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Abstract: This study describes a new algorithm developed to detect local cells of minimum or
maximum heights in grid Digital Elevation Models (DEMs). DEMs have a low variance in digital
levels due to the spatial continuity of the data. Traditional algorithms, such as SIFT, are based on
statistical variance, which present issues to determine these highlighted cells. However, one of the
main purposes of this identification is the use of these points (cells) to assess the positional accuracy of
these products by comparing those extracted from the DEM with those obtained from a more accurate
source. In this sense, we developed an algorithm based on a moveable window composed of variable
sizes, which is displaced along the image to characterize each set of cells. The determination of
highlighted cells is based on the absolute differences of digital levels in the same DEM and compared
to those obtained from other DEMs. The application has been carried out using a great number of
data, considering four zones, two spatial resolutions, and different definitions of height surfaces.
The results have demonstrated the feasibility of the algorithm for the identification of these cells.
Thus, this approach expects an improvement in traditional procedures. The algorithm can be used
to contrast DEMs obtained from different sources or DEMs from the same source that have been
affected by generalization procedures.

Keywords: image matching; low-variance feature detection; DEM matching; DEM quality control

1. Introduction

Digital Elevation Models (DEMs) are widely used to represent terrain topography
(Digital Terrain Models (DTMs)) and other surfaces (Digital Surface Models (DSMs)),
including those features related to the biosphere, anthroposphere, etc. [1]. From a geomatic
point of view, DEMs represent height values using raster and vector models. Raster DEMs
are based on grids, composed of a regular array of cells, including heights, as an attribute
(this model is commonly referred to as 2.5D data because it only supports a single z-value
for each planimetric location in a specific column and row), while vector DEMs are based
on 3D surfaces composed of meshes derived from a set of 3D points. The raster model
considered in this study can be managed using images that represent height as digital
levels of pixels determined by a given bit-depth capacity (e.g., ArcGIS Pro uses 32-bit
depth in grids [2]. These values can be obtained from a single sample point or the average
measurements representing the height values of a given area (e.g., the area covered by the
pixel). In any case, the values of adjacent cells are highly correlated because these surfaces
represent elements with a physical continuity (e.g., terrain), where drastic changes are not
common (except in cases of steep slopes, such as gorges, cliffs, etc.). Therefore, we must
consider a low variance in this data, at least in a close environment. This aspect is very
important when we are detecting points (e.g., using point detection algorithms) in grid
DEMs because the location of a specific point can be influenced by its surroundings.

The height values contained in DEMs are derived from measurements that are charac-
terized by a certain level of accuracy that is influenced by acquisition and processing errors.
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The ISO 19157 standard [3,4] defines five elements of data quality, including positional
accuracy, which is related to the location of features. In this context, positional accuracy has
three sub-elements: absolute or external accuracy, relative or internal accuracy, and gridded
data position accuracy. These are related to the closeness of the reported coordinate values,
relative positions, and gridded data positions to values accepted as true, respectively [3].
This aspect implies that the assessment of the positional accuracy of any cartographic
product must include a comparison of data (absolute or relative positions), with respect to
other independent datasets that are considered true values. The accuracy of these reference
datasets should be at least three times higher than that of the product to be assessed [5].
In the case of DEMs, positional accuracy has been widely analyzed in the literature [6],
considering error causes and consequences and the methodologies developed to assess
them [7,8], by considering several aspects (data model, data acquisition, accuracy measures,
etc.). In addition, some standards [9–12], published during the last decade by several
institutions, have described the procedures to carry out this assessment. These studies
have traditionally considered vertical accuracy without considering the effect of horizontal
accuracy. It is unusual to include a report about horizontal accuracy [6,7], although there
are some studies that have analyzed the impact of horizontal errors on the accuracy of
DEMs, proposing an improvement in the final vertical accuracy after correcting them [13].

Although there are recent initiatives proposing the use of surfaces to check DEMs [14],
most of the studies developed until now are based on a comparison of a set of checkpoints,
whose coordinates are obtained from a more accurate independent source, and using
some measures (e.g., Root Mean Squared Error (RMSE)) to describe the deviations with
respect to the value that is considered true. These checkpoints are usually well-defined
points that are selected and measured manually. As an example, the ASPRS standard [12]
indicates that well-defined points should be easily visible or recoverable on the ground, on
the independent source of higher accuracy, and on the product itself. This supposes that
checkpoints should contain certain characteristics that make them geometrically particular,
avoiding other points that are not so easily identifiable. Most of the studies that have
analyzed the accuracy of DEMs used checkpoints based on Ground Control Points (GCPs),
which are obtained in the field using surveying techniques, such as Global Navigation
Satellite Systems (GNSS). The use of GCPs influences their distribution because they are
usually located in accessible areas in order to reduce field costs. To avoid the use of GCPs,
this study focuses on the use of another, more accurate DEM as a reference. The use of this
reference adds another issue related to the differences in the spatial resolutions between
the reference DEM and the destination DEMs and their repercussions on the identification
of checkpoints.

The manual selection and measurement of checkpoints supposes a great deal of time
and cost effort for any affected project, depending on, for example, the sample size of
the points to be used. In addition, this manual selection is conditioned by the operator’s
experience. We must consider that two different operators will select different checkpoints
following their own criteria, causing a certain bias. The use of an automatic procedure
will avoid this problem because the selection will follow certain criteria, giving the process
greater repeatability.

Considering the aspects described previously, an automatic procedure to determine
checkpoints from both sources (to be assessed and referenced) is desirable. The use of an
automatic procedure will provide a cost reduction and an improvement in the assessment
due to the increase in the sample size by covering the DEM with a larger density of
checkpoints. In addition, the automatization would remove the biases caused by operators.
On the other hand, this assessment should analyze both vertical and horizontal accuracies
in order to study the influence of the horizontal discrepancies in height values. In this
study, we propose the possibility of using a set of checkpoints obtained directly from both
sources and, more specifically, from two DEMs (the one to be assessed and the reference
one). To achieve this objective, it is necessary to develop a new methodology that allows
the automatic detection of homologous points from both sources but also considers the
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characteristics of DEMs (spatial continuity, low variance, etc.) and the necessity of using
well-defined points. As mentioned previously, the ASPRS standard [12] establishes some
conditions applicable to checkpoints to be used in the positional accuracy assessment.
These checkpoints must be clearly identifiable, both vertically and horizontally. Therefore,
these aspects must be taken into account when developing this automatic procedure.

The automatic detection of homologous points contained in several images has been
extensively studied during the last few decades. Several procedures based on point de-
tectors have been described for their use in computer vision and photogrammetry, such
as the Scale Invariant Feature Transform (SIFT) [15] and the Speeded Up Robust Features
(SURF) [16]. Some recent studies have compared these detectors [17,18], and some applica-
tions have been performed with DEMs based on these algorithms, such as those oriented
to the registration of several datasets [19,20]. Although these algorithms are focused on
obtaining interest points that are common to several images, and these homologous points
could be used to compare their coordinates, most of them are not suitable for a positional
accuracy assessment because they cannot be assumed as well-defined points (considering
the conditions indicated by the standards). Obviously, some of them could meet the require-
ments. This implies that a filtering procedure should be included to discriminate between
those well-defined points, but this suggests an increase in the computing time. In this sense,
a strategy based on the detection of highlighted points carried out from the beginning of
the procedure, aimed at obtaining well-defined points, should be more effective.

1.1. Statistical Characterization of DEMs

One of the assumptions of this study is the low variance of the data represented in
DEMs, and as a consequence, there is a need to develop a new methodology that considers
this aspect to detect the highlighted points to be used in accuracy assessment procedures. To
contrast this assumption, we have developed a preliminary analysis comparing the statistics
of several images representing DEMs with other real images, such as those commonly used
with the SIFT algorithm. In this regard, we used 12 official DEMs related to 3 cartographic
sheets obtained from an official institution in Spain, which are more specifically described
in Section 3 of this document, and 904 images obtained from the Image Matching Challenge
PhotoTourism (IMC-PT) 2020 dataset [21]. These images are shared to both train and
evaluate new strategies for image matching and, more specifically, to obtain dense and
accurate 3D reconstructions from large collections of images based on the SIFT algorithm.
Considering these datasets, we developed a statistical description based on the normalized
values of the mean and the standard deviation of the digital levels of each image. The
results are shown in Figure 1, where the graph displayed in Figure 1a shows the statistics
of the mean values, and Figure 1b shows those related to the standard deviations. In
the case of IMC-PT, the median value of all the means is close to 0.5 (Figure 1a), while
the average standard deviation is higher than 0.3 (Figure 1b). On the other hand, the
DEMs show a similar median value of the means of all the images with respect to the
other dataset (Figure 1a), although this value is highly conditioned by the relief of the
zones analyzed. However, the average standard deviation is lower than 0.2 and shows
less variability (Figure 1b). This reduced data dispersion confirms that DEMs have a lower
variance than the IMC-PT images analyzed and a lack of outlier values. Consequently, this
aspect should be considered in point detection procedures because of its possible influence
on feature identification. Interestingly, this lack of outliers indicates that an algorithm based
on variance should have poor results and low highlighted point identification.
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1.2. Objectives of This Study

Taking into account the aspects described previously, the main objective of this study
involves the development of a new methodology to automatically detect the homologous
points from two DEMs (to be assessed and reference) that are suitable to assess the posi-
tional accuracy (vertical and horizontal) of the dataset to be analyzed. This implies that
points must be well-defined, both on the sources and on the ground (following the ASPRS
standard [12]). As a secondary goal, the procedure should allow us to increase the sample
size of the points, improving the results given by the manual procedures. Another goal
is related to the analysis of those parameters needed to execute the procedure and their
relationships with the data characteristics, such as the spatial resolution of both DEMs.

This paper is structured as follows: First, a description of the proposed methodology
is outlined, including the algorithm used to achieve the main objective of this study.
After that, a description of the data used in the application of this methodology is given.
Subsequently, a summary of the main results obtained after this application is given,
including a discussion of the results and their impact on quality assessment, considering
those aspects that affect the proposed methodology. Finally, the main conclusions of this
study and future works will be presented.

2. Methodology

The methodology is designed to face the two main issues in DEMs. The first issue is
the low variance mentioned in the previous section. The second issue is a general difference,
both in scale and position. The latter requires further explanation. Different DEMs may
describe the same zones of the surface of the Earth with different resolutions of each cell.
This affects not only to the number of cells of the image but the digital levels that represents
the height of the DEM.

Following the description in the previous paragraph, the methodology is divided into
two phases:

1. Preprocessing: This phase is designed to determine general differences in scale,
position, and rotation (rigid transformation).

2. Determination of homologous points (keypoints): This is the main process of the
proposed method. It determines the points with the same characteristics in both
DEMs using an increasing and rotating ring and a set of pixels surrounding the
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selected one with a known Manhattan distance for comparison inside a predefined
search window.

The preprocessing phase, due to low variance, is achieved using an Iterative Closest
Point (ICP) algorithm following the ideas of Fitzgibbon [22] and Sahillioglu and Kavan [23],
among others. The last one was used to achieve a difference in the pixel spatial resolution,
as was indicated in previous paragraphs. The points used to carry out this alignment
between the two DEMs were a set of local maxima and minima with the following criteria:
(i) the maximum or minimum must have a distance higher than the diagonal of the image
divided by the number of the total local maxima and minima points detected; (ii) maxima
and minimum must be absolute inside a defined zone; and (iii) maximum and minimum
must be separated to obtain a match. With this approach, we first obtain a transformation
to determine the original differences in scale, rotation, and position. We think that this
approach is the most interesting because it isolates our proposed algorithm from knowledge
about spatial information. However, a general transformation can be performed due to
geoposition parameters of each DEM, which can allow us to test the results.

Once the preprocessing phase is finished, we determine a more precise match inside
a defined area around a cell of the reference image projected into the tested image. The
improvement in the keypoint position is achieved using the transformation parameters of
the preprocessing phase (Figure 2a).
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Figure 2. Methodology proposed in this study: (a) workflow; (b) example of the procedure for
obtaining two sets of pixels to correlate. The acronyms are as follows: DV: Digital value of pixel; n:
number of cells in the ring; d: distance in pixels from the center of the ring in the reference image;
D: distance of the search window in pixels in the search image; n: number of pixels of the ring of
distance d; n’: number of pixels of the ring of distance d’; f: relation between approximate pixel
spatial resolution from reference image and search image.

The main idea behind the matching is the use of Pearson chi-squared test value to
determine if two rings are similar “enough” to be considered the same. Because this test is
defined for two sets of data with the same length, as we consider a set of discrete cells, we
can compare both rings. In addition, if we define a rotation direction of one of the rings and
we match the number of cells of each ring by means of a simple interpolation (Figure 2b),
rings with different orientations and different resolutions per pixel can be compared.
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The proposed procedure is described as Algorithm 1. It is a general iterator in the
reference image over the tested image using the transformation obtained in preprocessing
and a zone around this position. Then, each ring inside this zone is tested against the
original ring of the reference image using a rotation. From all of these rings, the maximum
correlation coefficient is retrieved. Finally, if the value is greater than a chosen threshold,
this match is selected.

Algorithm 1. Determine matched keypoints between two images.

Input

ref_img: Image (Image with one band no restriction about datatype)
img: Image (Image with one band no restriction about datatype)
d: Distance of the ring in cell units
t: Transformation (General transformation from ref_img to img that has to be reversible)
s: Relation of scale between ref_img and img
minp: Minimum value of Pearson test to consider a keypoint

Output l: List of matched keypoints

Pseudocode

l = list()
for each cell(i,j) in img1
ring1 = getRing(i,j,d,ref_img)
i2, j2 = transform(i,j,t)
pbase, rotationbase = 0, 0
ibase, jbase = i2, j2
for each cell(ir2,jr2) in range([i2 − d × s,i2 + d × s], [j2 −d × s,j2 + d × s])
ring2 = getRing(ir2,jr2,img)
ring2scale = scale(ring2, len(ring1))
p = pearson(ring1,ring2scale)
r = 0
for each rotation in ring_perimeter
ring2rotated = rotate(ring2scale, rotation)
protated = pearson(ring1, ring2rotated)
if p < protated then
p = protated
r = rotation
if pbase < p then
ibase, jbase = ir2,jr2
pbase, rotationbase = p, r
if pbase >= minp then
l.add((i,j),(ibase,jbase),(pbase,rotationbase))
return l

With regard to the theorical time, it is close to order O(n4). However, some improve-
ments can be applied, for example, because the rotation of the ring, which is a linear
element, is only a translation in the offset of the initial index of the element. On the other
hand, the rings can be read in a cached way in the tested image side because the comparison
of each ring is applied various times, one for each pixel of the reference image inside the
possible matching zone. With these two changes, the theorical time can be reduced. More-
over, if we consider that correlation test has several sums that are not affected by rotation,
only the crossed products between the ring from the tested image and the reference image
are calculated in the order defined by rotation.

The final approach of the proposed algorithm is to recalculate the initial transformation
and determine the differences between transformed keypoints from reference image and
their homologous points in tested image. These differences are considered local changes,
while the transformation is considered the positional quality.

Finally, it is important to note that there are some parameters that define the goodness
of the keypoints’ definition. First, the comparison ring distance, because of its low variance,
can be defined by several rings. The other parameter is the minimum value of correlation
test; in this case, a very high value greater than 0.9 is recommended, because of the low
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variance of DEM data. With regard to the other parameters, like scale between DEMs or
the test zone maximum search distance, they are defined using the preprocessing phase,
so they have fixed default values. However, maximum search distance can be modified if
both DEMs are extremely different.

3. Description of Datasets

The datasets selected to test the proposed methodology were composed of three types
of DEMs related to four cartographic sheets of about 30 km × 19 km (Figure 3). These
12 DEMs are produced and published by the Instituto Geográfico Nacional of Spain [24].
The main properties of these datasets are shown in Table 1, including spatial resolution,
dimensions, maximum and minimum heights, and mean slope. Thus, we selected two
DTMs with different spatial resolutions (25 and 5 m) and one DSM (spatial resolution of
5 m) from each zone. The selection of the zones was related to their relief. Our aim was to
cover all possible cases from flat to mountainous areas (one flat: 1034; two intermedium:
946 and 1008; one mountainous: 1027). In this sense, we selected zones characterized by
low to high elevations and slopes (Table 1). We have to note that the difference in spatial
resolution (25 vs. 5 m) supposes a small reduction in the height variability and mean slope.
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Figure 3. DEMs used in the application of the proposed methodology.

Table 1. Main characteristics of the DEMs used in this study.

DEM Zone Resolution (m) Rows/Columns Min./Max. (m) Mean Slope (%) DEM-ID

DTM25
946

25 1189/759 271/1307 14 DTM25-0946
DTM05 5 5937/3785 266/1414 15 DTM05-0946
DSM05 5 5935/3783 266/1417 18 DSM05-0946

DTM25
1008

25 1197/758 422/1591 19 DTM25-1008
DTM05 5 5975/3785 422/1589 21 DTM05-1008
DSM05 5 5973/3783 419/1589 25 DSM05-1008

DTM25
1027

25 1194/750 741/3454 43 DTM25-1027
DTM05 5 5963/3743 745/3455 46 DTM05-1027
DSM05 5 5960/3741 746/3455 48 DSM05-1027

DTM25
1034

25 1218/784 −1/408 5 DTM25-1034
DTM05 5 6081/3911 −2/406 6 DTM05-1034
DSM05 5 6079/3908 −2/405 8 DSM05-1034

The selection of datasets considering two different spatial resolutions (DETM25 and
DTM05), representing the same terrain surface, focused on contrasting the capacity of our
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method in these cases and determining the influence of this basic aspect of gridded data.
In this sense, we selected a differential factor of five between their resolutions, which is a
high value considering the purpose of quality assessments. In addition, we also wanted to
analyze the feasibility of our approach to detect homologous points when the represented
surfaces include important differences. For instance, the DTM05 uniquely represents the
surface of the terrain while the DSM05 also includes other elements such as vegetation,
constructions, etc. These elements could hide possible terrain points to be used, reducing
the number of detected points.

4. Results and Discussion

The results section is structured in two parts. The first section shows the results of
applying a standard algorithm to obtain the homologous points, SIFT, in each DEM. The
second part shows the results obtained by the algorithm proposed in this paper.

4.1. Results of SIFT

In order to test the improvements to our methodology to determine the homologous
points in two DEMs versus standard keypoint matching algorithms, we propose the use of
the SIFT algorithm [15]. Because the algorithm is extensively described and programmed
in several environments, we have applied the algorithm using the OpenCV [25]. The
results are shown in Table 2 using the standard values proposed by Lowe [15], without
limits in the number of feature detections (octaves = 3; contrast threshold = 0.03; sigma
of Gaussian = 1.6; edge threshold = 10). In addition, Table 3 shows the matching results
obtained from the SIFT BFMatcher algorithm from OpenCV [25]. First, it is important
to note that not all keypoints can be used in the search of homologous pixels between
two DEMs of the same zone. With respect to the results, the comparison between DTM25
and DSM05 or DTM05 has a scale near 0.2 that reflects the difference in resolution of the
pixel indicated in Section 3, while the comparison between DSM05 and DTM05 has a scale
similar to 1. In addition, the precision of the transformation is good when the number of
the match is low, which could represent a great dispersion in the keypoints’ results and
distribution.

Table 2. Number of keypoints obtained from SIFT algorithm.

DEM-ID #Keypoints

DTM25-0946 11
DTM05-0946 9
DSM05-0946 8

DTM25-1008 40
DTM05-1008 45
DSM05-1008 41

DTM25-1027 27
DTM05-1027 27
DSM05-1027 27

DTM25-1034 22
DTM05-1034 24
DSM05-1034 23
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Table 3. Matching results of the SIFT algorithm (σ̂2
0 is the variance of the mean square adjustment

between both DEMS).

DEM-ID 1 DEM-ID 2 #Keypoints for
Matching

Mean Scale
(X/Y) σ̂2

0

DSM05-0946 DTM05-0946 6 1.002052461 9.185842889
DSM05-0946 DTM25-0946 8 0.200578805 0.406204984
DTM05-0946 DTM25-0946 8 0.200655345 0.257664539

DSM05-1008 DTM05-1008 40 0.999798052 43.72951535
DSM05-1008 DTM25-1008 29 0.173301694 40.81601968
DTM05-1008 DTM25-1008 33 0.182126235 995.761413

DSM05-1027 DTM05-1027 27 0.999976911 1.831542813
DSM05-1027 DTM25-1027 18 0.190169276 2007.481743
DTM05-1027 DTM25-1027 18 0.190137543 1996.775669

DSM05-1034 DTM05-1034 20 0.999792179 3.298975751
DSM05-1034 DTM25-1034 18 0.201131872 636.0208014
DTM05-1034 DTM25-1034 19 0.200028957 0.061698366

4.2. Results of the Proposed Algorithm

With regard to the results of the algorithm, it was tested on the DEMs presented in
Section 3. Moreover, the parameters used were limited to a distance of 1 and a minimum
correlation of 0.9995. Following these restrictions, the results are shown in Figures 4–6 and
Table 4.

Algorithms 2023, 16, x FOR PEER REVIEW 9 of 14 
 

Table 3. Matching results of the SIFT algorithm (𝜎  is the variance of the mean square adjustment 
between both DEMS). 

DEM-ID 1 DEM-ID 2 
#Keypoints for 

Matching Mean Scale (X/Y) 𝝈𝟎𝟐 

DSM05-0946 DTM05-0946 6 1.002052461 9.185842889 
DSM05-0946 DTM25-0946 8 0.200578805 0.406204984 
DTM05-0946 DTM25-0946 8 0.200655345 0.257664539 
DSM05-1008 DTM05-1008 40 0.999798052 43.72951535 
DSM05-1008 DTM25-1008 29 0.173301694 40.81601968 
DTM05-1008 DTM25-1008 33 0.182126235 995.761413 
DSM05-1027 DTM05-1027 27 0.999976911 1.831542813 
DSM05-1027 DTM25-1027 18 0.190169276 2007.481743 
DTM05-1027 DTM25-1027 18 0.190137543 1996.775669 
DSM05-1034 DTM05-1034 20 0.999792179 3.298975751 
DSM05-1034 DTM25-1034 18 0.201131872 636.0208014 
DTM05-1034 DTM25-1034 19 0.200028957 0.061698366 

4.2. Results of the Proposed Algorithm 
With regard to the results of the algorithm, it was tested on the DEMs presented in 

Section 3. Moreover, the parameters used were limited to a distance of 1 and a minimum 
correlation of 0.9995. Following these restrictions, the results are shown in Figures 4–6 and 
Table 4. 

After reviewing the correlation values (see Figure 4) a great number of pixels that 
matched between both DEMs were observed; in fact, the majority of pixels from the DEM 
with the smaller size were obtained, and the number was always greater than 80%. In 
addition, most of the pixels were close to 1, except for zones 1008 and 1027 between DEMs 
of different resolutions. 

 
Figure 4. Frequency of correlation coefficient values for all the zones and all comparisons. 

  

Figure 4. Frequency of correlation coefficient values for all the zones and all comparisons.



Algorithms 2023, 16, 302 10 of 14

Algorithms 2023, 16, x FOR PEER REVIEW 10 of 14 
 

Table 4. Matching results of the proposed algorithm (𝜎  is the variance of the mean square adjust-
ment between both DEMS). 

DEM-ID 1ru-
jin 

(Reference) 
DEM-ID 2 Mean Scale (X/Y) Rotation 𝝈𝟎𝟐 

DSM05-0946 DTM05-0946 1.00000771 −0.000273299 2.9712019 
DTM25-0946 DSM05-0946 4.99989885 0.000460667 43.7015771 
DTM25-0946 DTM05-0946 4.99976919 −0.001847645 42.6738983 
DSM05-1008 DTM05-1008 1.00001888 −0.000348352 2.98831609 
DTM25-1008 DSM05-1008 4.99759005 −0.000261853 44.5912646 
DTM25-1008 DTM05-1008 4.99858267 −0.00105328 40.2658607 
DSM05-1027 DTM05-1027 0.99997725 −4.98485 × 10−5 2.56474212 
DTM25-1027 DSM05-1027 4.99907199 −0.01462987 49.0939488 
DTM25-1027 DTM05-1027 4.99895135 −0.016072889 46.0422685 
DSM05-1034 DTM05-1034 0.99999601 0.000655466 2.6222421 
DTM25-1034 DSM05-1034 4.99897657 0.00246365 52.7526375 
DTM25-1034 DTM05-1034 4.99930689 0.009161375 50.3271811 

On the other hand, Figure 5 shows the pixel distance along each axis with different 
colors for the pixels in the image (not the reference image). A first look reveals that the 
match between DTM05 and DSM05 only had a maximum distance of 2 pixels, but the 
distance between DTM25 and the others was up to 10 pixels. These values are defined by 
the initial scale from the first transformation. Additionally, the graphics indicate a differ-
ence between each axis. Following this, the blue axis (horizontal) is closer to a normal 
distribution with zero, which should mean that the displacement of the matching in this 
direction is near to zero as well. However, the red axis (vertical) has a different distribu-
tion; in this case, the majority of the matched pixels are within the limits of the search 
window. For this reason, there is supposed to be a great displacement between the 
matched DEMs on this axis. 

 
Figure 5. Distances in rows and columns of the matched keypoints (red: vertical; blue: horizontal). 

Finally, we composed both displacements at a distance expressed in the pixels of the 
image. The rotation between rings was not considered due to their values being zero in 
almost all cases, which is explained by the fact that all the DEMs have the same 

Figure 5. Distances in rows and columns of the matched keypoints (red: vertical; blue: horizontal).

Algorithms 2023, 16, x FOR PEER REVIEW 11 of 14 
 

orientation. The composed distance is featured in Figure 6, which presents two different 
results. The comparison between DSM05 and DTM05 has similar distance values, between 
two and three pixels. However, between DTM25 and the other DEMs, the distance is 
around ten pixels, which is two multiplied by the difference in scale of the DEMs. For this 
reason, both comparisons show a similar result. 

 
Figure 6. Total distance of matched keypoints. 

With regard to the specific cells that were matched between the DEMs, the images in 
Figure 7 can be used as an example. In this figure, the red pixels represent cells that have 
a correlation coefficient better than 0.99. The first idea that we want to highlight is the 
difference in the matched cells; zone 946 has a smaller number of highlighted cells because 
there are great differences between MDT and MDS, even with the same spatial resolution. 
These differences are the expected results because height changes are focused on zones 
with vegetation and buildings. On the other hand, zone 1027 has a high number of 
matched cells, which we consider a good result because the DEMs are in areas with low 
vegetation or even bare ground. The results in Figure 7 also highlight riverside vegetation, 
for example, in the zoomed areas of zones 1027 and 1034. Moreover, vegetation areas, like 
the zoomed part of zone 1008, have been detected and discarded as highlighted cells for 
matching both DEMs. 

Figure 6. Total distance of matched keypoints.

Table 4. Matching results of the proposed algorithm (σ̂2
0 is the variance of the mean square adjustment

between both DEMS).

DEM-ID 1
(Reference) DEM-ID 2 Mean Scale

(X/Y) Rotation σ̂2
0

DSM05-0946 DTM05-0946 1.00000771 −0.000273299 2.9712019
DTM25-0946 DSM05-0946 4.99989885 0.000460667 43.7015771
DTM25-0946 DTM05-0946 4.99976919 −0.001847645 42.6738983

DSM05-1008 DTM05-1008 1.00001888 −0.000348352 2.98831609
DTM25-1008 DSM05-1008 4.99759005 −0.000261853 44.5912646
DTM25-1008 DTM05-1008 4.99858267 −0.00105328 40.2658607

DSM05-1027 DTM05-1027 0.99997725 −4.98485 × 10−5 2.56474212
DTM25-1027 DSM05-1027 4.99907199 −0.01462987 49.0939488
DTM25-1027 DTM05-1027 4.99895135 −0.016072889 46.0422685

DSM05-1034 DTM05-1034 0.99999601 0.000655466 2.6222421
DTM25-1034 DSM05-1034 4.99897657 0.00246365 52.7526375
DTM25-1034 DTM05-1034 4.99930689 0.009161375 50.3271811



Algorithms 2023, 16, 302 11 of 14

After reviewing the correlation values (see Figure 4) a great number of pixels that
matched between both DEMs were observed; in fact, the majority of pixels from the DEM
with the smaller size were obtained, and the number was always greater than 80%. In
addition, most of the pixels were close to 1, except for zones 1008 and 1027 between DEMs
of different resolutions.

On the other hand, Figure 5 shows the pixel distance along each axis with different
colors for the pixels in the image (not the reference image). A first look reveals that the
match between DTM05 and DSM05 only had a maximum distance of 2 pixels, but the
distance between DTM25 and the others was up to 10 pixels. These values are defined
by the initial scale from the first transformation. Additionally, the graphics indicate a
difference between each axis. Following this, the blue axis (horizontal) is closer to a normal
distribution with zero, which should mean that the displacement of the matching in this
direction is near to zero as well. However, the red axis (vertical) has a different distribution;
in this case, the majority of the matched pixels are within the limits of the search window.
For this reason, there is supposed to be a great displacement between the matched DEMs
on this axis.

Finally, we composed both displacements at a distance expressed in the pixels of the
image. The rotation between rings was not considered due to their values being zero in
almost all cases, which is explained by the fact that all the DEMs have the same orientation.
The composed distance is featured in Figure 6, which presents two different results. The
comparison between DSM05 and DTM05 has similar distance values, between two and
three pixels. However, between DTM25 and the other DEMs, the distance is around ten
pixels, which is two multiplied by the difference in scale of the DEMs. For this reason, both
comparisons show a similar result.

With regard to the specific cells that were matched between the DEMs, the images
in Figure 7 can be used as an example. In this figure, the red pixels represent cells that
have a correlation coefficient better than 0.99. The first idea that we want to highlight is
the difference in the matched cells; zone 946 has a smaller number of highlighted cells
because there are great differences between MDT and MDS, even with the same spatial
resolution. These differences are the expected results because height changes are focused
on zones with vegetation and buildings. On the other hand, zone 1027 has a high number
of matched cells, which we consider a good result because the DEMs are in areas with low
vegetation or even bare ground. The results in Figure 7 also highlight riverside vegetation,
for example, in the zoomed areas of zones 1027 and 1034. Moreover, vegetation areas, like
the zoomed part of zone 1008, have been detected and discarded as highlighted cells for
matching both DEMs.

To end this section, the results of the matching process are shown in Table 4. As we
can see, the matched keypoints show almost no rotation and a scale that is almost equal
to the scale of definition of the DEMs, which are one between DTM05 and DSM05 and
five between DTM25 and the other two. The number of keypoints used for this calculation
is more than 500,000 points in the lower cases, and the precision is near the distance of
Figure 6 for transformations between DTM05 and DSM05 and five times higher between
DTM25 and DSM05 or DTM05.
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4.3. Discussion

In view of the results shown in this study in Sections 4.1 and 4.2, we could state that the
proposed algorithm has some advantages and a few drawbacks with respect to standard
feature extraction algorithms like SIFT [15] in the case of DEMs.

First, our approach has demonstrated great potential for obtaining large sets of key-
points (homologous points) from two DEMs with low variance. In this sense, the proposed
algorithm allows us to determine a more robust matching and transformation between two
images.

Second, we have proved that the algorithm is capable of matching two DEMs regard-
less of their differences in resolution and geographical areas. This has been achieved by the
use of a two-step process: first, a general ICP alignment [22,23], and then, a fine alignment
by means of the keypoints. The final alignment allows us to use a variable-sized ring that
can be used to analyze different levels of generalization for DEMs, as we have shown
between DTM05 and DTM25.

Third, the large set of keypoints determined by the proposed algorithm allows us to
obtain a general transformation between DEMs to define a global quality assessment. In
addition, we can analyze the local differences among matched keypoints to determine small
changes between DEMs. This will allow us to detect changes in zones for multitemporal
studies.

Finally, the set of keypoints will be used in all the quality control assessment standards,
like ASPRS [12], allowing us to fit the sample requirements of this standard. Moreover, the
value of the Pearson correlation of each keypoint match can be used to weigh or filter the



Algorithms 2023, 16, 302 13 of 14

points of the desired sample. Furthermore, keypoint matching can allow us to obtain a
horizontal quality control assessment for DEMs.

On the other hand, the algorithm has a few drawbacks. We highlight that the proposed
methodology is time-consuming, especially in the fine matching procedure. Even using the
improvements indicted in the methodology sections, it takes several hours to obtain the
correlation in the worst cases (MDT05 vs. MDS05), using one threading processing under
Python 3.10. For this reason, we have reimplemented using PyOpenCL 1.2 and tile overlap-
ping in a i7-8550U CPU with an integrated GPU UHD 620. With this implementation, using
the 24 computing units for GPU processing, the algorithm has been boosted and is able to
be used to compare the two larger DEMS (MDS05 vs. MDT05) in a maximum of 300 s.

The second drawback that we detected is related to the necessity of a preprocessing
alignment between the DEMs. However, the last procedure can be avoided in cases
of well-defined DEMs, which include a transformation between the geographical and
image coordinates. In this case, the fine matching can help determine the quality of the
transformation.

5. Conclusions

This study has presented a new algorithm to obtain and match keypoints in low-
variance images like DEMs. Our results have demonstrated the feasibility of matching
DEMs with different resolutions, different variances, and a large set of keypoints. This will
allow us to apply different quality control assessments to large samples. Moreover, the
large sets of matched keypoints can determine the changing zones by displacement. In
addition, the zones with missing keypoints could define great changes between the DEMs.
Both types of information can be used for multitemporal studies.

The algorithm has been tested using large sets of data (DEMs), with differences in
variance, resolutions, slopes, and other height descriptors, which has confirmed the viability
of the proposed methodology. Moreover, all the used data are publicly available and can
be checked by any other researcher.

Our future work will focus on improving the initial alignment using other keypoints
with enrichment descriptors of pixels surpassing the proposed local maxima and minima
and checking the different approaches for testing, like multirings and other zone matching
descriptors that will be defined using simulations based on known deformations to test the
accuracy of these changes.
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