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Abstract: This paper aims to solve the space robot pathfinding problem, formulated as a multi-
objective (MO) optimization problem with a variable number of dimensions (VND). This formulation
enables the search and comparison of potential solutions with different model complexities within
a single optimization run. A novel VND MO algorithm based on the well-known particle swarm
optimization (PSO) algorithm is introduced and thoroughly described in this paper. The novel
VNDMOPSO algorithm is validated on a set of 21 benchmark problems with different dimensionality
settings and compared with two other state-of-the-art VND MO algorithms. Then, it is applied
to solve five different instances of the space robot pathfinding problem formulated as a VND MO
problem where two objectives are considered: (1) the minimal distance of the selected path, and (2)
the minimal energy cost (expressed as the number of turning points). VNDMOPSO shows at least
comparable or better convergence on the benchmark problems and significantly better convergence
properties on the VND pathfinding problems compared with other VND MO algorithms.

Keywords: space robot; pathfinding; heuristic algorithm; particle swarm optimization; variable
number of dimensions; metameric optimization

1. Introduction

Algorithms for finding the optimal path are used in our lives on a daily basis. Fast
and accurate methods for finding the optimal route can make our lives more pleasant,
e.g., when searching the optimal route using public transport [1], saving a huge amount of
resources in cases of a proper delivery path planning [2], or even saving lives in cases of
emergency vehicle routing [3].

The minimal distance of the path connecting the starting and target points is usually
the first choice for the objective function used by the algorithms for optimal planning
on the surface of the earth. Other objectives such as the shortest traveling time, the
least power consumption during the travel, or the minimal risks are used by specific
applications. Nevertheless, all the mentioned objectives are valid at once for the space
robot path planning. Consider, for example, the surface of the moon, where various robot
rovers must avoid surface irregularities, whether craters or, conversely, outcrops [4]. Power
consumption and route reliability have at least the same importance as the length of the
route itself in the case of the space robot path planning. This is due to the unavailability of
replacement sources and the very limited (and costly) or complete impossibility of repairing
the device in the event of a collision with an obstacle outside the Earth. The conventional
graph-based algorithms including the famous Dijkstra’s [5] and A-star algorithms [6] follow
only one objective during the optimal path search. All decisions are made based on weights
of graph node connections that express one of the considered path parameters (the shortest
distance, the least power consumption, etc.) or their linear combination where the weights
of individual components have to be set a priori.

Nevertheless, the space robot pathfinding problem (SRPP) optimization has to be
considered as a multi-objective optimization problem (MOOP) [7] to prevent the loss of
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generality of the solution. The set of compromise solutions (the so-called Pareto front)
as a result of the multi-objective optimization problem gives much more insight into the
conflicting objectives of the solved problem. The final solution can be then selected from
the Pareto front by an expert or an automated system considering the gained knowledge
about the problem under solution.

Several authors have considered the SRPP as a multi-objective problem. For example,
Ajeil et al. consider two objectives during the path planning: (1) the total path’s distance,
and (2) the path’s smoothness in [8]. Nevertheless, they combine the two objectives into a
single weighted function, with weights being selected a priori. Another drawback of their
approach is that they select the total number of the turning (or way) points (TP) between
the start and target position a priori. This drawback can be overcome by employing
the so-called grid-based solution, as in [9], where the solution domain is first divided
into a set of regular subdomains (usually of a rectangular shape). Then, the subdomains
occupied by obstacles cannot become the TPs while the empty subdomains can serve as the
TPs. The decision space vector for optimization purposes is then a stream of subdomain
addresses and its length has to be either fixed [10,11] or some additional algorithm [9,12]
has to control the addition or deletion of TPs. The grid-based methods are relatively easy
to implement. Nevertheless, they suffer from several drawbacks: the obstacles are not
represented precisely in cases of a very coarse subdomain tessellation, or the number
of subdomains reaches very high values, which leads to an unwanted explosion of the
dimensions of the decision space vector [13].

The drawbacks of the aforementioned SRPP formulations as either single- or multi-
objective problems with fixed dimensions turn our attention to the class of so-called
variable number of dimensions (VND) algorithms. Some authors refer to these algorithms
as metameric. The VND problems have in common that their solution is built using more
structurally similar segments and the optimal number of those segments is usually a
priori unknown. The family of metameric problems contains a large variety of problems,
starting from a wind farm turbine placement [14], composite laminate metamaterials design
[15], and neural network architecture design [16], to biomedical inverse imaging [17]. A
comprehensive review of VND problems can be found in [18]. Pure VND algorithms face
two tasks during the optimization process: (1) they have to find the optimal dimension of
the final solution (i.e., number of segments), and (2) they have to find the optimal values of
the individual decision space variables (DSV) [19]. Clearly, the SRPP problem belongs to
the multi-objective VND problems because the optimal number of turning points depends
on the configuration of the obstacles and more than one objective should be considered
during the path selection.

Most of the initial works regarding VND optimization focused on modifications of ge-
netic algorithms [20,21] because of their natural ability to represent the grid-based problems
with the binary DSVs. Then, the attention moved to less limited evolutionary optimization
algorithms (EOA) such as differential evolution (DE) [22]), or heuristic algorithms (HA)
such as particle swarm optimization (PSO) [23,24]. Single-objective algorithms based on
PSO were proposed in [19,25]. Although there are quite few studies dealing with a single-
objective VNDPSO, e.g., [26–29], studies dealing with multi-objective VNDPSO-based
algorithms are very rare. The so-called social class MOPSO algorithm (SCMOPSO) was
introduced in [30] to solve the VND MO problem of wireless sensor network design. In
SCMOPSO, the particles are clustered according to their dimension to different classes.
Then, the particles move to another class (change their dimension) after a certain num-
ber of iterations in which they do not improve. However, the exchange of information
between particles is limited only to members of one class. Authors in [31] proposed the
multi-objective variable length PSO (VLMOPSO). VLMOPSO uses an additional binary
variable that enables or disables any DSV (the metameric segment to be more precise),
which deteriorates the convergence of the algorithm since the decision space dimension is
enlarged significantly. In [32], we proposed the variable number of dimensions general-
ized differential evolution (VNDGDE3)—a VND extension based on the multi-objective
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GDE3 algorithm [33]. In VNDGDE3, a large portion of the decision space variables for
the crossover operation is selected randomly. This behavior results in the generation of
infeasible DSVs (i.e., paths going through obstacles in the case of SRPP).

Promising results of VNDPSO on single-objective problems such as printed circuit
board decoupling [34], microwave imaging [17], or design of an antenna array [35] lead
us to the idea of extending it to solve multi-objective problems as well. Therefore, the
contributions of this paper can be summarized as follows. A novel variable number of
dimension multi-objective optimization (VNDMOPSO) algorithm is proposed. Its conver-
gence properties are assessed on a set of VND benchmark problems. The convergence
of VNDMOPSO is compared with other available VND algorithms, namely VNDGDE3
[32] and VLMOPSO [31]. The VNDMOPSO is then applied to solve various instances of
the multi-objective space robot pathfinding problem where both distance and number of
turning points should be minimized.

The rest of the paper is organized as follows. The space robot path planning problem
is formulated as the VND two-objective problem in Section 2. Section 3 describes the
proposed VNDMOPSO algorithm. Then, Section 4 contains the discussion of obtained
results for the VNDMOPSO algorithm and compares them with results obtained by the
reference algorithms. The influence of control parameters of VNDMOPSO is assessed here,
also. Finally, Section 5 reviews the main conclusions of the paper.

2. Problem Definition

The space robot pathfinding problem can be viewed as a search for the set of optimal
turning points leading the robot safely from its starting location, xS, to the target location,
xT. These TPs have to be located somewhere in the feasible decision space, Ω ⊂ R2. The
bounding box surrounding all the obstacles located in the area of interest serves usually as
Ω. The situation is illustrated in Figure 1.

Figure 1. The illustration of the space robot path problem. Three feasible paths from the starting
point, rS, to the target point, rT, form the Pareto front of the multi-objective SRPP.

First, we have to clarify some assumptions that are valid throughout the whole paper:

Assumption 1. The obstacles are represented by polygons. The n-th polygon is then a set of 2D
nodes, On, ordered in a counter-clockwise order.

Assumption 2. The mobile robot has a physical body, which is circumferenced by a circle of radius
r. All the obstacles are then enlarged by r (see shaded borders in Figure 1) so that the robot can be
viewed as a single point.

Assumption 3. The obstacles are static and their position is known.
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Assumption 4. The robot moves with a constant speed within Ω. The robot can change the
direction of the movement at any time omnidirectionally.

The problem of the robot’s path through the space containing several obstacles of
different polygonal shapes is then formulated as the VND MOOP as follows:

min
u

f1(u), f2(u)

s.t. u ∈ Γ ⊂ RNd ,

Nd ∈ N = {2, 4, 6, . . . , Nmax}.

(1)

Here, symbol u denotes a decision space vector whose feasible space, Γ, is a subspace
of RNd . All possible values, Nd, generate a list of feasible dimensions (N) of the VND
problem formulation. The symbol Nmax denotes the largest possible dimension. In this
formulation of SPRR, u is formed by individual turning points, ri, on the way from rS to
rT . The location of the i-th TP is specified by a 2D vector, ri = xi, yi. Thus, the DSV is a
collection of TPs:

u =
{

r1, r2, . . . , rNd/2
}

. (2)

The path through a maze can be then constructed as a collection, p = {rS , u, rT }.
Referring to (1), the symbols f1 and f2 stand for the two considered objective functions.

The first objective function minimizes the traveled Euclidean distance of the path:

f1(u) =
Nd/2+1

∑
i=1

d
(

pi, pi+1
)
, (3)

where pi is the i-th location from the path and d(·, ·) denotes the Euclidean distance
between two locations. The second objective function takes the complexity of the path into
consideration:

f2(u) = ||u||/2, (4)

where || · || denotes the length of the vector. Thus, f2 is a discrete objective function and
minimizes the number of TPs. There are three candidate solutions: u1 (green curve), u2
(blue), and u3 (red) in Figure 1. These three candidate solutions have 5, 3, and 1 TPs,
respectively, which results in DSV dimensions Nd = 10, 6, and 2, respectively. It should
be noted that any other objectives could be added to the problem formulation (1), e.g., the
maximization of a minimal distance of the considered path towards any of the obstacles.
For the sake of clarity of the shown results, we stick to the two-objective formulation in this
paper.

3. Optimization Methods

This section reviews the optimization methods whose results are further discussed in
the paper. First, we introduce a detailed description of the VNDMOPSO algorithm. Then,
we briefly review the state-of-the-art VND algorithms VLMOPSO and VNDGDE3 used as
reference methods in this study.

3.1. Variable Number of Dimensions MOPSO
3.1.1. Conventional MOPSO

The algorithm VNDMOPSO follows the principles of standard single- and multi-
objective PSO [23,36]. Therefore, we briefly review the main steps of the MOPSO algo-
rithm [36] that serves as a starting point for the development of the VNDMOPSO algorithm.
The MOPSO starts as any other HA with a random generation of particles:

up = umin + r⊗ (umax − umin), (5)
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where p stands for the index of an agent from a total number of NA agents, ⊗ denotes the
element-wise multiplication, and r is the vector of random values from interval 〈0; 1.0〉
with a uniform probability of distribution. The decision space is limited by the lower and
upper bounds, umin and umax, respectively. Then, the positions, u, of particles are iteratively
updated based on the formula:

up(i) = up(i− 1) + ∆tvp(i), (6)

where ∆t is the time step (∆t = 1 s is used in the vast majority of the studies) and vp(i)
stands for the current velocity vector that reads:

vp(i) = wvp(i− 1) + c1r1
[
bp − up(i− 1)

]
+ c2r2

[
gp − up(i− 1)

]
. (7)

Here, symbols w, c1, and c2 stand for the user-defined controlling parameters of the
algorithm, in particular the inertia weight, the cognitive learning factor, and the social
learning factor, respectively. Then, symbols bp, and gp stand for the personal and global
best positions assigned for the p-th particle, respectively. Finally, symbols r1 and r2 are
random values from interval 〈0; 1.0〉 that scale the vectors from previous positions of
particles to personal and global best, respectively. The total movement of the particle
expressed in terms of (6) and (7) is the result of the action of three forces: (1) it tends to keep
the previous direction of the movement (scaled by the inertia weight w); (2) it is attracted
towards the location of the personal best b (scaled by c1r1); and (3) it is attracted towards
the global best g.

In single-objective PSO, every particle has its own bp and the same g is used for all
the particles. The personal and global best are assigned according to the value of the
objective function f . In MOPSO, a set of objective function values has to be considered
when selecting the bp and gp. Moreover, a different global best vector, gp, is assigned
to every particle. The initial particle’s position up(1) is used for bp in the first iteration.
Then, the personal best is updated to up(i) if it dominates bp (i.e., it is better or equal in all
watched objectives).

The global best values, gp, are assigned from the so-called external archive, E , that
stores all non-dominated solutions found so far [36]. It is updated at the end of every
iteration, i. The size of the external archive, E , is limited to NA to avoid the exponential
growth of the algorithm’s computational complexity. The effective method for pruning
of E [37] is used for the selection of members of E . The mechanism of the global best
selection combines two approaches: (1) random assignment; and (2) assignment based on
the Euclidean distance. The global best assignment is shown in the form of pseudocode
in Algorithm 1. A random value, r, is generated and compared with a value of the user-
defined parameter probability of random global best, 0 ≤ rg ≤ 1.0. If r < rg, then a
random member of the external archive, E , is selected for the p–th particle to serve as the
gp. Contrarily, if r ≥ rg, then the closest member from E is selected as gp. When rg = 1.0,
the global best positions are selected randomly from E for all particles. Combining these
two approaches is crucial to avoid the MOPSO getting stuck in the local optimum (local
Pareto front) and to enable the best possible convergence.
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Algorithm 1: Global best selection algorithm used in MOPSO
Input : Probability of random global best rg, set of DSVs U , external archive E
Output : Set of global best positions G

1: Find n = length U
2: Find m = length E
3: for p = 1, p ≤ n, p ++ do
4: Generate random value r ∈ 〈0; 1.0〉
5: if r < rg then
6: Select random index i from list 1, 2, . . . , m
7: else
8: Find Eucl. distances dp from U [p] to all members of E
9: Find index i of minimal Eucl. distance dp

10: end if
11: Set G[p] = E [i]
12: end for
13: Return G

After the position update (6), the particles’ locations can reside outside the limits of
the feasible decision space, Γ. Then, the so-called boundary conditions can be applied to
make the particles feasible again [36]. The possible boundary conditions are: (1) reflecting
(the particle is reflected back to Γ by the violated limit), (2) absorbing (the particle resides
on the violated limit), and (3) invisible (the particle is left outside of Γ but its objective
function values are worsened artificially). At the end of every iteration, the new positions of
particles are evaluated using the objective functions. Then, the external archive is updated.
The iterative process of MOPSO continues until the termination condition is met. Usually, a
combination of several termination conditions is used, e.g., maximum number of iterations,
NI, or limits for the values of objective functions are reached, etc.

3.1.2. VNDMOPSO

The MOPSO algorithm as described in the previous subsection is used as the general
framework of the novel VNDMOPSO algorithm. The MOPSO algorithm also needs only
few significant changes in order to solve VND–formulated problems. First, the particle’s
dimension, Np, in the initial iteration i = 1 is selected randomly for every p–th particle.
All dimensions from the list of possible dimensions, N , should be selected with a uniform
probability. The number of particles with individual dimensions should be approximately
equal to NA/||N ||. The particles’ dimensions are distributed so that there are no or
minimal differences between sizes of dimensional clusters, i.e., sets of particles with the
same dimension. If NA ≥ ||N ||, it should be ensured that at least one particle is in every
dimensional cluster from the list N .

Next, we need to enable the DSVs u, manipulated by VNDMOPSO, to have different
dimensions. Therefore, the four vectors, gp, bp, vp, and up, used in (7), can be of three
different lengths:

1. Ng: size of the global best, g;
2. Nb: size of the personal best, b;
3. Nu: the previous dimension of the agent u(i− 1) (and its velocity v(i− 1), also).

The new dimension, Np, of the p-th particle is determined based on the simple ap-
proach presented in Algorithm 2. The new dimension is selected on a random basis but
taking into account user-defined probabilities [19]:

1. pg: probability of global best dimension, Ng;
2. pb: probability of personal best dimension, Nb.

The probabilities are set so that
(

pg + pb
)
≤ 1.0, as shown in Figure 2a. The lower the

values of pg and pb are, the higher the diversity of dimensions of particles is. In an extreme
case when pg + pb = 0, all the particles remain in their initial randomly selected dimension.
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On the other hand, the dimensional diversity is quickly lost when pg + pb = 1.0. In that
case, the particles are forced to change their dimension to the dimension of non-dominated
DSVs that are found in the early iterations of the optimization and stored in E .

Algorithm 2: New dimension selection in VNDMOPSO

Input : Probabilities
{

pg, pb
}

, dimensions Ng, Nb, Nu for p–th agent
Output : New dimension Np of p–th agent

1: Generate random value r ∈ 〈0; 1.0〉
2: if r < pg then
3: Np = Ng
4: else if pg ≤ r < pg + pb then
5: Np = Nb
6: else
7: Np = Nu
8: end if
9: Return Np

After the new dimension, Np, of the p-th particle is selected using Algorithm 2, the
potentially different dimensions of vectors gp, bp, vp, and up have to be balanced. The
process of balancing the dimensions of the vectors is shown in Figure 2b. The vectors
whose dimensions are higher than the selected one are trimmed so that their sizes are equal
to Np. On the other hand, if any vector has fewer elements than Np, the missing elements
are taken from the other vector, having at least Np elements. Please note that the priority is
decreasing from the gp, over bp, to vp, so that the convergence is strengthened. The global
best, gp, and personal best, bp, contain non-dominated vectors.

Figure 2. The VNDMOPSO DSVs manipulation for the velocity update formula: (a) the selection of
new dimension, Np, of the p-th particle, (b) corresponding update of vectors global best, gp, personal
best, bp, and previous position, up.

The general pseudocode of the VNDMOPSO is summarized in Algorithm 3. The
VNDMOPSO needs inputs in the form of (1) problem definition (the definition of objective
functions, f , the list of feasible dimensions, N , and the limits of the decision space, Ω);
and (2) set of user-defined control parameters, S . The list of control parameters and their
recommended values based on the results of different benchmark studies are summarized
in Table 1.
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Algorithm 3: VNDMOPSO general pseudocode
Input : Set of user-defined controling parameters S , objective functions f , list of

feasible dimensions N , decision space limits Γ
Output : Non-dominated set U

1: Generate random dimension for every particle in the swarm.
2: Generate random initial positions u(i = 1) and velocities v(1).
3: Evaluate objective function values for all particles f (u).
4: Create extarnal archive E .
5: Assign personal/global best positions (see Algorithm 1).
6: while Stop condition do
7: for Every particle up do
8: Find current dimension Np using Algorithm 2.
9: Create copies of previous (i− 1) DSVs gp, bp, and up (vp) with a dimension Np.

10: Update the velocity vp(i), and position up(i) using (6), and (7).
11: if up(i) /∈ Γ then
12: Apply boundary condition on up(i).
13: end if
14: Evaluate objective function values f

(
up(i)

)
.

15: Update the personal best bp(i).
16: end for
17: Update external archive E .
18: Update global best positions using Algorithm 1.
19: end while
20: Return non-dominated set U = E .

Table 1. The list of VNDMOPSO controlling parameters and their recommended values.

Symbol Explanation Value Range

NA Number of particles (agents) 〈2||N ||; 100〉
NI Maximal number of iterations 〈20; 100〉
w Inertia weight 〈0.40; 0.90〉
c1 Cognitive learning factor 〈0.90; 1.90〉
c2 Social learning factor 〈0.90; 1.90〉
pg Probability of adapting to dimension of global best 〈0.01; 0.30〉
pb Probability of adapting to dimension of personal best 〈0.01; 2pg〉

3.2. Reference Methods

The two VND multi-objective algorithms available in the open literature, namely
variable length MOPSO and VNDGDE3, are briefly reviewed in the following subsections.
They are used as comparative algorithms in this study.

3.2.1. VLMOPSO

Algorithm VLMOPSO was introduced by Mukhopadhyay and Mandal in [31]. It
works on the principle of the DSV extension. The DSV has two parts: the model variables
(initial elements of the DSV, i.e., degrees of freedom of the designed structure), and the
so-called padding variables. Using this approach, all DSVs are working with the maximal
dimension, Nmax, for the model variables. The padding variables are in a binary form. If
the padding variable equals 1 then the corresponding part of the model variable is taken
into account, and vice versa. The number of padding variables, NP, is determined by the
number of metameric (clustered) variables. In this study, the number of padding variables
is the number of turning points, i.e., Nmax/2. Adding padding variables to u makes the
optimization much more complex following the curse of dimensionality: the optimizer has
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to search for the optimal combination of more variables that are necessary to specify the
designed structure or system.

3.2.2. VNDGDE3

The VND extension of a well-known GDE3 algorithm was introduced in [32] by Marek
and Kadlec. In GDE3 [33], the so-called trial vector is created for every agent in the current
generation of agents (DSVs). It is composed based on three other randomly selected agents
and the previous agent’s position. Then, the crossover vector is accepted, if it dominates
the agent’s previous position. Otherwise, the agent stays at its previous position.

The dimension of the trial vector in VNDGDE3 is determined using a similar approach
as in this study. The user-defined parameter called probability of dimension transition, pDT,
controls the change of dimension of every agent. Similarly, as in Algorithm 2, a random
value, r ∈ 〈0; 1.0〉, is generated. If r ≤ pDT then the agent keeps its current dimension, Nu.
Otherwise, the agent’s new dimension is selected according to one of the three randomly
selected agents to produce the trial vector. It should be noted that they all have an equal
chance of being selected ((1− pDT)/3).

3.2.3. SCMOPSO

The SCMOPSO algorithm was designed to solve the VND MO wireless network
sensor deployment by Jubair et al. in [30]. It works with a population of particles that are
clustered into different so-called classes based on the dimension of individual particles. The
movement of a p-th particle is driven by the so-called exemplar. The exemplar is selected
from the other particles that are in the same class as particle up. The particles with better
values of the objective function are favored to be selected as exemplars. If a particle does
not improve for a pre-defined number of iterations, it can move to another class. However,
there is a restriction on the minimal size of the class. The new class is selected based on the
probability density function that is constructed over the values for one randomly selected
objective function for the best particles from different classes. Finally, SCMOPSO adds
the mutation operation to the PSO algorithm. A randomly chosen variable of a particle
can be mutated with a certain probability, which means that the variable will be generated
randomly in the feasible decision space.

4. Results and Discussion

The novel VNDMOPSO algorithm is validated here to prove its ability to solve as
many different VND MO problems as possible. First, it solves various benchmark problems
and the results are compared with two state-of-the-art VND MO algorithms, namely
VLMOPSO and VNDGDE3. Then, VNDMOPSO is applied to five pathfinding problem
instances. The results are compared with results obtained for VLMOPSO, VNDGDE3,
and SCMOPSO algorithms. All the algorithms except for SCMOPSO are implemented
using a standalone MATLAB-based toolbox called Fast Optimization ProcedureS (FOPS)
[38] that is available online. FOPS is an in-house code developed and maintained at Brno
University of Technology. All the comparative tests are set so that the compared algorithms
use the same number of agents, NA, and iterations NI to keep the comparisons fair. If not
otherwise stated, the controlling parameters of VNDMOPSO are set as summarized in
Table 2. The other algorithms use their default settings as described in [38] and in [30] (for
the SCMOPSO). Next, the influence of the VNDMOPSO control parameters is evaluated
using the benchmark problems.
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Table 2. Default values of VNDMOPSO controlling parameters.

Symbol Explanation Value Range

w Inertia weight Decreasing from 0.9 to 0.4
c1 Cognitive learning factor 1.5
c2 Social learning factor 1.5
pg Probability of adapting to dimension of global best 0.02
pb Probability of adapting to dimension of personal best 0.04

4.1. Benchmark Problems

The results of the VNDMOPSO are first validated using the available benchmark
problems with known Pareto fronts and corresponding Pareto-optimal sets. There is a large
set of benchmark metrics to assess the quality of the found solution of a multi-objective
benchmark problem. Some of them are focused on how close the found non-dominated
solutions (members of E ) are to the true Pareto front members, PF , in the objective
space, e.g., the generational distance [39]. Other metrics, e.g., the spread [7], express the
uniformness of the found non-dominated set over the true PF . The commonly accepted
way to express both of these requirements for a multi-objective algorithm using a single
numerical value is a metric called hypervolume (HV), introduced in [40]. It determines the
portion of the objective space volume that is dominated by the found set of non-dominated
solutions, E . The hypervolume is computed as the union of volumes between the individual
members of E and the reference point [41]:

HVE = ∪||E ||i=1 V(ei). (8)

Here, V(ei) denotes the volume dominated by the i-th member of the non-dominated
set, E , i.e., the volume of a hyper-cube with opposite points, ei, and the reference point, p.
The so-called nadir point (the collection of the worst values of individual objectives from
individual extreme points of the true PF [7]) is usually selected as the reference point. The
larger the HV is, the better the result of the MO algorithm has been found.

The only disadvantage of HV is that it’s value depends on the selection of the reference
point. Therefore, the distance hypervolume metric was introduced to overcome this
problem:

dHV = HVPF −HVE . (9)

It is computed as the difference between the hypervolume dominated by the true
Pareto front, HVPF , and by the found one, HVE . Thanks to this method of calculation, the
influence of the choice of the reference point is neglected.

The suite of benchmark problems used in this study contains 21 VND multi-objective
problems whose definition was introduced in [32,42]. These benchmark problems are
based on families of well-known test suites such as DTLZ [43], ZDT [44], LI [42], and
LZ [45]. The modified benchmark problems have a feature that different parts of the
Pareto front can be occupied by DSVs with different dimensions. The full definition of the
benchmark problems is beyond the scope of this paper. However, the method to determine
the optimal dimension over the Pareto front and definitions of all the benchmark problems
are summarized in the supplementary material S1.

We compare the convergence properties of the novel VNDMOPSO algorithm with
VLMOPSO and VNDGDE3 on the full benchmark suite using three different dimension
settings to see how the convergence of the algorithms scales with the dimensionality of the
problem. The dimensionality settings are summarized in Table 3.



Algorithms 2023, 16, 307 11 of 20

Table 3. Dimensionality settings for the comparative study between VNDMOPSO and reference
algorithms VLMOPSO and VNDGDE3.

Settings Feasible Dimensions, N Optimal Dimensions, D(opt)

S1 3, 4, . . . , 12 3, 4, 5
S2 3, 4, . . . , 22 7, 8, 9
S3 3, 4, . . . , 52 10, 11, 12

The results in form of boxplots of the dHV metric are shown in Figures 3–5. The
results from 100 independent runs of individual algorithms were compared using the
Wilcoxon’s ranked sum test. Please note that the test was performed at the significance
level α = 0.05. The results of the Wilcoxon’s test comparing VNDMOPSO with VNDGDE3
and VNDMOPSO with VLMOPSO are summarized in Table 4.

Table 4. Results of Wilcoxon’s test (at significance level α = 0.05) when comparing the VNDMOPSO
algorithm with VNDGDE3 and VLMOPSO for different dimensionality settings: ’+’ denotes that the
VNDMOPSO algorithm is significantly better, ’–’ denotes that the second algorithm is significantly
better, ’=’ denotes that the difference is not significant. The last row summarizes the number of the test
results for the whole benchmark set: VNDMOPSO is better/difference not significant/VNDMOPSO
is worse.

Settings S1 Settings S2 Settings S3

VNDMOPSO vs VNDGDE3 VLMOPSO VNDGDE3 VLMOPSO VNDGDE3 VLMOPSO

VNDMODTLZ1 - + - + - =
VNDMODTLZ2 + - + - + -
VNDMODTLZ3 - + - = - =
VNDMODTLZ4 - - - - - -
VNDMODTLZ5 + + + - + +
VNDMODTLZ6 = + + + + -
VNDMODTLZ7 - - - - - =

VNDMOLI1 - + - + - +
VNDMOLZ1 - - + + + +
VNDMOLZ2 - - - + - +
VNDMOLZ3 - + + + + +
VNDMOLZ4 - + + + = +
VNDMOLZ5 = + + + + +
VNDMOLZ7 = = + = + +
VNDMOLZ8 - = + + + +
VNDMOLZ9 - - - + - +

VNDMOZDT1 + - - - - -
VNDMOZDT2 - - - - - -
VNDMOZDT3 + + - - - -
VNDMOZDT4 + - + - + +
VNDMOZDT6 - - - - + -

Overall 5 / 3 / 13 9 / 2 / 10 10 / 0 / 11 10 / 2 / 9 10 / 1 / 10 11 / 3 / 7
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Figure 3. Results of dHV metric for algorithms VNDMOPSO, VLMOPSO, and VNDGDE3 for
dimensionality settings S1: Nd ∈ {2, 3, . . . , 12}.

Figure 4. Results of dHV metric for algorithms VNDMOPSO, VLMOPSO, and VNDGDE3 for
dimensionality settings S2: Nd ∈ {2, 3, . . . , 22}.
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Figure 5. Results of dHV metric for algorithms VNDMOPSO, VLMOPSO, and VNDGDE3 for
dimensionality settings S3: Nd ∈ {2, 3, . . . , 52}.

When comparing VNDMOPSO with VNDGDE3, we can see that the performance of
VNDMOPSO is inferior for the settings with lower dimensions (S1: Nmax = 12) whereas
the VNDGDE3 is significantly better for 13 problems while the VNDMOPSO is better for 5
problems only. The results become more comparable for the more-dimensional settings,
S2 and S3. For them, VNDMOPSO significantly outperforms VNDGDE3 for at least
10 problems. Next, it is clearly visible that VNDMOPSO achieves at least comparable
results to VLMOPSO for settings S1 and outperforms VLMOPSO for more-dimensional
settings, S2 and S3. Most importantly, the VNDMOPSO algorithm outperforms the other
two algorithms on problems from the LZ benchmark suite (please refer to supplementary
material S1, Equation (S.22–S.39)). The nature of these problems is very similar to searching
for the correct location of some points in an N–dimensional space, which is similar to the
main subject of this paper—searching for the locations of the turning points of a space
robot. Therefore, VNDMOPSO can be seen as the best candidate to solve the SPRR.

4.2. Parameter pg Influence

The only new control parameters of VNDMOPSO compared with the initial algorithm
MOPSO [36] are the two probabilities of dimensional transition to the dimension of global
best, pg, and personal best, pb. Their values determine the rate of the change of particle’s
dimension. Thus, they can balance the exploration vs exploitation dilemma that arises
whenever any EOA or HA is used. By the proper setting of pg and pb, we can either
prioritize the speed of convergence or, on the contrary, emphasize the certainty of finding a
correct solution. By setting values pg and pb close to zero, the particles can change their
dimension only sporadically, which maintains the dimensional diversity of the swarm.
On the other hand, the particles start to form clusters of a certain dimension very soon
and thus search it much more carefully, with the risk that the global optimum resides in
the abandoned dimensions. This behavior can be well documented by the results shown
in Figure 6. Here, the sizes of the clusters containing agents with a certain value of TPs,
NT, are shown against the iterations for a problem, P4, having a discrete Pareto front
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consisting of solutions from three different dimensions. While in the first case in Figure 6a,
the parameters pg = 0.05 and pb = 0.10 are set robustly, the individual particles change
their dimension very gradually, which allows a careful search of the individual dimensions
and results in a Pareto front with three solutions having three different dimensions. In the
second case, shown in Figure 6b, with pg = 0.20 and pb = 0.40 set rather to speed up the
convergence of the VNDMOPSO algorithm, the algorithm finds a solution in the form of a
two-element Pareto front, where the solution with dimension NT = 3 is missing. This is
caused by the fact that a correct combination of a six-element DSV is the most difficult one
to find.
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50

60

70

(b)

Figure 6. Percentage of agents with different dimensions expressed in terms of the number of turning
points, NT, against the number of iterations on P4 problem instance for two settings of parameters,
pg and pb: (a) pg = 0.05 and pb = 0.10; and (b) pg = 0.20 and pb = 0.40.

Based on our experience with the algorithm, it is a good strategy to set pb = 2pg, as
recommended in Table 1. In that case, the dimensional diversity is enhanced, since the
personal best dimension, Nb, and the particle’s dimension, Np, are the same. Moreover,
only one parameter (pg) needs to be set by the user.

The influence of the pg on the quality of the solution found by VNDMOPSO is shown in
Figure 7. There, the heat plots of the dHV metric are shown for all the benchmark problems
and pg values ranging from interval 〈0.1; 1.0〉. Please note that the dHV metric values are
normalized according to obtained values for every individual benchmark problem so that
they can be visualized in a single figure. From the results in Figure 7, it can be seen that, for
more complex tasks such as those from the DTLZ family (taking into account the results in
Figures 3–5), VNDMOPSO converges better for pg > 0.8. The algorithm converges best for
less complex tasks such as ZDT1, ZDT4, and LZ1 for pg < 0.2. Concerning the intended
application (robot pathfinding, where we prefer a higher certainty of finding the correct
solution over the convergence speed), we recommend a compromise value of pg ≤ 0.30.
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Figure 7. Median values of dHV metric versus parameter pg. The median is selected from 100
independent runs of the VNDMOPSO algorithm for 21 benchmark problems with dimensional
settings S1.

4.3. Pathfinding Problems

In this section, we will apply the VND algorithms to solve four artificial (labeled as
P1–P4) and one real-life (P5) pathfinding problem instances. The feasible dimensionalities
for all the problems are N = {2, 4, . . . , 20}. Maps of obstacles for the problems are shown
in Figure 8. They were designed so that they can be solved with different numbers of TPs.
See e.g., problem P4 where the Pareto front constitutes solutions leading to three different
paths with one, two, or three TPs (see Figure 8). The real-life problem instance, P5, is then
defined based on the photograph of the landing area of the famous Apollo 11 mission
reaching the surface of the Moon [46], see Figures 8e,f.

The problem instance, P4, is a relatively easy one. It is simple enough to perform an
exhaustive search on it to reveal the true Pareto front, which is shown in Figure 9a. The
corresponding paths are then shown in Figure 9b. The Pareto front is built from three
solutions, with one (the longest one but with the least number of necessary turns), three
(the shortest one but with the most number of necessary turns), and two (compromise)
TPs. The first solution can be described as the easiest to control (purple curve in Figure 9b),
while the third one (red curve in Figure 9b) is the fastest one. With the information about
the trade-offs between objectives, the final path can be than selected.

The convergence of the VNDMOPSO is compared against the VNDGDE3, VLMOPSO,
and SCMOPSO algorithms. The quality of the found solutions is expressed in terms of
the dHV metric defined in (9). Nevertheless, the true Pareto front is not known for the
pathfinding problems. Therefore, HVPF is computed for a combined non-dominated set
created from the union of all runs of the four algorithms (every algorithm was tested 100
times). In addition, the reference point necessary for the calculation of individual HV
values was taken as the combination of the worst values in individual objective values for
the combined non-dominated set.
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Figure 8. Maps of obstacles for: (a–d) artificial problem instances P1–P4, (e) real-life photograph
of Apollo 11 landing area [46], and (f) instance P5 based on (e). Markers ’×’ show locations of the
robot’s starting point, rS (red color), and target point, rT (blue).
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Figure 9. The true solution of the P4 problem instance found by an exhaustive search: (a) the
Pareto front formed by three discrete points (marked by symbols “×”); and (b) the found paths for
corresponding members of the Pareto front.

The dHV results are shown in form of boxplots in Figure 10. The VNDMOPSO clearly
outperforms the other three algorithms in all the pathfinding problem instances P1–P5.
This can be explained by a proper balance of the convergence speed and the robustness
provided by optimal setting of the pg and pb parameters of VNDMOPSO. VLMOPSO
also outperforms the VNDGDE3 algorithm. This is probably due to the fact that the PSO
algorithm, due to its general approach for updating the position of agents, is generally
more suitable for solving problems that seek the optimal locations of a set of components.
The SCMOPSO achieves the worst results from the whole tested set of algorithms. This is
probably caused by the fact that particles in SCMOPSO can learn only from particles within
the same class and not from the whole swarm. Therefore, running SCMOPSO resembles
more the situation when we would run a conventional MOPSO for each possible dimension
separately but with a limited number of agents.
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Figure 10. The standard boxplots (min, 1st quartile, median, 3rd quartile, max value) of the dHV
metric for algorithms VNDMOPSO, VNDGDE3, VLMOPSO, and SCMOPSO on five pathfinding
problem instances P1–P5.

Figure 11 replicates the maps of five pathfinding problem instances P1–P5. This
time, a final path from the Pareto-optimal set found by the VNDMOPSO algorithm is
highlighted with a red curve. The path corresponding to the DSV with the maximal value
of the hypervolume metric, uHV, is selected from the Pareto-optimal set. Such a solution
dominates the largest portion of the objective space and therefore should not prioritize any
of the objectives: the minimal length of the path, and the minimal number of turning points.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(d)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(e)

Figure 11. Selected Pareto-optimal solutions found by VNDMOPSO algorithm with maximal value
of the HV metric for pathfinding problem instances P1–P5 (a–e).
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5. Conclusions

This paper describes the full evolution of a novel multi-objective particle swarm
optimization algorithm with a variable number of dimensions. According to our knowledge,
VNDMOPSO is the first PSO-based algorithm that is able to solve VND MO problems
and that shares the information of individual variables among candidate solutions that
have different dimensions without enlarging the size of the decision space vectors by
additional variables. Algorithm VNDMOPSO was compared with two other state-of-the-
art algorithms, namely VLMOPSO and VNDGDE3, on a suite of 21 benchmark problems.
It was shown that the convergence properties of the VNDMOPSO algorithm are superior to
the VLMOPSO algorithm and at least comparable to the convergence of VNDGDE3. Then,
the influence of the only new controlling parameter (the probability of dimension transition)
was assessed and the recommended values are given in the paper. Finally, VNDMOPSO
was used to solve five space robot pathfinding problem instances and showed significantly
better results compared with VLMOPSO, SCMOPSO, and VNDGDE3. Moreover, the
SRPP has been formulated as a VND MO problem, which, on the one hand, brings better
information about necessary compromises to the decision about the final path of the robot,
but, on the other hand, it does not force the user to limit the route optimization process
in any way—either in terms of the number of turning points or a priori setting of weights
to individual objectives. Moreover, the proposed method allows adding any additional
objective, e.g., to minimize the probability of collision and others, easily.

Supplementary Materials: The following supporting information can be downloaded at:
www.mdpi.com/xxx/s1. Supplementary material has been entilted “Definition of Multi-objective
Benchmark Problems with Variable Number of Dimensions” labeled as S1. It contains the defini-
tion of all the benchmark problems used in this study to assess the convergence properties of the
VNDMOPSO algorithm. This material cites references [32,38,42–45].
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dHV Distance hypervolume metric
DSV Decision space vector
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GDE3 Generalized differential evolution
HA Heuristic algorithm
HV Hypervolume metric
MO Multi-objective
MOOP Multi-objective optimization problem
MOPSO Multi-objective particle swarm optimization
PSO Particle swarm optimization
SCMOPSO Social class MOPSO
SRPP Space robot pathfinding problem
TP Turning (way) point
VLMOPSO Variable length MO PSO
VND Variable number of dimensions
VNDGDE3 Variable number of dimensions GDE3
VNDMOPSO Variable number of dimensions MOPSO
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