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Abstract: Practical entanglement distillation is a critical component in quantum information theory.
Entanglement distillation is often utilized for designing quantum computer networks and quantum
repeaters. The practical entanglement distillation problem is formulated as a bilevel optimization
problem. A fuzzy formulation is introduced to estimate the quantum state (density matrix) from
pseudo-likelihood functions (i.e., quantum state tomography). A scale-independent relationship
between fuzzy relations in terms of the pseudo-likelihood functions is obtained. The entanglement
distillation optimization problem is solved using the combined coupled map lattice and dual an-
nealing approach. Comparative analysis of the results is then conducted against a standard dual
annealing algorithmic implementation.

Keywords: practical entanglement distillation; bilevel optimization; fuzzy formulation; quantum
state tomography; coupled map lattices; dual annealing

1. Introduction

Entanglement distillation is a critical aspect of quantum information systems. The
key idea of entanglement distillation is to preserve or restore the quality of diluted en-
tanglement states of quantum information transmitted over large distances. Decoherence
effects during transmission cause the dilution of entanglement states. Past theoretical and
experimental research works have focused on the study of quantum distillation frame-
works [1–3]. Recently, pairs of single photons (entangled in multiple degrees of freedom)
were used to experimentally determine the domain of distillable states and their relative
fidelity [4]. In Ecker et al., 2021 [4], comparative studies were also carried out on various
distillation schemes to gain a deeper understanding in terms of resilient quantum network
design. A proof-of-concept experiment was recently conducted to study the application
of filtering protocols (in atomic ensembles) for constructing quantum repeater nodes [5].
The experiment was conducted in a crystal (rare-earth-ion-doped). In that setting, the
entanglement states were prepared. The relationship between bit thread, entanglement
distillation, and entanglement purification (in the holographic framework) was recently
studied [6]. In Lin et al., 2021 [6], a bit thread interpretation of the one-shot entanglement
distillation tensor network was provided. It was shown that the holographic entanglement
purification process could be viewed as a special case of a type of surface growth scheme.
The objective of the study in Lin et al., 2021 [6] was to develop an accurate framework
for describing physical entanglement structures. Another interesting work is seen in the
theoretical investigation of entanglement distillability presented in [7]. In that work, the
authors studied the mentioned subject with regards to the undistillability conjecture of
specific Werner states and gained deeper understanding of the distillability problem. Re-
cent developments of entanglement distillation are seen in [8], He et al., 2021 [9], Gour
and Scandolo, 2021 [10], Yan et al., 2022 [11], Shchukin and van Loock, 2022 [12], and
Riera-Sàbat et al., 2021 [13].
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In the past few years, much research in quantum information systems has been
directed towards optimization. This can be seen in the work of Gyongyosi and Imre [14].
In that work, the optimization of the read-out procedure of local unitaries of a high-
retrieval efficiency quantum memory was performed. The authors also studied the retrieval
efficiency of quantum memory and the signal-to-noise ratio. A similar work is seen in
Gyongyosi et al., 2020 [15], where an approach for obtaining the optimal quantum state and
computational path evaluation for gate-model quantum computing devices was proposed.
Efficient algorithms for attaining generation time and transmission fidelity of entangled
pairs between the end nodes of quantum chains is seen in Brand et al., [16].

Quantum state tomography (QST) is an effective method to reconstruct or estimate
quantum states from measurements of identical quantum states. This directly impacts
the development of reliable quantum resources, as well as quantum devices for quantum
information processing. A recent interesting study on information gain in QST is seen
in the work of Sahu et al., [17]. In that work, the authors discuss the effects of chaotic
dynamics on the information transfer during QST. Their investigations also uncovered
operational insights into the mechanisms of fidelity gain during actual quantum informa-
tion tomography protocols. In Schmale et al., [18], the authors improve the accuracy of
observable measurements from tomographic data. This was done by using a QST scheme
that approximates a probability distribution over a measurement (informationally com-
plete) within a variational manifold characterized by a convolutional neural network. In
that work, the authors regenerated high classical-fidelity states, which performed more
efficiently as compared to standard techniques (e.g., maximum likelihood estimation).
Another recent approach in QST is observed in the work of Farooq et al., [19]. In that work,
the authors developed a formulation for pure quantum state reconstruction via eigenvalue
decomposition. In Farooq et al., [19], the authors demonstrated that the proposed approach
is robust against depolarizing noise (high-strength white noise) where the quantum states
were reconstructed accurately similar to the noiseless case. A computational-focused strat-
egy for QST is seen in the work of Ahmad et al., 2022 [20]. In that research, the authors
proposed a simultaneous perturbation stochastic approximation algorithm with high-speed
convergence. The central idea in that work was to develop a computational technique
for estimating quantum states under limited computational conditions using a Barzilai–
Borwein two-point step size gradient method. In Choi, 2022 [21], a low-complexity effective
QST scheme was proposed. The proposed scheme requires the measurement of only three
observables for systems of any scale. The key concept was the coupling of the system and
the ‘pointer’ of a single qubit.

Complex nonlinear dynamical systems have been successfully modeled using chaotic
maps such as coupled map lattices (CML). For instance, in Lu et al., [22] an urban rail
transit system under cascading failure was modeled with respect to network vulnerability
using CMLs. In that work, the authors quantified the relationship between passenger
flow and the perturbation index. In addition to investigations of the anti-risk resistance
capability of stations, the dependency of cascading failures on location and type of stations
were identified. In Stenzinger and Tragtenberg, 2022 [23], CMLs were for a biomedical-
focused application. In that work, the authors utilized spatiotemporal chaos in the CML to
simulate cardiac reentry. Among their key research findings were clinical manifestations of
certain types of tachycardia in the electrocardiogram, as well as a novel type of dynamical
pattern (with wavefronts comprised of harmonized bursts and cardiac plateaus). In Wang
and Liu, 2021 [24], a one-dimensional, two-parameter with a wide-range system mixed
coupled map lattice model was proposed for image encryption. The authors of that work
performed simulations to establish the effectiveness of the proposed encryption algorithm
for grayscale and color images. In addition, they also carried out security tests to ensure
that the proposed method could hold against conventional security attacks. CMLs have
also been recently employed in the field of wireless communication. For instance, in
Xie et al., [25], a CML model was developed to assess the vulnerability of an unmanned
aerial vehicle (UAV) network. The authors in that work showed that precision interference



Algorithms 2023, 16, 313 3 of 12

on critical UAV nodes could inflict significant damage to the entire UAV network. In
addition, the authors of Xie et al., 2022 [25] also discovered that network vulnerability
increases with the intensity of external interference.

This work reformulates the practical entanglement distillation problem as a bilevel
optimization model. This work extends the practical entanglement distillation problem to
account for approximating the quantum state (density matrix) using QST using fuzzy rela-
tions. The bilevel practical entanglement distillation optimization problem is then solved
using the combined CML and the dual annealing approach. The central idea is to leverage
on the complex behavior of the CML to enhance the optimization capabilities of the dual
annealing algorithm. This paper is organized as follows: the Section 2 describes the model
formulation for the bilevel practical entanglement distillation problem. In this section, the
novel QST formulation using fuzzy relations is presented. The Section 3 discusses the CML
and its hybridization with the dual annealing algorithm. The Section 4 presents analysis on
the results generated by the numerical experiments. The paper concludes with some final
remarks and recommendations for future research works.

2. Entanglement Distillation with Fuzzy Relations for QST

In this work, a bipartite practical entanglement distillation model is considered, where
the central idea is to convert a state, ρAB (density matrix form), into a state which is close to
a maximally entangled state, utilizing only local operations and classical communication.
In contrast to theoretical entanglement distillation, practical entanglement distillation
frameworks allow for the possibility of failure [26]. The mentioned communication takes
place between two nodes of a communication network A and B. This can be represented
mathematically as follows:

F = 〈Φd|ηÂB̂ |Φ d〉 such that |Φd〉 =
1√
d

∑d−1
i=0 |i〉Â|i〉B̂ (1)

where F ∈ (0, 1) is the fidelity—i.e., closeness of the converted state to the maximally
entangled state. A and B are the input registers while Â and B̂ are the output registers.
d is the dimension of the quantum state and ηÂB̂ is the converted state ( ρAB → ηÂB̂ ).
|Φd〉 is the maximally entangled state across output registers Â and B̂. If the dimension,
d = |A| = |B| = 2, then one possible example of ρAB would be as follows:

ρAB = (1− p)|01〉〈01|+p|Φ2〉〈Φ2| (2)

In this view, a technically simplified subcategory of local operations and classical com-
munication (between network nodes, A and B) called measure and exchange operations
scheme is employed as presented in Rozpędek et al., [27]. In this scheme, the positive
operator-valued measurement performed on the input register, A is defined as {M0

A, M1
A}

with M1
A =

(
A1

A
)† A1

A and M0
A =

(
A0

A
)† A0

A = I−M1
A where A1

A =
√

ω|0〉〈0|+|1〉〈1
∣∣. The

parameter, ω defines the trade-off between fidelity and the probability of success. This mea-

surement follows the map: ΛA→Â, FA
(ρ) = ∑ fA∈{0,1} A fA

A ρ
(

A fA
A

)†
⊗ | fA〉〈 fA|FA , where the

symbol, ⊗ represents the Kronecker product. A similar formulation would apply for a pos-
itive operator-valued measurement performed on the input register, B. Both measurements
are declared a success if fA = fB = 1 for option P = |11〉〈11|FA FB . Since practical entangle-
ment distillation frameworks allow for the possibility of failure, the fidelity parameter
would only be relevant to the analysis if the entanglement distillation is a success [26]. This
then creates a multilevel scenario with the probability of distillation success, P(δ) ∈ (0, 1)
cascaded by the fidelity parameter, F. Since the local quantum memory utilized to store
the quantum entanglement is imperfect/non-ideal, this entanglement cannot be preserved
for an arbitrary amount of time. Hence, the probability of distillation success, P(δ) would
control the rate at which high-fidelity entanglement between the different nodes in the
network is aimed.
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Practical entanglement distillation uses schemes involving the application of local
operation and measurement on A and B registers. This is then followed by a measure-
ment outcome (single exchange) using classical communication to determine distillation
success/failure. In this work, the practical quantum distillation scheme presented in
Rozpędek et al., [27] is considered. The central idea is to search for the following opti-
mal parameters: (i) output dimension, d; (ii) input state, ρAB; and (iii) quantum channels
(i.e., quantum operations). To optimize quantum operations, Choi isomorphism can be
utilized, where a one-to-one correspondence between quantum channels and quantum
states is established (with certain properties) (Jiang et al., 2013). A unique Choi state,
CRT′ = ΓT→R ⊗ 1T′(ΦTT′), exists for any quantum channel, ΓT→R from a system, T to a
system, R with ΦTT′ as the density matrix of the normalized maximally entangled state,
as presented in Equation (1) with dimensions, D = |T|. This unique Choi state satisfies
CRT′ ≥ 0 and CT′ = IT′/|T′|. In the measurement and exchange operations, the Choi
states take a product representation achieved using the Kronecker product operations.
After a series of simplifications presented in Rozpędek et al., the Choi states for the case of

register, A are obtained:
∼
CÂFA A′ = ∑ fA∈{0,1} Ĉ fA ÂA′ ⊗ | fA〉〈 fA|FA . A similar formulation

could be achieved for register, B. This way, the isomorphism carries over all the infor-
mation from the original channel to the Choi state. Following the problem formulation
in Rozpędek et al., [27], the bilevel optimization formulation of entangle distillation is
as follows:

Maximize→ F =
|A||B|
P(δ)

Tr [|Φd〉〈Φd|ÂB̂ ⊗ ρT
A′B′(Ĉ1,ÂA′ ⊗ Ĉ1,B̂B′)]

subject to,

Maximize → P(δ) = |A||B| Tr [ρT
A′B′(Ĉ1,A′ ⊗ Ĉ1,B′)] such that,

ρT
A′B′ ≥ 0

Ĉ1,ÂA′ ≥ 0 , Ĉ1,b̂B′ ≥ 0

Ĉ1,A′ ≤
IA′
|A| , Ĉ1,B′ ≤

IB′
|B| , |A| = |B| = d ≥ 0 : d ∈ N

(3)

where A′ and B′ are Choi state equivalent for output registers A and B. Similarly, Ĉ1,ÂA′ ,
Ĉ1,B̂B′ , Ĉ1,A′ and Ĉ1,B′ are matrices depicting Choi states which correspond to quantum
channels. The symbol ⊗ represents the Kronecker product and the dimensions of the
identity matrices, IA′ and IB′ depend on the dimensions of the registers A′ and B′.

In designing practical quantum information processing systems, quantum state tomog-
raphy (QST) is employed to approximate a certain state of the density matrix. This is done
by using measurement results of repeated state preparations. Unfortunately, QST becomes
very challenging as the system scales up in terms of size—i.e., dimensions, d. Current
methods for QST formulation include linear inversion, maximum likelihood, Bayesian,
hybrid Bayesian-Monte Carlo, and neural network approaches [28,29]. In this work, a
fuzzy approach is developed and employed for QST. In Recasens, [30], it was demonstrated
that symmetric positive semi-definite matrices could be constructed from the application
of fuzzy relations on certain sets (fuzzy subsets). For example, if sets X and Y, with both
having cardinality of n and µ, are fuzzy subsets of X and Y with the additive generator of
the t-norm being: tN(x) = (1− x)N , then the following matrix is constructed:

ρ(x, y) = 1− |(1− µ(x))N − (1− µ(y))N |1/N where N =
n + 1
log2e

(4)

In the case of estimating the density matrix, ρA′B′ in Equations (2) and (3), ρA′B′ ∼ ρ
is considered as symmetric and positive semi-definite with the additional normalization
condition: Tr (ρA′B′) = 1. In this view, the µ(x) and µ(y) are fuzzy sets that act as pseudo-
likelihood functions obtained from measurement data (empirical). Since x and y are
quantum states |Φd〉〈Φd| for d ≥ 0, it can be stated that x = y. The measurements of these
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quantum states in the form of fuzzy memberships may not be equal: µ1(x = y) 6= µ2(x = y)
and the normalization condition: ∑

A′B′
ρA′B′ = 1 holds. Using the simplified notations for

the pseudolikelihood measurements µ1(x) ∼ µ1 and µ2(x) ∼ µ2, Equation (4) then
becomes: ρ(x, y) = 1− |(1− µ1)

N − (1− µ2)
N |1/N . An interesting result is obtained from

the symmetric semi-definite density matrix construction when the differential form of
Equation (4) is obtained:

∂ρ

∂µ2
= − (1− µ2)

N−1

(1− µ1)
N−1

∂ρ

∂µ1
where N =

n + 1
log2e

(5)

Equation (5) is then obtained by taking the partial differential for the density matrix in
Equation (4) and assuming µ and ρ to be continuous parameters. Similarly, the analysis
is extended to seek for an analogue to approximate the factor in Equation (5) using the
binomial formula and Maclaurin series:

− (1−µ2)
N−1

(1−µ1)
N−1 = −

∑k≥0

(
N − 1

k

)
(−µ2)

k

∑k≥0

(
N − 1

k

)
(−µ1)

k
= −∑k≥0(−µ2)

k/k!

∑k≥0(−µ1)
k/k!

≈ − e−µ2

e−µ1

= −e (µ1−µ2)

(6)

Therefore, a generalized partial differential equation (PDE) independent of scale (i.e.,
cardinality or dimension) is obtained:

∂ρ

∂µ2
+ e (µ1−µ2)

∂ρ

∂µ1
= 0 (7)

The measurements µ1 and µ2 are treated as continuous parameters and the solution to
the scale-free exact solution to the PDE in Equation (7) is obtained:

ρ(µ1, µ2) = c0e−µ1 − c0e−µ2 (8)

where c0 is a constant. Considering µ1 and µ2 to be subsequent measurements, pseudo-
likelihood measurements are conjectured to have the Markov property such that:

µ2 = Pµ1 (9)

where P is an n× n transition or stochastic matrix. With this conjecture, the density matrix,
ρ(x) is approximated using data from the current pseudo-likelihood measurement, µ2 and
the previous pseudo-likelihood function, µ1. The current pseudo-likelihood measurement,
µ2 could be generated using the stochastic matrix, P as in Equation (9). QST is highly effi-
cient when estimating density matrices, ρ for small quantum systems. However, as the sys-
tem scales-up and ρ increases in dimensions, effective QST becomes a challenging feat [28].
The fuzzy formulation for pseudo-likelihood relations presented in Equations (4)–(9) aim to
enable effective estimation of density matrices, ρ at larger scales. Treating density matrices,
ρ as symmetric and positive semi-definite are critical requirements for this analysis.

3. Chaotic Dual Annealing Optimization
In recent times, optimization problems have grown in terms of complexity—i.e.,

nonlinearity, nonconvexity, multilevel, and uncertainty in parameters. This directly results
in stagnation in the solution method upon implementation, where the algorithmic technique
gets trapped in a local optimum. This causes the task of optimizing such problems to
become exceedingly difficult. An effective approach to tackle such issues is the utilization
of stochastic optimization approaches. One such approach is simulated annealing (SA) [31].
SA is based on the idea of the physical concept of annealing, where a solid is repeatedly
heated and cooled until it reaches a configurational state of minimal energy. In this work,
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we use the dual annealing optimization approach, which is a coupled technique inspired
by the classical simulated annealing as well as the fast simulated annealing approaches [32].
The dual annealing optimization approach used in this work implements a distorted
Cauchy-Lorentz visiting distribution, g(∆x(t)) with q (the distribution’s shape controlling
parameter):

g(∆x(t)) = k

[
T(t)−A1

(1 + (q− 1)A2)
A3

]
, A1 =

[
D

(3− q)

]
, A2 =

 ∆x(t)2(
T(t)

2
3−q

)
, A3 =

1
q− 1

+
D− 1

2
(10)

where k and D are constants, t is artificial time, ∆x(t) is the trial jump distance and T(t) is
the artificial temperature. The candidate solution’s acceptance probability is set by defining
an acceptance parameter, q′ < 1 is determined as follows:

P = min
{

1, f
(
q′
)}

where f (q) =
∣∣1− (1− q′

)
β∆E

∣∣ 1
1−q′ (11)

The decrease of the artificial temperature, T(t) is given by the following relation:

T(t) = T(1)

[
2q−1 − 1

(1 + t)q−1 − 1

]
(12)

In this work, the dual annealing technique is coupled with coupled map lattices (CML)
to enhance its optimization capability by simulating chaotic non-linear dynamics. CMLs have
applications in diverse fields of research and implementation: system identification, process
modeling, design optimization, internet of things (IoT), and cryptography [24,33–35]. For a
specific discreet-time dynamical map, CMLs consist of discreet interacting elements. These
elements make up a multidimensional dynamical system. Hence, the CML model could
be designed to simulate a dynamical system, where its macroscopic field variables are
defined on a lattice. Independent processes then decompose the dynamical system. In
this sense, each process represents a procedure in the CML. Nonlinear transformations
are generated using each state variable (i.e., lattice points) and coupling terms, which are
executed iteratively. Since CMLs commonly generate chaotic behavior, a logistic map is
introduced in this work to induce such dynamics by setting the constant, θ > 3.57. The
logistic map is given as follows:

xi+1 = θxi(1− xi) (13)

where i ∈ [1, m] is the iteration count. The recursive map for CML is as follows:

xi+1 = ε|rxi(1− xi)|j + (1− ε)|rxi(1− xi)|j−1 (14)

where s is the index for the vertices on the lattice and the coupling parameter, ε ∈ [0, 1].
The second term in the CML recursive map is for the neighboring lattice points. In this
work a unidirectional coupling approach is taken with the convex map. The proposed
techniques that combine the CML and the dual annealing optimization approaches is given
in Algorithm 1:

Algorithm 1: Combined Coupled Map Lattice and Dual Annealing Optimization Approach

START
1. Initialize dual annealing parameters: maximum iterations, T(1), q, q′.
2. Initialize CML parameters: Logistic map parameter, θ number of lattice vertices (N),

coupling parameter (ε).
3. Solve P(δ) using dual annealing algorithm to find optimal quantum state, ρT

A′B′
and Choi states: Ĉ1,A′ and Ĉ1,B′ .

4. Initiate and run CML simulation.
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Algorithm 1: Cont.

5. IF Iteration = 1:
Randomly initialize lattice values, x(i = 1).

6. IF Iteration > 1 and fitness function = 1:
Back-substitute the improved computed lattice values.

7. IF Iteration > 1 and fitness function = 0:
Back-substitute the lattice values from the previous iteration (i− 1)
(so it does not lead the CML algorithm towards non-optimal regions).

8. Compute new lattice values (x) using CML (with logistic map).
9. Check fitness of solution candidates (binary decision function).
10. IF Candidate solution is improved:

10.1. Fitness function is Satisfied:
Fitness = 1, HALT PROGRAM.

10.2. Fitness function is NOT Satisfied:
Fitness = 1, Repeat Step 4.

11. IF Candidate solution is NOT improved:
11.1. Fitness is Satisfied:

Fitness function = 0, HALT PROGRAM.
11.2. Fitness is NOT Satisfied:

Fitness function = 0, Repeat Step 5.
12. Determine statistical moments on CML simulation data—mean and variance.
13. Using statistical moments on a Gaussian distribution, simulate random values for quantum
state ρT

A′B′ .
14. Using standard PRNG, simulate random values for Choi states: Ĉ1,ÂA′ and Ĉ1,B̂B′ .
15. Solve for F in the upper-level problem.
16. Re-initialize Stackelberg game framework until fitness function cannot be further improved.
END

The bilevel optimization problem presented in Equation (3) is solved within a Stack-
elberg game-theoretic framework [34]. The fidelity objective function, F is the upper
level/leader, while the probability of success, P(δ) is the lower level/follower. The leader’s
strategy is to optimize the objective of the sub-problem (P(δ). This influences the follower’s
strategy, optimizing the objective (F). The numerical framework iteratively solves every
level of the optimization problem as a Stackelberg game reaches the optimal solution. In
this work, the entanglement distillation problem was solved using: Combined Coupled
Map Lattice and Dual Annealing (CML-DA) technique and dual annealing method using
pseudo-random number generators (PRNG-DA). The sub-problem problem is solved us-
ing the DA-PRNG approach by searching for the optimal dimension, d that maximizes
P(δ). The quantum state, ρT

A′B′ and the Choi states, Ĉ1,A′ and Ĉ1,B′ are generated using the
PRNG. Consequently, using the obtained dimension d, and the density states, ρT

A′B′ and
the probability of success, P(δ), the upper-level problem is solved by searching for the best
Choi states, Ĉ1,ÂA′ and Ĉ1,B̂B′ using the PRNG. As for the proposed CML-DA technique,
the Stackelberg framework is employed, and each level of the problem is solved iteratively.
In the CML-DA approach, the quantum state of the qubit before conversion (ρT

A′B′ ) is
estimated using the CML and PRNG techniques. The parameter settings employed for the
numerical experiments in this work, for both the CML and DA techniques, are given in
Tables 1 and 2:

Table 1. Parameter settings for the DA technique.

Parameter Value

Initial Temperature, T(1) 15
Restart temperature ratio 0.0002
Shape controlling parameter, q 2.62
Acceptance parameter, q′ −5
Maximum iterations 100
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Table 2. Parameter settings for the CML.

Parameter Value

Logistic map parameter, θ 3.7
Maximum iteration 100
Lattice vertex count (N) 100
Coupling parameter (ε) 0.5
Parametric interval (∆r) 0.05

4. Computational Analysis

Similar to many research efforts in QST, the ideas presented in this work have been
built on previous instrumental efforts in quantum parameter estimation—e.g., estimating
one-parameter unitary gates for qubit systems and the use of entanglement for quantum
parameter estimation to improve overall measurement stability [36–40]. The Stackelberg
game-theoretic framework was utilized for the entanglement distillation problem, with a
QST using fuzzy relations to estimate the quantum state. The pseudolikelihood measure-
ments were simulated and the optimization problem was then solved using: the combined
CML and dual annealing technique (CML-DA); and the conventional dual annealing
approach with pseudo-random number generators (PRNG-DA). The numerical experi-
ments were performed using the Python programming language on Google Collaboratory
platform on a cloud with Python 3 Google Compute Engine (RAM 12.68 GB and Disk
space:107.72 GB). Each technique was executed a total of 40 times, where each time the
technique was run 3 times and the best solution taken for each execution. Therefore, both
techniques were individually executed a total of 120 times. The computational results
obtained using both techniques were measured using the weighted hypervolume indicator
for the bilevel problem:

wHVI = w1(x∗ − x) + w2(x∗o − xo) (15)

where the optimal solution candidate is (x∗, x∗0) and the nadir point is (x, xo). The weights
w1 and w2 enable the relative importance of the contribution of the upper-level problem
(1) and lower-level problem (2). In these experiments, the weights w1 = 0.7 and w1 = 0.3.
The nadir point is for the upper-level problem (or fidelity objective) (1), and the lower-level
subproblem (or probability of success) (2) is (x = 1 and xo = 1). The larger the value of
the wHVI metric, the better the optimization performance. Due to the complexity of the
optimization problem given in Equation (3), the existence of a global optima cannot be
confirmed. Thus, the computational techniques present a framework to find a local optimal
for the given entanglement distillation protocol. The rated individual solutions obtained
using the PRNG-DA approach are given in Table 3, and the optimal quantum state of the
best solution (pure state density matrix) is shown in Figure 1:

Table 3. Rated individual solutions obtained using the PRNG-DA approach.

Parameters Best Median Worst

d 4 4 4
P(δ) 0.9897 0.9878 0.9839
F 0.8873 0.5201 0.1218
Iterations 341 397 557

ρT
A′B′

[0.10023951,
0.18421193,
0.02052628,
0.69502228]

[0.1290744,
0.46015852,
0.36462488,
0.0461422]

[0.07538315,
0.81589332,
0.07227743,
0.0364461]

wHVI 0.918 0.6604 0.3805
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DA approach.

The individual solutions obtained using the CML-DA technique are ranked and shown
in Table 4. The generated optimal quantum state (pure density matrix) for the individual
best solution is given in Figure 2:

Table 4. Rated individual solutions obtained using the CML-DA approach.

Parameters Best Median Worst

d 9 9 4
P(δ) 0.9745 0.9813 0.9699
F 0.9991 0.5105 0.0435
Iterations 315 495 443

ρT
A′B′

[5.91809983 × 10−3,
2.26849719 × 10−4,
2.75340776 × 10−2,
1.54353405 × 10−1,
5.56746335 × 10−2,
4.33851377 × 10−1,
4.06979776e × 10−3,
3.17812492 × 10−1,
5.59267748 × 10−4]

[0.00190849, 0.05472652,
0.03569338, 0.23633382,
0.34003655, 0.20481441,
0.00174142, 0.08249384,
0.04225155]]

[0.33783083,
0.09176041,
0.19728488,
0.37312388]

wHVI 0.9917 0.6517 0.3214
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Figure 2. The quantum state, ρT
A′B′ for the best individual solution generated using the CML-DA

approach.

The best individual solutions reached by the PRNG-DA and CML-DA techniques have
a quantum state, ρT

A′B′ with the dimensions: d = 4 and d = 8, respectively. The difference
in terms of the level of optimality reached by the individual best solutions, measured using
the wHVI, was about 7.722%. The scatter plot in Figure 3 shows the spread of the individual
solutions generated using the PRNG-DA and CML-DA:



Algorithms 2023, 16, 313 10 of 12

Algorithms 2023, 16, x FOR PEER REVIEW 11 of 13 
 

measured using the wHVI, was about 7.722%. The scatter plot in Figure 3 shows the 
spread of the individual solutions generated using the PRNG-DA and CML-DA: 

 
Figure 3. Spread objective values for individual solutions generated using the PRNG-DA and CML-
DA. 

In Figure 3, it can be seen that the shaded area highlights the optimal region in the 
objective space, where the optimality of the fidelity objective is given more importance as 
compared to the cascaded objective function: probability of success. Thus, more solutions 
generated by the CML-DA technique fall into the optimal region as compared to the 
PRNG-DA approach. This is reflected in the value of the overall optimality of the solutions 
measured using the weighted HVI. The overall optimality of the CML-DA and PRNG-DA 
approaches are 27,109 and 25,718, respectively. The CML-DA outperforms the PRNG-DA 
in terms of overall optimization performance by approximately 5.267%. The key factor 
influencing the techniques in this study is the CML component. The chaotic dynamics 
exhibited by the CML enables wide-range dynamical behavior as compared the standard 
PRNG. This boosts the performance of the CML-DA approach, enabling it to perform a 
more thorough search of the objective landscape as compared to standard techniques 
(PRNG-based approaches). The CML is thus able to adapt better to the multilevel struc-
ture of the optimization problem and avoid scenarios that may cause stagnation. In other 
words, the CML manages to escape local optima traps in the objective space. The pro-
grams developed using the mentioned computational techniques did not encounter con-
vergent issues and performed smoothly during execution. The execution time taken for 
the overall solution generation using the CML-DA technique was 156,804 s while the 
PRNG-DA approach took about 27 s. Thus, the trade-off experienced by the CML-DA in 
terms of optimization efficiency is the execution time as compared to the PRNG-DA ap-
proach. The additional algorithmic complexity embedded in the CML chaotic simulator 
comes with an additional computational cost. Nevertheless, both techniques showed sta-
ble performance when solving the entanglement distillation problem with the fuzzy rela-
tions for QST. In that work, the authors also developed a similarly scalable efficient max-
imum likelihood computational framework for approximating states from incomplete sta-
tistical data. 

5. Conclusions and Recommendations 
In this work, the entanglement distillation optimization was formulated using a bi-

level structure. Using fuzzy relations, the quantum state of the system (density matrix, 𝜌 ), represented as a symmetric positive semidefinite matrix, was estimated using 
pseudo-likelihood measurements. A scale-independent partial differential equation 
(PDE) was derived (see Equation (7)). The solution to the PDE was employed for the QST 
of the quantum state. This multilevel optimization formulation was then solved using the 
CML-DA and PRNG-DA approaches within a Stackelberg game theoretic-framework. 

Figure 3. Spread objective values for individual solutions generated using the PRNG-DA and
CML-DA.

In Figure 3, it can be seen that the shaded area highlights the optimal region in the
objective space, where the optimality of the fidelity objective is given more importance as
compared to the cascaded objective function: probability of success. Thus, more solutions
generated by the CML-DA technique fall into the optimal region as compared to the
PRNG-DA approach. This is reflected in the value of the overall optimality of the solutions
measured using the weighted HVI. The overall optimality of the CML-DA and PRNG-DA
approaches are 27,109 and 25,718, respectively. The CML-DA outperforms the PRNG-DA
in terms of overall optimization performance by approximately 5.267%. The key factor
influencing the techniques in this study is the CML component. The chaotic dynamics
exhibited by the CML enables wide-range dynamical behavior as compared the standard
PRNG. This boosts the performance of the CML-DA approach, enabling it to perform
a more thorough search of the objective landscape as compared to standard techniques
(PRNG-based approaches). The CML is thus able to adapt better to the multilevel structure
of the optimization problem and avoid scenarios that may cause stagnation. In other
words, the CML manages to escape local optima traps in the objective space. The programs
developed using the mentioned computational techniques did not encounter convergent
issues and performed smoothly during execution. The execution time taken for the overall
solution generation using the CML-DA technique was 156,804 s while the PRNG-DA
approach took about 27 s. Thus, the trade-off experienced by the CML-DA in terms of
optimization efficiency is the execution time as compared to the PRNG-DA approach. The
additional algorithmic complexity embedded in the CML chaotic simulator comes with an
additional computational cost. Nevertheless, both techniques showed stable performance
when solving the entanglement distillation problem with the fuzzy relations for QST. In
that work, the authors also developed a similarly scalable efficient maximum likelihood
computational framework for approximating states from incomplete statistical data.

5. Conclusions and Recommendations

In this work, the entanglement distillation optimization was formulated using a bilevel
structure. Using fuzzy relations, the quantum state of the system (density matrix, ρT

A′B′ ),
represented as a symmetric positive semidefinite matrix, was estimated using pseudo-
likelihood measurements. A scale-independent partial differential equation (PDE) was
derived (see Equation (7)). The solution to the PDE was employed for the QST of the quan-
tum state. This multilevel optimization formulation was then solved using the CML-DA
and PRNG-DA approaches within a Stackelberg game theoretic-framework. Comparative
analysis showed that the CML-DA technique proved more efficient as compared to the
PRNG-DA approach. The CML-DAs capacity for wide-range chaotic behavior enables it
to navigate the objective space efficiently as compared to conventional techniques such as
the PRNG-DA.
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Due to the complexity of the problem, as well as the difficulty in analytically identify-
ing the global optima, future works could be directed towards rigorous testing and analysis
using other metaheuristics/optimization algorithms to obtain solutions closer to the global
optima. Future works could also be directed on testing the performance of other novel meta-
heuristics or evolutionary algorithms for other practical entanglement distillation protocols.
In addition, research efforts could be focused on reformulating the practical entanglement
distillation problem using pseudo-likelihood measurements, including environmental
factors influencing the density matrix estimation in QST. This could be carried out by con-
sidering the quantum Liouville equation or the Gorini–Kossakowski–Sudarshan–Lindblad
equation [41,42].
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