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Abstract: To separate the noise and important signal features of the indoor carbon dioxide (CO2)
concentration signal, we proposed a noise cancellation method, based on time-varying, filtering-
based empirical mode decomposition (TVF-EMD) with Bayesian optimization (BO). The adaptive
parameters of TVF-EMD, that is, bandwidth threshold ξ and B-spline order n, were determined
by the BO algorithm, and the correlation coefficient for the kurtosis index (CCKur) constituted the
objective function. Initially, the objective function CCKur was introduced to systematically identify
anomalous signals while preserving signal feature extraction between the modes and the input signal.
Subsequently, the proposed signal noise cancellation model based on TVF-EMD and the BO algorithm
were employed, along with the Hurst exponent, to extract the sensitive mode. An examination of
the optimization indices of the decomposed intrinsic mode functions (IMFs), namely CC, Kur, MI,
EE, EEMI, and CCKur, revealed that the synthetic measurement index CCKur and objective function
fitness were reasonable and effective. The proposed method exhibited better signal cancellation
performance, compared to that of TVF-EMD with the default values, EMD, the moving average
method, and the exponential smoothing method.

Keywords: CO2 concentration signal; signal noise cancellation; time-varying filtering-based empirical
mode decomposition (TVF-EMD); Bayesian parameter optimization (BO); correlation coefficient for
kurtosis index (CCKur)

1. Introduction

Signals contain rich characteristic information; thus, signal processing analysis is
crucial in the development of natural sciences, particularly in environmental monitoring [1].
There is a relationship between the indoor carbon dioxide concentration and respiratory
mucosal symptoms [2,3]; hence, it is essential to monitor and study carbon dioxide con-
centrations in various functional building spaces in real time. However, when there are
sudden changes in background concentrations of CO2 or equipment sampling failures,
the CO2-monitoring signal becomes noisy, making it difficult to distinguish important
signal features from noise. Therefore, the noise cancellation of the CO2-monitoring signal
is important.

There are various methods of signal denoising, and the most commonly used include
smoothing, Fourier transform [4], wavelet theory [5], and Hilbert–Huang transform [6,7].
Smoothing is a simple and convenient method that denoises the signal at the expense
of reduced temporal resolution [8,9]. In Fourier and wavelet transforms, the selection
of the a priori basis function directly affects the results of signal noise reduction [9,10],
which is a major limitation in the application of these methods. The core of the Hilbert–
Huang transform is empirical modal decomposition (EMD). The EMD model identifies the
intrinsic oscillatory modes in the signal, based on the local characteristic timescale of the
signal, and, accordingly, decomposes the raw signal into several intrinsic mode functions
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(IMFs) without requiring previous knowledge of original signal values [11]. Therefore,
EMD is commonly adopted for analyzing adaptive, nonlinear, and nonstationary signal
processing, such as indoor CO2 concentration signals. However, the EMD methods applied
for noise reduction are subject to modal aliasing and endpoint effects, known as the mode-
mixing issue [12]. In other words, EMD is prone to noise. Based on the framework of
EMD, the improved methods, such as ensemble EMD [13] and noise-assisted MEMD [14],
are proposed to solve the intermittence problem of EMD. However, there are still many
problems with these methods, such as unselectable parameters of noise and failure to
separate modes.

The time-varying, filtering-based empirical mode decomposition (TVF-EMD) was
developed to address the shortcomings of the EMD model, with the shifting process
completed by the B-spline approximation filter [12]. The three main features of TVF-
EMD, compared with most existing methods, can be summarized as follows: (1) The TVF-
EMD method can simultaneously address the issues of separation and intermittence [15].
(2) With a B-spline approximation filter integrated into the shifting process, TVF-EMD
solves the issue of mode mixing and maintains time-varying features. (3) The enhanced
stopping criterion improves the performance of the TVF-EMD model for low sampling rates.
However, two significant effects, bandwidth threshold ξ and B-spline order n, have direct
impacts on the separation and filter performance of the time-varying filter, respectively [12].
A reasonable selection of a combination of the two parameters in advance enables the
TVF-EMD model to resolve the mode-mixing problem, thereby achieving optimal noise
reduction. Hence, the choice of parameters for the TVF-EMD is clearly important.

Many optimization methods are used in hyperparameter estimation. Among the most
widely used are the grid search [16,17], random search [18], Genetic algorithm [19], and
Bayesian optimization (BO) algorithms [20,21]. Unlike grid and random searches, the
framework of BO leverages information from existing data, and the current search for
optimal values is based on previous search results [22]. In addition, there are swarm intelli-
gence optimization technologies that imitate the behaviors of various organisms, such as
ants [23], particle swarm optimization [24], fish schools [25], glow worm swarm optimiza-
tion [26], and grey wolves [27], to achieve optimal parameter estimation. Zhou et al. [28]
proposed the parameter-adaptive TVF-EMD feature extraction method, based on improved
GOA, to deal with the mechanical fault diagnosis. However, the Genetic algorithm and the
swarm intelligence optimization algorithm can be categorized as population optimization
algorithms. Population optimization algorithms are not particularly suitable for model
hyperparameter tuning because they require a sufficient number of initial sample points
and are not particularly efficient for optimization. To accelerate computation, Bayesian
hyperparameter optimization based on surrogate algorithms is widely used. The tree-
structured Parzen estimator (TPE) is one of the most notable hyperparameter optimization
methods [29,30]. The Parzen-based estimator can naturally handle complex search spaces
and can be extended to dozens of variables, with at least a thousand observations [31].
Therefore, selecting a BO algorithm based on a tree-structured Parzen estimator (BO-TPE)
is a reasonably effective method for TVF-EMD parameters.

In the aforementioned denoising theories, the smoothing method can reduce the signal
resolution in time. Indoor CO2 concentrations in buildings is a typical non-stationary
signal. These signal-denoising methods, such as Fourier transform, EMD, ensemble EMD,
and noise-assisted MEMD, are not suitable for processing non-stationary signals. The
wavelet transform is suitable for dealing with non-stationary, time-varying signals, but
there is the problem of difficult wavelet basis selection. The TVF-EMD method can solve
the shortcomings of the above methods. Combined with the hyperparameter algorithm, the
TVF-EMD method can match the appropriate parameters more quickly to achieve accurate
noise reduction of the indoor CO2 concentration.

Considering this background, this study proposed an optimized TVF-EMD method,
based on the BO-TPE algorithm, for noise cancellation. First, the correlation coefficient
was defined as a comprehensive index for the objective condition of TVF-EMD parameter
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optimization. In addition, the correlation coefficient was used as the mode selection
criterion for the target IMF. Second, an optimization algorithm called BO-TPE was used
to search for the optimal combination of TVF-EMD parameters to match the input signal.
The effectiveness of the proposed method was suitable for processing the noise of the
non-stationary signal, especially large amplitudes, but with dispersed distribution noise
signals. The noise reduction results of the CO2 concentration signals from two different sets
of functional building spaces demonstrated that the method was successful in canceling
noise and could be effective in CO2-monitoring engineering applications.

2. Preliminaries
2.1. Time-Varying Filter Empirical Mode Decomposition

EMD can decompose a given signal x(t) into a set of component signals known as
IMFs and residual r(t), as shown in the following equation:

x(t) =
N

∑
i=1

im fi(t) + r(t) (1)

where im fi(t) represents the i-th IMF. The screening process of EMD comprises two steps:
(1) estimation of the “local mean” m(t) and (2) recursive subtraction of the m(t) from the
input signal until the resulting signal meets the stopping criterion.

In TVF-EMD, the mono-components are replaced by local narrow-band signals to im-
prove the performance of the EMD method. These signals have properties similar to those
of the IMF but provide a meaningful Hilbert spectrum. The local instantaneous bandwidth
is used to define local narrow-band signals, which necessitate that the bandwidth be below
a given threshold value. This method aims to initially determine the local cut-off frequency
and subsequently applies a time-varying filter. The TVF-EMD shifting process is performed
using a time-varying filter, which primarily involves three main steps [12]:

1. Local cutoff frequency rearrangement

Step 1: Locate the maximum time consumption of x(t), expressed as ui, i = 1, 2, 3 . . .
Step 2: Determine all intermittences, expressed as ej, where j = 1, 2, 3 . . . by setting

a threshold value for the rate of change within a certain time span. These breaks should
satisfy the following condition:

max
(
φ′bis(ui : ui+1)

)
−min

(
φ′bis(ui : ui+1)

)
min

(
φ′bis(ui : ui+1)

) > ρ (2)

where ρ = 0.25, and φ′bis is the bisection frequency.
Step 3: The condition of the rising edge of φ′bis

(
ej : ej+1

)
is φ′bis(ui+1)− φ′bis(ui) > 0,

and φ′bis
(
ej : ej+1

)
is considered the floor. Similarly, the falling edge is φ′bis(ui+1)− φ′bis(ui) < 0,

and φ′bis
(
ej+1 : ej

)
is considered the floor. The rest of φ′bis refers to the peak.

Step 4: By interpolating between the peaks, the final local cutoff frequency can be
obtained. During the local cutoff frequency rearrangement phase, the TVF-EMD addresses
the separation and intermittence problems.

2. Shifting process for TVF-EMD

Step 1: Address the local cut-off frequency for signal x(t).
Step 2: Filter the input signal x(t) using the time-varying filter (i.e., B-spline ap-

proximation filter) to obtain the local mean. The bandwidth threshold ξ determines the
separation effect and whether the input signal must be filtered. The B-spline order n is in-
dependent of the cutoff frequency estimate, which determines the attenuation and filtering
effect of the TVF.

Step 3: Verify that the residual signal satisfies the condition of the stopping criterion
indicated below:

θ(t) =
BLoughlin(t)

ϕavg(t)
(3)
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where BLoughlin is the Loughlin instantaneous bandwidth, and ϕavg(t) is the weighted aver-
age instantaneous frequency. The detailed calculation process of TVF-EMD was discussed
in previous studies [12,32].

2.2. Bayesian Optimization

The BO-TPE works by assuming that the black-box function is sampled from a Gaus-
sian mixture model and maintains the posterior distribution of that function while making
observations. The posterior probabilities are updated using new sample points at each
iteration. To prevent the results from falling into local optima, the BO algorithm adds a
stochastic algorithm to balance stochastic exploration and posterior distribution.

The probabilistic surrogate model and acquisition function are the core components of the
BO method, and the TPE is the probabilistic surrogate model of the study. The BO algorithm
is highly efficient for hyperparameter estimation, as it exhibits excellent convergence.

The objective of Bayesian optimization is to determine the global maximum or min-
imum value of the objective function in the hyperparameter space. This study aimed to
determine the maximum value of the true fitness objective function on a bounded set χ in a
limited number of iterations. The mathematical model of the BO algorithm is as follows:

x∗ = argmaxx∈χ f (x) (4)

where the point x∗ that maximizes the surrogate function is the proposed point for evaluat-
ing the objective function f (x).

Let us suppose that the observation values are of the form D1:t = {xi, yi}t
i=1, where yi

is the generalization accuracy of the algorithm under xi. This can be considered the gener-
alization accuracy of random observations y = f (x) + ε, where the noise introduced into
the observation ε is assumed to satisfy ε ∼ N

(
0, σ2

ε

)
. To explore x∗ in the hyperparameter

space, the acquisition functions were obtained, in which the maximum of the function was
calculated as

xt+1 = argmax xt(x, D) (5)

In this study, the bandwidth threshold ξ and B-spline order n were the independent
variables x of the BO model, and the flowchart of the Bayesian optimization was outlined
as follows (see Figure 1). First, we determined whether the parameters of the model, ξ
and n, were initialized, and if not, the initial parameters were generated randomly. If
the parameters were initialized, the values were brought into the tree Parzer estimator
surrogate model. Subsequently, it was judged whether the acquisition function reached
its maximum value when given ξ and n. If the maximum value of the target function was
satisfied, the value of the two parameters were output. If not, the values of the surrogate
model parameters were updated until the requirements were met.
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3. Adopted Methodology

The proposed optimized TVF-EMD method is based on the BO-TPE algorithm. It aims
to search for optical combinations of parameters for the bandwidth threshold ξ and B-spline
order n using the objective function, which determines the merits of the decomposition
results. The kurtosis index Kur depends on the distribution density of the signal, which is
highly sensitive to large amplitudes with dispersed distributions. A kurtosis index value
between 0 and 3 indicates that the center peak of the signal is lower and broader, compared
to the normal distribution represented by Kur = 3(Kur ≈ 3). In contrast, Kur > 3 indicates
that the central peak of the signal is higher and sharper. Thus, a smaller kurtosis index
is required for a more sensitive identification of outliers. However, to avoid excessive
noise cancellation, the correlation coefficient (CC) is used to characterize the similarities
between original and decomposing signals. Therefore, the synthetic measurement index,
consisting of the kurtosis index and CC, was developed as an objective function for TVF-
EMD parameter optimization. The synthetic measurement index, correlation coefficient for
kurtosis index (CCKur), was calculated as follows:

CCKur =
|CC|
Kur

(6)

CC : ρx,im f =

N
∑

i=1
(xi − x)

(
im fi − im f

)
√

N
∑

i=1
(xi − x)2

(
im fi − im f

)2
(7)

Kur =
1
M

m−1

∑
m=0

x4(m)/

(
1
M

m−1

∑
m=0

x4(m)

) 2

(8)
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As the original BO algorithm was developed to determine the maximum value, the
method used the maximum CCKur between the original signal and the modes obtained
by TVF-EMD as the fitness. Therefore, the maximization of CCKur was the optimization
problem expressed below: 

f itness = max
γ∈{ξ,n}

{CCKur}

ξ ∈ (0, 0.4]
n ∈ [1, 16]

(9)

where f itness is the objective function, and γ = {ξ, n} represents the parameter combina-
tion of the TVF-EMD method to be optimized. The CC of the original signal x(t), which is
a function of mode im f (t) with the same length as N, is described in Equation (7).

Ensuring the reliability of the parameter optimization was essential, and the number of
modes after CO2 signal decomposition must be at least two. After several attempts, it was
discovered that the bandwidth threshold ξ met 0 ≤ ξ ≤ 0.4, and 1 ≤ n ≤ 16 satisfied the
requirements. The same number of modes was obtained with the typically used standard
EMD, and the maximum number of modes for the TVF-EMD was set to K = log2 N [4].

The autocorrelation properties of the signal and Hurst exponent H were evaluated
to distinguish noise from the most relevant modes. When 0 ≤ H < 0.5, two signals were
anticorrelated. In contrast, H = 0.5 indicated white noise, and H > 0.5 represented a
positive correlation. In this study, the threshold for the Hurst index was defined as 0.5
(Hthr = 0.5). The detailed steps of the noise cancellation methodology were as follows:

Step 1: Input the CO2 concentration signal x(t) and set the parameter population
X to the TVF-EMD model. Concurrently, initialize the parameters of BO algorithms and
population X, including the bandwidth threshold ξ and B-spline order n.

Step 2: Decompose the signal x(t) using the TVF-EMD model for the parameter
combination of ξ and n, and then calculate the IMFS to obtain the objective function f itness,
where the best fitness for each iteration of the BO algorithm is stored.

Step 3: If the stored value of fitness satisfies the threshold, then save the optical
parameters ξ and n. Otherwise, l = l + 1, and continue Step 2 to update parameters ξ and
n until the maximization of CCKur is up to requirements.

Step 4: Obtain and save the best maximization of CCKur and the corresponding
parameter combination of the TVF-EMD.

Step 5: Update the population X by obtaining the best parameter combination.
Step 6: Use the optimized TVF-EMD with the combination parameters ξ and n to

decompose the original CO2 signal.
Step 7: Calculate the Hurst exponent H of each IMF. If the H is greater than Hthr, save

the sensitive IMF.
Step 8: Sum these sensitive IMFs together to obtain the reconstructed signals. The

other insensitive IMFs are considered to be noise.
A flowchart of the proposed BO-based TVF-EMD method for the SNC model is shown

in Figure 2.
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4. Results and Discussion
4.1. Data Acquisition

The CO2 concentration was analyzed after denoising the CO2 signals, which were ob-
tained using pump-activated CO2 concentration detectors installed in offices and university
classrooms. The CO2 signals were sampled at a frequency of 5 s and monitored continuously
for 24 h. Figure 3 illustrates the CO2 signal from an 8 m× 8 m× 3 m regular-sized office ac-
commodating approximately six to ten people. The detector measured the CO2 concentration
at a height of 2.8 m in the room. The specifications used are listed in Table 1.
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Table 1. Specifications considered for processing CO2 signals.

Parameters Value

Sampling frequency 5 s
Measurement accuracy 1 ppm

Error range 5%
Time sample length 24 h
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4.2. Analysis of the Simulated Signal
4.2.1. Simulation and Comparison

The result of the signal decomposition using the EMD method is shown in Figure 4a.
Signal x(t) was decomposed into nine IMFs. Therefore, the maximum number of modes
for TVF-EMD was set to three. The original CO2 signal was then processed by the proposed
TVF-EMD model, based on the BO algorithm. The combination of the bandwidth threshold
ξ, B-spline order n, and the maximum CCKur of the BO algorithm were ξ = 0.31, n = 7,
and CCKurmax = 0.49, respectively. Figure 4b shows the signal decomposition results
obtained using the optimized TVF-EMD model.
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4.2.2. The Effects of TVF-EMD Parameters

In addition to CC and Kur, other indices, including mutual information (MI) [33], en-
ergy entropy (EE) [34], and energy entropy mutual information (EEMI) [28], are commonly
used to evaluate the degree of optimization in signal processing. As shown in Figure 7,
the selection of optical parameters ξ and n did not significantly change the MI, EE, and
EEMI indices of IMF1 to IMF7, indicating that these indices were insensitive to the optical
parameters. In contrast, CC, Kur, and CCKur were sensitive to optical parameters.

Different parameters affected the decomposition results to different degrees. The
decomposition of the CO2 concentration signal x(t) and the effect of TVF-EMD parameters
on the decomposition results are shown in Figure 8. The bandwidth threshold ξ reached
0.95 in the decomposition results, indicating that the selection of the optimization index
should be sensitive to the change in ξ. Therefore, we analyzed the results of CC, Kur, MI,
EE, EEMI, and CCKur under varying ξ. As shown in Figure 9, when ξ assumed values of
0.1, 0.2, and 0.31 (the optimal parameter), eight, nine, and seven IMFs were obtained by
decomposition, respectively. When ξ was at least four, two IMFs were obtained, indicating
that mode aliasing and under-decomposition occurred. When ξ increased from 0.1 to 0.31,
the MI, EE, and EEMI indices of the IMFs did not change significantly, suggesting that
these indices were insensitive to the variation in ξ. The CC, Kur, and CCKur indices were
sensitive to ξ; hence, they can be selected as indices for the best parameters. When ξ = 0.31,
the sum of the CCKur indices of IMF1 to IMF9 was the largest, which indicates that CCKur
can be regarded as the best optimization model. The results showed that (1) ξ had to be
at least 4 for mode aliasing and under-decomposition to occur; (2) CC, Kur, and CCKur
indices were sensitive to ξ, whereas MI, EE, and EEMI indices were not; (3) the proposed
CCKur index and objective function max

γ∈{ξ,n}
{CCKur} were effective; and (4) the value of

0.31 for ξ was reasonable and correct.
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4.3. Validation of the Proposed Method

To study the denoised signal performance of the proposed signal cancellation method,
the signal-to-noise ratio (SNR), mean squared error (MSE), relative squared error (RSE),
and normalized root mean squared error (NRMSE) were used to evaluate the quality of
the reconstructed signals. The SNR is the ratio of the original signal power to noise signal
power. The MSE calculates the error by squaring the difference between the reconstructed
and original signals and averaging all values. The RSE is the ratio of the MSE to the square
of the difference between the original signal and the mean of the original signal. The smaller
the values of MSE, RSE, and NRMSE, the better the noise reduction effect. In contrast, a
smaller SNR implies a poor noise reduction effect. The following equations were used for
the comparisons (Equations (10)–(13)).

SNR(db) = 10 log
(

Ps

Pn

)
(10)
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MSE =
1
N

N

∑
n=1

(x(n)− x̂(n))2 (11)

RSE =
∑N

n=1(x̂(n)− x(n))2

∑N
n=1(x(n)− x(n))2 (12)

NRMSE =

√
1
N ∑N

n=1(x(n)− x̂(n))2

xmax − xmin
(13)

where Ps and Pn represent the effective powers representing the signal and noise, respec-
tively. Here, x(n), x̂(n), and x(n) denote the original signal, reconstructed signal, and the
average of the original signal, respectively.

A detailed study was conducted, and signal cancellation performance was evaluated
for different denoising methods in terms of SNR, MSE, RSE, and NRMSE. The CO2 signals
studied from the university classroom had a capacity of 100 students. As shown in Table 2,
the proposed noise cancellation model yielded the largest absolute SNR value. The MSE,
RES, and NRMSE of the proposed method were all smaller than those obtained by the
TVF-EMD, EMD, moving average, and exponential smoothing methods, indicating that
the proposed noise cancellation model had superior noise reduction quality for the CO2
concentration signal.

Table 2. Comparison of the noise reduction effect under different signal-denoising models.

Index
Proposed

TVF-EMD
(ξ = 0.015,n = 4)

TVF-EMD with
Default Values
(ξ = 0.1,n = 26)

EMD Moving Average
(Window = 40)

Exponential
Smoothing

(α = 0.5)

SNRabs 71.376 71.296 71.141 71.251 71.239
MSE 7.877 95.976 3217.423 154.281 21.473
RSE 0.000276 0.00336 0.112 0.00540 0.000752

NRMSE 0.0166 0.0581 0.3614 0.0736 0.0274

5. Conclusions

An optimized TVF-EMD model based on a Bayesian algorithm was adopted to develop
a noise cancellation model for denoising the CO2 concentration signal of a building. The
Bayesian algorithm was used to optimally estimate the TVF-EMD parameters, namely the
bandwidth threshold ξ and B-spline order n, and the adaptive matching of the given CO2
concentration signal. The main conclusions can be summarized as follows:

In parameter optimization, a synthetic measurement index consisting of CCKur was used
as the objective function of TVF-EMD. This function could identify anomalous signals while
preserving the signal profile and avoided excessive noise reduction. In the proposed noise
cancellation model, a thresholding parameter Hthr = 0.5, based on the Hurst exponent, was
introduced as a measurement index for selecting the relevant IMFs for signal reconstruction.

The hyperparameter ξ was more important for decomposition results. The efficacy
of the synthetic measurement index was verified against five optimization indices: CC,
Kur, MI, EE, and EEMI on decomposed IMFs. The results demonstrated that the proposed
CCKur index was sensitive to ξ, and the selection of CCKur as a synthetic measurement
index and max{CCKur} as an objective function were reasonable and effective.

The noise reduction effect between different signal-denoising models, that is, TVF-
EMD with default values, EMD, moving average method, and exponential smoothing
method, was compared in terms of SNR, MSE, RSE, and NRMSE. The proposed noise
cancellation model yielded the largest absolute value of SNR and the smallest MSE, RSE,
and NRMSE, demonstrating the high noise reduction capability of the proposed model for
CO2 concentration signals.
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