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Abstract: Rapid and accurate tree-crown detection is significant to forestry management and precision
forestry. In the past few decades, the development and maturity of remote sensing technology
has created more convenience for tree-crown detection and planting management. However, the
variability of the data source leads to significant differences between feature distributions, bringing
great challenges for traditional deep-learning-based methods on cross-regional detection. Moreover,
compared with other tasks, tree-crown detection has the problems of a poor abundance of objects, an
overwhelming number of easy samples and the existence of a quantity of impervious background
similar to the tree crown, which make it difficult for the classifier to learn discriminative features.
To solve these problems, we apply domain adaptation (DA) to tree-crown detection and propose
a DA cascade tree-crown detection framework with multiple region proposal networks, dubbed
CAS-DA, realizing cross-regional tree-crown detection and counting from multiple-source remote
sensing images. The essence of the multiple region proposal networks in CAS-DA is obtaining the
multilevel features and enhancing deeper label classifiers gradually by filtering simple samples of
source domain at an early stage. Then, the cascade structure is integrated with a DA object detector
and the end-to-end training is realized through the proposed cascade loss function. Moreover, a
filtering strategy based on the planting rules of tree crowns is designed and applied to filter wrongly
detected trees by CAS-DA. We verify the effectiveness of our method in two different domain shift
scenarios, including adaptation between satellite and drone images and cross-satellite adaptation.
The results show that, compared to the existing DA methods, our method achieves the best average
F1-score in all adaptions. It is also found that the performance between satellite and drone images is
significantly worse than that between different satellite images, with average F1-scores of 68.95% and
88.83%, respectively. Nevertheless, there is an improvement of 11.88%~40.00% in the former, which
is greater than 0.50%~5.02% in the latter. The above results prove that in tree-crown detection, it is
more effective for the DA detector to improve the detection performance on the source domain than
to diminish the domain shift alone, especially when a large domain shift exists.

Keywords: domain adaptation; tree-crown detection; cascade RPNs; filtering strategy

1. Introduction

Tree crowns, the main site of photosynthesis, are an indispensable part of trees. Offer-
ing an accurate assessment of tree plantations on a large scale can be very useful in both
scientific research and production, such as for growing-status observation, pest control,
and biomass prediction.

While many methods based on machine learning and deep learning have been applied
to detect tree crowns in remote sensing images and have obtained good results [1–4], the
premise for their effectiveness is that training and testing data follow the same distribution.
However, images in large-scale tree-crown detection and counting are usually collected
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in different regions with different sensors in practice, resulting in a distribution diversity
in the feature space, i.e., a domain shift. In this case, the performance of traditional deep-
learning-based methods will degrade dramatically if they are applied to images taken in
different conditions directly. The most straightforward approach is to manually annotate
the data from the target (new) domain, but it is expensive, labor-intensive, and there may
not always be enough training data.

Domain Adaptation (DA) is a transfer learning paradigm that aligns the data distribu-
tion of the source domain and the target domain by learning new feature representations, so
the model trained on the labeled source domain can be transferred to the target domain that
is completely unlabeled or contains a few labeled data, without significant performance
loss [5]. According to the visibility and quality of data labels on the source and target
domains, DA can be classified into supervised DA (SDA), semi-supervised DA (SSDA),
and unsupervised DA (UDA) [6]. Our proposed method concentrates on the scenario in
which there is a massive quantity of clean data in the source domain and the labels of the
target data are totally unobtainable, i.e., UDA.

However, most of the existing DA models are proposed and optimized on detection
benchmarks, which contain various categories of objects. For example, there are 20 classes
of labeled objects in PASCAL VOC [7] and 80 in MS COCO [8]. In tree-crown detection,
obviously, it is actually quite the opposite. Compared with benchmarks, the tree crowns
in remote sensing images are characterized by a similar appearance, a uniform and dense
arrangement, and a poor abundance of classes, which are unfavorable for CNN-based
classifiers to learn discriminative features.

In addition, most of the existing object detectors [9–12] generate a large number of
anchor boxes with sliding windows. In order to speed up the training procedure, in Ren
et al. [9], a region proposal network (RPN) was proposed to generate region proposals
with a wide range of scales and aspect ratios in the first stage of the detector and predict
an objectness score and the region coordinates.However, the number of negative samples
(background) was much greater than the number of positive samples, resulting in an
imbalance between positive and negative samples and the performance decline of the
classifier. Though minibatch biased sampling is widely used in two-stage approaches
it randomly selects examples by a predefined foreground-to-background ratio and the
required number of examples, it makes the number of simple samples much larger than
that of difficult samples, leading to a decrease in model performance when similar semantic
interference occurs, such as the vegetation or impervious background similar to the tree
crown that often occurs in forestry land. Instead, hard samples are more conducive to
the effective training of the detector. The classical hard samples mining methods, e.g.,
OHEM [13], can assist the model to focus on hard samples under the guidance of the
classification confidence and discard easy samples directly. However, it requires iterative
training, which makes it difficult to be integrated with end-to-end detector. Moreover, the
high computational cost also greatly limits its application. From another perspective, Lin
et al. [14] proposed a focal loss to alleviate the extreme imbalance between foreground
samples and background samples in one-stage detectors. Instead of discarding easy samples
directly, it dynamically reduced the weight of easy samples by modifying the original cross-
entropy loss. However, this method had a very limited effect on two-stage detectors since
most easy negatives were filtered by the two-stage process. Notably, both of the above
two methods introduced extra hyperparameters that needed additional configuration,
increasing the optimization difficulty [15]. For two-stage detectors, improving the region-
proposal quality is crucial for the detection performance. Many approaches [16–19] have
been proposed to improve the performance of RPN, and most of them achieve accurate
positioning by fine-tuning and aligning the feature to the anchors in multiple stages. In
order to alleviate the sample-level imbalance and train an RPN on hard candidate regions,
Cho et al. [20] proposed a negative region proposal network (nRPN) that was trained with
the false positives classified by the RPN. Simultaneously, the RPN was trained with the
hard negatives proposed by the nRPN. In this way, they provided more difficult positive or
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negative proposals to each other. However, before they were trained simultaneously, it was
necessary to first train the RPN alone for a few epochs to generate the false positives (FP)
used in the nRPNs.

Observing the above situation, we propose a DA cascade tree-crown detection frame-
work with multiple region proposal networks (RPNs), referred to as CAS-DA, to improve
the performance of cross-regional tree-crown detection and counting using remote sensing
images. During training, the RPNs of CAS-DA discard easy samples stage by stage, and
only hard samples can participate in the training of classifiers at the deep stage. In addition,
To further improve the precision of detection, we propose a filtering strategy based on the
empirical planting rules of tree crowns to remove false positives in the detection results of
CAS-DA. Accordingly, our contributions are as follows.

(1) A cascade of region-proposal networks for tree-crown detection is proposed. It
takes features from different convolutional layers stage by stage, filters easy samples, and
mines hard samples to alleviate the data imbalance and enhance the classification capacity
of RPNs.

(2) We integrate the proposed cascade network and Strong Weak Faster R-CNN into
CAS-DA and construct the loss function of multiple stages so that the CAS-DA can be
trained in an end-to-end manner.

(3) A practical filtering strategy based on planting rules is designed to further eliminate
the wrongly detected trees effectively.

Extensive cross-regional experiments are conducted on three datasets collected by
satellites and UAVs, including adaptation between satellite images and drone images and
adaptation between different satellite images. The experimental results show that our
method achieves an average F1-score of 68.95% and 88.83% in the two series of experiments,
outperforming the other existing DA approaches by an obvious margin of 11.88%~40%
and 0.50%~5.02%, respectively. This proves the effectiveness of our proposed method in
cross-domain tree-crown detection and counting from multisource remote sensing images.

2. Related Works
2.1. Tree-Crown Detection

Existing tree detection methods based on remote sensing images can be divided into
three categories: traditional image-processing-based methods, classical machine-learning-
based methods, and deep-learning-based methods.

The traditional image processing methods basically include image binarization, local
maximum filtering, and image segmentation [21–23]. These methods require sophisticated
image processing procedures and intricate scenarios, e.g., crown overlap, may lead to a
deterioration of the detection performance. With the development of classical machine
learning, many machine learning methods, such as random forest, support vector machine
(SVM), and artificial neural network (ANN) [1–4] have been used to detect tree crown in
remote sensing images. For example, Wang et al. [2] optimize an SVM with the features
extracted from a histogram of oriented gradient (HOG) to realize the detection of the oil
palm in UAV images from Malaysia, obtaining a precision of over 94%. Nevertheless, most
of these methods require high-resolution and high-quality images, which greatly limits
their application.

Following Alex-Net [24], many deep learning methods have been developed and
are becoming the mainstream methods for many remote sensing tasks. Li et al. [25] first
proposed a deep-learning-based method to detect the tree crown in high-resolution remote
sensing images. Later, Mubin et al. [26] and Neupane et al. [27] combined the sliding-
window algorithm and a convolutional neural network (CNN) classifier to detect oil palm
and banana trees and achieved good results. However, the sliding-window-based method
not only involves an avoidable computational cost but also restricts the complexity of
the classifier to meet the speed requirements, both of which bring a negative impact on
the model performance. In contrast, deep-learning-based object detection methods [9–12]
discard the traditional sliding-window algorithm and further optimize the network struc-
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ture, improving the accuracy and speed of detection. Nowadays, deep-learning-based
object detection methods are used to detect tree crowns in remote sensing images taken
by satellite [28,29], UAV [30,31], and other aircraft [32], realizing an accuracy of up to
90%. Nevertheless, the above deep-learning-based methods work effectively based on two
premises: First, the quantity of training data is sufficient and the data are fully labeled.
Second, the training and testing images are obtained under the same condition. The model
performance will drop significantly once either of the above conditions are not satisfied,
which brings challenges to the large-scale cross-regional tree-crown detection.

2.2. Unsupervised Domain-Adaptive Object Detection

Turning to the case where the annotation in the source domain is available, while the
target domain is not, the UDA methods are also applied to object detection tasks as an
effective solution to the domain shift.

Currently, compared with UDA image classification [33,34] and UDA semantic seg-
mentation [35,36], UDA object detection is still at a relatively early stage. According to [6],
deep DA methods can be summarized into three types: discrepancy-based DA, adversarial-
based DA, and reconstruction-based DA. Discrepancy-based DA methods fine-tune the
basic network trained with source data using a discrepancy-based loss. Ghifary et al. [37]
first realized DA object detection with maximum mean discrepancy(MMD), which regarded
the mean value of positions as a representation of distribution. Considering MMD ignored
the variance representing the distribution scale, Shi et al. [38] proposed a center-based
transfer feature learning method to reduce distribution differences. In adversarial-based
DA, domain-invariant features can be obtained through adversarial learning. In adversarial-
based DA methods, Faster R-CNN is widely used as baseline due to its high flexibility
and extensibility in realizing an end-to-end training. Among these methods, DA Faster
R-CNN [39] innovatively tackled the domain shift at the image level and instance level
with adversarial learning and integrated these components with Faster R-CNN, realizing
the end-to-end training. Later, Saito et al. [40] proposed a Strong Weak Faster R-CNN
containing a strong local alignment and a weak global alignment, further promoting the
performance of the detection. In addition, Xu et al. [41] proposed two regularization
components to assist the above domain-adaptive Faster R-CNN series to focus on crucial
image regions and instances. The reconstruction-based DA method improves the detection
performance by reconstructing the source domain or target domain [42,43]. Although the
above methods make significant progresses in DA object detection on common benchmarks
(i.e., PASCAL VOC), how to make the corresponding optimization for tree detection in
complex scenarios and poor data abundance is a key problem that needs to be solved.

In the remote sensing field, differences in atmospheric and ground conditions can
easily disrupt the generalization ability of deep learning models, and DA is applied to
process multitemporal and multisource satellite images to realize computational vision
tasks, such as image classification and scene classification, which provide an effective way
to observe climate change and the impact of human activities. Comparatively, studies in
DA object detection using remote sensing images are relatively weak. We noticed that Koga
et al. [44] first applied the correlation alignment and adversarial-based DA methods to
satellite-image vehicle detection and proposed a reconstruction loss to assist the model in
learning semantic features more effectively, boosting the detection accuracy in the target
domain by more than 10%.

In tree-crown detection, CROPTD [45] first realized the cross-regional oil palm de-
tection from two regions using a two-stage DA strategy. Considering that not all local
features had the same transferability, it guided the model to focus on transferable local
feature regions with a local attention mechanism. Moreover, Zheng et al. [46] proposed a
multilevel attention DA network and an intersection over union (IoU)-based method to
merge similar bounding boxes and obtain more accurate results. These DA tree-crown
detection methods are mainly bridging the gap in the feature distribution with adversarial
learning and seeking a further domain alignment with an attention mechanism, but they
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overlook the poor learning and classification capacity on the source domain caused by the
characteristics of the tree-crown detection scenario, which have a negative impact on the
performance of DA object detectors.

2.3. Cascade Convolutional Neural Network

The previously mentioned two-stage DA methods only use the features from the last
layer of the feature extractor. In order to learn a better classifier, a cascade structure is
used to obtain multilevel features and discard easy samples in early stages. Before CNNs,
Felzenszwalb et al. [47] built cascade classifiers from part-based deformable models to
abandon sliding windows without any object, enhancing the detection efficiency. For CNN-
based methods, it has been shown that convolutional features from different layers often
contain different information. High-level features contain abstract semantic information,
while lower-level features reflect detailed information of a sample [48]. Thus, CNNs with a
cascade structure are used to utilize multilevel features and learn a more effective classifier.
Xiao et al. [49] proposed a general classification framework for learning boosting cascade
and applied it to face detection. In object detection, Yang et al. [50] employed the cascade
structure in both proposal generation and classification to provide better localized object
proposals and reduce false-positive detection (mainly between ambiguous categories).
To realize airport detection in remote sensing images, Xu et al. [51] established two stan-
dard RPNs in tandem to reduce redundancy by performing nonmaximum suppression
(NMS) [52] repeatedly. Furthermore, they conducted hard example mining for all the
candidate regions after RoI pooling by alternating training. The multiple classifiers of the
aforementioned methods were not trained jointly. Qin et al. [53] proposed a method to
jointly train cascade CNNs. In addition to image classification and object detection, Fan
et al. [54] integrated cascade RPNs with a Siamese network for visual tracking, making
the classifier sequentially more discriminative. Zhang et al. [55] reranked the region pro-
posals generated by the cascade structure with a formulating selection strategy to get the
localization and scale of the object more precisely during tracking. To sum up, existing
works on cascade CNNs are mainly dedicated to mining hard samples or fine-tuning the
bounding box in multiple stages. However, they pay little attention to the application of
cascaded structures in DA object detection. Moreover, the above methods either break the
end-to-end training of the CNN or focus on face detection, where more prior knowledge
can be utilized than general object detection, and there is no sufficiently effective design
and analysis method for the data inadequacy and imbalance in tree-crown detection.

3. Method

Figure 1 shows the framework of the proposed CAS-DA (DA detector with cascade
RPNs) for tree-crown detection and counting, including a Strong Weak Faster R-CNN and
the cascade RPNs. We summarize these modules in our framework as follows.

(a) Strong Weak Faster R-CNN: The method is inherited from Faster R-CNN; it nar-
rows the domain shift at local and global levels by local discriminator Dl and global
discriminator Dg. The gradient reversal layer (GRL) connects the domain discriminator
with the feature extraction network to achieve adversarial training. We focused on the
process of feature extraction, represented by a series of blue cuboids in Figure 1. For clarity,
we briefly review the structure of the feature extraction network (taking ResNet-101 [56] as
an example) here. As shown in Table 1, the blocks consist of a series of convolutional layers
successively named Conv1, Conv2_x, Conv3_x, Conv4_x, and Conv5_x. Conv1~Conv4_x
are responsible for extracting convolutional features of images from the source and target
domains. Conv5_x is a region-of-interest (ROI)-based classifier. The loss function of the
Strong Weak Faster R-CNN is composed of local-level adaptation loss Lloc−img, global-level
adaptation loss Lglobal−img, and the detection loss of Faster R-CNN Ldet.

(b) Cascade RPNs: As shown in Figure 1, this module consists of three RPNs with
the same structure; they are sequentially attached to Conv2_x, Con3_x, and Conv4_x of
the Strong Weak Faster R-CNN to obtain multilevel features. Since the feature map from
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Conv4_x has a different size from that of from Conv2_x and Conv3_x, convolutional blocks
composed of a convolutional layer and an average pooling layer are deployed between
the RPN and Strong Weak Faster R-CNN pipeline for integration convenience. These
multilevel features are fed into the corresponding RPN to generate proposals. Afterwards,
the RPN classifier outputs binary classification probability for each proposal. The higher
the probability value, the more likely there is a tree crown in the proposal. Then, we set a
threshold value at each stage, the easy samples whose classification score is greater than
or equal to the threshold are rejected at this stage and do not participate in the training
of latter stages. . The loss of cascade RPNs consists of three classification loss of all three
RPNs and the regression loss of RPN3.

Figure 1. The framework of the proposed method.

Table 1. Structure of ResNet101.

Layer Name Layer Structure

Conv1 7 × 7, 64, stride 2

Conv2_x

3 × 3 max pool, stride 21× 1, 64
3× 3, 64
1× 1, 256

 × 3

Conv3_x

1× 1, 128
3× 3, 128
1× 1, 512

 × 4

Conv4_x

1× 1, 256
3× 3, 256
1× 1, 1024

 × 23

Conv5_x

1× 1, 512
3× 3, 512
1× 1, 2048

 × 3

Average pool, 1000-d fc, softmax

In this paper, we concentrated on the unsupervised DA tree-crown detection across
two different regions. Specifically, we defined images from labeled source domain Rs as
Ds = {(xs

i , ys
i )}

ns
i=1, and images from unlabeled target domain Rt as Dt = {(xt

i )}
nt
i=1, where

yi is the labels of xi, and ns and nt represent the number of images from the source domain
and the target domain, respectively.

In the following sections, we explain the implementation of cascade RPNs, the integra-
tion details with Strong Weak Faster R-CNN and the filtering strategy successively.
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3.1. Cascade Region Proposal Networks

As shown in Figure 1, images from the source domain and target domain are sequen-
tially input into the feature extraction network, and these features are fed into the branch
of cascade RPNs and generate a set of candidate regional proposals; the last layer of each
branch outputs a classification probability between 0 and 1 with a softmax function for
source proposals when training. Then, some easy samples from the source domain are
filtered out if the probability is greater than a threshold, and the remaining samples go on
to the training of the next cascade stage.

According to the green line of dashes in Figure 1, for example, the source image
features extracted by Conv1 and Conv2_x are resized and fed into PRN1 and generate
region proposals with corresponding binary classification scores. For training efficiency,
1024 of these region proposals are selected and used to train RPN1. If the proposal feature
is significantly different from that of the real tree crown, it obtains a very high classification
score in the background category in RPN1 and is then marked as the easiest negative
sample and rejected. Similarly, the easiest positive samples is also filtered at this stage.
Then, the same number of region proposals is generated in the deeper feature map further
extracted by Conv3_x, but only 512 of the remaining harder samples are used to train
RPN2, and the comparatively easier samples are rejected at that stage. Similar processes are
applied in RPN3 with an extra bounding-box regression. Finally, the remaining proposals
are allowed to join the subsequent processing.

Such a cascade structure brings two advantages:
(1) A large quantity of easy samples are detected and rejected at an early stage, which

reduces the number of samples to be trained in the subsequent network and improves the
computing efficiency of the network.

(2) In cascade RPNs, the classifiers perform a stage-by-stage hard sampling. Each RPN
can be trained to detect the tree crown at different levels of difficulty. Consequently, the
classifier of RPNs is sequentially adept at distinguishing more difficult distractors, and the
distribution of training samples are sequentially more balanced.

As in Faster R-CNN, in Strong Weak Faster R-CNN, the RPN loss function LRPN is
composed of binary classification loss function Lcls and regression loss function Lreg as
Equation (1):

LRPN({pi, ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) +

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ). (1)

pi represents the probability that the ith anchor contains an object (p∗i = 1 when the ith
anchor box is positive, otherwise p∗i = 0). ti and t∗i are the trained coordinates of the anchor
box and the coordinates of the ground-truth bounding box, respectively. Ncls is the proposal
minibatch size for participating in the RPN training, and Nreg is the number of anchor
locations. Specifically,

Lcls(pi, p∗i ) = −log[pi p∗i + (1− pi)(1− p∗i )], (2)

Lreg(ti, t∗i ) = R(ti − t∗i ), (3)

where R is a smooth L1 loss function.
Similar to the Strong Weak Faster R-CNN, in CAS-DA, the cascade RPNs adopt a

multitask loss , including the binary classification loss Lr
cls in the rth (1 ≤ r ≤ R) stage

and the regression loss LR
reg of the final stage. For each stage, the binary classification loss

is computed as Equation (2). The regression loss is computed as Equation (3). The loss
function of cascade RPNs is expressed as follows:

LCascade−RPNs =
R

∑
r=1

µrαr

Nr
cls

∑
i

Lr
cls
(

pi,r, p∗i,r
)
+

1
NR

reg
∑

i
p∗i,3LR

reg(ti,3, t∗i,3), (4)
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αr =

{
1 r = 1,

∏r−1
i−1 [pi,r > threshold] r > 1.

(5)

µr =
µR

10R−r , (6)

where µR = 1, R = 3, and r∈{1,2,3} in this paper. Similar to the Strong Weak Faster R-CNN,
pi,r is a vector representing the classification score at stage r for the background and objects.
Nr

cls is the minibatch size of the rth RPN, NR
reg is the number of anchor locations of the

final stage. Additionally, αr is introduced in CAS-DA to evaluates whether the sample
is simple or not, it is a one-dimensional binary tensor (0 represents an easy sample, 1
represents a nonsimple sample) whose length is consistent with the number of anchor
locations. Specifically, we set a threshold value (e.g., 0.99) at each stage and the αr’s are all
initialized to one, [pi,r > threshold] is 0 if the classification score is greater than the threshold,
otherwise it is 1. The RPN randomly selects minibatch samples from the unrejected set
for training. αr in a form of a successive multiplication means that, as long as a sample
is rejected by any of the cascade stage, it will not have the opportunity to participate in
the training of a later stage. Intuitively, the classification score of deep features counts
more than that of shallow features, so µr is introduced to control the weight of the loss
at different cascade stages and make sure losses from a deeper stage are attributed more
weight. Specifically, the weight of the loss in the previous stage is one tenth that in the
later stage. It can be seen that if R = µr = αr = 1, the cls item is a classical cross-entropy
loss. Moreover, it is worth noting that the above procedure filters both simple positive and
simple negative samples simultaneously, thus few simple positive samples are filtered at
the early stage as well.

3.2. Integration with Strong Weak Faster R-CNN

We took the state-of-the-art Strong Weak Faster R-CNN as our baseline detector. Since
CAS-DA focuses on strengthening the learning ability of RPN classifier, we only needed to
add extra RPNs without making any changes to the other processes. The implementation
details of CAS-DA are as follows: First, the structure and the data flow of RPN1 and RPN2
were designed similarly to those of the RPN in Strong Weak Faster R-CNN, i.e., RPN3 in
Figure 1. To make sure that the feature maps with the same size were available for the
three RPNs, we added convolutional blocks composed of a 1×1 convolutional layer and
an average pooling layer between the first two cascade RPNs and the feature extractor.
Specifically, the convolutional layer size was 1 × 1 × 1024, the pooling layer output feature
map was 38 × 38, and finally, a feature map of 38 × 38 × 1024 was fed to RPNs. For the
convenience of joint training, the batch size of each stage, i.e., Nr

cls (r∈{1,2,3}), was set to
1024, 512, and 256, respectively, in which the batch size of RPN3 was the same as that of the
RPN in Strong Weak Faster R-CNN. Furthermore, a one-dimensional tensor, i.e., αr, was
introduced to evaluate whether the sample was rejected in previous stages.

Finally, we can train our CAS-DA in an end-to-end manner by backward propagation.
The training loss LCAS−DA was designed to compose the loss of detection and domain
adaptation , they were balanced by the trade-off parameter λ. Specifically:

LCAS−DA = LCascade−RPNs + LFast−RCNN + λ
(

Lloc−img + Lglobal−img

)
, (7)

where LCascade−RPNs and LFast−RCNN are both composed of classification loss and regres-
sion loss.

3.3. A Filtering Strategy for Wrong Trees Based on Planting Rules

To further improve the precision of detection, we propose a filtering strategy based on
the empirical planting rules of the tree crown, which can be applied to the postprocessing
in validation and effectively filter the wrongly detected trees (false positives) by CAS-DA.
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In large-scale tree-crown detection, we observed that most of the trees were planted
together and distributed intensively; trees planted individually or in clusters of two or
three are not abundantly found. In other words, there should be several (at least 2) other
tree crowns around a tree crown within a certain range. Depending on this prerequisite,
we propose a tree-crown filtration strategy.

First, we calculated the center of each bounding box classified as a tree crown by
CAS-DA. If there were C bounding boxes, a matrix with the shape of C × C was generated,
and the corresponding values represented the distance between two coordinates. It was
stipulated that the detected tree crowns should be marked as false positives and dropped
out if there were fewer than or exactly 2 detected trees within m pixels of them. As described
above, the tree crowns are arranged intensively in remote sensing images, so m was set
to the average size of the tree crown to obtain the best filtering effect. Specifically, m = 64
in dataset A and B (given that the size of a tree crown was about 64 × 64), and m = 75
in dataset C (given that the size of a tree crown was about 75 × 75). In Section 5.1.1, we
explore the significance of this filtering strategy.

4. Experiments
4.1. Study Area and Dataset

In this research, the proposed method was applied to detect oil palm in remote sensing
images from three different regions. As one of the major tropical cash crops in the world,
the detection and counting of oil palm is of great significance to both economy and ecology.

As shown in Figure 2, we obtained two high-resolution satellite images (i.e., images A
and B) in Peninsular Malaysia [44] . These two images were acquired at different times and
places with different equipment, and therefore, they differed significantly in environmental
conditions and resolution. Another remote sensing image (image C) was taken by a UAV
in South Kalimantan, Indonesia [57]. Table 2 shows the elaborate information of the
three images.

In images A and B, there were four kinds of samples: background, oil palm, other
vegetation, and the impervious background. The training datasets were collected from four
regions of these two images, respectively. To evaluate the performance of our proposed
method, we chose another representative region in images A and B as the validation
datasets and compared the detected results with the ground truth collected by manual
annotation. For images from training and validation regions, a bilinear interpolation was
first applied to resize them to 2400 × 2400 pixels, and then the enlarged images were
cropped randomly to 500 × 500 pixels. Finally, we obtained 4718 samples in image A and
3782 samples in image B.

In image C, in addition to the tree crown, there were also rivers, buildings, and
other vegetation. The training datasets were from one region, and the validation datasets
were from the other one. Since the images were originally collected for growing status
observation by Jz et al. [57], there were more varieties in crown size and appearance
compared with images A and B, such as small palm and yellowed palm. We firstly unified
their labels into oil palm and then split the training region into 3148 images and the
validation region into 851 images with 1024 × 1024 pixels.

Figure 2 shows the location of our study area and the examples of the training region
from three locations. We can easily observe that the tree crowns distributed intensively and
had a low category diversity. Table 3 shows information on the three datasets.
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Figure 2. The location of our study area and training examples used in this paper. We obtained images
from three sets (i.e., (A–C)), the images randomly selected from the training region are arranged at
the top, bottom, and right of the study area image, respectively.

Table 2. The necessary information about image A, image B and image C.

Image A Image B Image C

Source Quick Bird Google Earth Skywalker X8, Sony
a6000

Longitude 100.7772 E 103.5991 E 115.0375 E
Latitude 4.1920 N 1.5967 N 3.1306 S
Spectral RGB RGB,NIR RGB

Acquisition 2015.12.21 2006.11.21 –
Resolution 0.3 m 0.6 m 0.1 m
Image size 10,496 × 10,240 12,188 × 12,576 40,000 × 20,000

Area 9.67 km2 55.18 km2 8 km2

Number of trees 91,357 291,827 86,994



Algorithms 2023, 16, 309 11 of 24

Table 3. The necessary information on the datasets.

Dataset A Dataset B Dataset C

Training image 3999 2950 3148
Validation image 819 832 851

Labeled tree crown 28,999 34,286 53,670
Image size 500 × 500 500 × 500 1024 × 1024

4.2. Experimental Setup and Evaluation Metrics

We applied the proposed method (CAS-DA + filtering) in two different domain-shift
scenarios: (1) adaptations between images collected by satellites and UAVs, including
dataset B → dataset C (B → C), dataset C → dataset B (C → B), dataset A → dataset C (A
→ C), and dataset C → dataset A (C → A); (2) adaptations between images collected by
different satellites, including dataset A → dataset B (A → B) and dataset B → dataset A (B
→ A). Note that s → t above means adaptation from source domain to target domain.

We implemented our method based on PyTorch [58] on Ubuntu 18.04 using a GeForce
RTX 1080 Ti. Our backbone network was ResNet-101 pretrained with Image-Net [59].
The network was trained with the backpropagation algorithm. The initial learning rate
was 0.001, and it was divided by 10 every 50k iterations. Each batch included one image
from the source domain and one image from the target domain. Conventionally, all images
were resized to 600 × 600 after preprocessing. With this design, the feature maps from the
three stages were resized to 38 × 38 × 1024 by the convolutional layer and pooling layer
introduced in Section 3.2. For cascade RPNs, the threshold for an easy sample was set to
0.99 and µR = µ3 = 1. According to the size of tree crowns in our image, we defined the
anchors to have a width of {64, 80} pixels and only assign a {1:1} aspect ratio considering
that the shape of the tree crown was close to a square, which caused the number of anchor
locations in an image (i.e., the length of α) to be fixed to 2888. For the loss function, we
set the trade-off parameter λ = 0.1. Readers can refer to [40] for further details of the
implementation of Strong Weak Faster R-CNN.

In validation, only the images from the target domain were used. We set the maximum
number of tree crowns in an image to 100 and used NMS as the postprocessing method
before the proposed filtering strategy.

We used true positive (TP), false positive (FP), false negative (FN), precision, recall,
and F1-score as evaluation indicators. TP represents true positives, which is the number of
crowns correctly detected. FP represents false negatives, referring to other objects mistaken
for the crown. FN represents false negatives and denotes the number of crowns undetected.
In our validation, the detecting results with a probability score over 0.5 and an IoU with
the ground truth that was higher than 0.5 were considered to be TP. Precision indicates the
proportion of correctly detected tree crowns in the detected tree crowns. Recall describes
the proportion of correctly detected tree crowns in all ground-truth data. F1-score was
introduced to balance these two indicators by computing their harmonic mean value.

4.3. Experiment Results
4.3.1. Experiments between Images Collected by Satellites and UAVs

Table 4 display the results of our proposed method (CAS-DA + filtering) in experiments
between satellite images and UAV images. We can observe that our proposed method
achieved 69.48%, 51.24%, 68.01%, and 87.06% in terms of F1-score on four transfer tasks;
the average F1-score was 68.95%.
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Table 4. The detection results of our proposed method in experiment between satellite images and
UAV images.

B → C C → B A → C C → A

Labeled 53,670 34,286 53,670 28,999
Detected 38,851 19,771 45,774 32,671

TP 31,916 12,359 27,865 27,865
FP 6935 7472 11,956 4806
FN 21,109 16,105 19,853 3483

Precision/(%) 82.15 62.51 73.88 85.29
Recall/(%) 60.19 43.42 63.01 88.89

F1-score/(%) 69.48 51.24 68.01 87.06
Average F1-score/(%) 68.95

We also compared our proposed method with other methods, including F-RCNN
(source) [9], DA Faster R-CNN [39], Strong Weak Faster R-CNN [40], CROPTD [45], and
SW-ICR-CCR [41]. The results are shown in Tables 5 and 6. F-RCNN (source) denotes
Faster R-CNN trained only with source images and tested on the target images. Intuitively,
a better performance of F-RCNN (source) implies a smaller gap in the feature distribution
from the source domain to the target domain, i.e., a smaller domain shift. The other four
are representative DA methods. For comparison fairness, the experiment setups of these
methods were all as described in Section 4.2.

Table 5. The detection results of different methods on B → C and C → B.

Method
B → C C → B

Precision Recall F1-Score Precision Recall F1-Score

F-RCNN (source) 49.97 0.22 0.43 1.14 0.57 0.76
DA F-RCNN 90.36 46.77 61.64 30.48 44.90 36.45

Strong Weak Faster R-CNN 26.86 14.45 18.79 23.53 6.59 10.30
CROPTD 58.07 28.02 37.80 47.58 13.32 20.82

SW ICR-CCR 85.55 55.62 67.41 39.89 19.06 25.80
CAS-DA + filtering 82.15 60.19 69.48 62.51 43.42 51.24

Table 6. The detection results of different methods on A → C and C → A.

Method
A → C C → A

Precision Recall F1-Score Precision Recall F1-Score

F-RCNN (source) 63.35 59.42 61.49 6.55 3.50 4.56
DA F-RCNN 63.39 58.70 60.95 68.36 70.16 69.25

Strong Weak Faster R-CNN 63.55 61.29 62.40 26.19 30.80 28.31
CROPTD 65.82 63.84 64.81 47.76 49.02 48.38

SW ICR-CCR 63.92 59.44 61.60 70.34 72.79 71.54
CAS-DA + filtering 73.88 63.01 68.01 85.29 88.89 87.06

In this paper, the bold values in the table indicate the maximum value in the corre-
sponding evaluation index unless noted otherwise.

Comparing the performance of these methods, a noteworthy phenomenon was the
dramatic drop in the performance, especially the recall, of Strong Weak Faster R-CNN
and CROPTD in B → C, C → B, and C → A, with average F1-scores of only 19.13% and
35.67%, respectively. There are three possible key reasons for this: (1) As mentioned in
Section 4.1, dataset C was the only dataset collected by UAV, which exhibited a clear visual
difference with the other two datasets in terms of image quality/resolution, texture, etc. The
knowledge learned by CAS-DA on image C could not be well generalized to image A and
image B, which was proved by the poor results of Faster RCNN (source) on C → B and C →
A. On the contrary, Faster RCNN (source) achieved good performance (even better than DA
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F-RCNN) on A → C, indicating that the knowledge learned in dataset A could be directly
transferred to dataset C to a certain extent. (2) In image C, there were palms in unhealthy
growth status such as dead and yellowed ones that did not exist in image A and image B.
Consequently, when C was taken as the target domain, these unhealthy palms were missed
by the detector due to their difference from healthy ones in the source domain in terms
of texture, size, etc., resulting in a decrease in recall. When we consider C as the source
domain, these outlier features were prone to negative transfer, hurting the transferability of
the model. (3) CROPTD is inherited from Strong Weak Faster R-CNN. Compared to other
DA methods, both eliminated instance-level alignment, which also caused a performance
decline, especially when there were a quantity of background samples similar to the object.

Our proposed method ranked at or near the top of the listed DA methods in terms of
both precision and recall, thus achieving the highest F1-score in all four transfer experiments.
Compared with Strong Weak Faster R-CNN (baseline), our method showed a greater
robustness and improved the F1-score on the four experiments by 5.61%~58.75%.

To demonstrate the experimental results more clearly, Table 7 shows the F1-scores of
all methods in the four experiments. Our proposed method achieved the best performance
with 68.95% in terms of average F1-score, outperforming DA F-RCNN, Strong Weak Faster
R-CNN, CROPTD, and SW ICR-CCR by an obvious margin of 11.88%, 40.00%, 12.36%, and
26.01%, respectively.

Table 7. The F1-scores of different methods on four transfer tasks.

Method B → C C → B A → C C → A Average

F-RCNN
(source) 0.43 0.76 61.49 4.56 16.81

DA F-RCNN 61.64 36.45 60.95 69.25 57.07
Strong Weak

Faster
R-CNN

18.79 10.30 62.40 28.31 28.95

CROPTD 37.80 20.82 64.81 48.38 42.94
SW ICR-CCR 67.41 25.80 61.60 71.54 56.59

CAS-DA +
filtering 69.48 51.24 68.01 87.06 68.95

We divided the experimental results from Table 7 into two groups: adaptation between
dataset B and dataset C (i.e., B↔C, including B → C and C → B), and adaptation between
dataset A and dataset C (i.e., A↔ C, including A → C and C → A). We noticed that the
performance of Faster RCNN (source) in B↔ C was clearly worse than that in A↔ C.
Combined with the previously mentioned results, we can draw the conclusion that the
domain shift between B and C was more significant than that between A and C, which
was also confirmed by the experimental results of the DA methods: taking C as the source
domain, in C → B and C → A, all of the DA methods obtained the worst performance in
C → B, and our method also achieved an F1-score of only 51.24%, while in C → A, they
performed much better, and our method achieved an F1-score of 87.06%.

Analyzing these two groups of experiments from another perspective, it can be seen
that our method led to a more remarkable improvement of the adaptation with a larger
domain shift. Specifically, compared with the other four DA methods, our method im-
proved the average F1-score of B↔C by 11.32%~45.82%, exceeding 10.97~32.18% on A↔C.
It proved that our method, which focuses on improving classification capability on source
domain, was more effective than the other DA methods that focus on diminishing the
domain shift across common benchmarks, especially in the presence of a large domain shift.
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4.3.2. Experiments between Images Collected by Different Satellites

To further verify the effectiveness of the proposed method, we performed adaptation
between two high-resolution satellite images. The experimental results are shown in
Tables 8–10.

Table 8. The detection results of our proposed method between images collected by different satellites.

A → B B → A

Labeled 34,286 28,999
Detected 32,909 29,676

TP 26,103 28,649
FP 6806 1027
FN 3925 2180

Precision/(%) 79.32 96.54
Recall/(%) 86.93 92.93

F1-score/(%) 82.95 94.70
Average F1-score/(%) 88.83

TP, FP, FN, precision, recall, and F1-score for A → B and B → A are listed in Table 2.
Our proposed method achieved an F1-score of 82.95% in A → B and 94.70% in B → A.

Table 9. The detection results of different methods on A → B and B → A.

Method
A → B B → A

Precision Recall F1-Score Precision Recall F1-Score

F-RCNN (source) 66.65 87.84 78.61 84.98 90.82 87.80
DA F-RCNN 64.34 87.16 74.03 95.62 91.65 93.59

Strong Weak Faster R-CNN 72.94 87.75 79.66 96.54 88.52 92.54
CROPTD 81.30 82.53 81.91 96.23 91.98 94.15

SW ICR-CCR 81.22 83.70 82.44 96.40 92.11 94.21
CAS-DA + filtering 79.32 86.93 82.95 96.54 92.93 94.70

Table 10. The F1-scores of different methods on two transfer tasks.

Method A → B B → A Average

F-RCNN (source) 78.61 87.80 83.21
DA F-RCNN 74.03 93.59 83.81

Strong Weak Faster
R-CNN 79.66 92.54 86.10

CROPTD 81.91 94.15 88.03
SW ICR-CCR 82.44 94.21 88.33

CAS-DA + filtering 82.95 94.70 88.83

As shown in Tables 9 and 10, it is noticed that not all DA methods outperformed
F-RCNN (source). For example, the performance of DA F-RCNN on A → B was worse
than that of F-RCNN (source). Our proposed method achieved the best performance on
two transfer tasks, with F1-scores of 3.29 and 2.16 percentage points higher than Strong
Weak Faster R-CNN (baseline) in two experiments. The average F1-score was 88.83%,
outperforming other DA methods by 5.02%, 2.73%, 0.80%, and 0.50%. Furthermore, the
good performance of F-RCNN (source) implied a smaller domain shift between A and B
than that in the previous adaptation scenario.

To summarize Sections 4.3.1 and 4.3.2: (1) The performance of all DA methods between
different satellite images (as shown in Table 10) was superior to that between satellite images
and UAV images (as shown in Table 7), which might be because the significant domain shift
in the latter brought a greater difficulty for the DA detector to learn the domain-invariant
features. (2) Compared to the other DA methods that focus on diminishing the domain-shift,
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our method obtained the highest F1-score in two different adaptation scenarios. which
demonstrates the importance and effectiveness of improving the detection performance
on the source domain to enhance the DA detector. Moreover, it is worth noting that our
method brought a greater improvement for the adaptation with a large domain shift.

5. Discussion
5.1. Ablation Study
5.1.1. Effects of Filtering Strategy

In order to verify the effectiveness of the filtering strategy, we evaluated the perfor-
mance of the filtering strategy on B → C, C → B, A → C, C→ A, A → B, and B → A. The
experimental results in Tables 11–16 prove that adding filtering strategy helped filter out
wrongly detected trees effectively as it improved the F1-score by 0.85%, 0.25%, 0.07%, 0.58%,
0.57%, and 0.18% on six transfer experiments, respectively.

Moreover, there was a slightly decrease in TP and precision after filtering since a
few individual trees were correctly detected but filtered by mistake. Despite all of this,
Tables 11–16 reveal that 972, 814, 377, 504, 569, and 269 detected trees were dropped through
the filtering process, of which 588, 636, 288, 459, 522, and 171 were false positives while only
384, 178, 89, 45, 47, and 98 were true positives, which improved the F1-score by increasing
the precision of the detection.

Table 11. Effects of the filtering strategy on B → C.

Method Detected TP FP FN Precision/(%) Recall/(%) F1-Score/(%)

CAS-DA 39,822 32,300 7522 21,106 81.11 60.48 68.63
CAS-DA + filtering 38,851 31,916 6935 21,109 82.15 60.19 69.48

Table 12. Effects of the filtering strategy on C → B.

Method Detected TP FP FN Precision/(%) Recall/(%) F1-Score/(%)

CAS-DA 20,585 12,537 8048 16,054 60.90 43.85 50.99
CAS-DA + filtering 19,771 12,359 7412 16,015 62.51 43.42 51.24

Table 13. Effects of the filtering strategy on A → C.

Method Detected TP FP FN Precision/(%) Recall/(%) F1-Score/(%)

CAS-DA 46,151 33,907 12,244 19,760 73.47 63.18 67.94
CAS-DA + filtering 45,774 33,818 11,956 19,853 73.88 63.01 68.01

Table 14. Effects of the filtering strategy on C → A.

Method Detected TP FP FN Precision/(%) Recall/(%) F1-Score/(%)

CAS-DA 33,175 27,910 5265 3464 84.13 88.96 86.48
CAS-DA + filtering 32,671 27,865 4806 3483 85.29 88.89 87.06

Table 15. Effects of the filtering strategy on A → B.

Method Detected TP FP FN Precision/(%) Recall/(%) F1-Score/(%)

CAS-DA 33,478 26,150 7328 3859 78.11 87.14 82.38
CAS-DA + filtering 32,909 26,103 6806 3925 79.32 86.93 82.95

Table 16. Effects of the filtering strategy on B → A.

Method Detected TP FP FN Precision/(%) Recall/(%) F1-Score/(%)

CAS-DA 29,945 28,747 1198 2137 96.00 93.08 94.52
CAS-DA + filtering 29,676 28,649 1027 2180 96.54 92.93 94.70
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5.1.2. Effects of Cascade Stages

Tables 17–19 summarize the performance of our CAS-DA method with a different
number of cascade stages. SW is an abbreviation for Strong Weak Faster RCNN that only
uses RPN3.

Here are our observations: (1) SW achieved the worst F1-score in all experiments when
no cascade RPN was added. (2) By adding RPN1 or RPN2, the detector outperformed
SW. Specifically, adding RPN1 alone brought 47.52%, 26.18%, 4.45%, 28.47%, 1.64%, and
1.69% gains in F1-score and only adding RPN2 improved the F1-score by 46.68%, 23.98%,
1.18%, 3.36%, 0.72%, and 1.33%. However, adding either RPN1 or RPN2 still fell short of
the best F1-score. (3) It is worth noting that RPN1 was more effective than RPN2 in all
six experiments. This is possibly because a large number of very easy samples could be
filtered in RPN1 using the shallow-level features. To prove it, we observed the training
process and found that the number of easy samples filtered by RPN1 was always much
more than that of RPN2. Taking A → B as an example, RPN1 generated 2888 anchors;
after that, RPN1, RPN2, and RPN3 classified 1002, 418, and 22 of them as easy samples,
respectively. (4) CAS-DA achieved the optimal performance when three RPNs were added
at the same time, outperforming SW on six transfer tasks by 2.72%, 1.98%, 30.17%, 49.84%,
58.17%, and 5.54% in terms of F1-score, respectively, without the filtering strategy. More
cascade stages may further improve the performance of the model but will also increase
the cost of computing.

Table 17. Effects of cascade stages on B → C and C → B. The best F1-score was reached when three
RPNs were added.

Method RPN1 RPN3 RPN3
B → C C → B

Precision Recall F1-Score Precision Recall F1-Score

SW X 26.86 14.45 18.79 47.58 13.32 20.82

Ours
X X 79.31 56.98 66.31 56.14 40.42 47.00

X X 81.99 54.91 65.77 53.51 38.52 44.80
X X X 81.11 60.48 68.63 60.90 43.85 50.99

Table 18. Effects of cascade stages on A → C and C → A. The best F1-score was reached when three
RPNs were added.

Method RPN1 RPN3 RPN3
A → C C → A

Precision Recall F1-Score Precision Recall F1-Score

SW X 63.55 61.29 62.40 26.19 30.80 28.31

Ours
X X 84.21 55.43 66.85 57.93 55.67 56.78

X X 66.30 61.07 63.58 32.04 31.31 31.67
X X X 73.47 63.18 67.94 84.13 88.96 86.48

Table 19. Effects of cascade stages on A → B and B → A. The best F1-score was reached when three
RPNs were added.

Method RPN1 RPN3 RPN3
A → B B → A

Precision Recall F1-Score Precision Recall F1-Score

SW X 72.94 87.75 79.66 96.54 88.52 92.54

Ours
X X 75.84 87.61 81.30 96.36 92.19 94.23

X X 74.41 87.39 80.38 94.94 91.54 93.21
X X X 78.11 87.14 82.38 96.00 93.08 94.52

5.2. Easy-Sample Threshold Analysis

The smaller the threshold, the more samples may be filtered as easy samples by
the cascade RPNs. Taking B → A as an example, we implemented the experiment with
threshold values of 0.95, 0.96, 0.97, 0.98, 0.99, 0.999, and 0.9999. The results are shown in
Figure 3.
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When the threshold was less than or equal to 0.99, the cascade RPNs filtered out easy
samples and improved the performance of the classifier, and the F1-score increased with
the increase of the threshold. When the threshold was greater than 0.99, only a few samples
were filtered, and the F1-score decreased significantly. Therefore, we finally selected 0.99 as
the easy-sample threshold to obtain the highest F1-score.

Figure 3. F1-score of B → A with different threshold values. CAS-DA achieved the best F1-score
when the threshold was set to 0.99.

5.3. Visualization and Analyses
5.3.1. Detection Examples

For visualization purpose, six example regions for the above experiments are illustrated
in Figures 4–9. The green rectangle represents the correctly detected crown (TP) and the
red rectangle represents the backgrounds identified as crowns by mistake (FP). From top
left to bottom right, the corresponding methods are the manually annotated ground truth,
Strong Weak Faster R-CNN, CAS-DA, and CAS-DA with the filtering strategy, respectively.

The results demonstrate that CAS-DA outperformed Strong Weak Faster R-CNN in all
six transfer tasks. In the detection results, the number of true positives (green rectangles)
increased while the number of false positives (red rectangle) decreased. In addition, as
shown in subimages (c) and (d), the wrongly detected trees (marked by red rectangles)
were effectively removed by the proposed filtering strategy, which contributed to further
improving the detection precision.

5.3.2. Response Map Visualization

In cascade RPNs, since the easy samples were rejected stage by stage, the RPN classifier
was sequentially more discriminative in distinguishing tree crown from background or
other difficult distractors. Figure 10 shows the response map activated by the ReLU function
in each stage. Images from top to bottom come from datasets A, B, and C, respectively. We
illustrate from left to right the ground truth and the response maps obtained by the RPN in
the three stages. We can see that the RPN was sequentially more discriminative, and the
tree crowns were localized more accurately.
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(a) Ground Truth (b) Strong Weak Faster R-CNN

(c) CAS-DA (d) CAS-DA + filtering

Figure 4. Qualitative results for different methods on B → C.

(a) Ground Truth (b) Strong Weak Faster R-CNN

(c) CAS-DA (d) CAS-DA + filtering

Figure 5. Qualitative results for different methods on C → B.
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(a) Ground Truth (b) Strong Weak Faster R-CNN

(c) CAS-DA (d) CAS-DA + filtering

Figure 6. Qualitative results for different methods on A → C.

(a) Ground Truth (b) Strong Weak Faster R-CNN

(c) CAS-DA (d) CAS-DA + filtering

Figure 7. Qualitative results for different methods on C → A.
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(a) Ground Truth (b) Strong Weak Faster R-CNN

(c) CAS-DA (d) CAS-DA + filtering

Figure 8. Qualitative results for different methods on A → B.

(a) Ground Truth (b) Strong Weak Faster R-CNN

(c) CAS-DA (d) CAS-DA + filtering

Figure 9. Qualitative results for different methods on B → A.
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Figure 10. Response maps in different RPN stages. RPN is sequentially more discriminative, and the
tree crowns are localized more accurately.

6. Conclusions

In this paper, we proposed an end-to-end DA detector with cascade RPNs (i.e., CAS-
DA) to realize the cross-regional tree-crown detection and counting. To deal with the
problems of a poor abundance of objects and the data imbalance in tree-crown detection,
the cascade RPNs were designed to adopt multiple region proposal networks to filter out
easy samples so that the learning ability of deeper classifiers was gradually enhanced.
Then, the adaptation components and detector were integrated to form an end-to-end
framework for the cross-regional detection. In addition, a practical filtering method was
proposed according to the observed tree-crown distribution rules to effectively eliminate
the wrongly detected trees. Experiments in two different adaptation scenarios showed
that our method achieved 68.95% and 88.83% average F1-scores, respectively, significantly
outperforming the other DA approaches focusing on diminishing the domain shift across
common benchmarks, showing its effectiveness in cross-domain tree-crown detection using
remote sensing images. Particularly, our method obtained a greater performance boost for
the adaption with a larger domain shift. From the experimental results, we could draw
the conclusion that, in tree-crown detection, it is more effective to improve the detection
performance on the source domain than to diminish the domain shift, especially when
confronted with a significant domain shift.

Moreover, our method has the potential to realize other DA object detection with
similar characteristics to overcome the scarcity of labeled data and the difficulty of tradi-
tional deep learning methods in transfer learning across different domains. For example,
in the remote sensing field, it can be directly applied to the cross-regional growing-status
observation of the same tree species after labeling the source domain with fine-grained
labels. Furthermore, fault detection in different environments, such as the fault detection of
mechanical equipment, high-voltage line, etc., is also a possible scenario, where the forms
of the fault are few and the image background is very complex, limiting the performance
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of traditional RPN-based detector. Introducing DA methods with cascade RPNs could be
beneficial by saving labeling costs and locating the fault more precisely.

Nevertheless, there is still much room for improving the performance of cross-domain
detection between satellite images and UAV images due to the great difference in styles,
textures, etc. Therefore, we hope to build a more effective cross-domain tree-crown detector
for this adaptation in the future.
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