the
mean and variance of the phenotypic information of all subjects in a site to represent the
phenotypic information of the site. The way to calculate cosine similarity is to first arrange
the mean and variance of phenotypic information of all sites into mean vector and variance
vector, respectively, according to the order of sites, and then some dimensional features
of all site feature vectors are formed into a vector according to the same site order. The
form of the vector is the same as that of the mean vector and variance vector, and the cosine
similarity can be calculated with the mean vector and variance vector, respectively. Finally,
some dimensions with high cosine similarity are selected to form a new site feature vector.
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The specific process Is to first calculate the mean and variance of the phenotypic
information of each site, and then arrange the mean and variance of each site according
to the sequence of a site, form the mean vector and variance vector, and standardize. The
final vector form is N × 1, where N is the number of sites. The feature vectors of all
image sites are arranged in the same order to form a site feature matrix of the form N × F,
where N is the number of sites and F is the feature dimension. A one-dimensional vector
(form N × 1) is selected along the dimensionality of the site in the site feature matrix,
and the cosine similarity is calculated by means of the mean and variance vectors of the
phenotypic information. The cosine similarity is calculated as shown in Equation (3),
where A and B represent two vectors. According to the cosine similarity, the similarity
order of phenotypic information of each site can be obtained. In cases where the mean
and variance vectors of multiple phenotypic information are ordered differently, we use a
voting mechanism to determine the unique ordering. The higher the similarity ranking and
the stronger the phenotypic information correlation, the more likely it is to reflect the site
heterogeneity. Finally, the threshold is defined according to the top percentage of similarity
ranking, and the features within the threshold range are selected to form a new site feature
vector. Phenotypic information we selected included sex, age, full scale IQ, verbal IQ, and
operational IQ. Through experiments, the features with the top 30% cosine similarity are
selected as site features.

similarity = cos(θ) =

n
∑

i=1
Ai × Bi√

n
∑

i=1
(Ai)

2 ×
√

n
∑

i=1
(Bi)

2

(3)

2.5. Representation Learning

The input of the representation learning module is the functional connection ma-
trix, and the physiological meaning is the brain functional network. There are obvious
differences between the data structure and the picture, mainly reflected in the fact that
the functional connection matrix is a non-Euclidean space and the picture is a Euclidean
space. In the Euclidean space of the picture, the neighbors of a pixel are the surrounding
pixels in space, so the convolution nuclear energy in the two-dimensional form gathers the
information in the neighborhood domain. However, in the functional connection matrix,
the neighbor nodes of the target node are not always adjacent in space, so the convolution
kernel in two-dimensional form cannot guarantee that all the gathered information comes
from the neighbor domain of the target node. This can lead to a mixture of features from
different brain regions, which is not conducive to the analysis of important brain regions.
The topology of the functional connection matrix is characterized by the fact that each row
in the matrix represents the correlation between the brain region corresponding to that
row and all the other brain regions. When the functional connection matrix is regarded
as a brain functional network, a row in the matrix can also be used as the correlation
between the target node and its neighbor node. Therefore, we designed the CNN (1D)
representation learning module. The convolution kernel is one-dimensional and contains
the same number of weights as the number of brain regions, so that the receptive field
of the convolution kernel is exactly a row of the functional connection matrix, which can
imitate the interaction between the target brain region and all other brain regions in the row.
In this way, each convolution operation gathers the information of the neighbor domain
of the target brain region, and the convolution results of each brain region are not mixed
with each other, which is conducive to the final analysis of important brain regions. The
CNN (1D) consists of two convolutional layers and one fully connected layer, as shown in
Figure 4.
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The first layer uses the horizontal convolution kernel in the form of 64@1 × 200, where
1 × 200 represents the shape of the convolution kernel, 200 represents the number of
brain regions, and 64 represents the number of channels. Since each row in the matrix
represents the correlation between a certain brain region and all other brain regions, the
convolution kernel in the form of 1× 200 ensures that each operation is carried out between
the target brain region and its adjacent brain regions, and the convolution result can be
regarded as a feature of the target brain region. The feature form obtained after the first
layer of convolution operation is 64 × 200 × 1, meaning 64 feature maps extracted from
200 brain regions. The second layer of convolution uses vertical convolution kernel to
extract whole brain features from brain region features. The convolution kernel in the
form of 128@200 × 1200 × 1 forms the feature convolution operation of 200 brain regions
to form the feature of the whole brain, and the dimension is 128. In this process, the
features of brain regions are mapped to the features of the whole brain, and the weight of
convolutional nuclei corresponds to the weight of brain regions. Therefore, the absolute
values can be used to represent the importance degrees of different brain regions, so as to
analyze the interpretability of the model. Finally, the feature is further extracted through a
full-connection layer to better complete the classification task. Pooling layer is not used in
the model mainly because each convolution is independent of each other based on the unit
of brain region, there is no overlap in the receptive field, and the redundancy of extracted
features is small. On the contrary, some key features may be lost in the downsampling of
the pooling layer. In addition, the purposes of sampling under the pooling layer are to
reduce the amount of computation, to prevent overfitting, and to increase the receptive field
of subsequent convolution CNN (1D). In order to ensure the corresponding relationship
between convolutional kernel weights and brain regions, the range of receptive fields
is always the same as the number of brain regions, and pooling of the previous layer is
not required to increase receptive fields. At the same time, if the calculation amount is
reduced by the pooling layer, the corresponding relationship between convolutional kernel
weights and brain regions will be destroyed, resulting in the mixed features of different
brain regions, and the importance of specific brain regions cannot be studied. Moreover, it
has been proved that downsampling of the pooling layer does not necessarily improve the
performance of the CNN network [22]. The convolution operation is shown in Formula (4),
where xm

j is the output of the current layer, xm−1
j is the output of the previous layer, kl

ij is
the parameter of the current layer, × is the dot product operation of the corresponding
receptive field, and bm

j is the bias of the current layer.
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Considering that the range of the functional connection matrix is −1 to 1, the repre-
sentation learning module selects the activation function tanh with the same range. The
classification layer uses Softmax function to calculate the probability of each category, as
shown in Formula (5). The Dropout layer and L2 regularization are added to prevent
overfitting of the model, while the InstanceNorm layer is used to normalize the features in
each channel.

xm
j = f

 ∑
i∈Mj

xm−1
i × km

ij + bm
j

 (4)

p(y = j) =
exT

Wj
K
∑

k=1
exTWk

(5)

2.6. Objective Function and Model Training

In the existing methods, the model is trained in a zero-sum game way when adopting
adversarial design, that is, the adversarial task that removes confounding effects is trained
separately and its loss value is minimized [19,20]. This method is feasible when there is
only a single task, such as the generation of adversarial network. However, when the target
task and the adversarial task are inconsistent, the lowest loss value of the adversarial task
may not make the target task achieve the optimal result, and may even have the opposite
effect. Dinsdale et al. [19] have found in the experiment that the adversarial task that
removes scanner information can also cause adverse effects on the target task and reduce
the final prediction performance. Therefore, MS-AINN does not train the adversarial task
alone, but combines the adversarial task and the target task into an objective function, and
completes the training of the two tasks simultaneously through the loss optimization of
the objective function, so that the two can reach a balance in the training and ensure the
performance improvement of the target task.

The objective function of anti-interference classification task is composed of loss
functions of ASD classification and site feature regression. The purpose is to make the
loss of ASD classification decrease while the loss of site feature regression increases, so
as to complete the disease classification and site feature regression adversarials at the
same time. Firstly, the symbols used in the function are introduced. X = {X1, . . . , XN}
represents the functional connection of N subjects. Y = {Y1, . . . , YN} represents the labels
of N subjects; C = {C1, . . . , CN} represents the site feature vector of N subjects; θE is
the parameter representing the learning module; θp is the classifier parameter; θR is the
regression component parameter. The loss function of site feature regression task is the
mean square error, as shown in Formula (6). The classification task loss function is cross
entropy loss, as shown in Formula (7).

LR(Xi, Ci; θR) =
N

∑
i=1

1
m

m

∑
j=1

(
Cj,i −

_
C j,i

)2
(6)

Lp(Xi, Yi; θE, θP) = −
N

∑
i=1

[Yi ln(Pi) + (1−Yi) ln(1− Pi)] (7)

The model adopts the training mode of alternating iteration. In each epoch, the regres-
sion task loss LR is optimized first, and the regression component parameter θR is trained.
After optimization, the objective function loses Lt, and the representation learning module
parameter θE and classifier parameter θp are trained. In order to realize the confrontation
between two trainings, the objective function should minimize the classification loss Lp and
also maximize the regression task loss LR. Therefore, the regression task loss function is
selected as the denominator of a fraction and the whole fraction is added to the classification
task loss function. In this way, when the optimizer reduces the objective function Lt, the
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classification task loss Lp will also decrease and the regression task loss LR will increase, as
shown in Formula (8). α is a hyperparameter, which is used to balance the loss optimization
of the two tasks, so as to prevent the excessive increase of LR in the training of the objective
function from resulting in too-strong restriction on the representation learning module and
the degradation of the classification performance of ASD.

Lt(Xi, Yi, Ci; θE, θP) = Lp(Xi, Yi) +
α

LR(Xi, Ci)
(8)

In the two trainings of the model, the first regression task trained a regression compo-
nent to identify the site difference information contained in the features extracted by the
representation learning module. The second anti-interference classification task training
optimizes in the opposite direction through two kinds of losses, namely, classification and
regression, so that the representation learning module can extract classification features
while containing fewer features that can reflect the difference information of the sites.
In this way, after two training and alternating iteration optimizations, the ability of the
regression component to identify the site difference information is gradually enhanced,
and the site difference information contained in the classification features extracted by the
representation learning module is gradually reduced. In this way, the confounding effect
brought by site heterogeneity will be weakened in ASD classification, and anti-interference
classification will finally be realized.

3. Results
3.1. Anti-Interference Classification Results of Multi-Site Data

CNN (1D) was used as the representation learning module under the ten-fold cross-
verification of the whole site to compare the classification performance of norm neural
networks and MS-AINN. Evaluation indicators include classification accuracy, AUC, pre-
cision, recall, f1 and site classification accuracy, and the results are shown in Table 2. The
first five indexes in the table evaluated the classification performance of ASD diseases of
the model. In addition, the classification accuracy of sites was obtained by training the
features learned from representations separately, which was used to evaluate the degree of
confounding of features by sites. CNN (1D) in the table refers to the classification training
conducted by the representation learning module directly after extracting features.

Table 2. CNN (1D) anti-interference classification results.

Method ACC% AUC% Precision % Recall % f1% Site Classification ACC %

CNN (1D) 72.77 77.85 73.59 72.49 72.32 21.39
MS-AINN-CNN (1D) 75.56 78.99 76.60 75.36 75.20 15.76

It can be seen from the table that the classification performance of MS-AINN-CNN
(1D) is significantly improved compared with CNN (1D). Accuracy increased by 2.79%,
AUC increased by 1.14%, precision increased by 3.01%, recall increased by 2.87% and f1
increased by 2.88%. Meanwhile, the accuracy of site classification decreased by 5.63%.

In order to prove that the classification performance improvement of MS-AINN is due
to the neural network structure rather than the representation learning part, this experiment
also replaced the representation learning module with Multilayer perceptron (MLP) and
CNN (2D) for testing, and the results are shown in Tables 3 and 4. The input of MLP is the
same as that of AE, which is a flat one-dimensional feature vector of functional connection.
Specifically, a double hidden layer design is adopted. The weight form of the first layer is
19,900 × 512, and the weight form of the second layer is 512 × 256. CNN (2D) replaces the
convolution kernel of CNN (1D) with the traditional two-dimensional convolution, with
the specific forms of 32@5 × 5 and 64@2 × 2, and the input is the same as CNN (1D).
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Table 3. MLP anti-interference classification results.

Method ACC% AUC% Precision % Recall % f1% Site Classification ACC %

MLP 72.23 75.70 73.90 71.88 71.37 37.04
MS-AINN-MLP 74.20 76.51 75.55 73.79 73.52 18.73

Table 4. CNN (2D) anti-interference classification results.

Method ACC% AUC% Precision % Recall % f1% Site Classification ACC %

CNN (1D) 71.37 76.17 73.47 71.01 70.41 37.54
MS-AINN-CNN (2D) 74.12 77.10 74.79 73.97 73.78 18.58

Compared with MLP, the accuracy of MS-AINN-MLP increased by 1.97%, AUC
increased by 0.81%, precision increased by 1.65%, recall increased by 1.91% and f1 increased
by 2.15%. Meanwhile, the accuracy of site classification decreased by 18.31%. Compared
with CNN (2D), the accuracy of MS-AINN-CNN (2D) increased by 2.75%, AUC increased
by 0.93%, precision increased by 1.32%, recall increased by 2.96% and f1 increased by 3.37%.
Meanwhile, the accuracy of site classification decreased by 18.96%.

We also made comparisons with previous ASD classification methods that used data
from the same 17 sites as ours for ASD classification in the ABIDE multi-site dataset. The
results are shown in Table 5, and it can be seen that the proposed method achieves the
optimal classification accuracy.

Table 5. Comparison of ASD classification methods in multi-sites.

Method Year of Publication ACC%

GCN [23] 2018 70.40
ASD-DiagNet [11] 2019 70.30

Attention selection based on Extra-Trees [24] 2020 72.20
Self-attention deep learning framework [25] 2021 72.48

cGCN [12] 2021 71.60
AE combined with feature selection [26] 2022 70.90

MS-AINN-CNN (1D) - 75.56

3.2. Hyperparameter Optimization Results

We use an Adam optimizer to optimize the model and search parameters using grid
search. The final learning rate is 1 × 10−4, dropout rate is 0.5, L2 penalty factor is 1× 10−4,
epoch is set to 100, batch size is 10, and the balance parameter in the objective function is 0.006.

Site features, as vectors quantifying site differences, are the basis for constructing
the mapping relationship between representation learning features and site confound-
ing factors. Only on this basis can MS-AINN be used to anti-interference classify the
ASD. Therefore, in order to explore the impact of site feature dimensions on classification
performance, this experiment tested the classification accuracy of site features extracted
by MS-AINN with no AE and AE with different hidden dimensions under the ten-fold
cross-verification of the whole site. Meanwhile, the results were compared with the results
of the training model of norm neural networks, as shown in Figure 5. No AE means no
dimensionality reduction with AE, and the mean vector of the one-dimensional functional
connection feature vector of all the subjects in each site after flattening is calculated directly
through site average pooling, which is taken as the site feature. The dimension is 19,900.
AE Dimension represents the dimension of hidden layer when AE extracts site features,
that is, the dimension of site features. It can be seen from Figure 5 that MLP, CNN (2D) and
CNN (1D) have improved the accuracy of MS-AINN from 0.5% to 2.75% compared with
norm neural networks under different site feature vector dimensions. When AE dimension
512 is used, the MLP accuracy rate increases by 1.97%, CNN (1D) by 2.34%, and CNN (2D)
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by 2.75% to achieve the optimal performance of the corresponding model. The overall
accuracy rate increases first and then decreases with the decrease of site feature dimension.
The reason is that different parameters can obtain site features of different dimensions.
When the dimension is large, there are more redundant features, and when the dimension
is small, site differences cannot be fully expressed.
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In addition, the phenotypic information correlation features were selected for the site
features extracted at AE dimension 512, and the top percentage features with the highest
correlation ranking were selected to perform the site feature regression task. A threshold
is defined based on the percentage that ranks high in correlation, and the threshold is
used as a hyperparameter for optimization. The classification accuracy of MS-AINN-CNN
(1D) under different thresholds is shown in Figure 6. The results show that as the feature
selection threshold changes from low to high, the accuracy increases first, then decreases
and then increases, and reaches the highest accuracy of 75.56% when the threshold is 0.3.
With the change of feature selection threshold from low to high, AUC first increased, then
decreased and then increased. When the threshold was 0.3, AUC reached the highest value
of 78.99%.
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Figure 6. Site feature selection results.

3.3. Visual Analysis

Since CNN (1D) adopts a large-scale convolution kernel considering the topology of
brain functional network, and there is a one-to-one correspondence between the weight
of the convolution kernel and brain region, we use the results of the normalization of the
absolute value of the model weight to represent the classification contribution of brain
region, and visualized the CNN (1D) and MS-AINN-CNN (1D), respectively; the results are
shown in Figure 7, where A is the result of CNN (1D), and B is the result of MS-AINN-CNN
(1D). The redder the color, the higher the relative importance of the brain regions, and the
bluer the lower. Brain regions of great relative importance in the two structures include
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vermis, frontal lobe, posterior cingulate gyrus, orbital part, fusiform gyrus, thalamus,
temporal transverse gyrus, precuneus, horny gyrus, caudate nucleus, and hippocampus.
These brain regions are the same as those reported in the literature for differences between
ASD and TD [7,27–32]. This indicates that the representation learning module can actively
identify the brain regions that change due to disease, and extract the difference features
for classification. Moreover, the high-contribution brain areas in the MS-AINN-CNN (1D)
were the same as CNN (1D), indicating that although the MS-AINN-CNN (1D) limited the
feature extraction of the representation learning module to remove the confusion of sites, it
did not affect the recognition of important brain areas by the model. At the same time, parts
of the brain that were bluer became bluer and less important. It shows that the MS-AINN
also makes the representation learning module pay more attention to the important brain
regions that may have physiological differences and ignore the non-important brain regions.
After reducing the weight value of non-critical brain areas, the features extracted contain
the difference information of normal patients with important brain areas, and reduce the
interference of confounding factors of non-important brain areas, and finally improve the
classification performance.
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In order to more intuitively reflect the impact of multi-site data heterogeneity on
feature extraction, t-SNE [29] is used to visualize the spatial distribution of feature vectors
extracted by CNN (1D) representation learning module, as shown in Figure 8A,B. Each
color in the figure represents data for one site. In order to display results more clearly, we
choose four sites with the largest number of subjects in the ABIDE dataset for visualization,
namely, UM, USM, NYU and UCLA.

Figure 8A shows that the feature vectors extracted by CNN (1D) are relatively dis-
persed in spatial distribution, and the feature vectors between different stations have a
certain degree of domain separation. From Figure 8B, It can be seen that the feature vectors
extracted by MS-AINN-CNN (1D) are relatively dense in spatial distribution, and the
domains of feature vectors at different sites overlap each other. The reason for the two
different spatial distributions lies in the heterogeneity of the multi-site data. The feature
extraction directly through the representation learning module will be affected by this
and result in the separation of the feature vector domain between the sites. However, in
order to extract the feature vectors affected by the hybridization to the sites, the MS-AINN
restricts the feature extraction process of the representation learning module by means of
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adversarial training, so that the solution space of the model is concentrated in the area that
does not reflect the differences between the sites, and finally the feature vector of intersite
aggregation is obtained.
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4. Discussion

In this study, we propose an MS-AINN-CNN (1D) deep learning model, to classify
ASD and TDS on large multi-site rs-fMRI data based on whole-brain functional connections.
MS-AINN is composed of two key parts: (1) Site feature learning, which extracts site
features from the functional connections of subjects by using AE, site average pooling and
phenotypic information feature selection, so as to reflect the heterogeneity information
among sites, and then uses it to build a mapping relationship with the representation learn-
ing features to provide necessary conditions for adversarial training against the impact
of site confounding. (2) Anti-interference model training, using two tasks of site feature
regression and anti-interference classification to reduce the site heterogeneity information
contained in the representation learning features, so that the model classification is less
affected by the multi-site confounding effect. The results show that when the representation
learning module is CNN (1D), MS-AINN can reduce the accuracy of site classification of
representation learning features, indicating that the impact of the representation learning
module on the site confounders is weakened, which proves that MS-AINN can realize
the representation learning to the site confounders. Moreover, all classification indexes of
MS-AINN-CNN (1D) were improved, which proved that MS-AINN’s confounder remove
representation learning successfully improved the model classification performance. In
addition, the results of the representation learning module replacement experiment show
that MS-AINN can also bring about the same disaggregation effect and obvious classifica-
tion performance improvement when using MLP and CNN (2D) representation learning
modules, indicating that anti-interference ideas play a key role in the entire, while the
representation learning module provides a baseline performance for classification. Among
them, MLP and CNN (2D) have lower classification effect than CNN (1D), which proves
that large-scale convolutional kernel design considering physiological significance has
superior performance in ASD classification research.

In the optimization results of AE hidden layer, the overall accuracy rate increases
first and then decreases with the decrease in site feature dimension, because different
parameters will obtain site features of different dimensions. When the dimension is large,
there are more redundant features, and when the dimension is small, site differences cannot
be fully expressed, and the optimal results cannot be achieved in both cases. In the site
feature selection threshold experiment, the results show that with the change of feature
selection threshold from low to high, the accuracy and auc increase first, then decrease and
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then increase, and the highest accuracy is 75.56%, auc is 78.99% when the threshold is 0.3.
The reason is that when the threshold is low, the features selected are high-scale related
features, which are composed of site image features and potentially contain phenotypic
information, and have a strong ability to reflect the difference between sites. Therefore, the
increase in such features can enable MS-AINN to more accurately realize the impact of site
confounding, and the classification accuracy will therefore increase. The threshold value of
0.3 to 0.7 is the decline range of accuracy. At this time, there are fewer features related to
the high scale in the site features. With the increase in the threshold value, the redundant
features begin to increase, and the effect of the confounding remove begins to decline, and
the accuracy also declines. The threshold value of 0.7 to 1.0 is the interval where the accuracy
rate rises again. The reason is that among the site image features extracted from AE and site
average pooling, there are still features that can highly reflect the difference between sites
except the features with high phenotypic information correlation. The distribution of these
features has nothing to do with phenotypic information correlation, but only increases
with the increase of the total number of features. When a certain threshold is exceeded, the
number of features in this part is enough to enhance the ability of site features to reflect site
differences again, and ultimately improve the accuracy.

The experimental results of hyperparameter optimization show that different parame-
ters will affect the classification accuracy, and there is an optimal parameter to make the
accuracy highest. However, it can be seen from the experimental results that the accuracy
difference between different parameters is small, and the accuracy difference between
whether MS-AINN is used or not is large. Even when AE reduction and feature selection
are not used, MS-AINN still has performance improvement. Therefore, it can be concluded
that the reason for the effectiveness of the proposed method lies in the use of MS-AINN,
and the purpose of the method is not to find the optimal parameter set, but to achieve
anti-interference classification by means of the method of multi-site confounding removal.

In the interpretability analysis of the model visualization, the results of the visualiza-
tion of important brain regions show that the representation learning module can actively
identify the brain regions that have changes due to disease, and extract the difference
features for classification. Moreover, the high-contribution brain areas after using MS-
AINN were the same as before, indicating that although MS-AINN limited the feature
extraction of the representation learning module to remove site confusions, it did not affect
the model’s recognition of important brain areas. At the same time, parts of the brain that
were bluer became bluer and less important. MS-AINN also makes the representational
learning module focus more on important brain regions that may have physiological dif-
ferences, while ignoring non-important brain regions. After reducing the weight value
of non-critical brain regions, the features extracted contain the difference information of
normal patients in important brain regions, and reduce the interference of confounding
factors in non-important brain regions, and finally improve the classification performance.
The T-SNE visualization of the representation learning features shows that MS-AINN can
make the features separated from each other gather together. The reason for the change in
spatial distribution is the heterogeneity of the data of multiple sites. The feature extraction
directly through the representation learning module will be affected by this, resulting in
the separation of the feature vector domain between sites. In order to extract the feature
vectors of the mixed influence of the sites, MS-AINN limited the feature extraction process
of the representation learning module by means of adversarial training, so that the solution
space of the model was concentrated in the region that did not reflect the differences of the
sites, and finally obtained the feature vectors of the inter-site domain aggregation.

5. Conclusions

We proposed a multi-site anti-interference neural network ASD classification method
that aims to make the representation learning results reflect the disease differences while
being less affected by site confounding factors, and finally realize anti-interference clas-
sification. The experimental results show that the MS-AINN achieves the purpose of
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confounding the site. At the same time, the improvement of various classification indexes
shows that reducing the impact of site confounders on representation learning can effec-
tively improve the classification performance of models. Moreover, the MS-AINN can
still improve the classification performance after replacing the representation learning
module, which proves the universality of the architecture. Therefore, the MS-AINN that
takes site confounders into account is of great significance for the design and research of
deep learning ASD classification model under multi-site datasets.

The purpose of our method is to remove the multi-site confounding effect on ASD
classification, which is realized by alternating iterative training of site feature regression
task and anti-interference classification task under MS-AINN. This training method can
limit the feature extraction of the representation learning module, so that the extracted
features are less confounded by the site. However, it is found in the experiment that the
restriction representation learning module will not only weaken the confounding effect
of the sites, but also affect the classification. Neither too large nor too small restriction
can achieve the optimal performance. Therefore, hyperparameters are required in the
objective function to balance the losses of the two tasks, which also increases the difficulty
of parameter adjustment. In addition, we only test classification tasks on ASD datasets,
and the next step will be to test other tasks on different multi-site datasets.
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