
Citation: Merino, Z.D.; Farmer, J.;

Jacobs, D.J. Probability Density

Estimation through Nonparametric

Adaptive Partitioning and Stitching.

Algorithms 2023, 16, 310. https://

doi.org/10.3390/a16070310

Academic Editors: Charalampos

Konstantopoulos and Grammati

Pantziou

Received: 8 May 2023

Revised: 11 June 2023

Accepted: 16 June 2023

Published: 21 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Probability Density Estimation through Nonparametric
Adaptive Partitioning and Stitching
Zach D. Merino 1,2,†,‡ , Jenny Farmer 3,‡ and Donald J. Jacobs 2,*,§

1 Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
zmerino@uwaterloo.ca

2 Department of Physics and Optical Science, University of North Carolina Charlotte, Charlotte, NC 28213, USA
3 Department of Bioinformatics and Genomics, University of North Carolina Charlotte,

Charlotte, NC 28213, USA; jfarmer6@charlotte.edu
* Correspondence: djacobs1@charlotte.edu
† Current address: Department of Physics and Astronomy, University of Waterloo,

Waterloo, ON N2L 3G1, Canada.
‡ These authors contributed equally to this work.
§ Affiliate Faculty of the UNC Charlotte School of Data Science, Charlotte, NC 28213, USA.

Abstract: We present a novel nonparametric adaptive partitioning and stitching (NAPS) algorithm to
estimate a probability density function (PDF) of a single variable. Sampled data is partitioned into
blocks using a branching tree algorithm that minimizes deviations from a uniform density within
blocks of various sample sizes arranged in a staggered format. The block sizes are constructed to
balance the load in parallel computing as the PDF for each block is independently estimated using
the nonparametric maximum entropy method (NMEM) previously developed for automated high
throughput analysis. Once all block PDFs are calculated, they are stitched together to provide a
smooth estimate throughout the sample range. Each stitch is an averaging process over weight
factors based on the estimated cumulative distribution function (CDF) and a complementary CDF
that characterize how data from flanking blocks overlap. Benchmarks on synthetic data show that
our PDF estimates are fast and accurate for sample sizes ranging from 29 to 227, across a diverse set of
distributions that account for single and multi-modal distributions with heavy tails or singularities.
We also generate estimates by replacing NMEM with kernel density estimation (KDE) within blocks.
Our results indicate that NAPS(NMEM) is the best-performing method overall, while NAPS(KDE)
improves estimates near boundaries compared to standard KDE.

Keywords: nonparametric density estimation; adaptive data partitioning; branching tree; load
balancing; heavy tails; divergent distributions; multi-modal distributions; adaptive kernel density;
maximum entropy

1. Introduction

In many domains, such as climate science, epidemiology, quality assurance, finance,
and market analysis, there is a need for robust high throughput probability density es-
timation as the amount of information processed grows. The motivation for this work
is to address the computational challenges of a reliable automated method that makes
fast and accurate density estimates on massive datasets. If an application is limited to
similar types of input data, expert domain knowledge can be used to develop appropriate
models and limit the number of relevant parameters and their accessible range. However,
high throughput analysis and turnkey automation are critical for large datasets, to relieve
analysts from looking at each density estimate on an individual basis to either determine
a reasonable parametric model to use, or to verify if a nonparametric model presents a
reasonable solution. In this context, kernel density estimation (KDE) is arguably the most
common approach for nonparametric density estimation.

Algorithms 2023, 16, 310. https://doi.org/10.3390/a16070310 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16070310
https://doi.org/10.3390/a16070310
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6224-800X
https://orcid.org/0000-0002-7953-1044
https://orcid.org/0000-0001-7711-1639
https://doi.org/10.3390/a16070310
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16070310?type=check_update&version=1

Algorithms 2023, 16, 310 2 of 30

A major contributing factor to the popularity of KDE is the intuitive interpretation of
local binning and smoothing of observed data. The implementation of this conceptual idea
using a simple Gaussian kernel to approximate each bin is straightforward [1–6]. However,
it becomes readily apparent that there is a trade-off between smoothness in low density
regions and accurate modeling of sharp features within the ground truth. Addressing this
basic trade-off has created a long history of methodological and computational improve-
ments over many decades of active research [7–13]. Despite its popularity, however, KDE
suffers from two inherent weaknesses: the user must select both an optimal bandwidth for
resolution of the estimate and an appropriate kernel for modeling boundary conditions
accurately. With insight and knowledge of the expected results, the two weaknesses of KDE
can be largely mitigated in practice. Unfortunately, KDE does not automatically work on
any type of distribution without subjective selection options set by a human during a setup
process. Furthermore, there is danger that if prior conditions change in high throughput
applications, the user’s assumptions can become invalid, creating a risk for large errors.

There is a wide range of KDE methods available for data-driven adaptive bandwidths
or adaptive kernel selection. However, these methods often incur substantial computational
costs, especially when applied towards large data sets and often still require guidance by
domain experts. As data demands increase in various applications, parallel computing
methods for density estimation have been developed to employ multiple processors and
resources, aiming to expedite the calculations [14–20]. The conceptual ideas of parallel
processing also extend to multivariate density estimation, and several parallel computing
implementations have been developed for higher dimensions [21–23]. Given the inherent
parallelizability of the KDE, this method is a natural choice for breaking up the problem.
Although parallel KDE implementations offer improved computational performance, they
nevertheless suffer from the same inherent weaknesses of the underlying algorithm.

As an alternative to KDE, a fully automated method for univariate probability density
estimation was introduced by JF and DJJ in 2018 [24]. With successive improvements since,
open software packages in MATLAB, C++, Java, and R are now available [25,26]. Our data-
adaptive model-free method requires no prior knowledge of the input data characteristics,
therefore the user need not set the bandwidth nor any additional parameters. Our method
is based on a maximum entropy principle, while solving an inverse problem using a trial
cumulative probability function by optimizing an objective function that involves sort
order statistics to obtain sampled uniform random data (SURD) [24]. We will refer to this
base method as NMEM for nonparametric maximum entropy method.

The fundamental idea behind any maximum entropy method (MEM) is to generate
a density estimate that remains non-committal to missing information based on partial
knowledge, typically expressed through constraints on expectation values of specific func-
tions. MEM aims to shape the probability density to match these constraints while being
as spread out as possible, resulting in more accurate estimates in regions with missing
data [27]. However, to improve accuracy near sharp features, simply adding more con-
straints can lead to reduced smoothness [28]. The challenge lies in determining the optimal
balance between adding objective constraints for improved accuracy without introducing
excessive bias due to overfitting, often through empirical estimation of constraints [29,30].
Thus, the problems of bandwidth and resolution in KDE methods are transferred to a
different problem involving finding the most appropriate set of constraints in MEM. Both
KDE and MEM require the user to input domain knowledge to ensure robust results.

Our NMEM approach [24] significantly deviates from traditional maximum entropy,
commonly known as MaxEnt or MEM, in that we forego satisfying moment constraints.
Instead, we focus on the inverse problem and construct universal objective functions based
on sort order statistics of quantiles that are independent of sample size [31]. NMEM is
designed to be agnostic to the underlying continuous distribution in principle. However,
representing the support with a complete set of orthogonal basis functions that converge
quickly without inducing unwanted wiggles becomes a new type of problem to address.

Algorithms 2023, 16, 310 3 of 30

Removing wiggles by introducing auxiliary smoothing requirements biases the esti-
mate, therefore the default settings apply smoothing very sparingly in NMEM. The diffi-
culty of satisfying these objectives in practice varies with the distribution. Furthermore,
NMEM incorporates an early termination criterion to avoid impractical optimization times
for the universal objective function, while NMEM possesses these limitations, it does not
require user input. Most importantly, NMEM can self-detect poor solutions and can be
applied to censored windows with much better performance characteristics. Recently,
NMEM was leveraged by iteratively building tensor products of univariate conditional
probabilities to obtain fast and accurate multivariate density estimation [32]. Therefore,
improving univariate probability density estimation performance will have a direct impact
on the multivariate case as well.

In previous works by JF and DJ, numerous comparisons between NMEM and KDE
were conducted, leading to the following key findings. When KDE does well, NMEM
generally does as well in terms of accuracy. However, compared to NMEM, KDE is prone
to overestimating density due to sample fluctuations within low-density regions, and un-
derestimating density in high-density regions. As the complexity of the ground truth
distribution increases, with features such as multi-modality, multi-resolution, divergent
density, or heavy tails, NMEM tends to exhibit higher accuracy than single bandwidth
KDE, with the degree of accuracy improvement being commensurate with the severity of
the encountered difficult features. Conservatively, it is fair to say that using NMEM will
generally give similar or better results than simple-KDE (Gaussian kernel and single band-
width) in terms of accuracy. However, simple-KDE generally yields smoother estimates
than NMEM, as the latter method can exhibit aesthetically unpleasing small wiggles.

Comparisons of KDE and NMEM in terms of speed have also been extensively studied,
while NMEM is suitable for high throughput applications, it is slower than simple-KDE
until an extrapolated crossover estimate of around 108 data points (or units) are pro-
cessed. Unfortunately, large memory allocation demands of NMEM when going much
beyond 106 units hinders direct comparisons. However, for multivariate density estima-
tion, the crossover point in sample size decreases with increasing number of variables.
In terms of speed, this means simple-KDE has the greatest advantage over NMEM when
performing univariate density estimation. On the other hand, NMEM has a speed advan-
tage compared to adaptive-bandwidth KDE at a crossover of around 103 units, albeit the
accuracy advantage of NMEM is reduced. Simply put, the trade-off for high accuracy in
robust nonparametric density estimates requires considerably more computational time
than simple-KDE. The first objective of this work is to parallelize the NMEM algorithm to
increase speed, similar to the goals for parallelizing KDE methods. The second objective is
to extend the NMEM range of sample size to n� 106.

Since univariate estimation from NMEM offers a distinct paradigm shift from KDE,
in the approach taken here, parallel computing provides a means to gain accuracy along
with increased speed and less demand on memory requirements. The basic idea of the
algorithm is to apply a divide and conquer approach, where data is partitioned into
staggered blocks (e.g., analogous to how bricks are laid for a wall) and then a NMEM-
worker is applied independently on each block. After all density estimations for each block
are finished, the results for each block are collected and stitched together to obtain a single
smooth estimate. To our knowledge, the process of nonparametric adaptive partitioning
and stitching (NAPS) is novel. Without explicit notation, NAPS implies using NMEM-
workers. On a single processor, NAPS will generally be faster and more accurate than
NMEM with a capability of handling much larger sample sizes. Moreover, NAPS balances
load over many processors for parallel computing, which provides a means to substantially
reduce the total wall-time of a calculation. In this work, we will focus on the structure of
the algorithm using a MATLAB implementation, paying no attention to hardware details,
which could further improve performance.

We forecast some results for when NAPS has an advantage over NMEM. For small
sample sizes, NMEM will be better to use than NAPS, because the later method will have

Algorithms 2023, 16, 310 4 of 30

overhead. Moreover, for small samples, statistical fluctuations are expected to be high,
and the estimates will be necessarily smooth due to the lack of statistical resolution that is
available. As such, NMEM is the preferred method for small sample sizes. We therefore
benchmark NAPS for sample sizes between 29 and 227 units. There is nothing special about
sample sizes of 29. For some distributions, it may be better to use NAPS for sample sizes
less than 29, while for other distributions, NMEM may be better than NAPS for sample
sizes greater than 29. This value merely reflects a heuristic cutoff, where NMEM generally
works well for sample sizes of 29 and smaller. Since this switch between NMEM and NAPS
only depends on the number of units from the input data, the method presented remains
fully automated and does not require prior knowledge of data characteristics.

In the remainder of this paper, Section 2 presents the NAPS algorithm, and Section 3
presents results from various test distributions used to assess the accuracy and speed of
NAPS in comparison to NMEM. The distributions considered include those that range
from being easy to estimate single modal to challenging cases, with multimodal features,
multi-resolution, singularities and heavy tails. Moreover, we show results using NAPS for
distributions where there are more than one million units up to 227 units. A key advantage
of the NAPS algorithm is its independence from the method used to obtain density estimates
for individual blocks, making it possible to use KDE-workers. In Section 3, we provide
an illustrative example comparing results obtained from KDE, NMEM, and NAPS using
NMEM-workers and NAPS with KDE-workers explicitly denoted as NAPS(KDE). We
conclude in Section 4 that NAPS is a reliable algorithm for fast and accurate nonparametric
density estimation, and summarize its capability for big-data applications.

2. Nonparametric Adaptive Partitioning and Stitching

We will begin by explaining the conceptual basis of nonparametric adaptive partition-
ing and stitching (NAPS). Recall that NMEM [24] produces accurate estimates for censored
data regions by specifying the data range of interest. In principle, a collection of data can be
partitioned into well-defined disjoint regions, and NMEM can be used independently for
each region, while it may seem ideal to simply connect these estimates together, this process
is prone to mismatch errors in density estimates that occur at the boundaries of each region.
These errors can arise from how the density estimation algorithm treats boundaries or from
sampling errors. Although these boundary mismatch errors are relatively small when using
NMEM, they prevent the final solution from being smooth when the separate estimates
are sequentially concatenated. By introducing a stitching process to smooth out boundary
mismatches, we can leverage the strategy of using NMEM within a divide-and-conquer
scheme that is well-suited for parallel computing.

To account for the presence of boundary mismatch errors, the conceptual idea is to
avoid these errors by doubling the number of partitions into staggered blocks of data using
two layers. When two regions meet in layer 1 defined by block-L and block-R for the left
and right sides, there is another block in layer 2 that spans between the halfway point of
block-L and the halfway point of block-R. Using this structure, a stitch is defined by making
a weighted average over two estimates from two different layers. Notice that this stitching
process will require approximately twice the amount of processing time because two layers
need to be calculated, which is part of the overhead associated with NAPS.

The advantage of parallel computing goes beyond making the process faster by per-
forming multiple tasks simultaneously. When the actual density of interest has intricate
features, such as mixtures of distributions representing multiple resolutions, discontinu-
ities, singularities, heavy tails, or any combination of these challenging characteristics,
the solutions obtained from NMEM as a one-shot calculation can require long compute
times because accurately modeling complex features generally requires many Lagrange
multipliers to be optimized. The Lagrange multipliers are used in NMEM as coefficients in
a generalized Fourier series over level functions [24]. Unfortunately, unwanted wiggles are
often present in the estimated density because the Fourier series is truncated as soon as the
model fits the data within a sufficient degree of statistical resolution based on SURD criteria.

Algorithms 2023, 16, 310 5 of 30

As such, small scale wiggles can appear as a ripple effect from using rapidly varying level
functions. These wiggles can be reduced using the one-shot NMEM by incorporating a
smoothing method [26], which is used sparingly to avoid smoothing out sharp features in
the actual probability density.

Unfortunately, NMEM becomes slower as the number of sample points and Lagrange
multipliers increase. By zooming in on smaller regions, the density within those regions
will appear to display smoother characteristics while the number of units within a small
region is significantly less than the total number of units. As such, NMEM will run
significantly faster for each censored window, with the estimated PDF for that window
having fewer Lagrange multipliers and wiggles. All things being equal, if the entire range
of support requires 200 Lagrange multipliers by the one-shot NMEM, then by breaking up
the range of support into 20 regions, each requiring 10 Lagrange multipliers, a sequential
calculation (no parallelization) would take the same amount of time. However, there is
substantial incremental added cost for the NMEM calculations as the number of Lagrange
multipliers and number of sample points increase. Consequently, in addition to being
faster, the serial version of partitioning the regions will also be more adaptive as it captures
detailed resolution. As such, it appears the approach of equally partitioning a sample
first, applying the one-shot NMEM on each region independently, and then stitching the
solutions back together will provide a more accurate and much faster algorithm. However,
practical considerations make this approach too idealistic.

When dividing data into partitions, it may seem natural to use partitions with an
equal number of sample points. However, this approach will generally not work in practice
because of complications related to the form of the distribution that is being estimated.
For example, if the first partition contains complicated features while the other partitions
consist of relatively featureless, smooth density, running the NMEM process on the first
partition may take as long as running the entire calculation in one-shot, while the other
partitions finish quickly. This can cause a bottleneck, making the total time needed using
this parallel computing strategy approximately twice as long as the one-shot NMEM
because of the relatively slow processing time required just of the most difficult block in
layer 1 and the most difficult block in layer 2. Clearly, indiscriminate data partitioning
based solely on the number of data points is insufficient due to the potentially heterogeneity
of difficult features within a PDF.

The above example illustrates that the efficiency gains of partitioning data depend on
the underlying distribution, which is not known beforehand. To achieve a load balance, we
need a data-driven approach that partitions the blocks in a way that ensures the NMEM
method takes approximately the same amount of time for each block. In other words, we
need to find a way to guarantee approximate load balance, where the distribution of load
over all blocks is sharply peaked around a mean with relatively small variance. This can be
achieved by using a divide and conquer strategy that balances the non-uniformity of the
density in all blocks with the number of units within a block. Our approach requires sorting
the data as well as sorting the differences of this sorted data in each partition, which results
in a complexity of O(N log N). The last step is to stitch the PDF estimates of neighboring
partitions together.

2.1. Divide and Conquer

We implement a data-driven divide and conquer approach by applying the binary
division rule to a block as:

if (n > n0 or ξ > Anα): divide the block in half else: terminate its division (1)

where n is the number of units in a block, n0 is the maximum size block allowed, ξ is a test
statistic that quantifies density variation within a block, and A and α are parameters deter-
mined by considering the scaling of a statistical measure R applied to SURD. Furthermore,
the ξ test statistic is given by ξ = (R0 + R1)/2 where the statistical measures R0 and R1
will be defined momentarily, after the general R statistic is defined.

Algorithms 2023, 16, 310 6 of 30

From an initial sorting operation of the input data representing N units, the n units
in a block are sort ordered such that xk+1 ≥ xk for all k. The next step evaluates the
differences between all adjacent pairs of data points, denoted by ∆ = {∆k = xk+1− xk ∀ k ∈
{1, . . . , n− 1}}, where n represents the block size or the total number of input units. The set
of differences is sorted and denoted by ∆(s) = {∆i | ∆i+1 > ∆i ∀ i ∈ ∆}. To quantify the
variation in density within a block of interest, which contains n units (note that n ≤ N), we
use the statistical measure R. We define R for a block as an average over the smallest and
largest values of ∆(s) over a window size of w. The window size is a hyper-parameter that
will be heuristically optimized. The calculation of R involves straightforward operations
starting from Equations (2) and (3) and arriving at Equation (4).

∆min =
1
w

w

∑
k=1

∆(s)
k (2)

∆max =
1
w

n−1

∑
k=n−w

∆(s)
k (3)

R =
∆max

∆min
(4)

Figure 1 gives an illustration of how the averaging procedure for ∆min and ∆max is
performed over a window size of w for a subsample of n data points, and having n− 1
sorted spacing values from smallest to largest. Note that in cases where 2w > n− 1 the
two regions shown in Figure 1 will overlap. As the overlap increases this will drive R→ 1.
As such, the value of w actually sets the minimum size block for which R can be greater than
1 regardless of the way ∆(s) is distributed. Specifically, for all block sizes with n ≤ w + 1, it
follows R = 1, and this lower limit property will be useful to develop a stop condition in
subdividing blocks, as explained below.

Figure 1. Visualizing how to calculate R: The ∆(s) values are distributed for a subsample after being
sorted from lowest to highest values. For illustration purposes, n = 16 are the number of data points,
there are 15 ∆(s) values, and w = 5. Note that only w spacing values on either extreme (minimum
spacing on the left side) or (maximum spacing on the right side) are averaged over as the highlights
show. The larger differences in small/large spacing implies greater density variation within a block.

Based on the operational definition for R (detailed in Equations (2)–(4), we note that
1 ≤ R < ∞. As the density variation within a block increases, R can only increase from 1,
and a divergent density is indicated when R→ ∞. Furthermore, after consecutive sampled
points are sorted in ascending order, the fluctuations that occur in their spacing causes R to
increase away from 1 as the number of units increases. This latter trend will be true for any
given statistical distribution, but we are specifically interested in discriminating density
variations within a region that is typical of uniform density or slowly varying density
(i.e., near uniform density), versus a region having large density variations. To quantify
the distinction between low and high density variation requires developing a sample size
dependent threshold. To establish a baseline for the threshold as a function of n, we apply
the general statistical measure R to a uniform distribution, since random data cannot be
expected to be more uniformly distributed than SURD.

To quantify the trend of how R increases as the number of units increases, we plot
log(R) as a function of log(n) in Figure 2 for the case w = 10. It is interesting to observe
that R exhibits a scaling law property as a function of number of units across a variety
the distributions we considered. As expected, the uniform density case (SURD) yields

Algorithms 2023, 16, 310 7 of 30

the lowest R(n). We find that the scaling law R = Anα provides a good fit to SURD,
with A = 0.01675 and α = 1.1, determined through least squares error linear regression.
Notably, the parameters A and α are rooted in fundamental statistical properties, which
we demonstrate numerically. In other words, A and α are not optimized hyperparameters
that could depend on our selection of “training distributions”, while our approach holds
universal appeal, it is important to acknowledge that w serves as a heuristic hyperparameter
embedded in the operational definition of R, requiring optimization. We observe that for
any fixed value of w we tested, R tends to approach a power law form in the limit n� w.
However, we aim to keep w small to enable the application of the divide and conquer
procedure on small blocks, facilitating better treatment of singular densities.

Fitting a scaling law to SURD for different window sizes, w, shows that w = 10
provides robust and consistent results for individual realizations. Increasing w minimizes
fluctuations in R across individual samples, but smaller w extends the power law to
lower sample sizes and keeps computational cost to a minimum. Our heuristic analysis
indicates that a value of w = 10 is a suitable lower bound. Increasing w did not result in a
significant improvement in accuracy beyond w = 10, while smaller values of w are viable,
we select w = 10 as it fulfills all necessary requirements, and decreasing w does not confer
computational benefit.

Figure 2. Sample size dependence on statistical measure R: For the case that w = 10, it is seen that a
simple power law describes how R scales as a function of n. These results are based on averaging
over 100 realizations per n value. As expected, the uniform distribution (shown as a dashed black
line) provides the lowest bound for R among all the distributions tested.

To divide a block into two offspring, each containing subsamples of units from the
parent block, there are two mechanisms of partitioning. The primary method partitions a
block if ξ > Anα for a given block under consideration, and the splitting process concludes
once ξ ≤ Anα is achieved for all blocks. The secondary mechanism is used to further
subdivide large blocks containing n > n0 data points, where n0 is determined primarily by
hardware constraints. Importantly, all successive divisions of a parent block that satisfies
the condition ξ < Anα will also satisfy this condition for each of the children blocks having

Algorithms 2023, 16, 310 8 of 30

smaller subsamples. Therefore, when density variation does not cause a block division,
the second mechanism will divide the block if it has more units than the predefined
maximum, n0. This secondary partitioning rule ensures that a NMEM-worker will not
require large memory needs. A practical cutoff of n0 = 100,000 is employed.

NAPS achieves load balancing through block partitioning. To determine if the number
of samples, n, within a block should be split in half, a “what-if” test is developed. First,
we forecast the split and calculate R for the left and right blocks independently, denoted
as R0 and R1, respectively. The same equations for R are used, but we calculate the
quantity for subsamples that have n/2 units (data points). Even when the density variation
within these children subsamples are slightly greater than that for SURD, the test statistic
ξ = (R0 + R1)/2 will often remain less than Anα because the sample size of each offspring
is only half as much as the parent subsample. In this way, a self-similar threshold is created
by using a shift in scale. As an alternative, we tried the formula ξ = max(R0, R1), but this
created more blocks and led to inferior results overall. Intuitively, ξ represents the average
density variation at the next level, which allows us to use the binary division rule given in
Equation (1) to determine if a block should be split. As block sizes approach 2w number
of units, the blocks will stop splitting because they can no longer meet the criteria in
Equation (1). This branching tree process is illustrated in Figure 3. In general the final
tree that is generated can be unbalanced due to local divergent densities or heavy tails in
other cases.

Figure 3. Divide and conquer process: Partitions are generated from a sample of size N as the first
partition, and then recursively divided into equal subsamples when the average density variation of
offspring subsamples is above a maximum threshold. The final subsample sizes, nk, are shown at the
final level of the unbalanced tree, with dashed red arrows pointing to distant partitions.

The divide and conquer process minimizes density variation within each subsample.
This strategy leads to requiring a small number of Lagrange multipliers for accurate,
smooth and fast estimates within all the partitions when using NMEM. Other methods
such as local regression, spline fits, or KDE could be used to estimate the PDF within
blocks. For example, the blocks with simple features are more suitable for simple KDE
methods. In this work, when NAPS utilizes the NMEM method, which is a C++ code,
the default settings are overridden by several modifiers. The normal default parameters
are set for unknown input, but now, the blocks will have much less density variation
that can be taken advantage of. For all internal blocks, (1) outlier detection is turned off;
(2) maximum Lagrange multipliers are capped at 100; (3) smoothing level is increased
to 100; (4) confidence level for the target score is relaxed from 70% to 20%, and (5) fixed
boundary conditions are used by specifying the censor window. The leftmost block uses
an open boundary condition on the left with a fixed boundary on the right, while the

Algorithms 2023, 16, 310 9 of 30

rightmost block uses open boundary conditions on the right with a fixed boundary on the
left. The results are not sensitive to the exact values for these override settings. In addition,
using the MATLAB implementation, KDE with reflective boundary conditions is applied
to all blocks for PDF estimates. Section 3.5 provides a comparison of the results obtained
when using KDE-workers and NMEM-workers to estimate PDFs within blocks.

2.2. Create Secondary Subsample Set

After establishing the subsample sizes representing layer 1 blocks, a secondary set of
subsamples is created. The second set of subsamples, representing layer 2 blocks, overlap
with the layer 1 blocks. To create a corresponding staggered layer 2 block, half of the
points from its left layer 1 block are combined with half of the points from its right layer 1
block. This process is applied to all layer 2 blocks, each having two flanking layer 1 blocks.
Therefore, there is one less layer 2 block than layer 1 blocks, and all layer 2 blocks are
internal blocks. Figure 4a illustrates the collection of estimates for each of the blocks in
both layers 1 and 2 for a trimodal distribution. This crude overlaying of independent PDF
estimates in a staggered fashion provides a scaffold for the PDF. Since we have not noticed
any difference in quality between the estimates in layer 1 compared to layer 2, we do not
treat the estimates from either layer differently than the other layer. To ensure smoothness
and continuity, the stitching method will be applied next.

(a) (b)

Figure 4. Stitching process: (a) A set of independent PDF estimates for different subsamples for
all blocks in both layers 1 and 2 are shown before stitching. This example considers a trimodel
Gaussian mixture distribution of the form: (p1 = 0.33, p2 = 0.33, p3 = 1− p1 − p2, µ1 = 4, µ2 = 5,
µ3 = 6, σ1 = 0.5, σ2 = 0.25, σ3 = 0.5). (b) After the stitching process is applied to the collection of
PDF estimates for all blocks, the resultant density estimate is shown.

2.3. Stitching Process

The stitching process involves two blocks taken from two different layers. At a
particular point on the support for the PDF(x), there will be two options to choose from,
the PDF on the left, denoted as PDF1(x), or the PDF on the right, denoted as PDF2(x).
The left and right blocks are uniquely determined by where the point of interest at x divides
the block. The stitch makes no distinction as to which layer the block is a member of.

We define a variable u to monitor the linear proportion (i.e., fraction) of the probability
contribution of a block relative to its right side. Operationally, let u = 0 : 1

n−1 : 1 be an
empirical cumulative distribution function (CDF) normalized such that u ranges from 0
to 1, where 0 and 1, respectively, represent the far most left and right sides of a block in
terms of counting data points within it. Since every point in a block corresponds to a
particular point on the x-axis, it is straightforward to construct two functions, called u1(xk)
and u2(xk), for the purpose to represent the fraction of density contribution from the left
and right blocks at location xk. As such, with the exception of the first and last blocks,
a stitch is made by averaging the two available left and right block estimates for the PDF
in terms of weights given by their complementary CDF and CDF, respectively. However,

Algorithms 2023, 16, 310 10 of 30

the labeling of points by index k was done for conceptual purposes. We have estimates
for any value of x as continuous functions. As such, we drop the index k, and understand
that we can provide the value of the function at any x by interpolation. Note that there are
data-driven nonlinear relations between x and u1(x) and between x and u2(x).

Starting at x = xL and ending at x = xR, then for xL ≤ x ≤ xR the left block
will trace u1(x) from u1(xL) to 1, while the right block will trace u2(x) from 0 to u2(xR).
The interpolation is always in the mutually shared region where two estimates from PDF1
and PDF2 are available. The stitch formula is given as:

PDF(x) =
PDF1(x)(1− u1(x))2 + PDF2(x)u2(x)2

(1− u1(x))2 + u2(x)2 . (5)

The PDF estimate becomes a weighted average of the two PDFs where the weight factors
through the complementary CDF given by 1− u1(x) and the CDF given by u2(x) are data-
driven. Examples of the estimated CDF and complimentary CDF are shown in Figure 5a.
It is seen that as the point of interest moves along the x-axis, the weight factors change in
a continuous way in terms of (1− u1)

2 and u2
2, which smooths out the two possible PDF

estimates by a weighted mean given in Equation (5). A visual example of how the stitching
process transforms the scaffold set of PDF estimates into a continuous function is given in
Figure 5b where the end result is an interpolation between two estimated PDFs.

(a) (b)

Figure 5. Stitching process: (a) To facilitate a stitch, the estimated complementary CDF based on
u1 and the estimated CDF based on u2 used in Equation (5) are shown as red and blue curves,
respectively. (b) The resulting stitched density (black) as an interpolation between the left and right
density estimates of a pair of blocks show as red and blue curves, respectively. This example is
atypical as it shows the weighting from the left and right sides both range from 0 to 1. Typically
the maximum values for the CDF and complimentary CDF are less than 1 over the mutually shared
region of interest.

No stitch is performed for the far left and far right blocks, which use PDF1(x) and
PDF2(x) , respectively. For internal blocks, the stitching procedure provides a smooth PDF
estimate for all x as shown in Figure 4 that is piecewise differentiable across blocks.

2.4. NAPS Algorithm

The divide and conquer process using data-driven decisions based on the density
variation characteristic, ξ, to create a binary tree structure is called the optimal branching
tree (OBT). Here, the pseudo code of NAPS is provided with implementation details, broken
down into three algorithms, the first is to calculate ξ.

Algorithm 1 splits a sample S in half, yielding samples S0 and S1 for the left and right
sides. For each half, the statistical measure for density variation is calculated as R0 and R1.
This means that the differences, ∆, are computed for S0 and sorted, and then again for S1
and sorted. For each set, ∆min and ∆max are calculated as the mean over the first and last w
points of the sorted sets. In this way, R0 and R1 are calculated so that ξ is returned.

Algorithms 2023, 16, 310 11 of 30

Algorithm 2 initializes the sample size dependent threshold and partition set p for the
sample or subsample S, with set size |S| = n. The maximum number of levels allowed in
the unbalanced binary tree is set to 40 for completeness, albeit not obtainable. The initial
ξ00 is computed, and b, the number of branches, is initialized to 1. The indexing on ξij is
based on tree level. If ξij < Γ, the starting partition set is returned unchanged; otherwise,
the block is partitioned into equal halves. The outer loop iterates over the number of levels
in the tree, while the inner loop iterates through all branches currently under evaluation
per tree level. The average of ratios for the left and right newly generated subsamples is
stored in ξij and evaluated against Γ. If ξij > Γ, the new partition is accepted; otherwise,
the partition is rejected. After evaluating all branches for a given level, they are checked
against Γ. If ξij < Γ ∀ i ∈ 1, . . . , m and j ∈ 1, . . . , b, the subroutine stops making any further
levels of the tree and returns the set p. Otherwise, the algorithm updates the number of
branches to evaluate and recursively continues.

The mathematical components of the stitching algorithm were described above.
Algorithm 3 provides a pseudo code for the stitching process, and the complete NAPS
algorithm is defined by the combination of Algorithms 1–3. Once all blocks are stitched
together, there is one final step: normalizing the proposed PDF to 1. Additionally, different
methods for estimating the PDF within a block, such as KDE, can be plugged into NAPS.

2.5. Test Distributions

Results for any density estimation comparison will inevitably vary from one distri-
bution to the next. Specific features of a data sample may be more difficult for some
methods to accurately estimate than others. NAPS has been tested against dozens of
known distributions as well as mixtures of these distributions. For most of the results
shown here, we have selected the following eight representative distributions: uniform
on [0,1], normal (µ = 5, σ = 1), trimodal Gaussian mixture model; (p1 = 0.33, p2 = 0.33,
p3 = 1− p1 − p2, µ1 = 4, µ2 = 5, µ3 = 6, σ1 = 0.5, σ2 = 0.25, σ3 = 0.5), Beta with
three sets of parameters; (α = 2, β = 0.5), (α = 0.5, β = 1.5), (α = 0.5, β = 0.5), Stable
(α = 0.5, β = 0.5, γ = 1, µ = 4) and generalized Pareto (µ = 0, σ = 1, ξ = 2). The spe-
cific features, challenges, and performance of each of these distributions will be discussed
with examples in the next section. Based on reviewer suggestions, we also considered six
additional distributions that include the generalized extreme value (k = 2, σ = 2, µ = 2),
i.e., GEV(2,2,2), Gumble, i.e., GEV(0,1,5), Fechet, i.e., GEV(1,1,5), Weibull (a = 5, b = 0.9),
uniform mixture model; (p1 = 0.1, p2 = 0.6, p3 = 1− p1 − p2), and an equal weighted
mixture modeling using a Cauchy, i.e., stable (α = 1, β = 0, γ = 0.2, µ = 0.5) and a Beta
(α = 0.5, β = 0.5) distribution. These additional six distributions are very challenging and
are discussed separately as a second test set in Section 3.

Algorithm 1 ξ algorithm

1: Input subsample s← {xm1 , . . . , xmn}
2: Sample indices for subsample M ⊆ {1, . . . , N}
3: M = {m1, . . . , mn−1}
4: subsample size n = |M|
5: Look up sample differences
6: ∆ = {∆k = xmk+1 − xmk ∀ k ∈ {1, N − 1}}
7: Sorted subsample differences
8: ∆M ← {∆k ∀ k ∈ i}
9: i←Map subsample indices in set M to indices in set ∆

10: ∆min ← mean{∆M
1 , . . . , ∆M

w }
11: ∆max ← mean{∆M

mn−1−w, . . . , ∆M
mn−1
}

12: R← ∆min
∆max

13: Return ξ01 ←
(

R0+R1

)
2

Algorithms 2023, 16, 310 12 of 30

Algorithm 2 Optimized branching tree algorithm

1: Input Sorted Sample
2: X ← {x1, . . . , xk} ∀ k ∈ {1, . . . , N}
3: Compute threshold
4: Γ← A · Nα

5: N = |X|
6: Compute ξ for X
7: ξ00 ← ξ(X)
8: First index is the tree level
9: Second index is the branch number on the tree level

10: Get max tree level lmax
11: Initialize partitions p← {1, N}
12: Initialize branch number b← 1
13: if ξ00 > Γ then
14: for i ∈ {1, . . . , lmax} do
15: for j ∈ {1, . . . , b} do
16: ξij ← (R0 + R1)/2
17: if ξij > Γ then
18: Update p← {p, pnew}
19: end if
20: end for
21: if ξij < Γ ∀ j ∈ {1, . . . , b} then
22: Break loop
23: end if
24: Update b← |p| − 1
25: end for
26: end if
27: Return p

Algorithms 2023, 16, 310 13 of 30

Algorithm 3 Stitching method algorithm

1: Sort Input Sample
2: X ← {x1, . . . , xk} ∀ k ∈ {1, . . . , N}
3: Compute differences
4: ∆← {∆k = xk+1 − xk} ∀ k ∈ {1, N − 1}
5: Get optimal partitions
6: p← OBT(X)
7: Define second layer of blocks
8: p′ ← {b pi+1−pi

2 c} ∀ i ∈ {1, . . . , p− 1}
9: Define block samples for both layers

10: B(1) ← {B(1)
i = {xi, · · · , xi+1} ∀ i ∈ p}

11: B(2) ← {B(2)
i = {xi, · · · , xi+1} ∀ i ∈ p′}

12: Define ordered block samples
13: B← {B(1)

1 , B(2)
1 , · · · , B(2)

|p′ |−1, B(1)
|p|−1}

14: Number of blocks← |B| = (2|p| − 3)
15: Define block boundary conditions→ γ
16: Define NMEM settings→ ω
17: parfor j ∈ {1, · · · , Nblocks}
18: Get density estimates per block
19: (f̂ j, F̂j)← NMEM(Bj, γj, ω)
20: end
21: for j ∈ {1, · · · , Nblocks − 1} do
22: Compute weight averaged densities for block overlap regions

23: f̂ (s)j ← (1−u1)
2 f̂ j+(u2)

2 f̂ j+1
(1−u1)2+(u2)2

24: end for
25: Return stitched densities for all blocks
26: f̂ = f̂1 ∪ f̂ (s)1 ∪ f̂2 ∪ · · · ∪ f̂Nblocks−2 ∪ f̂ (s)Nblocks−1 ∪ f̂Nblocks−1

3. Results and Discussions

The results are presented in six subsections that consider different types of compar-
isons and assessment methods. The first three subsections provide an extensive comparison
between NMEM and NAPS in terms of accuracy. Section 3.4 provides a detailed comparison
of the computational efficiency of NMEM versus NAPS for both the serial version and the
parallel computing version. In Section 3.5, a comparison is made between KDE, NMEM,
NAPS(KDE), and NAPS(NMEM) in terms of both accuracy and computational efficiency.
Finally, in Section 3.6, we show results for two specific challenging cases. We use NAPS
without a qualifier to imply NAPS(NMEM), as it will be demonstrated that NAPS(NMEM)
is the superior method in terms of trade-offs between accuracy and performance character-
istics for a robust, fully automated high-throughput approach.

3.1. PDF Visual Comparison between NAPS and NMEM

Figure 6 displays visual examples of PDF estimates that highlight the differences
between NMEM and NAPS for specific distributions and sample sizes. Recall that NMEM
utilizes a random search method to estimate the Lagrange multipliers, meaning that
different estimates can be produced upon multiple runs with the same sample data. Plotting
multiple estimates provides a visual representation of the uncertainty, which decreases as
the sample size increases. It is apparent that the variations in these estimates are due to
random wiggles, as no common pattern is present across the different realizations.

Algorithms 2023, 16, 310 14 of 30

(a) (b)

(c) (d)

Figure 6. Visualization of PDF estimates: For sample sizes of N = 210 shown in panels (a,c) and
N = 217 shown in panels (b,d) a plot of 100 estimates visually compares how NAPS and NMEM
handle divergent Beta distributions. Shown in panels (a,b) is the Beta(0.5, 0.5) distribution and (c,d) is
the Beta(0.5, 1.5) distribution. The black line is used to show the theoretical distribution.

Despite the presence of random errors, each estimate is consistent with the data and
statistical resolution, with the amplitude of the random error decreasing as the number of
samples increases. This is true for both NMEM and NAPS; however, NAPS clearly has a
smaller amplitude of random error. Although a smooth function is preferred, the source of
these random wiggles derives from the generalized Fourier series employed by NMEM.
The random wiggles that appear in NMEM can be greatly reduced by specifying a much
higher smoothing level than the default value, but this risks removing sharp features in
a PDF that are real. In general, the wiggles in the PDF can be influenced by both sharp
features in the ground truth distribution and fluctuations in a sample.

The amplitude of random errors in NAPS is lower than in NMEM due to the small
density variations typically found in individual data blocks when applying NMEM. This
inherently reduces the need for a larger number of Lagrange multipliers and generates
smoother estimates within each block. As density variation is minimized by the creation of
these blocks, sharp features are rare within each block. Therefore, running NMEM at an
elevated smoothing level within a block as a censor window is justified, incurring little risk
of smoothing out a real sharp feature. Additionally, the stitching process smooths out edge
mismatches, further contributing to generating smoother estimates with NAPS.

The PDF plots depicted in Figure 6 do not provide useful visualization of the tails
of the distributions due to the scale used in the graphs. In Figure 7, we specifically focus
on the tails of the distributions by presenting 100 independent data sets for 220 samples
and compare NAPS and NMEM estimates. Each plot shows the estimated complementary
cumulative probability distribution function, 1− F̂(x), on a logarithmic scale to emphasize
errors that occur in low-density tails. This allows us to visually gain a sense of the accuracy
within the tails of four example distributions.

Algorithms 2023, 16, 310 15 of 30

(a) (b)

(c) (d)

Figure 7. Tail estimates: Complementary CDF estimates for 100 samples of size 220 are shown for
NAPS and NMEM for two rapidly decaying and two heavy tailed distributions. (a) normal(5, 1);
(b) trimodal normal; (c) generalize-Pareto(2, 1, 0), and (d) stable(0.5, 0.05, 1, 4). The black line defines
ground truth. Only the right side of the distributions is considered by focusing on x > 0, which
allows log10(x) to be plotted.

For the normal and trimodal normal distributions, respectively, shown in Figure 7a,b,
it is observed that NAPS and NMEM exhibit similar degrees of high accuracy relatively
deep into the rapidly falling tails. For the generalize-Pareto and stable distributions,
respectively, shown in Figure 7c,d, NMEM fails to yield estimates deep into their tails
due to its automated outlier detection, which can lead to excessive removal of “outliers”
for distributions with extreme statistics. In such cases, preventing outlier removal by
overriding the default setting can render it impossible for NMEM to fit the distribution at
all. Therefore, outlier detection is a critical component for NMEM to function as a robust
nonparametric probability density estimator.

In contrast, NAPS does not require outlier detection for internal blocks with fixed
boundaries. Outlier detection is only necessary when there are one or two open boundaries.
Consequently, NAPS can effectively estimate deep into the tails of a PDF, albeit with some
error. The error in the tails arises because no attempt is made to model the asymptotic
behavior of the heavy tails beyond the last empirical observation. As a result, normalization
cannot be precisely defined without modeling the heavy tails asymptotically using an
extrapolation process. Although it is possible to obtain good estimates of power law tails
within the framework of NAPS using a semi-parametric version of NMEM on half-open
blocks, such modeling goes beyond the scope of this work. Our semi-parametric modeling
of heavy tails in an automated and adaptive way will be published elsewhere. Nevertheless,
NAPS yields estimates with an accuracy commensurate with the statistical resolution set
by the total number of samples, N, and offers a substantial advantage over NMEM.

3.2. Mean Percent Error Comparison between NAPS and NMEM

For each of the test distributions, we generated 100 independent data samples for
sample sizes in increasing powers of two from N = 29 to 222. PDF estimates, PDFest(x),

Algorithms 2023, 16, 310 16 of 30

were obtained for each data sample using NAPS and NMEM and compared to the ground
truth, PDFre f using mean percent error (MPE). The percent error (PE) for a given estimate
at the value of x is defined as:

PE(x) = 100×
| PDFest(x)− PDFre f (x) |
max[PDFre f (x), 0.01/N]

. (6)

The empirical mean of PE over the entire range of the PDF for one sample is based on all
units (sample points, N), given as:

MPE =
1
N

N

∑
k=1

PE(xk) . (7)

Instead of using mean squared error (MSE), we calculated the MPE to compare the esti-
mated and ground truth PDFs, which overcomes problems associated with disparate scales.
In cases where the ground truth distribution has a singularity, it is possible for a small PE
in regions where the density is extremely large be associated with an absolute error much
larger than the absolute error within low-density regions with a large PE. As such, MSE is
intrinsically biased toward high-density regions and cannot reflect how good an estimate
is in low-density regions. Calculating PE across the entire PDF provides a reasonably fair
comparison of error relative to the ground truth distributions. To avoid problems when
the ground truth PDF is zero, the PE formula of Equation (6) has a minimum value for
the denominator of 0.01/N. This minimum level decreases as the sample size increases to
reflect statistical resolution. Using MPE to quantitatively evaluate accuracy has the added
advantage of providing a good sense of error across disparate types of distributions.

Figure 8 presents box and whisker plots of MPE as a function of sample size across
100 tests for eight distributions. For the normal and uniform distributions shown in
Figure 8a,b, respectively, the MPE values are comparable between the two estimators.
However, NMEM does slightly better than NAPS for the normal distribution, which can
be modeled exactly with only three Lagrange multipliers. This result is not surprising
and is perhaps to be expected due to the similarity with performing a parametric fit.
Although uniform can be exactly modeled with only one Lagrange multiplier, NAPS
can still accurately estimate the distribution by splitting it into small blocks, each being
relatively easy to identify as having uniform density. Unlike the normal distribution, which
has distinct regions with disparate density (e.g., peak region versus half width and tails),
NAPS applied to the uniform distribution must perform extra work to reconstruct the
“obvious”. Thus, the normal and uniform are two special examples (requiring a specific
low number of Lagrange multipliers) where decomposing a problem into many parts using
divide and conquer increases overall difficulty in obtaining a smooth and accurate estimate.

Algorithms 2023, 16, 310 17 of 30

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Mean percent error comparisons: The MPE for the NAPS and NMEM estimators are
compared using box and whisker plots for eight distributions and for sample sizes in the range 29–222

for 100 estimates per sample size for distributions: (a) normal(5, 1) (b) uniform(4, 8) (c) trimodal
normal (d) Beta(2, 0.5) (e) Beta(0.5, 1.5) (f) Beta(0.5, 0.5) (g) generalized-Pareto(2, 1, 0) (h) and stable(0.5,
0.5, 1, 4). To avoid overlaps in data, NAPS and NMEM sample sizes are slightly displaced about the
size being plotted.

For more challenging distributions, typically those containing sharp peaks, heavy
tails, or divergences, as shown in Figure 8c–h, NAPS outperforms NMEM, particularly

Algorithms 2023, 16, 310 18 of 30

as the sample size increases. The advantage of breaking the large task into many smaller
ones pays off in terms of accuracy in all of these cases. Moreover, NAPS generally shows
an MPE of less than 35% at the smallest size of N = 29, except for the stable distribution,
which starts with an MPE of 70%. However, there is a rapid improvement in accuracy in
the form of a power-law as the sample size increases, based on visual inspection of the
roughly straight lines for NAPS in all log-log graphs in Figure 8. In contrast, NMEM errors
typically saturate or, in some cases, increase. It is worth noting that these levels of error
in terms of MPE are also quite good compared to popular KDE methods since NMEM
compares favorably to KDE (see Section 3.5 for direct comparisons involving KDE).

While the MPE plots in Figure 8 provide an overview of the average errors across the
entire PDF estimate, we also consider where the greatest contribution to the MPE occurs
over localized regions of a PDF. The plots in Figure 9 break down the MPE according to
quantiles of the CDF for the stable distribution, as demonstrated in Figure 9a. Note that
the only modification to the way MPE is calculated is to include all data points in the
averaging procedure shown in Equation (7) that are members of the specified quantile
range, which we consider in 2% increments. The remaining plots in this figure compare
NAPS and NMEM for increasing sample sizes, with several key observations. In general,
errors decrease for larger sample sizes with NAPS but remain roughly constant for NMEM,
consistent with Figure 8h. Figure 9b–d show that the improvement in MPE with sample size
for NAPS is primarily driven by the low-density tails. This point will be further highlighted
with examples in the next section.

(a) (b)

(c) (d)

Figure 9. Localizing percent error within quantiles: (a) Displays the CDF, 2% quantiles, and PDF
for the stable distribution evaluated at the quantiles. The mean percent error (MPE) is plotted per
quantile for samples sizes: (b) N = 210 (c) N = 217 (d) N = 222.

3.3. SQR Comparison between NAPS and NMEM

An additional method for determining the quality of an estimate is the scaled quantile
residual (SQR) for measuring uncertainty, defined as,

SQRk =
√

N + 2(rk − uk), (8)

Algorithms 2023, 16, 310 19 of 30

where k refers to the position index ranging from 1 to the sample size N, uk = k
N+1 ,

and rk = CDF(xk) for each data sample point xk. The square root term scales the residuals
by the sample size N, which leads to a sample size invariant measure. When plotting
the SQR as a function of position k, it has been demonstrated [24–26,31] that the expected
values will fall within an oval shaped region as defined by the dotted lines shown in
Figure 10. The inner dashed lines represent the area where 50% of residuals are expected
to fall, and the outer lines represent the 98th percentile. Therefore, when calculating the
SQR for a CDF estimated from a sample xk, these plots are an effective visualization tool
for diagnosing where estimates may fall outside of expected ranges.

(a) (b)

(c) (d)

Figure 10. Scaled quantile residual comparisons: The SQR calculations for single estimates from a
Beta(2, 0.5) distribution for (a) NAPS SQR(u) for N = 211. (b) NMEM SQR(u) for N = 211. (c) NAPS
SQR(u) for N = 218. (d) NMEM SQR(u) for N = 218.

In Figure 10, all SQR values that fall outside of the 98th percentile are colored in red.
Statistically, we would expect approximately 2% of these points to appear outside of the
large oval. However, significant deviations from this expectation, particularly if the errors
are periodically spaced, is an indication that the estimate is poorly fitted to the data in this
region. All the SQR plots show in Figure 10 are for estimates of the Beta (2, 0.5) distribution,
which has very low density on the left and a divergence in density on the right. Plots in the
(first, second) columns are for (NAPS, NMEM) shown for samples sizes of (211, 218) for the
(top, bottom) rows. As with other examples shown thus far, the divergence is difficult to fit
properly for NMEM with increasing sample size, as indicated by the outliers colored in
red. The oscillations, such as those in Figure 10d, tend to increase in both amplitude and
frequency, which often corresponds to unnatural wiggles, whereas the lower amplitude
oscillations in the NAPS plots for Figure 10a,c indicate a smoother PDF.

3.4. Computation Time

To evaluate the computational efficiency of NAPS and NMEM, we measured the total
computation times for all eight distributions at sample sizes ranging from 29 to 222. On our
hardware, our current C++ NMEM implementation can reliably provide estimates up to
N = 222 for a wide range of distributions with default settings, although the quality of

Algorithms 2023, 16, 310 20 of 30

estimate can deteriorate for difficult cases. For the NAPS implementation, we consider
two cases: serial using a single processor and parallel using 40 processors. In the parallel
processing case, we extend the largest sample size by more than an order of magnitude
to 227, but this size does not reflect hardware or implementation limits. However, for the
series case using a single processor, memory limitations sets a sample size limit to 225.

Figure 11a shows the wall time (total elapsed time) averaged over 100 trials for sample
sizes up to 222 for both methods, and 10 trials for 223 to 225 for NAPS (serial). The times are
also averaged over all eight distributions, with error bars indicating the variation across
distributions. The variation in NMEM is noticeably larger than NAPS, especially for large
sample sizes. This is expected because, by separating the data into more uniform density
blocks, the wall time in NAPS is dictated more by the number of blocks than the details of
the original distribution. As predicted, the time to compute all the blocks in NAPS, even
when run in serial, is typically less than processing all the data together with NMEM. These
times include the overhead of separating the blocks and stitching the estimates together.

(a) (b)

Figure 11. Computational times: The mean wall time of the NMEM and NAPS estimators as a
function of sample size: (a) serial runs for NMEM and NAPS with error bars for variations across
distributions with a single processor (b) includes a dashed line for parallel runs with 40 processors.

Figure 11b displays a dashed line representing the average wall time across 10 trials
and the eight distributions for NAPS run with 40 processors. The NMEM and NAPS
(serial) data shown in Figure 11a is re-shown, but without the error bars for clarity. Note
that the results are identical for NAPS serial versus parallel with the same seed for the
random number generator. The NMEM wall time begins to level off around a sample
size of 218, primarily due to the more challenging distributions that NMEM struggles to
estimate effectively. NMEM has safeguards implemented that will abort its random search
procedure to optimize Lagrange multipliers when it becomes clear that progress towards
an improved estimate is not being made at a sufficiently fast rate.

While the hardware limit on memory when running NAPS in serial is larger than the
limit of NMEM as a one-shot method since block sizes are smaller, the information for
all blocks still needs to be stored. This results in a modest increase in the memory limit
for NAPS (serial). This practical hardware limitation is further increased when the blocks
are distributed among multiple processors, resulting in significant time savings and the
ability to increase the sample size. Here, we show results up to sample sizes of 227. This
is not due to a hardware limit on the sample size but rather a practical limit in available
computing resources. Additional processors and memory would allow for substantial
increases in sample size beyond 227. Ongoing work includes the optimization of data
structures combined with parallel computing implementations in C++ for a future update
release on our user-friendly software in C++, R and MATLAB, and a first Python version.
These software updates will include hardware aware modes of operations.

Algorithms 2023, 16, 310 21 of 30

3.5. KDE, NMEM, NAPS(KDE) and NAPS(NMEM) Comparisons

In this subsection, we explore the use of KDE as an alternative to NMEM for ob-
taining density estimations within blocks. To differentiate between the KDE and NMEM
base methods within NAPS, we will refer to them as NAPS(KDE) and NAPS(NMEM),
respectively. Figure 12 compares typical results based on one data sample using KDE,
NMEM, NAPS(KDE), and NAPS(NMEM). This figure clearly shows that without careful
adjustments and attention from a highly trained domain expert with knowledge of the
input data characteristics, KDE can be substantially wrong.

(a) (b)

(c) (d)

Figure 12. Comparison of four density estimate methods: For a Beta(0.5, 0.5) sample of size 217.
(a) MATLAB standard ksdensity() function; (b) NMEM; (c) NAPS using ksdensity() with reflective
boundaries for estimating block densities, and (d) NAPS using NMEM for estimating block densities.

The other three methods (NMEM or NAPS using KDE or NMEM) can be used to
provide an automated process for high throughput applications where no prior knowledge
of the input data characteristics is expected or needed. Although NMEM produces an
accurate and quite reasonable estimate, as shown in Figure 12b, it is not sufficiently smooth.
This example visually suggests that NAPS provides accurate and smooth estimates robustly,
regardless of whether the base estimator used in blocks is KDE or NMEM. This result also
demonstrates that the partitioning method is key to success, so that each block provides
enough support to make a density prediction that is relatively smooth with no sharp
features. It is worth noting that one can construct a data sample to break any of these
methods. However, using the SQR measure, a flag will result when the estimation is likely
not correct. In the four cases shown in Figure 12, only the KDE method will be flagged.

Figure 13 shows the results for the same Beta-distribution used in Figure 12 for the
KDE, NMEM, NAPS(KDE), and NAPS(NMEM) methods. However, for all the plots in
Figure 13, we consider 20 different samples of size 217. It is clear that the KDE method
is easily flagged in Figure 13a as a failed estimate. Interestingly, the SQR plots shown
in Figure 13b,d for the NMEM and NAPS(NMEM) methods fall largely within the 98th
percentile. Importantly, both of these SQR plots appear similar to what would be expected
of SQR plots for SURD. At a qualitative level, for this example distribution, the SQR plots
from NAPS(NMEM) visually resemble SQR plots for SURD slightly better. In contrast,
the good SURD-like characteristics in SQR plots do not appear for the NAPS(KDE) case.

Algorithms 2023, 16, 310 22 of 30

For NAPS(KDE), Figure 13c shows the SQR traces are unnaturally concentrated near the
center, there is a systematic linear trend line that indicates over-fitting, and for some of the
estimates, the SQR plot exceeds the 98th percentile to a sufficient degree that this estimate
would be flagged as a failed estimate. However, unless the SURD pattern in SURD is
quantified, the systematic error found in all the NAPS(KDE) estimates (e.g., a linear line)
could go undetected. This single example suggests it is best to use NAPS(NMEM) for
robust and accurate results.

(a) (b)

(c) (d)

Figure 13. Scaled quantile residual comparisons: The SQR plots are shown for 20 estimates for a
Beta(0.5, 0.5) distribution using a sample size of 217 and four distinct methods. (a) KDE; (b) NMEM;
(c) NAPS(KDE), and (d) NAPS(NMEM).

We compare the overall accuracy in the PDF estimations from NAPS(KDE) and
NAPS(NMEM) using the MPE measure in Figure 14. Across all eight distributions consid-
ered in test set 1 with sample sizes ranging from 29 to 222, it is evident that NAPS(NMEM)
consistently provides superior accuracy over NAPS(KDE). Interestingly, for the heavy-
tailed generalized Pareto and stable distributions (as shown in Figure 14g,h), it is observed
that NAPS(NMEM) has the least advantage over NAPS(KDE) for all sample sizes.

Algorithms 2023, 16, 310 23 of 30

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14. Mean percent error comparisons: Following Figure 8, the MPE for the NAPS(KDE) and
NAPS(NMEM) estimators are compared using box and whisker plots for 100 trials: (a) normal(5, 1)
(b) uniform(4, 8) (c) trimodal normal (d) Beta(2, 0.5) (e) Beta(0.5, 1.5) (f) Beta(0.5, 0.5) (g) generalized-
Pareto(2, 1, 0) (h) and stable(0.5, 0.5, 1, 4). To avoid overlaps in data, NAPS(KDE) and NAPS(NMEM)
sample sizes are slightly displaced about the size being plotted.

The MPE accuracy from NMEM, NAPS(KDE) and NAPS(NMEM) are listed in Table 1
for all fourteen distributions considered in test sets 1 and 2 for three sample sizes. Some-
times NMEM does better than NAPS(KDE) and vice versa. We devise a relative error ratio
(RER) that divides the MPE of NAPS(NMEM) by the minimum MPE between NMEM and
NAPS(KDE). Almost always RER is less than 1, indicating NAPS(NMEM) is overall the
best method. Nevertheless, there are a few cases where RER is greater than 1. This can

Algorithms 2023, 16, 310 24 of 30

occur when the minimum error from NMEM or NAPS(KDE) is very low. In these cases,
the overall accuracy of NAPS(NMEM) can be very good, despite having RER > 1.

Table 1. The mean and standard deviations of MPE for 100 realizations for all 14 distributions
considered at three different sample sizes for the NMEM, NAPS(KDE) and NAPS(NMEM) density
estimation methods, and RER as a comparison measure. The bold RER values indicate that although
RER > 1, NAPS(NMEM) remains very accurate. The RER values greater than 100 have an asterisk to
indicate that NAPS(NMEM) introduced more error in the density estimate than it removed.

Distribution log2(N) NMEM NAPS(KDE) NAPS(NMEM) RER

Beta(0.5, 0.5) 10 1.53 × 102 ± 1 × 103 5.22 × 101 ± 1 × 102 1.12 × 101 ± 4 0.214
Beta(0.5, 0.5) 16 3.64 × 101 ± 1 × 102 2.72 × 101 ± 2 × 102 3.43 ± 5 × 10−1 0.126
Beta(0.5, 0.5) 22 3.09 × 102 ± 8 × 102 3.62 ± 7 7.22 × 10−1 ± 9 × 10−2 0.199
Beta(0.5, 1.5) 10 5.54 × 101 ± 1 × 102 1.39 × 102 ± 9 × 102 9.90 ± 3 0.179
Beta(0.5, 1.5) 16 3.64 × 101 ± 6 × 101 2.42 × 101 ± 1 × 102 2.96 ± 7 × 10−1 0.123
Beta(0.5, 1.5) 22 5.80 × 102 ± 8 × 102 1.99 ± 2 6.13 × 10−1 ± 8 × 10−2 0.307
Beta(2, 0.5) 10 7.46 × 101 ± 9 × 101 3.82 × 101 ± 1 × 102 9.03 ± 2 0.236
Beta(2, 0.5) 16 9.88 ± 2 1.08 × 101 ± 3 × 101 2.78 ± 5 × 10−1 0.281
Beta(2, 0.5) 22 1.42 × 101 ± 1 1.86 ± 2 5.98 × 10−1 ± 7 × 10−2 0.317

Cauchy-Beta 10 7.71 × 103 ± 4 × 103 1.00 × 102 ± 1 × 102 4.18 × 101 ± 4 × 101 0.417
Cauchy-Beta 16 6.29 × 105 ± 6 × 104 1.73 × 103 ± 2 × 103 5.87 × 101 ± 2 × 102 0.034
Cauchy-Beta 22 1.84 × 107 ± 1 × 106 7.75 × 101 ± 1 × 102 5.14 × 102 ± 9 × 102 6.632
GEV(0, 1, 5) 10 3.04 × 102 ± 1 × 102 5.09 × 101 ± 7 × 101 7.61 ± 1 0.149
GEV(0, 1, 5) 16 6.94 × 102 ± 3 × 102 3.98 × 101 ± 6 × 101 3.10 ± 5 × 10−1 0.078
GEV(0, 1, 5) 22 3.02 × 102 ± 1 × 102 1.48 × 101 ± 2 × 101 6.66 × 10−1 ± 7 × 10−2 0.045
GEV(1, 1, 5) 10 4.03 × 102 ± 7 × 102 1.23 × 101 ± 3 8.69 ± 2 0.705
GEV(1, 1, 5) 16 2.78 × 101 ± 3 × 101 1.25 × 101 ± 5 × 101 3.29 ± 5 × 10−1 0.262
GEV(1, 1, 5) 22 2.14 × 101 ± 3 × 101 2.52 × 101 ± 9 × 101 6.76 × 10−1 ± 6 × 10−2 0.032
GEV(2, 2, 2) 10 2.75 × 101 ± 1 × 101 1.38 × 101 ± 5 × 101 7.68 ± 1 0.556
GEV(2, 2, 2) 16 2.03 × 101 ± 1 × 101 2.80 ± 2 2.31 ± 3 × 10−1 0.824
GEV(2, 2, 2) 22 2.01 × 101 ± 2 × 101 1.94 × 101 ± 2 × 102 5.45 × 10−1 ± 5 × 10−2 0.028

Generalized-Pareto 10 1.97 × 101 ± 6 1.17 × 101 ± 2 × 101 6.96 ± 1 0.593
Generalized-Pareto 16 1.18 × 101 ± 1 2.83 ± 5 × 10−1 2.25 ± 4 × 10−1 0.798
Generalized-Pareto 22 1.04 × 101 ± 5 × 10−1 8.41 × 10−1 ± 7 × 10−2 4.28 × 10−1 ± 3 × 10−2 0.509

Normal 10 7.33 ± 4 5.33 × 101 ± 8 × 101 7.67 ± 1 1.047
Normal 16 1.40 ± 1 3.74 × 101 ± 6 × 101 3.15 ± 5 × 10−1 2.239
Normal 22 2.90 × 10−1 ± 3 × 10−1 9.68 ± 1 × 101 6.71 × 10−1 ± 7 × 10−2 2.311
Stable 10 7.82 × 103 ± 1 × 103 3.87 × 103 ± 3 × 104 1.37 × 101 ± 4 × 101 0.004
Stable 16 4.08 × 105 ± 5 × 104 7.39 ± 4 × 101 2.99 ± 3 × 10−1 0.405
Stable 22 7.31 × 106 ± 1 × 106 9.07 × 10−1 ± 8 × 10−2 5.14 × 10−1 ± 3 × 10−2 0.567

Trimodal-Normal 10 2.06 × 101 ± 3 4.59 × 101 ± 9 × 101 9.73 ± 2 0.473
Trimodal-Normal 16 1.01 × 101 ± 2 4.43 × 101 ± 7 × 101 3.35 ± 5 × 10−1 0.332
Trimodal-Normal 22 9.52 ± 2 2.19 × 101 ± 3 × 101 6.81 × 10−1 ± 7 × 10−2 0.072

Uniform 10 2.88 ± 2 1.17 × 101 ± 1 6.92 × 10−1 ± 9 × 10−1 0.240
Uniform 16 3.02 × 10−1 ± 2 × 10−1 4.15 ± 1 2.27 × 10−1 ± 1 × 10−1 0.753
Uniform 22 8.37 × 10−2 ± 5 × 10−2 2.01 ± 1 2.14 × 10−1 ± 1 × 10−1 2.557

Uniform-Mixture 10 5.14 × 101 ± 3 1.67 × 101 ± 9 3.09 × 101 ± 1 × 101 1.853
Uniform-Mixture 16 3.63 × 101 ± 4 × 10−1 1.46 × 101 ± 4 × 101 7.71 × 103 ± 1 × 104 529 *
Uniform-Mixture 22 3.36 × 101 ± 3 × 10−1 1.16 × 101 ± 6 × 101 1.30 × 103 ± 6 × 103 112 *

Weibull(5, 0.9) 10 1.05 × 101 ± 4 2.46 × 101 ± 2 × 101 6.13 ± 2 0.584
Weibull(5, 0.9) 16 4.01 ± 9 × 10−1 9.78 ± 7 2.71 ± 6 × 10−1 0.675
Weibull(5, 0.9) 22 2.05 ± 2 × 10−1 2.13 ± 9 × 10−1 5.33 × 10−1 ± 5 × 10−2 0.260

These results suggest that NAPS(NMEM) is generally the most accurate method. Yet
Figure 8 shows that for the normal distribution (and possibly other simple distributions),
NMEM has greater accuracy than NAPS(NMEM). This occurs because a Gaussian distribu-
tion requires three Lagrange multipliers. This global knowledge is lost when the data is
split up into small blocks. Special circumstances puts NAPS(NMEM) at a disadvantage.

Algorithms 2023, 16, 310 25 of 30

However, for a robust estimator that is fully automatic and will not require prior knowl-
edge of the sample distribution, NAPS(NMEM) provides the most consistent high accuracy
estimates across diverse distributions, and an extensive range of sample sizes.

Figure 15 compares the computational times for KDE, NAPS(KDE), and NAPS(NMEM).
As expected, KDE is much faster than NAPS. Nevertheless, NAPS(KDE) is slower than
NAPS(NMEM) for sample sizes above 212 because block partitioning corroborates with
properties that are favorable for NMEM. That is, NMEM ensures reasonable load balance
by using a low number of Lagrange multipliers to model the PDF in each block. Since the
computational time for KDE depends only on the number of sample points within a block,
NAPS(KDE) is faster than NAPS(NMEM) for sample sizes less than 212 due to the initial-
ization overhead cost of NMEM. However, since a large fraction of the total computational
cost comes from partitioning the blocks, which is independent of the density estimation
method, NAPS(KDE) and NAPS(NMEM) have similar computational speeds. Taking into
account accuracy-speed tradeoffs, NAPS(NMEM) has the best performance. Furthermore,
ongoing work on the C++ NAPS(NMEM) implementation suggests a significant gain in
speed can be achieved.

Figure 15. Computational times: The mean wall time for 100 trials of KDE, NAPS(KDE) and
NAPS(NMEM) with error bars for the same eight distributions used everywhere else as a function of
sample size. Wall times are computed for the parallel runs using 40 processors.

3.6. Illustration of Two Bad Cases

The PDF estimates obtained for sample sizes of 210 and 220 using KDE, NMEM,
NAPS(KDE), and NAPS(NMEM) are presented in Figures 16 and 17 for the Cauchy-Beta
mixture model and the uniform mixture model, respectively. The assumption that reducing
block size will result in smoother estimates proves invalid in these cases. The presence of
sharp features within certain blocks poses an inherent challenge, leading to the Gibbs phe-
nomenon associated with Fourier series approximations of sharp discontinuities. Address-
ing these pathological cases necessitates the abandonment of the smoothness assumption,
which will be addressed through self-detection of edge effects in future work. Nonetheless,
the NAPS density estimate captures the discontinuity well while providing a reasonably
accurate estimate everywhere else. These results warrant further discussion.

Algorithms 2023, 16, 310 26 of 30

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 16. Cauchy-Beta distribution comparisons: For sample sizes 210 (left column) and 220 (right
column) 20 trials are shown for (a,b) KDE (c,d) NMEM (e,f) NAPS(KDE) (g,h) NAPS(NMEM).
The black line shows the ground truth.

Algorithms 2023, 16, 310 27 of 30

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 17. Uniform mixture model comparisons: For sample sizes 210 (left column) and 220 (right
column) 20 trials are shown for (a,b) KDE (c,d) NMEM (e,f) NAPS(KDE) (g,h) NAPS(NMEM).
The black line shows the ground truth.

In Figure 16, the simple KDE method performs poorly for a sample size of 210 and fails
completely with a sample size of 220. Surprisingly, the one-shot NMEM method exhibits
good performance for these sample sizes but fails to capture all the intricate features due to
the requirement of hundreds of Lagrange multipliers. NAPS(KDE) resolves these issues,
providing highly accurate results without employing a Fourier series approach. However, it

Algorithms 2023, 16, 310 28 of 30

exhibits an artifact resembling the Gibbs phenomenon at the discontinuities. NAPS(NMEM)
yields the most visually appealing estimate despite displaying the Gibbs phenomenon at
the edges. Magnified regions around the discontinuities provide a detailed view of the
Gibbs phenomenon. Although challenging to eliminate, these artifacts are comprehensible
and manageable.

In Figure 17, all methods perform reasonably well for the uniform mixture model.
Similar to the Cauchy-Beta mixture model, the step discontinuities pose analogous chal-
lenges. Without the singularities, the basic KDE works, although it over-smooths the
discontinuities as an intrinsic disadvantage. For this problem, even using a sample size of
220, KDE over smooths the sharp step characteristics including the discontinuities at the
far left and far right boundaries. The SQR test would clearly reject this solution as viable.
Notice that NAPS(KDE) virtually eliminates this over-smoothing problem of KDE, but then
it has an apparent Gibbs phenomena at the discontinuities. We see that the NAPS(NMEM)
method effectively captures the uniform mixture model, despite errors caused by local
Gibbs phenomena at the sharp internal edges.

It is worth emphasizing that the cases presented here represent the worst scenarios
in terms of the global MPE, as indicated in Table 1. However, visually, the error does not
appear to be significantly high, despite the elevated RER. This discrepancy arises because,
as overall accuracy improves, a better estimate can be obtained closer to a discontinuity or
singularity. Since a singularity or a discontinuity cannot be accurately modeled in either
the Fourier or smoothing kernel frameworks, the majority contribution to the MPE arises
from the density estimate near such points. Fortunately, these localized issues can be
easily addressed using the divide and conquer approach. In this regard, NAPS(KDE) not
only improves upon KDE but also provides a means to automate bandwidth selection.
Nevertheless, when considering the data as a whole, it becomes evident that NAPS(NMEM)
emerges as the clear winner in terms of overall accuracy and computational efficiency.

4. Conclusions

The NAPS algorithm has been demonstrated to be an effective divide and conquer
approach to density estimation across a diverse set of fourteen distributions, ranging in
difficulty from easy to very challenging. The challenging distributions include disconti-
nuities or singularities, many examples of heavy tails and a mixture model that combines
a Beta distribution having two singularities with a Cauchy distribution. We considered
sample sizes ranging from 29 to 227. A key aspect of NAPS is the development of a novel
statistical measure, denoted by R, that quantifies the density variation within a given
subsample of data, referred to as a block. Specifically, R is the ratio of the greatest spacing
in data points to the lowest spacing within a block. We found that R scales as a power
law for all distributions we checked. This general R statistic has proven to be a useful
scale invariant decision trigger for effective data partitioning in terms of relative density
variation within a block. To our knowledge this useful R statistical measure has not been
previously investigated in the statistics literature.

The NAPS method can use different density estimation methods for estimating density
within blocks of data that define partitioned subsamples. A data-driven stitching method
is defined to develop a smooth overall continuous PDF estimate. Accuracy was quantified
in two ways: through percent error between the estimated density and the ground truth
PDF, and through the scaled quantile residual (SQR). We find that the estimates using
NAPS(NMEM) produced a SQR that looked almost indistinguishable from that of sampled
uniform random data (SURD) as it should. Although NAPS(KDE) has many advantages
over KDE, such as adaptive bandwidth and handling boundaries better, it was noted that
its SQR deviated from the expected characteristics of SURD. It is found that employing
NMEM as the base method applied to all blocks is the most effective in both accuracy and
speed. The NAPS(NMEM) approach extends the capabilities of NMEM to a larger class of
distribution types and improves the ability to accurately estimate the underlying data with
no a priori knowledge from the user. Furthermore, the estimates from NAPS are visibly

Algorithms 2023, 16, 310 29 of 30

smoother and calculated much more efficiently than NMEM. By focusing on partitioning a
sample into more manageable subsamples using NMEM-workers in parallel computing,
NAPS can efficiently handle large samples with over one hundred million units.

In conclusion, the NAPS algorithm represents a novel approach to obtain accurate
density estimation, serving as an appropriate tool for fully automated high throughput
applications. Future improvements are being developed in regards to treating the left
and right blocks differently within the framework of NMEM to include semi-parametric
modeling of heavy tails. Ongoing work also involves incorporating NAPS demonstrated
here using MATLAB into our C++ code, and integrate this technical advance into multiple
existing software as updates in C++, R, MATLAB, and to provide a Python version as well.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
a16070310/s1: MATLAB scripts for data generation and post processing.

Author Contributions: Conceptualization, D.J.J. and Z.D.M.; methodology, J.F., Z.D.M. and D.J.J.;
software, Z.D.M.; validation, Z.D.M. and J.F.; formal analysis, D.J.J.; investigation, Z.D.M. and J.F.;
resources, D.J.J.; data curation, Z.D.M.; writing—original draft preparation, Z.D.M.; writing—review
and editing, J.F. and D.J.J.; visualization, Z.D.M. and J.F.; supervision, D.J.J.; project administration,
D.J.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All code that was used to generate the data and perform the calculations
and analysis of the data are given in Supplementary Materials.

Acknowledgments: The computing resources and support used to produce the results presented in
this paper were provided by the University Research Computing group in the Office of OneIT at
the University of North Carolina at Charlotte. We also like to thank Michael Grabchak for useful
discussions during the early stages of this project.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PDF Probability Density Function
CDF Cumulative Density Function
SQR Scaled Quantile Residual
SURD Sampled Uniform Random Data
KDE Kernel Density Estimation
NMEM Nonparametric Maximum Entropy Method
NAPS Nonparametric Adaptive Partitioning and Stitching
OBT Optimal Branching Tree
MPE Mean Percent Error
PE Percent Error

References
1. Rosenblatt, M. Remarks on Some Nonparametric Estimates of a Density Function. Ann. Math. Stat. 1956, 27, 832–837. [CrossRef]
2. Whittle, P. On the Smoothing of Probability Density Functions. J. R. Stat. Soc. Ser. B Methodol. 1958, 20, 334–343. [CrossRef]
3. Parzen, E. On Estimation of a Probability Density Function and Mode. Ann. Math. Stat. 1962, 33, 1065–1076. [CrossRef]
4. Silverman, B.W. Density Estimation for Statistics and Data Analysis; Monographs on Statistics and Applied Probability; Chapman

and Hall: London, UK, 1986; Includes Bibliographical References; pp. 59–165.
5. Wand, M.P.; Jones, M.C. Kernel Smoothing, 1st ed.; Monographs on Statistics and Applied Probability; Chapman & Hall: London, UK;

New York, NY, USA, 1995; p. xii, 212p.
6. Chiu, S.T. A Comparative Review of Bandwidth Selection for Kernel Density Estimation. Stat. Sin. 1996, 6, 129–145.
7. Abramson, I.S. Adaptive Density Flattening–A Metric Distortion Principle for Combating Bias in Nearest Neighbor Methods.

Ann. Stat. 1984, 12, 880–886. [CrossRef]
8. Borrajo, M.I.; González-Manteiga, W.; Martínez-Miranda, M.D. Bandwidth selection for kernel density estimation with length-

biased data. J. Nonparametric Stat. 2017, 29, 636–668. [CrossRef]
9. Breiman, L.; Meisel, W.; Purcell, E. Variable Kernel Estimates of Multivariate Densities. Technometrics 1977, 19, 135–144. [CrossRef]

https://www.mdpi.com/article/10.3390/a16070310/s1
https://www.mdpi.com/article/10.3390/a16070310/s1
http://doi.org/10.1214/aoms/1177728190
http://dx.doi.org/10.1111/j.2517-6161.1958.tb00298.x
http://dx.doi.org/10.1214/aoms/1177704472
http://dx.doi.org/10.1214/aos/1176346708
http://dx.doi.org/10.1080/10485252.2017.1339309
http://dx.doi.org/10.1080/00401706.1977.10489521

Algorithms 2023, 16, 310 30 of 30

10. Gallego, J.A.; Osorio, J.F.; González, F.A. Fast Kernel Density Estimation with Density Matrices and Random Fourier Features; Springer:
Cham, Switzerland, 2022. [CrossRef]

11. Sheather, S.J. Density Estimation. Stat. Sci. 2004, 19, 588–597. [CrossRef]
12. Chandra, O. Choice of the Bandwidth in Kernel Density Estimation. Int. J. Sci. Res. (IJSR) 2020, 9, 750–754.
13. Florence, K.; Leonard, K.A. Efficiency of various Bandwidth Selection Methods across Different Kernels. IOSR J. Math. (IOSR-JM)

2019, 15, 55–62.
14. Saito, K.; Yano, M.; Hino, H.; Shoji, T.; Asahara, A.; Morita, H.; Mitsumata, C.; Kohlbrecher, J.; Ono, K. Accelerating small-angle

scattering experiments on anisotropic samples using kernel density estimation. Sci. Rep. 2019, 9, 1526. [CrossRef]
15. Saule, E.; Panchananam, D.; Hohl, A.; Tang, W.; Delmelle, E. Parallel Space-Time Kernel Density Estimation. In Proceedings of

the 2017 46th International Conference on Parallel Processing (ICPP), Bristol, UK, 14–17 August 2017; pp. 483–492. [CrossRef]
16. Lin, Y.S.; Heathcote, A.; Holmes, W.R. Parallel probability density approximation. Behav. Res. Methods 2019, 51, 2777–2799.

[CrossRef] [PubMed]
17. Lopez-Novoa, U.; Sáenz, J.; Mendiburu, A.; Miguel-Alonso, J. An efficient implementation of kernel density estimation for

multi-core and many-core architectures. Int. J. High Perform. Comput. Appl. 2015, 29, 331–347. [CrossRef]
18. Monteiro, A.M.; Santos, A.A.F. Parallel computing in finance for estimating risk-neutral densities through option prices. J. Parallel

Distrib. Comput. 2023, 173, 61–69. [CrossRef]
19. Mitchell, R.; Frank, E.; Holmes, G. An Empirical Study of Moment Estimators for Quantile Approximation. ACM Trans. Database

Syst. 2021, 46, 1–21. [CrossRef]
20. Tanaka, H.; Takata, M.; Nishibori, E.; Kato, K.; Iishi, T.; Sakata, M. ENIGMA: Maximum-entropy method program package for

huge systems. J. Appl. Crystallogr. 2002, 35, 282–286. [CrossRef]
21. Michailidis, P.D.; Margaritis, K.G. Parallel Computing of Kernel Density Estimation with Different Multi-core Programming

Models. In Proceedings of the 2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, Belfast, UK, 27 February–1 March 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 77–85. [CrossRef]

22. Racine, J. Parallel distributed kernel estimation. Comput. Stat. Data Anal. 2002, 40, 293–302. [CrossRef]
23. Majdara, A.; Nooshabadi, S. Efficient Density Estimation for High-Dimensional Data. IEEE Access 2022, 10, 16592–16608.

[CrossRef]
24. Farmer, J.; Jacobs, D. High throughput nonparametric probability density estimation. (Research Article) (Report). PLoS ONE 2018,

13, e0196937. [CrossRef]
25. Farmer, J.; Jacobs, D.J. MATLAB tool for probability density assessment and nonparametric estimation. SoftwareX 2022, 18, 101017.

[CrossRef]
26. Farmer, J.; Jacobs, D. The R Journal: PDFEstimator: An R Package for Density Estimation and Analysis. R J. 2022, 14, 305–319.

[CrossRef]
27. Donoho, D.L.; Johnstone, I.M.; Hoch, J.C.; Stern, A.S. Maximum Entropy and the Nearly Black Object. J. R. Stat. Soc. Ser. B

Methodol. 1992, 54, 41–81. [CrossRef]
28. Chen, S.; Rosenfeld, R. A survey of smoothing techniques for ME models. IEEE Trans. Speech Audio Process. 2000, 8, 37–50.

[CrossRef]
29. Dudík, M.; Phillips, S.J.; Schapire, R.E. Maximum Entropy Density Estimation with Generalized Regularization and an Application

to Species Distribution Modeling. J. Mach. Learn. Res. 2007, 8, 1217–1260.
30. Armstrong, N.; Sutton, G.J.; Hibbert, D.B. Estimating probability density functions using a combined maximum entropy moments

and Bayesian method. Theory and numerical examples. Metrologia 2019, 56, 15019. [CrossRef]
31. Farmer, J.; Merino, Z.; Gray, A.; Jacobs, D. Universal Sample Size Invariant Measures for Uncertainty Quantification in Density

Estimation. Entropy 2019, 21, 1120. [CrossRef]
32. Farmer, J.; Allen, E.; Jacobs, D.J. Quasar Identification Using Multivariate Probability Density Estimated from Nonparametric

Conditional Probabilities. Mathematics 2023, 11, 155. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.48550/arxiv.2208.01206
http://dx.doi.org/10.1214/088342304000000297
http://dx.doi.org/10.1038/s41598-018-37345-5
http://dx.doi.org/10.1109/ICPP.2017.57
http://dx.doi.org/10.3758/s13428-018-1153-1
http://www.ncbi.nlm.nih.gov/pubmed/31471826
http://dx.doi.org/10.1177/1094342015576813
http://dx.doi.org/10.1016/j.jpdc.2022.11.010
http://dx.doi.org/10.1145/3442337
http://dx.doi.org/10.1107/S002188980200050X
http://dx.doi.org/10.1109/PDP.2013.20
http://dx.doi.org/10.1016/S0167-9473(01)00109-8
http://dx.doi.org/10.1109/ACCESS.2022.3149280
http://dx.doi.org/10.1371/journal.pone.0196937
http://dx.doi.org/10.1016/j.softx.2022.101017
http://dx.doi.org/10.32614/RJ-2022-037
http://dx.doi.org/10.1111/j.2517-6161.1992.tb01864.x
http://dx.doi.org/10.1109/89.817452
http://dx.doi.org/10.1088/1681-7575/aaf7d1
http://dx.doi.org/10.3390/e21111120
http://dx.doi.org/10.3390/math11010155

	Introduction
	Nonparametric Adaptive Partitioning and Stitching
	Divide and Conquer
	Create Secondary Subsample Set
	Stitching Process
	NAPS Algorithm
	Test Distributions

	Results and Discussions
	PDF Visual Comparison between NAPS and NMEM
	Mean Percent Error Comparison between NAPS and NMEM
	SQR Comparison between NAPS and NMEM
	Computation Time
	KDE, NMEM, NAPS(KDE) and NAPS(NMEM) Comparisons
	blackIllustration of Two Bad Cases

	Conclusions
	References

