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Abstract: For its robust predictive power (compared to pure physics-based models) and sample-
efficient training (compared to pure deep learning models), physics-informed deep learning (PIDL), a
paradigm hybridizing physics-based models and deep neural networks (DNNs), has been booming in
science and engineering fields. One key challenge of applying PIDL to various domains and problems
lies in the design of a computational graph that integrates physics and DNNs. In other words,
how the physics is encoded into DNNs and how the physics and data components are represented.
In this paper, we offer an overview of a variety of architecture designs of PIDL computational
graphs and how these structures are customized to traffic state estimation (TSE), a central problem in
transportation engineering. When observation data, problem type, and goal vary, we demonstrate
potential architectures of PIDL computational graphs and compare these variants using the same
real-world dataset.

Keywords: physics-informed deep learning (PIDL); computational graph; uncertainty quantification

1. Introduction

Physics-informed deep learning (PIDL) [1], also named “theory-guided data science” [2],
“model-informed machine learning” [3], or “physics-informed machine learning” [4], has
gained increasing traction in various scientific and engineering fields. Its underlying ra-
tionale is to leverage the pros of both physics-based and data-driven approaches while
compensating the cons of each. A physics-based approach refers to using scientific hy-
potheses of what underlying physics govern observations, e.g., first principles. Normally,
scientists or engineers first come up with a prior assumption of how a quantity of interest is
computed from other physics quantities. Then, laboratory or field experiments are designed
to collect data that are used to calibrate the involved parameters. In contrast, a data-driven
approach does not bear any prior knowledge of how things work and how different quan-
tities are correlated. Instead, it relies on machine learning (ML) techniques, such as deep
learning (DL), to learn and infer patterns from data. The former is data-efficient and inter-
pretable but may not be generalizable to unobserved data, while the latter is generalizable
at the cost of relying on huge amounts of training samples and may be incapable of offering
deductive insights. Thus, the PIDL paradigm opens up a promising research direction that
leverages the strengths of both physics-based and data-driven approaches. Figure 1 summa-
rizes the amounts of data (in x-axis) and scientific theory (in y-axis) used for each paradigm.
Model-based approaches heavily rely on scientific theory discovered from the domain
knowledge and use little data for system discovery, while machine learning approaches
mostly rely on data for mechanism discovery, In contrast, PIDL employs a small amount
of data (i.e., “small data” [4]) for pattern discovery while leveraging a certain amount of
scientific knowledge to impose physically consistent constraints. The “sweetspot” of PIDL
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lies in the small data and partial knowledge regime. In other words, PIDL achieves the best
performance in accuracy and robustness with small data and partial domain knowledge.
In this paper, we will validate the advantage of PIDL using transportation applications,
and present a series of experiments using the same real-world dataset against conventional
physics-based models.
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Figure 1. Comparison of pure physics-based, data-driven, and hybrid paradigms (adapted from [2]).

1.1. Scope of This Survey

There are a variety of structure designs for PIDL. Here, we primarily focus on the
PIDL framework that is represented by a hybrid computational graph (HCG) consisting of two
graphs: a physics-informed computational graph (PICG) and a physics-uninformed neural
network (PUNN). Despite numerous benefits of PIDL, there are still many open questions
that need to be answered, including the construction of the HCG, the choice of the physics
and the architecture of the PICG, the architecture of the PUNN, the loss function, and the
training algorithms. Among them, how to encode the physics into (deep) neural networks
(DNNs) remains under-explored and varies case by case and across domains. In this paper,
we will primarily establish a systematic design pipeline for hybrid computational graphs
that would facilitate the integration of physics and DL. To this end, we will review the
state-of-the-art of the PIDL architecture in the traffic state estimation (TSE) problem. This
survey paper can be used as a guideline for researchers at large when they consider using
PIDL for problems at hand.

We have seen a growing number of studies that apply PIDL to physical and biological
systems [4,5]. However, its feasibility for social systems, in particular, human decision-
making processes, such as driving behaviors, remains largely unexploited. Humans’
decision making involves complex cognitive processes compounded by perception errors,
noisy observations, and output randomness. Moreover, human driving behaviors exhibit
highly unstable and nonlinear patterns, leading to stop-and-go traffic waves and traffic
congestion [6–8]. Accordingly, neither model-driven nor data-driven approaches alone
suffice to predict such behaviors with high accuracy and robustness. Therefore, we strongly
believe that a hybrid method, which leverages the advantages of both model-driven and
data-driven approaches, is promising [9,10].

There is a vast amount of literature on TSE [11,12] and on PIDL [4,5]. To distinguish
this work from other survey papers in TSE, here, we primarily focus on data-driven
approaches, PIDL in particular. Since PIDL for TSE is less studied than physics-based
models, and the existing literature is focused on single roads, we will primarily examine
TSE along links, and leave TSE on a road network which includes both link and node
models for future research. To distinguish this work from other PIDL surveys, we primarily
focus on the modular design of the hybrid PIDL paradigm and show how to customize
various designs for accurate and robust identification of traffic dynamic patterns. Here, the
modular design refers to the architecture design of each component in the graph and how
these components are wired, in other words, how physics laws are injected into DNNs.
The generic architecture of a PIDL consists of two computational graphs: one is a DNN
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(i.e., the data-driven component) for predicting the unknown solution, while the other is a
computational graph (i.e., the physics-driven component, also called “physics-informed
neural networks (PINNs)” in [1]), in which physics is represented, for evaluating whether
the prediction aligns with the given physics. The physics encoded computational graph can
be treated as a regularization term of the other deep neural network to prevent overfitting,
i.e., high-variance. In summary, the hybrid of both components overcomes high-bias
and high-variance induced by each individual one, rendering it possible to leverage the
advantage of both the physics-based and data-driven methods in terms of model accuracy
and data efficiency.

1.2. Contributions

The application of PIDL to TSE is a relatively new area. We hope that the insights in
this work into the modular design of the hybrid PIDL paradigm, as well as the established
visualization tool, will not only be useful to guide transportation researchers to pursue
PIDL, but also facilitate researchers at large to better understand a PIDL pipeline when
applied to their own application domains.

Overall, this paper offers a comprehensive overview of the state-of-the-art in TSE
using PIDL, while striving to provide insights into the pipeline of implementing PIDL,
from architecture design to training and testing. In particular, the contributions of this
work are:

1. propose a computational graph that visualizes both physics and data components
in PIDL;

2. establish a generic way of designing each module of the PIDL computational graphs
for both predication and uncertainty quantification;

3. benchmark the performance of various PIDL models using the same real-world
dataset and identify the advantage of PIDL in the “small data” regime.

The rest of the paper is organized as follows: Section 2 introduces the preliminaries of
TSE and the state of the art. Section 3.1 lays out the framework of PIDL for TSE. Two types
of problems for TSE, namely, deterministic prediction and uncertainty quantification, are
detailed in Sections 3 and 4, respectively. Section 5 concludes our work and projects future
research directions in this promising arena.

2. Preliminaries and Related Work
2.1. PIDL

Definition 1. Generic framework for physics-informed deep learning. Define location
x ∈ [0, L] and time t ∈ [0, T] and L, T ∈ R+. Then, the spatiotemporal (ST) domain of interest
is a continuous set of points: D = {(x, t)|x ∈ [0, L], t ∈ [0, T]}. Denote the state as s and its
observed quantity as ŝ. Denote the (labeled) observation O,B, I and the (unlabeled) collocation
points C below: 

O = {(x(i), t(i); ŝ(i))}No
i=1 : within-domain observation,

B = {t(ib); ŝ(ib)}Nb
ib=1 : boundary observation,

I = {x(i0); ŝ(i0)}N0
i0=1 : initial observation,

C = {(x(j), t(j))}Nc
j=1 : collocation points,

(1)

where i and j are the indices of the observation and collocation points, respectively. ib, i0 are the
indices of the boundary and initial data, respectively. The number of observed data, boundary and
initial conditions, and collocation states are denoted as No, Nb, N0, Nc, respectively. The subscripts
b, 0 represent the boundary and initial condition indices, respectively.

We design a hybrid computational graph (HCG) consisting of two computational graphs:
(1) a PUNN, denoted as fθ(x, t), to approximate mapping s(i), and (2) a PICG, denoted as fλ(x, t),
for computing traffic states of s(j) from collocation points. In summary, a general PIDL model,
denoted as fθ,λ(x, t), is to train an optimal parameter set θ∗ for PUNN and an optimal parameter
set λ∗ for the physics. The PUNN parameterized by the solution θ∗ can then be used to predict a
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traffic state ŝnew on a new set of observed ST points Onew ⊆ D, and λ∗ is the most likely model
parameters that describe the intrinsic physics of the observed data.

One important application of PIDL is to solve generic partial differential equations
(PDE). We will briefly introduce the underlying rationale. Define a PDE over the ST
domain as:

st(x, t) +Nx[s(x, t)] = 0, (x, t) ∈ D, (2)

B[s(x, t)] = 0, (x, t) ∈ ∂D,

I [s(x, 0)] = 0,

where Nx(·) is the nonlinear differential operator, B, I are the boundary and initial con-
dition operators, respectively, ∂D = {(0, t)|t ∈ [0, T]} ∪ {(L, t)|t ∈ [0, T]} is the set of ST
points on the boundary of the domain D, and s(x, t) is the exact solution of the PDE. Now,
we will approximate the PDE solution, s(x, t), by a DNN parametrized by θ, fθ(x, t), which
is PUNN. If this PUNN is exactly equivalent to the PDE solution, then we have

fθ(x, t) +Nx[ fθ(x, t)] = 0, (x, t) ∈ D. (3)

Otherwise, we define a residual function rc(x, t) = [ fθ(x, t)]t +Nx[ fθ(x, t)]. If PUNN is
well trained, the residual needs to be as close to zero as possible. Figure 2 describes the
schematic of using PUNN to approximate PDE solutions.

Residual:
௖ݎ ≡ ௧ݏ ൅ ௫ࣨ ݏ =0

஘ ஘

Figure 2. Schematic of PDE solution approximation.

The physics is usually encoded as governing equations, physical constrains, or regular-
ity terms in loss functions when training PUNNs [13]. When “soft regularization” was
implemented by [14], the loss in PIDL was a weighted sum of two distance measures:
one for the distance between the observed action and predicted one (also known as data
discrepancy) and the other for the distance between the computed action from the physics
and the predicted one (also known as physics discrepancy). Its specific forms will be detailed
in Sections 3 and 4.

2.2. Traffic State Estimation

Traffic state inference is a central problem in transportation engineering and serves as
the foundation for traffic operation and management.

Definition 2. Traffic state estimation (TSE) infers traffic states in single lane or multiple lanes
along a stretch of highway or arterial segments over a period of time, represented by traffic density
(veh/km/lane, denoted by ρ), traffic velocity (km/lane/hour, denoted by u), and traffic flux or
volume (veh/lane/hour, denoted by q) using noisy observations from sparse traffic sensors [12].
The ultimate goal of TSE is traffic management and control, building on the inferred traffic states.

Remark 1.

1. These three traffic quantities are connected via a universal formula:

q = ρu. (4)
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Knowing two of these quantities automatically derives the other. Thus, in this paper, we will
primarily focus on ρ, u, and q can be derived using Equation (4).

2. q ∈ [0, qmax], ρ ∈ [0, ρjam], u ∈ [0, umax], where qmax is the capacity of a road, ρjam is the
jam density (i.e., the bumper-to-bumper traffic scenario), and umax is the maximum speed (and
usually represented by a speed limit). How to calibrate these parameters is shown in Table 1.

TSE is essentially end-to-end learning from the ST domain to labels. Denote a mapping
parameterized by θ as fθ(·), from an ST domain (x, t) ∈ D to traffic states s = {ρ, u}:

fθ : (x, t) −→ s = {ρ, u}. (5)

The key question is to find a set of parameters θ∗ and the functional form fθ(·) that fit
the observational data the best.

Table 1. State-of-the-art approaches for parameter calibration.

Method Description
ρρρmax ρρρcritical uuumax

Max. Density Critical
Density Max. Speed

Se
qu

en
ti

al
tr

ai
ni

ng

Calibrate
each

parameter
separately

Each parameter
carries a certain

physical meaning

Segment length
divided by avg.
vehicle length

Traffic density
at capacity

Speed limit
or max. value

Calibrate
parameter

and predict
state jointly

Augment states
with parameters
estimated using

DA [15–18]

Tuning along with other hyperparameters in DNNs

Calibrate FD

Fit parameters
associated with a

pre-selected
FD [19–25]

Density at
u = 0

Density at
max q

Velocity at
maximum

Jo
in

tt
ra

in
in

g

Calibrate FD

Fit parameters
associated with a
pre-selected FD

along with
parameters of
DNNs [26–28]

Density at
u = 0

Density at
max q

Velocity at
maximum

ML surrogate

Reduce variable
and parameter

sizes while
maintaining the

minimum physical
relevance [29–31]

Parametrized in DNNs

Remark 2. TSE can be implemented using supervised learning as presented in this paper, where
physics-based models are used to regularize the training of data-driven models. TSE can also be
formulated as unsupervised learning, such as matrix/tensor completion, that estimates unknown
traffic states [32,33]. Instead of using physics-based models, matrix/tensor completion methods
use prior knowledge, such as low-rank property, to regularize the estimation. We would like to
pinpoint here that such prior knowledge regularization can also be integrated into our framework by
including the rank of the predicted traffic state matrix in the PIDL loss function.

Traffic sensors range from conventional ones placed on roadside infrastructure (in
Eulerian coordinates), such as inductive loop detectors and roadside closed-circuit televi-
sion (CCTV) or surveillance cameras, to in-vehicle sensors (in Lagrangian coordinates),
including global positioning systems (GPSs), on-board cameras, LiDARs, and smart phones.
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The emerging traffic sensors mounted on connected and automated vehicles (CAVs) are
expected to generate terabytes of streaming data [34], which can serve as “probe vehicles”
or “floating cars” for traffic measurements. Future cities will be radically transformed by
the internet of things (IoT), which will provide ubiquitous connectivity between physical in-
frastructure, mobile assets, humans, and control systems [35] via communication networks
(e.g., 5G [36], DSRC [37,38], x-haul fiber networks [39], edge-cloud [40], and cloud servers).

Figure 3 illustrates the observational data types for TSE. Building on individual vehicle
trajectories, we can aggregate the velocity and density for each discretized cell and time
interval. With the availability of high-resolution multi-modality data, we should also
consider developing disaggregation methods for TSE that can directly use individual
trajectories or images as inputs.

Traffic density: measurements

Traffic density: ground truth

Collocation point

Loop detector

Camera

Probe vehicle

Legend

Vehicle trajectory

Observed traffic
density measured
by camera

Legend
Observed traffic
density measured
by fixed-location
sensors

Figure 3. Data types for TSE (adapted from [12], including fixed location sensors (blue hexagons),
roadside camera, and collocation points (black crosses)).

In the TSE problem, the physics-based approach refers to the scientific hypotheses
about the evolution of traffic flow on micro-, meso-, and macro-scales; while the ML
approach refers to data-driven models that mimic human intelligence using deep neural
networks, reinforcement learning, imitation learning, and other advanced data science
methods [6].

2.2.1. Physics-Based Models

The field of transportation has been buttressed by rich theories and models tracing
back to as early as the 1930s [41]. A large amount of theories have since been successfully
developed to explain real-world traffic phenomena, to prognose and diagnose anomalies
for operation and management, and to make predictions for planning and management.

These models make ample use of scientific knowledge and theories about transporta-
tion systems, ranging from closed-form solutions to numerical models and simulations.
Transportation models have demonstrated their analytical and predictive power in the
past few decades. For example, microscopic car-following models and macroscopic traffic
flow models succeed in capturing transient traffic behavior, including shock waves and the
stop-and-go phenomenon.

The model-based approach relies on traffic flow models for single- or multi-lane
and single- or multi-class traffic flow. Traffic models include first-order models such
as Lighthill–Whitham–Richards (LWR) [42,43], and second-order models such as Payne–
Whitham (PW) [44,45] and Aw–Rascle–Zhang (ARZ) [46,47].
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The first constitutive law that needs to be satisfied is a conservation law (CL) or transport
equation, meaning that inflow equals outflow when there is no source or sink. Mathematically,

(CL) ρt + (ρu)x = 0, (x, t) ∈ D. (6)

A second equation that stipulates the relation between ρ, u can be a fundamental
diagram (FD) (for the first-order traffic flow model) or a moment equation (for the second-
order traffic flow model):

(FD) u = U(ρ), (first-order)

ut + uux = g(U(ρ)), (second-order).
(7)

where U(·) is a fundamental diagram, a mapping from traffic density to velocity, and
g(U(ρ)) is a nonlinear function of U(ρ). A fundamental diagram can also be a mapping
from density to volume/flux, as exemplified in Figure 4, calibrated by a real-world traffic
dataset. In the literature, several FD functions are proposed and interested readers can refer
to [48] for a comprehensive survey.



Q
F

lo
w

 R
at

e 
(v

eh
/h

)

Traffic Density (veh/km)

( )Q Calibrated

Figure 4. Fundamental diagram (red line) with data (blue dots).

When a traffic flow model is selected as the underlying dynamical system, data
assimilation is employed to find “the most likely state” and observations are used to correct
the model prediction, including an extended Kalman filter (EKF) [15,49,50], unscented
KF [51], ensemble KF [52], and particle filter [53].

To quantify the uncertainty in TSE problems, the model-based approach usually makes
a prior assumption about the distribution of traffic states by adding a Brownian motion
on the top of deterministic traffic flow models, leading to Gaussian stochastic traffic flow
models. There is the other school of literature that derives intrinsic stochastic traffic flow
models with more complex probabilistic distributions [15–18]. With a stochastic traffic flow
model, a large population approximation or fluid limit is applied to extract the first and
second moments of the stochastic processes to facilitate the application of filtering methods.

2.2.2. Data-Driven Approach

The data-driven approach aims to learn traffic dynamics directly from data. Machine
learning extracts knowledge, patterns, and models automatically from large volumes
of data. DL, especially DNN, has revived the interest of the scientific community since
2006 [54]. Using ML for TSE is primarily focused on data imputation leveraging temporal or
spatial correlations, including autoregressive integrated moving average [55], probabilistic
graphical models [56], k-nearest neighbors [57], principal component analysis [58,59],
and long short-term memory models [60]. The majority of these methods assume that a
traffic quantity at a time interval or within a cell depends on its historical or neighboring
values, regardless of the physical characteristics of traffic flow. Accordingly, the data-driven
approach is not as popular as the model-based one and does not achieve as high an accuracy
as the latter [12]. More recent ML techniques aim to model nonlinearity in traffic dynamics,



Algorithms 2023, 16, 305 8 of 36

leveraging deep hidden layers together with the sparse autoregressive technique [61] and
fuzzy neural networks [62]. With the advantage of both model- and data-based approaches,
it is natural to consider a hybrid one for TSE.

2.2.3. PIDL

In the pioneering work [63,64], PIDL was proposed as an alternative solver of PDEs.
Since its inception, PIDL has become an increasingly popular tool for data-driven solutions
or the discovery of nonlinear dynamical systems in various engineering areas [65–69]. While
PIDL has increasingly demonstrated its predictive power in various fields, transportation
modeling is lagging behind in combining both physics and data aspects.

2.3. Two Classes of Problems

The existing literature on PIDL aims to solve two classes of problems: (1) PDE solution
inference, and (2) uncertainty quantification. In the next two sections, we will detail these
two problems one by one.

3. PIDL for Deterministic TSE
3.1. PIDL for Traffic State Estimation (PIDL-TSE)

Definition 3. PIDL for traffic state estimation (PIDL-TSE) aims to infer the spatiotemporal
fields of traffic states by integrating physics-based and deep learning methods.

Define the (labeled) observation set as Od,Op, the boundary and initial observation sets as
B, I , and the (unlabeled) collocation point set as C below:

Os = {(x(is), t(is)); (ρ̂(is), û(is))}Nos
is=1 : stationary sensors,

Om = {{X(n, t(im))}Nom
im=1}

Nn
n=1 : mobile trajectories,

B = {t(ib); (ρ̂(ib), û(ib))}Nb
ib=1 : boundary observation,

I = {x(i0); (ρ̂(i0), û(i0))}N0
i0=1 : initial observation,

C = {(x(j), t(j))}Nc
j=1 : collocation points.

(8)

where is, im are the indices of data collected from stationary and mobile sensors, respectively; ib, i0
are the indices of data collected from the boundary and initial conditions, respectively; and j is still
the index of the collocation points. The values of the stationary sensor data, mobile data, boundary
and initial conditions, and collocation points are denoted as Nos , Nom , Nb, N0, Nc, respectively. The
number of mobile trajectories is denoted as Nn. X(n, t(im)) is the nth vehicle’s position at time t(im).
Observation data in O are limited to the time and locations where traffic sensors are placed. In
contrast, collocation points C have neither measurement requirements nor location limitations, and
are thus controllable.

In the next two sections, we will elaborate the PIDL-TSE framework on the architecture
of HCG and training methods.

3.2. Hybrid Computational Graph (HCG)

HCG is a tool we have invented to facilitate the visualization of the two components,
namely, the PUNN and PICG, and how they are wired. Over an HCG, the architecture of the
PUNN and the PICG, the loss function to train the PUNN, and the training paradigm can
be defined visually. A computational graph, establishing mathematical consistency across
scales, is a labeled directed graph whose nodes are (un)observable physical quantities
representing input information, intermediate quantities, and target objectives. The directed
edges connecting physical quantities represent the dependency of a target variable on
source variables, carrying a mathematical or ML mapping from a source to a target quantity.
A path from a source to the observable output quantities represents one configuration of a
model. A model configuration is chosen to establish a path within the HCG [70].
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3.3. Training Paradigms

Once the physics model is selected, we need to determine the sequence of parameter
calibration prior to, or during, the training of the PUNN. The former corresponds to
solely inferring time-dependent traffic flow fields, and the latter corresponds to system
identification of traffic states [64].

3.3.1. Sequential Training

Sequential training aims to first calibrate parameters of the PICG (i.e., parameter
calibration) and then encode the known physics into the PUNN for training. Parameter
calibration has been extensively studied in TSE using nonlinear programming [19], genetic
algorithm [20], least-squares fitting [21–23,71], and kernel smoothing [24]. The physics-
based parameters include ρmax, umax, and other nominal parameters. Table 1 summarizes
the existing methods for model discovery.

Sequential training is the default paradigm in most PIDL-related studies, with a focus
on how to make the training robust and stable when large-scale NNs and complicated
physics-informed loss functions are involved. A growing amount of studies aim to de-
velop more robust NN architectures and training algorithms for PIDL. For example, one
can use an adaptive activation function by introducing a scalable hyperparameter in the
activation function at some layers of the PUNN to improve the convergence rate and
solution accuracy [72]. The adaptive activation function has also been used in DeLISA
(deep-learning-based iteration scheme approximation), which adopts the implicit multistep
method and Runge–Kutta method for the time iteration scheme to construct the learning
loss when training the PUNN [73]. To perform an efficient and stable convergence in the
training phase, ref. [74] investigates the training dynamics using neural tangent kernel
(NTK) theory and proposes an NTK-guided gradient descent algorithm to adaptively
adjust the hyperparameters for each loss component. New algorithms and computational
frameworks for improving general PIDL training are currently a popular research area, and
we refer readers to [4] for a detailed survey on this topic.

3.3.2. Joint Training

Physics parameters and hyperparameters of the PUNN and the PICG are updated
simultaneously or iteratively in the training process. All of the existing literature on PIDL-TSE
employs simultaneous updating of all parameters associated with both the PICG and
PUNN together, which will be our focus below. However, we would like to pinpoint that
there are increasing interests in training both modules iteratively [75], which could be a
future direction to improve the training efficiency of PIDL-TSE.

Challenges

The PUNN in PIDL is a typical deep learning component that most training techniques
can apply. In contrast, the training challenges incurred by the PICG with unknown physics
parameters are nontrivial, and, accordingly, substantial research and additional adaptive
efforts are needed.

First, some traffic flow models may include a large number of physical parameters
that need to be discovered in TSE, and it is challenging to train all the parameters at once.
For example, the three-parameter LWR model in Section 3.4 involves five parameters, and
it is reported that the direct joint training for all the parameters with real-world noisy
data leads to unsatisfactory results [31]. For this issue, the alternating direction method of
multipliers (ADMM) method [76] is an option to improve training stability, i.e., to train one
subset of physical parameters at a time with the rest fixed. The advanced ADMM variant,
deep learning ADMM (dlADMM), may further address the global convergence problems
in non-convex optimization with a faster learning efficiency [77].

Second, a highly sophisticated traffic flow model may contain complicated terms that
are unfriendly to differentiation-based learning, making the model parameter discovery
less satisfactory for real data. In this case, the structural design of the PICG plays an
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important role to make the framework trainable. Specifically, additional efforts such as
variable conversion, decomposition, and factorization need to be made before encoding
to make the structure learnable and for the loss to converge. Alternatively, as will be
discussed in ML surrogate, one can use an ML surrogate, such as a small NN, to represent
the complicated terms in the PICG to avoid tackling them directly [31].

ML Surrogate

When physics and PUNN are jointly trained, Figure 5 further demonstrates the flow
of simultaneously tuning parameters in the physics model and the hyperparameters in the
PUNN. The top blue box encloses the data-driven component that contributes to the loss
function, and the bottom red box encloses the physics-based component.

Figure 5. Flowchart of joint training of PIDL.

Note that in Figure 5, we omit details about how ρ and u interact within a PUNN.
These two quantities can be generated in sequence or in parallel. When ρ is generated
first, u can be derived from an FD that stipulates the relation between ρ and u. Otherwise,
one PUNN can be trained to generate both ρ and u together or two PUNNs are trained to
generate ρ and u separately. ρ and u need to satisfy the CL, but when they are generated
out of PUNNs this cannot be guaranteed. Thus, ρ and u are then fed into the physics
component to impose this constraint on these quantities.

To inject the minimum amount of knowledge such as the universal CL defined in
Equation (6) to PIDL, and leave out that based on assumptions such as FD, defined in
Equation (7), we propose an ML surrogate model that replaces the mapping from traffic
density to velocity as a DNN and learns the relation between these two quantities purely
from data.

A fundamental diagram that establishes a relation between ρ and u, can be treated
as an embedded physics component within traffic flow models. According to empirical
studies, the relation between ρ and u is generally not a one-to-one mapping, especially in a
congested regime. Thus, it is natural to employ an ML surrogate component to characterize
the interaction between these two traffic quantities. We can further explore to what extent
the addition of surrogates affects the performance and where it is appropriate to use
ML surrogates.

Table 2 summarizes the existing studies that employ PIDL for TSE. Leveraging PIDL
for the TSE problem was first proposed by [25,27,28,31], concurrently and independently.
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Table 2. State-of-the-art PIDL-TSE.

Physics Data Descriptions Ref.

Fi
rs

t-
or

de
r

m
od

el

LWR
Synthetic
(Lax–Hopf
method)

Integrated the Greenshields-based LWR to
PIDL and validated it using loop detectors
as well as randomly placed sensors.

[25]

LWR Numerical,
NGSIM

Presented the use of PIDL to solve
Greenshields-based and three-parameter-based
LWR models, and demonstrated its advantages
using a real-world dataset.

[27]

LWR Numerical

Studied the general partial-state reconstruction
problem for traffic flow estimation, and used
PIDL encoded with LWR to counterbalance
the small number of probe vehicle data.

[78]

FL1,
LWR

SUMO
simulation

Integrated a coupled micro–macro model,
combining the follow-the-leader (FL1) model
and LWR model, to PIDL for TSE, which can
use the velocity information from probe vehicles.

[26,30]

Se
co

nd
-o

rd
er

m
od

el

LWR
and
ARZ

Numerical,
NGSIM

Applied the PIDL-based TSE to the second-
order ARZ with observations from both loop
detectors and probe vehicles, and estimated both
ρ and u in parallel.

[28]

Proposed the idea of integrating ML surrogate
(e.g., an NN) into the physics-based component
in the PICG to represent the complicated FD
relation. Improved estimation accuracy achieved
and unknown FD relation learned.

[31]

Next, we will demonstrate how to design the architecture of PIDL and the correspond-
ing PICG. We will first present a numerical example to demonstrate how the physics law of
three-parameter-based LWR is injected into the PICG to inform the training of the PUNNs,
and then compare all the existing architectures on a real-world dataset.

3.4. Numerical Data Validation for Three-Parameter-Based LWR

In this example, we show the ability of PIDL for the traffic dynamics governed by the
three-parameter-based LWR traffic flow model on a ring road. Mathematically,

ρt + (Q(ρ))x = ερxx, x ∈ [0, 1], t ∈ [0, 3], (9)

where ε = 0.005. The initial and boundary conditions are ρ(x, 0) = 0.1 + 0.8e−25(x−0.5)2

and ρ(0, t) = ρ(1, t).
In this model, a three-parameter flux function [21] is employed: Q(ρ) = ρU(ρ) = σ(a+

(b− a) ρ
ρmax
−
√

1 + y2), where a =
√

1 + (δp)2, b =
√

1 + (δ(1− p))2 and y = δ( ρ
ρmax
− p).

In the model, δ, p, and σ are the three free parameters after which the function is named.
The parameters σ and p control the maximum flow rate and critical density (where the
flow is maximized), respectively. δ controls the roundness level of Q(ρ). In addition to
the above-mentioned three parameters, we also have ρmax and the diffusion coefficient ε
as part of the model parameters. In this numerical example, we set δ = 5, p = 2, σ = 1,
ρmax = 1, and ε = 0.005.

Given the bell-shaped initial density condition, we apply the Godunov scheme to
solve Equation (9) on 240 (space) × 960 (time) grid points evenly deployed throughout the
[0, 1]× [0, 3] domain.

The PIDL architecture that encodes the LWR model is shown in Figure 6. This architec-
ture consists of a PUNN for traffic density estimation, followed by a PICG for calculating
the residual rc := ρt + (Q(ρ))x − ερxx on collocation points. The estimated traffic density ρ
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is calculated by the PUNN fθ(x, t), which is an NN and maps a spatiotemporal point (x, t)
directly to ρ, i.e., ρ = fθ(x, t). PUNN fθ(x, t), parameterized by θ, is designed as a fully
connected feedforward neural network with 8 hidden layers and 20 hidden nodes in each
hidden layer. The hyperbolic tangent function (tanh) is used as the activation function for
hidden neurons. By replacing ρ with fθ , we have rc := [ fθ ]t + (Q( fθ))x − ε[ fθ ]xx in this
case. With the estimated ρ and the observations ρ̂ on the observation points, we can obtain
the data loss Lo. In contrast, in PICGs, the connecting weights are fixed and the activation
function of each node is designed to conduct a specific nonlinear operation for calculating
an intermediate value of rc. The physics discrepancy Lc is the mean square of rc on the
collocation points.

Figure 6. PIDL flowchart for three-parameter-based LWR, consisting of a PUNN for traffic density
estimation and a PICG for calculating the residual, where λ = (δ, p, σ, ρmax, ε).

To customize the training of PIDL to Equation (9), we need to additionally introduce
boundary collocation points CB = {(0, t(ib))|ib = 1, . . . , Nb} ∪ {(1, t(ib))|ib = 1, . . . , Nb}, for
learning the two boundary conditions. Different from the B in Equation (8), observations
on boundary points are not required here in CB. Then, we obtain the following loss:

Lossθ = α · Lo + β · Lc + γ · Lb, (10)

where, Lo =
α

No

No

∑
i=1
| fθ(x(i), t(i))− ρ̂(i)|2 (data loss),

Lc =
β

Nc

Nc

∑
j=1
|rc(x(j), t(j))|2 (physics loss),

Lb =
γ

Nb

Nb

∑
ib=1
| fθ(0, t(ib))− fθ(1, t(ib))|2 (boundary loss).

Note that because rc := [ fθ ]t + (Q( fθ))x − ε[ fθ ]xx, rc is affected by θ. Furthermore, bound-
ary collocation points are used to calculate the boundary loss Lb. Because Lb might change
with different scenarios, it is ignored in Figure 6 for simplicity.

TSE and system identification using loop detectors: In this experiment, five model
variables δ, p, σ, ρmax, and ε are encoded as learning variables in the PICG depicted in
Figure 6. Define λ = (δ, p, σ, ρmax, ε) and the residual rc is affected by both θ and λ,
resulting in the objective Lossθ,λ. We now use observations from loop detectors, i.e., only
the traffic density at certain locations where loop detectors are installed can be observed.
By default, loop detectors are evenly located along the road.
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We use Nc = 150, 000 collocation points and other experimental configurations are
given in Appendix A.1.1. We conduct PIDL-based TSE experiments using different num-
bers of loop detectors to solve (θ∗, λ∗) = argminθ,λ Lossθ,λ. In addition to the traffic density
estimation errors of ρ(x, t; θ∗), we evaluate the estimated model parameters λ∗ using the
L2 relative error (RE) and present them as a percentage. Figure 7 presents a visualization of
the estimated traffic density ρ (left) and traffic velocity (right) of the PIDL. Comparisons
at certain time points are presented. Note that the PUNN in Figure 6 does not predict u
directly, instead it is calculated by Q(ρ)/ρ in the post-processing.

Figure 7. Estimated traffic density ρ (left) and traffic velocity u (right) of the PIDL when the number
of loop detectors is 3, where the horizontal black lines in the heatmap represent the sensor positions.
In each half, the prediction heatmap and snapshots at certain time points are presented. Note that the
PUNN does not predict u directly, and instead, it is calculated by Q(ρ)/ρ in the post-processing.

More results are provided in Table A1 and the observation is that the PIDL architecture
in Figure 6 with five loop detectors can achieve a satisfactory performance on both traffic
density estimation and system identification. In general, more loop detectors can help
our model to improve the TSE accuracy, as well as the convergence to the true model
parameters. Specifically, for five loop detectors, an estimation error of 3.186× 10−2 is
obtained, and the model parameters converge to δ∗ = 4.86236, p∗ = 0.19193, σ∗ = 0.10697,
ρ∗max = 1.00295, and ε∗ = 0.00515, which are decently close to the ground-truth. The
observations demonstrate that PIDL can handle both TSE and system identification with
five loop detectors for the traffic dynamics governed by the three-parameter-based LWR.

We conduct sensitivity analysis on different numbers of collocation points and how
they are identified. The details are presented in Table A2: A larger collocation rate (i.e.,
the ratio of the number of collocation points to the number of grid points) is beneficial for
both TSE and system identification, because it could make the estimation on the collocation
points physically consistent by imposing more constraints on the learning process. Empiri-
cally, more collocation points can cause a longer training time and the performance does
not improve too much when a certain collocation rate is reached.

3.5. Real-World Data Validation

It would be interesting to see the performance of state-of-the-art methods based on
either physics or data-driven approaches in order to better quantify the added value of
the proposed class of approaches. We will use a widely used real-world open dataset, the
next generation simulation (NGSIM) dataset, detailed in Table 3. Figure 8 plots the traffic
density heatmap using data collected from the US 101 highway.

The performances of two baseline models and four PIDL variants for deterministic TSE
are presented in Figure 9. As shown on the y-axis, the REs of the traffic density and velocity
are used for evaluation. The comparison is made under representative combinations of
the probe vehicle ratios (see x-axis) and numbers of loop detectors (see the titles of the
sub-figures). We implement an EKF and a pure NN model as the representative pure
data-driven and physics-driven baseline approaches, respectively. The EKF makes use of
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the three parameter-based LWR as the core physics when conducting the estimation. The
NN only contains the PUNN component in Figure 6, and uses the first term in Equation (10)
as the training loss. Among the PIDL variants, the PIDL-LWR and PIDL-ARZ are the
PIDL models that encode the three parameter-based LWR and Greenshields-based ARZ,
respectively, into the PICG. PIDL-LWR-FDL and PIDL-ARZ-FDL are the variant models of
PIDL-LWR and PIDL-ARZ, replacing the FD components in the PICG with an embedded
neural network (i.e., the FD learner). Note, the FD leaner technique is the one introduced
by [31].

Table 3. Real-world data description.

Site Location Date Length (m) Sampling Rate (s) Lane #

US 101 1 LA, CA 6/15/2005 640 0.1 5
Note: Vehicular information includes the position, velocity, acceleration, occupied lane, and vehicle class. Time
periods include 7:50–8:05 a.m., 8:05–8:20 a.m., and 8:20–8:35 a.m. and the data is collected on 15 June 2005. The
data remains accessible to date. We average traffic states across all lanes; 1 www.fhwa.dot.gov/publications/rese
arch/operations/07030/index.cfm; accessed on 22 May 2023.
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Figure 8. Average traffic density and speed on US 101 highway. Heatmap for the traffic density (left)
and velocity (right).

(a) (b)

Figure 9. Results of the deterministic PIDL models for the NGSIM dataset. “#loop” stands for the
number of loop detectors. (a) RE of the traffic density; (b) RE of the traffic velocity.

Performance of baseline models: From the experimental results, it is observed that
the performance of all of the models improves as the data amounts increase. The EKF
method performs better than the NN method, especially when the number of observations
is small. The results are reasonable because EKF is a physics-driven approach, making
sufficient use of the traffic flow model to appropriately estimate unobserved values when
limited data are available. However, the model cannot fully capture the complicated traffic

www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
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dynamics in the real world and the performance improves slowly as the data amount
increases. The NN is able to catch up with the EKF when the amount of data is relatively
large (see the case with loop = 2 and ratio = 3.0%). However, its data efficiency is low and
large amounts of data are needed for accurate TSE.

Comparison between PIDL-based models: The PIDL-based approaches generally
outperform the baseline models. PIDL-ARZ achieves lower errors than PIDL-LWR, because
the ARZ model is a second-order model which can capture more complicated traffic
dynamics and inform the PIDL in a more sophisticated manner.

Effects of using FDL: Comparing the models with FD learner (PIDL-LWR-FDL and
PIDL-ARZ-FDL) to the ones without (PIDL-LWR and PIDL-ARZ), the former generally
show better data efficiency. In PIDL-LWR-FDL and PIDL-ARZ-FDL, the FD equation is
replaced by an internal small neural network to learn the hidden FD relation of the real
traffic dynamics. A proper integration of the internal neural network may avoid directly
encoding the complicated terms in PIDL and trade off between the sophistication of the
model-driven aspect of PIDL and the training flexibility, making the framework a better fit
to the TSE problem.

Comparison between PIDL-FDL-based models: PIDL-LWR-FDL can achieve lower
errors than PIDL-ARZ-FDL, implying that sophisticated traffic models may not always
lead to a better performance, because the model may contain complicated terms that make
the TSE performance sensitive to the PIDL structural design. With the NGSIM data, PIDL-
LWR-FDL can balance the trade-off between the sophistication of PIDL and the training
flexibility more properly.

Transition from pure physics-driven to data-driven TSE models: The contributions
of the physics-driven and data-driven components can be controlled by tuning the hyper-
parameters α and β in Equation (10). Figure 10 shows how the optimal β/α ratio changes
as the data size increases. The x-axis is the number of loop detectors, which represents the
training data size. The y-axis is the optimal β/α corresponding to the minimally achievable
estimation errors of the PIDL-LWR methods shown in Figure 9. The property of tuning
hyperparameters enables the PIDL-based methods to make a smooth transition from a pure
physics-driven to pure data-driven TSE model: in the sufficient data regime, by using a
small β/α ratio, the PIDL performs more like a pure data-driven TSE model to make ample
use of the traffic data and mitigate the issue that the real dynamics cannot be easily modeled
by some simple PDEs, while in the “small” data regime, by using a large ratio, the PIDL
behaves like a pure physics-driven model to generalize better to unobserved domains.

Figure 10. Ratios of the contributions made by the physics-based component and the data-driven
component to the optimal performance of PIDL.

4. PIDL for UQ

It is a widely studied modeling and computational challenge to quantify how uncer-
tainty propagates within dynamical systems that could result in cascading errors, unreliable
predictions, and worst of all, non-optimal operation and management strategies. It is thus
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crucial to characterize uncertainties in traffic state estimators and, consequently, in traffic
management that relies on TSE predictors. UQ for TSE using PIDL is still in its nascent stage.

Definition 4. Uncertainty quantification (UQ) aims to assess the robustness of the developed
model and bound the prediction errors of dynamical systems by estimating the probability density of
quantities with input features and boundary conditions [79]. Stochastic effects and uncertainties
potentially arise from various sources, including variability and errors in measurements, dynamic
actions of various entities, model biases, and discretization and algorithmic errors. In summary,
there are two types of uncertainty in the context of TSE [79,80]:

1. Aleatoric uncertainty (or data uncertainty): an endogenous property of data and thus irre-
ducible, coming from measurement noise, incomplete data, or a mismatch between training
and test data.

2. Epistemic uncertainty (or knowledge uncertainty, systematic uncertainty, model discrepancy):
a property of a model arising from inadequate knowledge of the traffic states. For example, traffic
normally constitutes multi-class vehicles (e.g., passenger cars, motorcycles, and commercial
vehicles). A single model can lead to insufficiency in capturing diversely manifested behaviors.

UQ is “as old as the disciplines of probability and statistics” [79]. In recent years, its
explosive growth in large-scale applications has been bolstered by the advance of big data
and new computational models and architectures. The conventional UQ techniques include
but are not limited to: sensitivity analysis and robust optimization [81]; probabilistic ensem-
ble methods and Monte- arlo methods with multi-level variants [82–84]; stochastic spectral
methods [79]; and methods based on the Frobenius–Perron and Koopman operators [85,86]
for dynamic systems.

Epistemic uncertainty arising from model discrepancies, often bias, can be compen-
sated for by improved domain knowledge, which has received increasing attention, es-
pecially with the advance of PIDL. In the computational architecture of PIDL, the data
component can be treated as a compensation term for inaccurate or biased physics supplied
by the physics-based component. Thus, it is natural to generalize PIDL to UQ, where
the physics-based component provides partial domain knowledge when stochasticity is
propagated within highly nonlinear models, and the data-driven component learns extra
randomness arising from both data and model errors.

Definition 5. UQ for traffic state estimation (UQ-TSE) aims to capture the randomness of
traffic states ŝ = {ρ̂, û} by probabilistic models. It is assumed that ŝ follows the observational
distribution, i.e., ŝ ∼ pdata(ŝ|x, t). The goal of the UQ-TSE problem is to train a probabilistic model
Gθ parameterized by θ such that the distribution of the prediction s ∼ pθ(s|x, t) resembles the
distribution of the observation ŝ ∼ pdata(ŝ|x, t). One widely used metric to quantify the discrepancy
between pdata and pθ is the reverse Kullback–Leibler (KL) divergence.

Since the majority of the literature on UQ-PIDL employs deep generative models,
including generative adversarial networks (GANs) [87], normalizing flow [88], and vari-
ational autoencoder (VAE) [89], here we will focus on how to leverage deep generative
models for UQ problems. Among them, physics-informed generative adversarial network
(PhysGAN) is the most widely used model which has been applied to solve stochastic
differential equations [90,91] and to quantify uncertainty in various domains [31,92]. Little
work has been performed on using physics-informed VAE for the UQ-TSE problem, which
can be a future direction.

4.1. PIDL-UQ for TSE
4.1.1. Physics-Informed Generative Adversarial Network (PhysGAN)

One way to formulate the UQ-TSE problem is to use a generative adversarial network
(GAN) [87], which imitates the data distribution without specifying an explicit density
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distribution and can overcome the computational challenge of non-Gaussian likelihood [65],
as opposed to using a Gaussian process [93,94].

Now, we will formulate the UQ problem in the context of conditional GANs. The
generator Gθ learns the mapping from the input (x, t) and a random noise z to the traffic
state s, Gθ : (x, t, z) → s, where θ is the parameter of the generator. The objective of the
generator Gθ is to fool an adversarially trained discriminator Dφ : (x, t, s)→ [0, 1]. The loss
functions of the GAN are depicted below:

Lossθ (generator loss)

= Ex,t,z
[
Dφ(x, t, s)

]
' 1

No

No

∑
i=1

Dφ(x(i), t(i), s(i)),
(11)

Lossφ (discriminator loss)

= −Ex,t,z
[
ln Dφ(x, t, s)

]
−Ex,t,ŝ

[
ln(1− Dφ(x, t, ŝ))

]
,

' − 1
No

No

∑
i=1

ln Dφ(x(i), t(i)o , s(i))+ ln(1− Dφ(x(i), t(i), ŝ(i))),

(12)

where s(i) = Gθ(x(i), t(i), z(i)) is the predicted traffic state, and ŝ is the ground-truth. With
physics imposed, the generator loss carries the same form as Equation (10), and the data
loss Lo and boundary loss Lb become:

Lo =
1

No

No

∑
i=1

Dφ(x(i), t(i), s(i)),

Lb =
1

Nb

Nb

∑
ib=1

Dφ(x(ib), t(ib), s(ib)).

(13)

Different PhysGAN variants adopt different ways of integrating physics into GANs, and
the exact form of Lc changes accordingly. Below we will introduce the general structure of
the PhysGAN and its four variants.

The general structure of the PhysGAN is illustrated in Figure 11. The top blue box
encloses the data-driven component, which is a GAN model consisting of a generator
Gθ and a discriminator Dφ. Here, we omit details about how ρ and u interact within the
generator. These two quantities can be generated sharing the same NN or from separate
NNs. The PICG can be encoded with either the LWR or the ARZ equations.

PI-GAN Refs. [90,95,96] calculate the physics loss Lc based on the residual rc, as
illustrated in branch B1 of Figure 11a. Lc is added into the loss of the PUNN Lo using the
weighted sum. This model was the first and is the most widely used to encode physics into
the generator.

PID-GAN Ref. [91] feeds the residual rc into the discriminator Dφ to provide addi-
tional information on whether the predictions deviate from the physics equations, which
helps the discriminator to distinguish between the prediction and the ground-truth. This
way of integrating physics is illustrated in branch B2 of Figure 11a. It is worth mentioning
that the PID-GAN and the PI-GAN share the same structure of the data-driven component.
They differ in how the physics are incorporated, i.e., informing the generator (branch B1)
or the discriminator (branch B2). Ref. [91] shows that, by informing the discriminator,
PID-GAN can mitigate the gradient imbalance issue of the PI-GAN.

The above-mentioned two PhysGAN variants use deterministic physics, that is, the
parameters in the physics equations are deterministic.
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(a)

(b)

(c)

Figure 11. PIDL architecture for UQ-TSE. The PhysGAN (a) consists of a generator, a discriminator,
and a PICG. The PhysFlow (b) consists of a normalizing flow and a PICG. The PhysFlowGAN
(c) consists of a normalizing flow, a discriminator, and a PICG. In each subfigure, the top blue
box encloses the data-driven component, and the bottom red box encloses the physics component.
(a) PhysGAN architecture. In the data-driven component, the observation is used to calculate the
discriminator loss function Lossφ using Equation (12) and the data loss of the generator LO using
Equation (13). In the physics-based component, the collocation points are used to calculate the
residual rC using Equation (10), which is then used to calculate the physics loss of the generator
LC with two different ways of incorporating the residuals. (b) PhysFlow architecture. In the data-
driven component, the inverse flow function G−1

θ aims to map the observation to a prior that
follows a Gaussian distribution. In the physics-based component, the flow function maps a Gaussian
prior to the collocation points, and a PICG is used to calculate the physics loss LC as in PhysGAN.
(c) PhysFlowGAN architecture. This combines the architectures of PhysGAN and PhysFlow.
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Mean-GAN Ref. [97] incorporates stochastic differential equations into the physics
components (illustrated as the PICG in Figure 11a), where physics parameters are assumed
to follow Gaussian distributions. The randomness in the physics parameters is the source
of the epistemic uncertainty, which leads to the randomness in the residual rc. The physics
loss is calculated based on the square error in the mean of rc, i.e., | 1

Nk
∑Nk

i=1 rc|2, where Nk is
the number of physics parameter samples. Then, the physics loss is included in the loss
function of the PUNN using the weighted sum.

Within the PICG in Figure 11a, we can also replace the parametric FD with ML
surrogates, which is used in the PI-GAN-FDL [65,98].

4.1.2. Physics-Informed Normalizing Flow (PhysFlow)

PhysFlow Ref. [99] employs the normalizing flow as an alternative generative model
to the GAN. The normalizing flow explicitly estimates the likelihood, and is thus more
straightforward to train compared to the GAN model. It estimates the likelihood by
constructing an invertible function Gθ that transforms a Gaussian prior ẑ to the traffic states
s. The structure of the PhysFlow, i.e., PI-Flow, is illustrated in Figure 11b. The top blue
box encloses the data-driven component, consisting of a normalizing flow model. The
inverse function G−1

θ takes as input the traffic states and outputs a predicted prior z. The
training objective is to make z follow a Gaussian distribution, which can be achieved by
the maximum likelihood estimation. The bottom red box encloses the physics component,
which is the same as the PI-GAN.

4.1.3. Physics-Informed Flow-Based GAN (PhysFlowGAN)

PhysFlowGAN combines the merits of GAN, normalizing flow, and PIDL. It uses
normalizing flow as the generator for explicit likelihood estimation, while exploiting
adversarial training with the discriminator to ensure sample quality. The structure of
PhysFlowGAN is shown in Figure 11c, which consists of a normalizing flow, a discriminator,
and a PICG. The data loss Lo is composed of of two parts, i.e., LGAN

o , that is calculated from
the discriminator and L f low

o , that is calculated from the normalizing flow. The physics loss
is calculated in the same way as PI-GAN. One PhysFlowGAN model, TrafficFlowGAN [98],
has been applied to the UQ-TSE problem.

Table 4 summarizes the hybrid architecture used for the UQ-TSE.

Table 4. Architecture used for the UQ-TSE.

Model Descriptions Pros Ref.

Ph
ys

G
A

N

PI-GAN
Lc =

1
Nc

∑Nc
i=1 |rc|2 is added to the

generator loss function using the
weighted sum.

The most
widely used [65,90,95,96]

PID-GAN

Residual is fed into the
discriminator,
Dφ(x(j), t(j), s(j), e−|r

(j)
c |2 ), which is

then averaged over collocation
points to calculate Lc.

Can mitigate
the gradient
imbalance

issue

[91]

Mean-GAN
Residual is averaged over the
physics parameter λ:
Lc =

1
Nc

∑Nc
i=1 |

1
Nk

∑Nk
i=1 rc|2.

Can encode
stochastic

physics model
[97]

PI-GAN-
FDL

The ρ− u relation is approximated
by ML surrogates; physics loss Lc is
the same as PI-GAN.

Requires
minimal
physics

information

[65,98]
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Table 4. Cont.

Model Descriptions Pros Ref.

Ph
ys

Fl
ow

PI-Flow

The normalizing flow model is
used as the generator for explicit
computation of the likelihood; the
physics loss Lc is the same as
PI-GAN.

Simple
structure; easy

to train
[99]

Ph
ys

Fl
ow

G
A

N

Traffic Flow
GAN

The normalizing flow model is
used as the generator for explicit
computation of the likelihood; a
convolutional neural network is
used as the discriminator to ensure
high sample quality physics loss Lc
is the same as PI-GAN.

Combines the
merits of

PhysGAN and
PhysFlow

[98]

4.2. Numerical Data Validation for Greenshields-Based ARZ

As PI-GAN is the most widely used UQ-TSE model, we conduct numerical experi-
ments using PI-GAN for demonstration. In the next subsection, we will use real-world data
to compare the performance of the aforementioned UQ-TSE models.

The ARZ numerical data is generated from the Greenshields-based ARZ traffic flow
model on a ring road:

ρt + (Q(ρ))x = 0, x ∈ [0, 1], t ∈ [0, 3],

∂t(u + h(ρ)) + u · ∂x(u + h(ρ)) = (Ueq(ρ)− u)/τ,

h(ρ) = Ueq(0)−Ueq(ρ).

(14)

Ueq = umax(1 − ρ/ρmax) is the Greenshields speed function, where ρmax = 1.13 and
umax = 1.02, and τ is the relaxation time, which is set to 0.02. The boundary condition
is ρ(0, t) = ρ(1, t). The initial conditions of ρ and u are ρ(x, 0) = 0.1 + 0.8e−25(x−0.5)2

and
u(x, 0) = 0.5. Gaussian noise, following a distribution of N (0, 0.02), is added to impose
randomness. The results of applying PI-GAN to ARZ numerical data are shown in Table A4.
Figure 12 illustrates the predicted traffic density (left) and velocity (right) of the PI-GAN
when the number of loop detectors is equal to three. The snapshots at sampled time steps
show a good agreement between the prediction and the ground-truth.

Figure 12. Estimated traffic density ρ (left) and traffic velocity (right) of the PI-GAN when the
number of loop detectors is equal to 3, where the horizontal black lines in the heatmap represent the
positions of the loop detectors. In each half, the prediction heatmap and snapshots at certain time
points are presented.

4.3. Real-World Data Validation

We apply PIDL-UQ models to the NGSIM dataset. We use four model types, i.e.,
PI-GAN, PI-GAN-FDL, PI-Flow, and TrafficFlowGAN for demonstration. Each model
can be informed by either the LWR or ARZ equations, resulting in eight model variants



Algorithms 2023, 16, 305 21 of 36

in total. EKF and GAN are used as baselines. The EKF uses the three parameter-based
LWR as the physics. The results are shown in Figure 13. As shown on the y-axis, the
upper panels are the REs of the traffic density and velocity, and the lower panels are the
Kullback–Leibler divergence (KL) of the traffic density and velocity. The comparison is
made under representative combinations of probe vehicle ratios (see x-axis) and numbers of
loop detectors (see the titles of sub-figures). We interpret the results from three perspectives:

(a) (b)

(c) (d)

(e)

Figure 13. Results of the PIDL-UQ models for the NGSIM dataset. (a) RE of the traffic density; (b) RE
of the traffic velocity; (c) KL of the traffic density; (d) KL of the traffic velocity; (e) summary of RE
and KL of the traffic density and velocity of all data sizes.

Effect of loop data. When the probe vehicle ratio is fixed to 0.5%, the performance of
all of the models is significantly improved as the loop number increases from 0 to 2, which is
because the loop data provides more information. This improvement is not significant when
the probe vehicle ratio is 3%, as the probe data alone has provided sufficient information.



Algorithms 2023, 16, 305 22 of 36

Effects of using FDL. When the loop number is 2 and the probe vehicle ratio is 0.5%,
PI-GAN-FDL achieves significantly lower REs and KLs compared to PI-GAN and PI-Flow,
while this advantage becomes less significant when the data is sparse. This is because the
ML surrogate requires more data to train. Furthermore, PI-GAN-FDL achieves lower KLs
than PI-GAN in general, indicating that PI-GAN-FDL can better capture uncertainty.

Comparison between the ARZ-based model and the LWR-based model. The ARZ-
based model outperforms the LWR-based model in general, which shows that the second-
order physics is more suitable for the real-world scenario.

Comparison between PIDL-UQ models. As the data amount increases, the perfor-
mance improves and the performance difference across models becomes small. Among all
of the PIDL-based models, TrafficFlowGAN generally achieves the least error in terms of
both RE and KL, because it combines the advantages of both PhysGAN and PhysFlow. In
Figure 13e, we summarize the RE (x-axis), i.e., the relative difference between the predicted
and ground-truth mean, and KL (y-axis), i.e., the statistical difference between the predicted
and ground-truth distribution, of all of the models with different training datasets that
are shown in Figure 13a–d. Each point represents a combination of metrics by applying
one model type to one training dataset. We interpret these points by assigning them into
four regions:

• Region A (optimal RE and KL): Most points in this region belong to the TrafficFlow-
GAN model type (stars), which shows that the combination of PI-GAN and PI-Flow
helps to achieve the best performance in terms of both RE and KL.

• Region B (low RE and high KL): Most points in this region belong to GAN (inverted
triangles) and PI-GAN (dots), which is a sign that the GAN-based models are prone to
mode-collapse.

• Region C (balanced RE and KL): Most points in this region belong to the PI-Flow
model type, indicating that explicit estimation of the data likelihood helps to balance
RE and KL.

• Region D (high RE and low KL): Most points in this region belong to the EKF (triangles)
and PI-GAN-FDL (squares), showing that these two types of model can better capture
the uncertainty than the mean.

Transition from pure physics-driven to data-driven TSE models: Figure 14 shows
the optimal β/α ratio of the TrafficFlowGAN under different numbers of loop detectors.
The optimal β/α has a similar decreasing trend as in the deterministic TSE problem shown
in Figure 10.

Figure 14. Ratios of the contributions made by the physics-based component and the data-driven
component to the optimal training of TrafficFlowGAN. β and α are hyperparameters in Equation (10)
which control the contribution of the physics-based and data-driven components, respectively.

5. Conclusions and Future Work
5.1. Conclusions

This paper lays a methodological paradigm of PIDL for the TSE problem, including
traffic state inference and uncertainty quantification. We present the concept of HCG that
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integrates both a PUNN and a PICG. In the TSE problem in particular, we present various
architecture designs. For the traffic state inference problem, the PUNN and PICG can be
linked in sequence or in parallel, depending on whether traffic velocity is computed from
traffic density using FDs, or whether both velocity and density are computed from PUNN(s)
simultaneously. For the UQ problem, GAN- and non-GAN-based adversarial generative
models are presented to characterize the impact of measurement uncertainty on traffic
states. The architecture variants, including PI-GAN, PID-GAN, Mean-GAN, PI-GAN-FDL,
PI-Flow, and TrafficFlowGAN are introduced. This is the first study that compares PIDL
model variants using the same real-world dataset, which provides a benchmark platform
for model comparison. By comparing various PIDL models, we demonstrate that this
paradigm is advantageous over pure physics- or data-driven approaches in the “small
data” regime, and also allows a smooth transition from pure physics-driven to data-driven
models via tuning the hyperparameters in the loss. Table 5 summarizes the existing types
of hybrid architecture used in PIDL-TSE.

Table 5. Configuration of physics in the physics-based component.

PUNN-PICG Topology PUNN Hierarchy Shared Separate

Sequential [25,27,28,30,65,91,96–98] [26,31,65,78,90,95,99]

Parallel [9,10] -
Note: PUNN-PICG topology refers to the layout between PUNN and PICG, which can be either “sequential”
(i.e., the output of PUNN is the input into PICG, so PICG follows PUNN) or “parallel” (i.e., PUNN and PICG
output predictions side-by-side to compute a loss). PUNN hierarchy refers to the layout of the NNs that are used
to predict ρ and u. “Shared” means that only one NN is used to output both ρ and u, while “separate” means that
two NNs are used to output ρ and u, respectively.

5.2. Outlook

Looking forward, we will pinpoint several promising research directions that we hope
to guide researchers to exploit in this under-tapped area.

5.2.1. Physics Representation

What physics model is selected depends on the data fidelity, model fidelity, and
available computational resources.

While there are a significant amount of models to describe traffic dynamics on
micro- [100,101], meso- [102,103], and macro-scales [42,43,46,47], the future is in the discov-
ery of a multiscale traffic model (i.e., a mapping from multiscale measurements to traffic
states on different scales) that collectively infers traffic states with various measurements.
Analytical multiscale models have been thoroughly studied in fields such as biological [13]
and materials science [104], but remain under-exploited in transportation modeling. The
drivers of developing a multiscale traffic model are two-fold: (1) Sensor data are at dif-
ferent scales. The collected traffic data include high-resolution individual trajectories and
low-resolution aggregate information, both at various spatiotemporal granularity. Traffic
measurements on different scales essentially measure the same system and phenomenon.
Accordingly, a multiscale model, capable of integrating measurements of various scales,
could characterize traffic dynamics more accurately with a smaller dataset [105]. (2) Traffic
optimization and management strategies need to rely on diverse models and data of dif-
ferent scales. Individual traces are normally modeled using ODEs while aggregate traffic
patterns are modeled with PDEs. An integrated ODE-PDE physics model can potentially
accommodate these measurements at both the micro- and macro-scales [106]. Multiscale
traffic models could also help to reduce model complexity and speed up simulation for
real-time applications.

A multiscale traffic model, however, presents computational challenges due to the
curse of dimensionality (i.e., high-dimensional input–output pairs). It is thus important to
utilize reduced modeling techniques and multi-fidelity modeling [107–109].
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An emerging direction to improve physics representation is to consider proxy models.
For example, symbolic regression has been demonstrated to learn relatively simple phys-
ical forms to describe complex physical systems [110,111]. Traffic engineers have spent
decades discovering various physical laws to describe human behavior models, such as
car-following, lane-change, and other driving scenarios and tasks. Is it possible to develop
a systematic method to select mathematical models? For example, the selection of a model
can be reformulated as finding an optimal path over the PICG from inputs to outputs [112].
Accordingly, model selection is converted to an optimization problem. Machine learning
methods, such as neural architecture search [113] and automatic modularization of network
architecture [114], could enable the automatic architecture design of PICGs and PUNNs.

5.2.2. Learning Discontinuity in Patterns

Traffic patterns, especially congested traffic, are highly driven by underlying physics,
thus, how to learn patterns around shockwaves, which correspond to discontinuities in
which gradients do not exist, remains an active research area in PIDL. Ref. [115] intro-
duces a convolutional neural network (CNN) for TSE, using a customized kernel, i.e., the
anisotropic kernel, based on kinematic wave theory. Their anisotropic kernel specifies the
influence region regarding the forward and backward traffic wave propagation charac-
teristics. Fewer parameters are to be learned, making the training less computationally
intensive. There is a small amount of literature that has discussed such a limitation using
PIDL for nonlinear PDEs with solutions containing shocks and waves. One solution is to
add viscosity terms [28,31,116] to smoothe the discontinuity.

Because the state of the art primarily focuses on the “soft” method, which imposes the
physics constraints as part of the loss function, the fulfillment of physics constraints cannot
be guaranteed, leading to poor prediction in shocks and waves. Thus, “hard” methods that
enforce physics could be a radical remedy.

5.2.3. Transfer and Meta-Learning

For engineers, an important question is, if we have trained a PUNN using data
collected from city A, can we directly generalize the prediction out of the NN using data
from city B? Traffic datasets from two cities could differ drastically in the underlying traffic
dynamics (arising from heterogeneity in driver behavior such as that in San Francisco
and Mumbai), traffic environments, road conditions, initial and boundary conditions, and
traffic demands. To address this challenge, we have to modify the input of the PUNN
without using (x, t) but other attributes that vary across datasets, including, but not limited
to, road type, geometry, lane width, lane number, speed limit, travel demands, traffic
composition, and so on. One option is to employ Fourier neural operator (FNO) and
its variants, e.g., the physics-informed FNO, to encode both the initial and boundary
conditions as part of the inputs and to learn the nonlinear traffic-related operator directly, in
other words, mapping (x, t) to the solutions associated with the given initial and boundary
conditions [117]. Moreover, selection of training and validation datasets that can mitigate
training bias would help with transfer learning, and one approach is to use an adversarial
game [118] to select these two datasets and train a robust PIDL model.

Another direction to meet the transfer needs is to ask, how can we train a family of
related physics-based PDEs (such as LWR and ARZ) and generalize the tuned hyperpa-
rameters to other physics members? Meta-learning the parameters involved in the PIDL
pipeline could be a potential solution [119].

5.2.4. IoT Data for Urban Traffic Management

How can we fully exploit the advantage of multimodal, multi-fidelity IoT data, in-
cluding, but not limited to, individual trajectories, camera images, radar heatmaps, and
lidar cloud points? The existing practice is to preprocess these multimodal, multi-fidelity
measurements using computer vision and extract aggregate traffic information in terms of
traffic velocity and/or density within discretized spatial cells and time intervals. Rather
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than converting these data formats to conventional ones, we should think outside the box
and potentially redefine the entire TSE framework. It thus demands a shift in paradigm
from what constitutes traffic states to taking individual trajectories and images as inputs.
In other words, is it sufficient to simply use aggregate traffic velocity, density, and flux to
describe traffic states? The aggregate traffic measures were introduced decades ago when
inductive loop detectors were deployed to measure cumulative traffic counts. Traffic flow
has long been regarded as analogous to fluids, and, accordingly, hydrodynamic theory is
applied to model traffic flow dynamics. It is natural to adapt physical quantities defined
for fluids to traffic flow. However, traffic systems are not physical but social systems, in
which road users constitute a complex traffic environment while interacting continuously
with the built environment. Contextual information greatly influences driving behaviors
and traffic dynamics. Accordingly, the question is, when we describe the state of traffic
and aim to optimize traffic management strategies, would traffic contextual information
perceived by our eyes and brains (represented by DNNs) be helpful as an addition to those
widely used quantitative measures, especially when this type of information becomes more
widely available thanks to IoT and smart city technology?

Furthermore, if TSE models can be enriched with multimodal data, what are the
new challenges and opportunities to traffic control and optimization models that rely
on traffic state inference? There are extensive studies on causal discovery and causal
inference using observational data when unobserved counfounders are present [120,121].
However, little work has been performed to leverage explicit causal relations from physical
knowledge to improve PIDL. For example, counterfactual analysis of physical dynamics
concerns identifying the casual effects of various interventions, including traffic control
and the sequential decision making of other agents in the environment [122–124]. Without
performing extra experimentation that is risky and unsafe, how can we design and validate
traffic management strategies using new information provided by IoT data?

5.2.5. TSE on Networks

With the ubiquitous sensors in smart cities, traffic state estimation on large-scale road
networks will be more feasible and useful to perform. To generalize from single road
segments to networks, the challenge lies in the spatial representation of graphs, as well as
the temporal evolution of traffic dynamics. When PIDL is applied when there is sparse
networked sensing information, we need to clarify in what representation existing physics
models could be incorporated, in other words, how we should encode traffic states on links
and those at junctions and into what deep learning models. Ref. [125] predicts network
flows using a spatiotemporal differential equation network (STDEN) that integrates a
differential equation network for the evolution of a traffic potential energy field into DNNs.

There are a lot more open questions that remain unanswered. As this field continues
growing, we would like to leave them for readers to ponder:

1. How do we leverage various observation data to fully exploit the strengths of PIDL?
2. What types of sensors and sensing data would enrich the application domains of

PIDL and better leverage its benefits?
3. Would there exist a universal architecture of hybrid computational graphs across

domains?
4. What are robust evaluation methods and metrics for PIDL models against baselines?
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Appendix A

Appendix A.1. Experimental Details for TSE and System Identification Using Loop Detectors

Appendix A.1.1. Experimental Configurations

The PUNN fθ(x, t) parameterized by θ is designed as a fully connected feedforward
neural network with 8 hidden layers and 20 hidden nodes in each hidden layer. The specific
structure is: layers = [2, 20, 20, 20, 20, 20, 20, 20, 20, 1], meaning that PUNN inputs (x, t) to
estimate density ρ. The hyperbolic tangent function (tanh) is used as the activation function
for each hidden neuron in PUNN. In addition, the PICG part in the PIDL architecture is
parameterized by the physics parameters λ.

We train the PUNN and identify λ through the PIDL architecture using the adaptive
moment estimation (Adam) optimizer [126] for a rough training for about 1000 iterations.
A follow-up fine-grained training is performed by the limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) optimizer [127] for stabilizing the convergence, and the process
terminates when the loss change of two consecutive steps is no larger than 10−16. This
training process converges to a local optimum (θ∗, λ∗) that minimizes the loss.

For a fixed number of loop detectors, we use grid search for hyperparameter tuning by
default. Specifically, since the Adam optimizer is scale invariant, we fix the hyperparameter
α to 100 and tune the other hyperparameters from [1, 10, 50, 100, 150, 200] with some
follow-up fine tuning.

The training details are presented in Algorithm A1.

Algorithm A1: PIDL training for deterministic TSE.

1 Initialization:
2 Initialized PUNN parameters θ0; Initialized physics parameters λ0; Adam

iterations Iter; Weights of loss functions α, β, and γ.
3 Input: The observation data O = {(x(i), t(i), ρ̂(i))}No

i=1; collocation points
C = {(x(j), t(j))}Nc

j=1; boundary collocation points CB, e.g.,

CB = {(0, t(ib))}Nb
ib=1 ∪ {(1, t(ib))}Nb

ib=1
1: k← 0
2: θ̃0 ← (θ0, λ0)
3: while k < Iter do
4: Calculate Loss by Equation (10) using (α, β, γ) on (O,C,CB)
5: θ̃k+1 ← θ̃k −Adam(θ̃k,∇θ̃ Loss)

// use Adam for pre-training
6: k← k + 1
7: end while
8: while θ̃k not converged do
9: Calculate Loss by Equation (10) using (α, β, γ) on (O,C,CB)

10: θ̃k+1 ← θ̃k − L-BFGS(θ̃k,∇θ̃ Loss)
// use L-BFGS for fine-grained training

11: k← k + 1
12: end while
13: return θ̃k

Appendix A.1.2. Additional Experimental Results Using Numerical Data for
Three-Parameter-Based LWR

The results under different numbers of loop detectors m are shown in Table A1.
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Table A1. Prediction and parameter calibration errors of PIDL for the three-parameter-based LWR data.

mmm REρρρ (%) δδδ* (%) ppp* (%) σσσ* (%) ρρρ*
max (%) εεε* (%)

3 75.50 54.15 124.52 >1000 >1000 99.95
4 10.04 59.07 72.63 381.31 14.60 6.72
5 3.186 2.75 4.03 6.97 0.29 3.00
6 1.125 0.69 2.49 2.26 0.49 7.56
8 0.7619 1.03 2.43 3.60 0.30 7.85

λ∗ = (δ∗, p∗, σ∗, ρ∗max , ε∗) are estimated parameters, compared to the true parameters δ = 5, p = 2, σ = 1, ρmax = 1,
ε = 0.005.

Appendix A.1.3. Additional Experimental Results Using Real-World Data

Figure A1 shows the error heatmaps for the NN and PIDL-LWR-FDL models when
the number of loop detectors is two and the prove vehicle ratio is 0.05, where “SE” means
the squared error.

(a)

(b)

Figure A1. Error heatmaps of the NN and PIDL-LWR-FDL models. (a) SEρ(x, t) of the PIDL-LWR-
FDL; (b) SEρ(x, t) of the NN.

Appendix A.1.4. Sensitivity Analysis on Collocation Points

We conducted sensitivity analysis on different numbers of collocation points and the
results are presented in Table A2. The detector number was fixed to five and the hyperpa-
rameters remained unchanged. The performances of estimation and parameter discovery
improve when more collocation points are used. In this case study, the performance is
sensitive to the number of collocations when the collocation rate is smaller than 0.01.

Table A2. Sensitivity analysis on collocation rates.

C.R. REρρρ (%) δδδ* (%) ppp* (%) σσσ* (%) ρρρ*
max (%) εεε* (%)

0.0001 81.2 62.66 21.15 297.77 25.91 171.37
0.001 10.2 64.52 89.69 504.23 17.77 7.16
0.01 3.6 20.55 11.10 47.36 3.32 2.59
0.1 3.2 7.69 5.74 15.78 0.45 3.41
0.5 3.0 1.88 4.23 5.87 0.60 3.37

C.R. stands for the collocation rate, which is the the ratio of the number of collocation points to the number of grid
points. The detector number is fixed to 5.

Appendix A.1.5. Computational Effort and Model Accuracy

Table A3 presents the computational time and prediction error in the deterministic
PIDL and baselines with the LWR model as the physics when the loop detector number is 2
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and the probe vehicle ratio is 3%. The first column is the name of the model used in the
experiment, and the second column is the type of the model. The third and fourth columns
are the computation times for the training and tests, respectively. The remaining columns
are the performance metrics in terms of prediction error.

As EKF is not a learning-based method, it can make predictions directly after the
parameters of the dynamic model, i.e., discrete LWR or ARZ, are pre-calibrated. Although
the deep learning models (PIDL-FDL, NN) require training, their test time is much less than
that of the EKF. In terms of accuracy, which is another aspect of evaluating the efficiency of
a method, the PIDL and PIDL-FDL models achieve a significant accuracy improvement
compared to EKF and NN. The short computational time in the test phase (or in the run
time) and high accuracy are both of major consideration in real-world applications.

Table A3. The computation time and prediction error in deterministic PIDL models and baselines.
(As EKF is not a learning-based method, the “training time” is not applicable to EKF).

Model Model Type
Computation Time Prediction Error

Training (s) Test (s) REρρρ (%) REu (%)

EKF Physics-based − 1.5 39.5 35.2
NN Data-driven 248 0.03 42.8 39.8

PIDL Hybrid 647 0.04 31.5 30.5
PIDL-FDL Hybrid 769 0.04 21.2 11.6

Appendix A.2. Experimental Details for UQ-TSE and System Identification Using Loop Detectors

Appendix A.2.1. Experimental Configurations

For the PI-GAN model, the generator structure is: layers = [3, 20, 40, 60, 80, 60, 40, 20,
2], meaning that the generator inputs (x, t, z) to estimate both the traffic density ρ and traf-
fic velocity u. The discriminator structure is: layers = [4, 20, 20, 40, 60, 80, 60, 40, 20, 20, 1],
meaning that the discriminator inputs (x, t, ρ, u) and outputs a one-dimensional real num-
ber indicating whether the input ρ and u are from the real-world data or not. Note that the
discriminator has a more complex structure than the generator to stabilize the training. The
rectified linear unit (ReLU) is used as the activation function for each hidden layer.

For the PI-Flow model, both the scale neural network and the transition neural network
share the same structure, i.e., 2 hidden layers with 64 neurons in each layer. The number of
transformations is six, that is, there are six scale neural networks and six transition neural
networks in total. Leaky Relu is used as the activation function for each hidden layer.

For the TrafficFlowGAN, its PUNN is a normalizing flow model that shares the same
architecture as that in the PI-Flow model introduced above. The discriminator consists of a
stack of three convolutional layers. The kernel size for each layer is three, and the number
of channels of each layer is 4, 8, and 16.

We use the Adam optimizer to train the neural networks for 5000 iterations. Different
from training PIDL for deterministic TSE, the L-BFGS optimizer is not used, because the
GAN model requires training the generator and discriminator in turn, for which the L-BFGS
optimizer is not suitable. We fix the hyperparameter β = 1− α and tune α from [0.1, 0.3,
0.4, 0.6, 0.7].

The training details are presented in Algorithm A2.



Algorithms 2023, 16, 305 29 of 36

Algorithm A2: PIDL-UQ training for stochastic TSE.

1 Initialization:
2 Initialized physics parameters λ0; Initialized networks parameters θ0, φ0; Training

iterations Iter; Batch size m; Learning rate lr; Weights of loss functions α, β,
and γ.

3 Input: The observation data O = {(x(i), t(i), ρ̂(i))}No
i=1; collocation points

C = {(x(j), t(j))}Nc
j=1; boundary collocation points CB, e.g.,

CB = {(0, t(ib))}Nb
ib=1 ∪ {(1, t(ib))}Nb

ib=1
1: for k ∈ {0, ..., Iter} do
2: Calculate Loss by Equations (10) and (11) using (α, β, γ) on (O,C,CB)

// update the generator (PUNN)
3: θk+1 ← φk −Adam(θk,∇θ Loss)
4: Calculate Lossφ by Equation (12)

// update the discriminator (for GAN, PhysGAN, and PhysFlowGAN)
5: φk+1 ← φk −Adam(φk,∇φLossφ)
6: end for

Appendix A.2.2. Additional Experimental Results Using Numerical Data Validation for
Greenshields-Based ARZ

The results under different numbers of loop detectors m are shown in Table A4.

Table A4. Prediction and parameter calibration errors of PI-GAN for the Greenshields-based
ARZ data.

m REρρρ (%) REu (%) KLρρρ KLu u∗max (%) ρρρ∗max (%)

3 42.6 32.5 1.325 0.985 11.5 15.6
4 30.2 20.9 0.965 0.835 6.5 4.5
6 20.6 11.8 0.753 0.638 2.9 2.2
8 18.5 6.3 0.663 0.621 2.3 1.9

m stands for the number of loop detectors. λ∗ = (ρ∗max , u∗max) are estimated parameters, compared to the true
parameters ρmax = 1.13, umax = 1.02.

Appendix A.2.3. Additional Experimental Results Using Real-World Data

Figure A2 shows the error and prediction standard deviation heatmaps for the EKF and
TrafficFlowGAN models when the number of loop detectors is two and the prove vehicle ratio
is 0.05.

Appendix A.2.4. Computational Time and Model Accuracy

Table A5 presents the computational time and prediction error of the stochastic PIDL-
UQ with LWR model as the physics when the loop detector number is two and the probe
vehicle ratio is 3%. The column specification is the same as in Table A3, except for that
there are more performance metrics for the UQ-TSE problem. The deep-learning-based
models (GAN, PI-GAN, PI-Flow, and TrafficFlowGAN) achieve a much lower test time
compared to the EKF, and there is a significant accuracy improvement for the PIDL-based
models, especially for the TrafficFlowGAN model. This property is similar to what was seen
Table A3 when training and testing the deterministic PIDL models. Among the PIDL-based
models, PI-Flow has the shortest training time because it uses the normalizing flow model
as the generator (PUNN), which can be trained by maximum likelihood estimation and
does not require a discriminator. Using both normalizing flow and GAN, TrafficFlowGAN
consumes the most time for training.
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(b)

(c)

(d)

Figure A2. Error heatmaps of the EKF and TrafficFlowGAN. (a) SEρ(x, t) of the TrafficFlowGAN;
(b) SEρ(x, t) of the EKF; (c) prediction’s standard deviation of the traffic density of the TrafficFlow-
GAN; (d) prediction’s standard deviation of the traffic density of the EKF.

Table A5. The computation time and prediction error of stochastic UQ-PIDL models and baselines.
(As EKF is not a learning-based method, the “training time” is not applicable to EKF).

Model Model Type
Computation Time Prediction Error

Training
(s)

Test
(s)

REρρρ

(%)
REu
(%)

KLρρρ

(%)
KLu
(%)

EKF Physics-based − 1.5 39.5 35.2 3.00 3.32
GAN Data-driven 3235 0.03 30.1 39.3 5.45 5.12

PI-GAN Hybrid 3326 0.03 21.1 27.8 4.08 4.02
PI-GAN-FDL Hybrid 3453 0.03 15.4 21.7 2.33 2.57

PI-Flow Hybrid 2548 0.02 22.8 27.7 3.90 4.00
TrafficFlowGAN Hybrid 4323 0.02 15.2 20.3 2.27 2.07

Appendix A.3. Performance Metrics

We use four different metrics to quantify the performance of our models. In the
formulas below, s(x, t) represents the predicted traffic state (i.e., traffic density ρ or traffic
state u) at location x and time t, and ŝ represents the ground-truth.
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1. Relative Error (RE) measures the relative difference between the predicted and
ground-truth traffic states. For the deterministic TSE, RE is calculated by:

REs(x, t) =
√

∑x ∑t(s(x, t)− ŝ(x, t))2√
∑x ∑t ŝ(x, t)2

.

2. Squared Error (SE) measures the squared difference between the predicted and
ground-truth traffic states at location x and time t. For the deterministic TSE, SE
is calculated by:

SEs(x, t) = (s(x, t)− ŝ(x, t))2.

3. Mean Squared Error (MSE) calculates the average SE over all locations and times,
which is depicted as follows:

MSEs(x, t) = ∑
x

∑
t

SEs(x, t)/N

where N is the total number of data.
4. Kullback–Leibler divergence (KL) measures the difference between two distribu-

tions P(x) and Q(x), which is depicted as follows:

KL(P‖Q) = ∑
x

P(x) log
(

P(x)
Q(x)

)
.

Note that for UQ-TSE, the traffic state s(x, t) follows a distribution, and the aforemen-
tioned errors measure the difference between the predicted and the ground-truth means
instead. For example, RE and SE for the UQ-TSE are defined as:

REs(x, t) =
√

∑x ∑t(E[s(x, t)]−E[ŝ(x, t)])2√
∑x ∑t E[ŝ(x, t)]2

.

SEs(x, t) = (E[s(x, t)]−E[ŝ(x, t)])2.
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