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Abstract: The ideology behind process modelling is to visualise lengthy event logs into simple
representations interpretable to the end user. Classifying process models as simple or complex is
based on criteria that evaluate attributes of models and quantify them on a scale. These metrics
measure various characteristics of process models and describe their qualities. Over the years, vast
amounts of metrics have been proposed in the community, making it difficult to find and select
the appropriate ones for implementation. This paper presents a state-of-the-art meta-review that
lists and summarises all the evaluation metrics proposed to date. We have studied the behaviour
of the four most widely used metrics in process mining with an experiment. Further, we have used
seven healthcare domain datasets of varying natures to analyse the behaviour of these metrics under
different threshold conditions. Our work aims to propose and demonstrate the capabilities to use our
selected metrics as a standard of measurement for the process mining domain.

Keywords: process modelling; metrics; evaluation; quality; business process modelling

1. Introduction

Process mining has advanced rapidly within the past two decades and is presently
shaping itself into a foundational domain. Since the coining of the term “Process Mining”,
the amount of research and evolution that has taken place within is vast. These spheres of
expansion are majorly classifiable into topics such as algorithmic approaches, visualisations,
modularity, optimisation, data interpretation and analysis. Together, the progress from
these spheres gave rise to the commercialisation and expansion of the domain from a theo-
retical concept into a practical reality. Experimental articles on data discovery algorithms
and mining concepts have transformed into software toolkits and marketable products
used in the field by organizations to track and improve their processes. The years leading
up to 2010 depict that most research efforts were focused on the conceptual part of analysis
aimed at creating new mining algorithms, improving visualisations and other core elements
utilised in process modelling [1–6]. Further on, the focus shifted towards enhancement and
evaluation of generated models [7–10]. This transition was in sync with the presence of
better technology. Upon achieving progress, process modelling was employed in many
fields at various levels of application (i.e. from basic procedural descriptions to supply
chain routines). This brought along the issue of complexity. Excess or lack of information
in the model proved to be a failure of process mining as a technique. The only remaining
solutions is to analyse the model and determine if it is fit for the end user. Hence, by
evaluating and measuring a process model, insight into the level of interpretability and the
technical viability of the data is revealed. The cornerstone is being able “To make sure we
achieve the objective” (i.e. in principle, a better understanding of our data).

In the pipeline of process modelling, the stages are generally in the order of data
collection, application of algorithms, visualisation and evaluation. Our work aims to
propose a solution on the part of process model evaluation. The main motivation for our
study was derived from a situation where we wanted to measure a model. To do so we
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had to learn the fundamentals of process model assessment and comb through multiple
articles to find a matching metric for our data. Further, we had to interpret the meaning of
the metric in relation to a scale and continue searching until the right fit was found. This
was a tedious and time-consuming task.

When trying to find suitable measures, we encountered a never-ending supply of
metrics described within individual works and a few summarised in review works. We
did not find a clear solution such as an ISO standard that recommends the use of certain
techniques or measures for the whole sector. Further, we observed that many metrics
proposed by researchers in the community have both unique and universal applicability.
This implies that every metric has its specific use and cannot be overlooked. However,
from the perspective of universal modelling, we did not find a concise set of metrics that
can be applied to all process models with universal attributes. Our work aims to address
these issues by presenting a definitive solution to approach process model evaluation and
metric-based assessment. Thus, our research objectives were crafted as follows:

• OBJ 1: To propose a concise solution to the vast amount of metrics in the scientific com-
munity;

• OBJ 2: To demonstrate the use of metrics aimed to showcase the evaluation of process
models.

We have performed two individual literature reviews that provide insight into process
model evaluation and its history. A taxonomy presents a comprehensive solution to the
vast amount of metrics proposed in the community. In our work, we have focused on the
technical aspect of model evaluation and have created a classification of metrics based
on human-centric qualities of understandability, complexity and interpretability. Lastly, we
have summarised the four most widely used metrics in the sector and have benchmarked
their performance using real-world healthcare event logs. We have analysed their be-
haviours under various control conditions and have proposed to use them as a standard of
measurement within process modelling.

Further, the paper is divided into the following sections: Section 2 consists of the back-
ground and the literature survey. Section 3 elaborates on the methodology, implementation
and results of our benchmarking experiment. Section 4 consists of an open discussion of
various thoughts, ideas and questions faced over the course of this work. Section 5 is the
conclusion. Appendixes A–C consists of material that can be used by the community for
future research.

2. Literature
2.1. Background

As mentioned earlier in Section 1, process modelling has been flourishing since the
early 2000s. Today, it has become a commercialised sector and is further developing into
its own field. During this phase of transitioning into a sector, there came a stage when we
needed to assess the fruition of results. This is where the evaluation of process models
is primarily required. Much research has been carried out and numerous metrics have
been proposed, yet there still exists an uncertainty on how to perfectly evaluate process
models. The measurement of models is commonly performed using their characteristic
attributes, but as the volume and variety of data grew, many secondary features were
being introduced for modelling. By utilising non-universal features for assessment, newly
developed metrics were restricted to the type of data that can be used for measurement.
Therefore, there is a need to distinguish and classify metrics that can be used on models
generated from universal event logs. In our work, we have prioritised selecting metrics
and models that use universal elements for assessment and generation.

Today, we have reached a point where metric evaluation can produce a numeric value
of sorts that describes the model. However, the details of this rating are left to the user to
decode (i.e., the meaning of the metric itself and its relational rating of the process model on
that respective metric scale). This creates a complex environment for approaching metrics.
Further, the volume of metrics already proposed in the community makes it difficult to
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specifically choose a metric without overlooking another. Process model qualities were
created to address this issue. They were used to distinguish certain properties of the model
that can be interpreted by the user via metrics. In our work, we have chosen three major
qualities crucially relevant to describe the technical properties and the human perception
of the model.
We collectively address these issues using three crafted research questions. By answering
these questions, we were able to achieve our research objectives:

• RQ1: What are the methods to evaluate a process model?;
• RQ2: How has process model evaluation progressed over the years?;
• RQ3: How do we measure the understandability, complexity and interpretability of

process models using metrics?

Research questions RQ1, RQ2 and RQ3 are addressed as follows. RQ1 and RQ2 are
answered using a broad spectrum study along with a meta-review. The broad review gives
a ground-up perspective of model measurement and provides a simplified outlook on its
evaluation and assessment. The meta-review is a state-of-the-art review of reviews. It presents
a taxonomy of established metrics proposed by the community and aims to list all the
viable metrics within a tabulation. RQ3 is answered in Section 2 using a diagram and via
an experiment in Section 3. This answers the question of evaluating process models based
on their understandability, complexity and interpretability. The experiment demonstrating the
usage of evaluatory metrics on healthcare event logs is also described in Section 3. We
have filtered down to four prime metrics that operate based on the fundamental principles
of process modelling (i.e., using universal features). The latter objective of having uniform
metrics for the process mining domain as a whole is answered using the results generated
from our experiment. Our work further aims to provide “A once and for all solution” to the
vast amount of metrics in the community and propose a standard of measurement for
process modelling.

2.2. What Are the Methods to Evaluate a Process Model?

This research question is answered using a broad-spectrum study. It aims to give a
general idea of metric definitions, conditions and criteria required to qualify as a measure.

Search and Approach: The broad spectrum study utilises a rebounding fashion of analysis.
We have navigated through the area of model measurement, contrasting various informa-
tion sources and aiming to obtain an overview of how to evaluate process models. The
literature search for this study was relatively mainstream. Figure 1 provides an overview of
the search methodology. For this review, the idea was to present wide-ranging information
and not dive into specific topics. Hence, generalised search terms were selected to include
wide-ranging topics of modelling and evaluation. We considered the risk of bias factor
when creating the keyword search strategy and addressed this aspect by using wider terms
therefore almost nullifying the tendency to tilt towards a single area.

We used Google Scholar’s advanced search options to find research works as it allows
for a bounded exploration of the literature. It was set up as follows: the articles with "the
exact phrase" occurring "anywhere in the article" between the dates 2010 and 2022, with the
remaining fields left blank. The generation and usage of keywords were carried out in two
different ways. The first approach involved using individual keywords such as “Process
models”, “Business process models”, “Process mining” and “Process modelling” as singu-
lar terms in the field. The second approach employed the use of multiple terms, where
the first word “Process Model” remained constant and singular words such as “Metrics”,

“Evaluation”, “Quality”, “Measurement”, “Complexity”, “Interpretability”, “Quality di-
mensions”, “Quality metrics” were substituted in place of each other (i.e., "Process Model"
"Metrics"). Similarly, a second search was conducted using the second approach with the
following terms: “Process Modelling” and “Framework”, “Guidelines”, “Rules”. From
the above search queries, 624 articles were identified to be within the scope of the broad
spectrum review. This number of articles is massive. To solve this, we crafted generalised
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queries and utilised them as pillars of reference when reading the full text. Query 1: Under-
standing metrics for process models—the query directs focus towards studying the literature
that defines metrics for process models. Query 2: Perceiving methods and approaches to evalu-
ate process models—this query focuses on analysing works that propose and demonstrate the
usage of metrics. Query 3: Scrutinising criterion to qualify as a metric—this query concentrates
on works that highlight rules, conditions and criteria for metrics. The selected works were
classified into five groups. We cross-referenced between these sources to obtain definitive
solutions to our questions.

Figure 1. Selection procedure for broad-spectrum study.

1. Process Modelling Books: Works listed in this group consist of books written to cover
prime directions and overview of the field [11–17];

2. Existing Metric Articles: This group consists of works that present metrics and quality
dimensions to the community [18–26];

3. Frameworks: This group consists of articles that showcase the quality metric framework
specifically used to address the classification of metrics and their characteristics [9,27,28];

4. Guidelines: These articles consist of publications that emphasise and describe conditions
required for quality dimensions to qualify as a metric [29–34];

5. Evaluatory Applications: These works present exemplar applications that demonstrate
the usage of metrics and quality dimensions on actual data [21,35–42].

Results of the Broad Spectrum Review:

Query 1: Understanding metrics for process models. Within process modelling, the terminol-
ogy of evaluation is broad. Evaluation, metrics and quality dimension are a few terms used
to showcase the variation in features of a process model. To obtain a clear understanding
of the definition of a metric we looked towards the ISO org [43], which says that a metric is
a quantifiable measure used to assess the performance of an object relative to a scale. In
process modelling, process graphs are the main objects of measurement generated from
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the data. Likewise, we should aim to evaluate the model and not the event log. It was
determined that any generated model has to satisfy a specific set of requirements and
criteria to classify as fit-for-purpose. A model can be considered of high quality only when
it is fit-for-purpose. Utilising global characteristics from the event log and the process
graphs yields insight into the model’s viability for purpose [44–47]. Additionally, quality
dimensions can be used to measure traits of the model. These dimensions are differentiated
based on their constituting attributes from the process model and the resulting quality
shown as in the CPMQF framework [48]. Query 2: Perceiving methods and approaches to
evaluate a process model. The query is answered by splitting the analysis into two major cate-
gories. Syntax-based evaluation: This category involves using attributes of the process model
that are directly extractable and do not require additional features for calculation (e.g., lines
of code, number of nodes, number of elements, number of connections, etc.) Characteristics-
based evaluation: These are defined terminologies that exhibit behaviour extracted from the
process model (e.g., understandability, simplicity, modifiability, comparability, complexity
etc.) Query 3: Scrutinising criterion to qualify as a metric. This query elaborates the conditions
for a dimension to be termed a metric. To understand how metrics were established and
accepted, we have turned towards works that certified and created criteria for researchers
to propose their evaluatory metrics. It involved articles including [29–32], where there are
specific conditions that a metric has to satisfy to qualify as a quality measure. The ideal
information for query 3 is present in frameworks, guidelines and standards. The following
are five of the most widely used guidelines for process modelling metrics:

1. Guidelines for business process modelling (2000) (GoM) [49]: This is one of the first foun-
dational guidelines and frameworks developed to create an approach to measure the
qualities of process models;

2. The 7PMG (2010) [30]: A revised and pinpointed version of conditions that a quality
dimension or a measure should aim to fulfill in order to generate a process model of
good quality;

3. Pragmatic guidelines for business process modelling (2014) [29]: A detailed approach to
understand the logical and model generation part of quality defintion;

4. Quality assessment strategy (2017) [50]: A quality assessment strategy proposed to create
evaluation criteria to assess new models;

5. Process modelling guidelines (2018) [31]: This is a systematic literature review and experi-
ment showcasing the various metrics, summarised using an internal relevance.

Other frameworks and regulations mentioned along with these works are CPMQF [48],
SEQUAL [51,52], CMQF [53], GoM [49], SIQ [54], BPMQ [55] Frameworks and the ISO
standard (ISO 25010:2011) [43].

Overall, from the broad spectrum study, it was found that process models are evaluated
based on particular attributes. These attributes vary between the syntax features of process
models and properties of the event log itself. According to the search, the ideal way to
evaluate a process model is to perform calculations between the model and its respective
event log. These calculations are founded upon the Basic Three features (i.e., Unique ID,
Activity and Time Stamp) [56]. Further, secondary attributes can be used for extended analysis
of the process model and the event log, but with customised methods of calculation.

2.3. Meta Review and Evolution

The research questions RQ2 and RQ3 are addressed within this section. The meta-
review provides a collective overview of process model measurement over the years and
summarises the vast amount of metrics using a taxonomy. The practical part of RQ3 is
extended into an experiment in Section 3.

Early approaches for process model evaluation were solely based on software engi-
neering techniques. However, standalone tools and software (e.g., ProFIT [57], PM4PY [58]
etc), are replacing these techniques. The current generation of metrics is established on the
three basic attributes. In our work, we have focused on the quality dimensions of under-
standability, complexity and interpretability [59–62]. We believe these qualities provide
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a balanced outlook on human assessment of the models. The level of easiness in perceiving
a model is called understandability. The amount of detail shown via the process model from the
event log is called complexity. A combination of both complexity and understandability is termed as
interpretability [63,64]. When trying to evaluate models, it seemed as though there was a
non-stop supply of research works aimed at process model evaluation and quality analysis.
Hence, a clear representation of viable metrics for process modelling is required. Even after
obtaining an understanding and overview of the various metrics present in the commu-
nity, there remains a small gap. Implementation and demonstration, it follows through
by providing results to the community, which will further aid researchers in shaping the
evaluatory phase of process modelling. We have covered the demo of our selected metrics
in Section 3. The meta-review aims to answer the follow-up questions from RQ1 and create
a taxonomy of metrics. Our search approach for the meta-review was rather unique. The
results from our broad spectrum review were taken forward and used to create a search
procedure that is more efficient than manual searches.

The meta-review is a review of reviews. The goal is to create a taxonomy of all the
metrics proposed within the field of process modelling. The taxonomy can be considered a
crucial element for researchers who aim to work in conformance checking and evaluation
of models, as it provides an explicit representation of the various metrics present. To create
this taxonomy, literature reviews published through the years that summarise the most
sought-after metrics were used as critical sources. The taxonomy is included in Appendix C.
It lists all the metrics proposed between 1997 and 2023. An individual study of metrics was
not performed, since it is tedious and might leave us with a bulk of information with broad
relevance. Other issues such as metrics with different names but the same working principle,
metrics with very distinct methods of evaluation (i.e., using non-universal features that
might not be available in all datasets) and metrics with lengthy calculations or unverifiable
performance were considered as possible instances that would exponentially increase the
time and energy required to perform a study. Hence, review articles were selected as the
source of metrics. As most review works explicitly mention the source of metrics, it makes
them efficient sources to analyse. A motto was kept in mind when creating the meta-review,
“i.e., to make sure that the proposed information will be useful to the community and not be an
additional study weight”.
Search Procedure: The literature search for the meta-review was far-reaching and compact.
As our strategy was to use review articles, we were able to minimise the depth of each search
term in exchange for a wider array of topics. This, in turn, allowed us to precisely find
review articles that are in the sphere of process model assessment and not singular works.
Similar to the broad spectrum review, we considered the risk of bias factor when creating
the keyword search strategy; this resulted in an increased number of search terms. The
search terms were generated based on the spheres that deal with process model evaluation,
metrics, quality, modularity and assessment. Since process mining has many neighbouring
fields that share the same form of evaluation (e.g., business process modelling, workflow),
we specifically selected terms to avoid any bias or overlooking any research works. The
primary search was performed using Google Scholar search and the secondary search was
conducted through Scopus. The search using Scopus was mainly to recover any missing
articles that were not found during the primary search via Google Scholar. Similar to that
of the broad spectrum review, the Google Scholar advanced search option was set up in
two ways.

The first approach was set up as follows. The articles with "the exact phrase" occurring
"anywhere in the article" between the dates 1997 and 2023 with the Review articles only field
enabled and the remaining fields were left blank. The keywords used for this search were

“Workflow learning”, “Workflow Quality”, “Workflow discovery”, “Workflow Discovery
Quality”, “Workflow Discovery Evaluation”, “Business Process Modelling”, “Business
Process Modelling Metrics”, “Business Process Modelling Quality”, “Business Process
Model Quality”, “Business Process model quality indicators”, “Process Learning”, “Pro-
cess Mining”, “Process Mining Metrics”, “Process Modelling”, “Process Model Notation”,
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“Process Model Quality”, “Process Model Evaluation Quality”, “Process Model Under-
standability”, “Process Model Complexity”, “Process Model Understandability”, “Pro-
cess Modelling Metrics”, “Knowledge discovery workflow”.

The second search approach was set up as follows. The articles with "with all of the
words" and "with the exact phrase" occurring "anywhere in the article" between the dates
1997 and 2023 with the review articles only field enabled and the remaining fields were
left blank. The keywords were used as follows. The first part of the phrase was en-
tered in the first field of "with all of the words" (i.e., the phrase before AND) and the
second part of the phrase was entered in the field "with the exact phrase" (i.e., the phrase
after AND). The search terms were (“Quality assessment” AND “Business process mod-
els”), “(Quality indicators” AND “Business process models)”, “(Process model complex-
ity” AND “Metrics)”, “(Process learning” AND “Process mining)”, “(Process discovery”
AND “Process mining)”, “(Modularity representation” AND “Business process models)”,
“(Presentation medium” AND “Business process models)”, “(Experimental evaluation”
AND “Business process modelling)”, “(Business process model” AND “Quality)”, “(Busi-
ness process model” AND “Complexity)”.

The articles obtained from the search terms were examined by their abstract and full
text to make sure they did not fall into neighbouring fields such as networking and business
informatics. Figure 2 exhibits the search procedure for the meta-review. The following
inclusion and exclusion criteria were used to filter works:

Figure 2. The selection procedure for the meta-review.

Inclusion criteria:

• Should be a review paper;
• Should have been published between 1997 and 2023 (when performing this study, articles

published until January 2023 were considered for analysis);
• Should be relevant to process mining and business process modelling;
• Should be aimed at quality, measurement, modularity, evaluation, metrics and complex-

ity for process models or modelling.
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Exclusion criteria:

• Works that focus on topics other than evaluation (e.g., process algorithms, languages,
tools or mining approaches, visualisations, oncology);

• Works that focus only on one metric or one characteristic;
• Works not in English.

Results of the Meta Review: We found 379 review articles published in the time frame
between 1997 to 2023. Each work summarises various evaluation methods and metrics for
process modelling. Upon filtering works based on inclusion and exclusion criteria, a total
of 63 articles were obtained. After reading the full text, 36 articles were eligible for analysis
and inclusion in the meta-review [65–70]. We listed 140 metrics proposed by fellow authors
within our meta-review. They are categorised based on their impact on the model qualities
of understandability, complexity or interpretability. Additionally, we have included new
fields that would aid researchers in selecting and implementing proposed metrics. The
taxonomy of metrics consists of the following fields of data (the respective acronyms are
included in parentheses):

1. The Name of the metric (Metric);
2. The Year of proposal (Year);
3. Authors of the metric (Auth);
4. Working Definition (Def.);
5. Status of Demonstration by the authors (Yes/No) (Demo):

• Yes (Y)—A demonstration of the metric has been provided by the
authors in their works;

• No (N)—A demonstration of the metric has not been provided by
the authors;

6. Type of Metric (Type):

• Scratch (S)—Metrics that are completely designed by the author(s);
• Partially Derived (PD)—Metrics that borrow ideologies but have

their own mechanism;
• Derived (D)—Metrics implemented based on existing concepts and

measures;

7. Source to Original paper (Src).

Evaluation History: Early literature collectively describes metrics as one of the “goals
of models” [71]. We have come up with a simple representation of metrics in retrospect
to process mining as a whole. Figure 3 represents the viewpoint of evaluation and its
branching. Level 1 consists of the main branches of the field and splits into process discovery,
knowledge mining and conformance checking. Level 2 consists of topics which come
under each level 1 division. These topics are subdivisions that focus on specific aspects of
evaluating models. Knowledge mining consists of methods used to extract information from
logs and datasets. Conformance checking encompasses approaches to analyse the mining
performance while discovering the event logs and extracting information. The process
discovery division deals with performing visualisations and implementation of algorithms
to generate models. We believe that these subdivisions work hand-in-hand when dealing
with evaluation. Level 3 is a combination of L1 and L2. It ideally performs the model
quality analysis. Level 3 is classified as quality dimensions, evaluation and metrics.
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Figure 3. Branching of evaluation in process modelling.

The goal of evaluation is to have metrics that can measure specific qualities of a process
model. Hence, we have focused on model qualities that aid in improving the human
perception of the model. We believe that understandability, complexity and interpretability
can be coined as crucial qualities for human perception of process models [72]. To ensure
that our taxonomy remains simple and allows for easy traceability to the original works,
we adapted strategies to enhance the results:

• Ensure the metrics listed were within the scope of modelling qualities: understandability,
complexity and interpretability;

• Link metrics that were conceptually the same but with different authors and explicitly
mention them;

• Perform a viability check of the measures (metrics listed should be ideal for universal
application, i.e., should utilize the basic three);

• Scrutinise and check if the proposed metric is demonstrated by the author and can be
replicated by prospective researchers;

• Mention redundant metrics where necessary;
• Include a mini description to improve readability;
• List the original source of the metric.

The work by [4] in 1997 exhibits the necessity of evaluation in business process
modelling. The authors emphasise representing factual data in a simplified manner (i.e., to
improve the human perception of the data). With this in mind, if a generated process model
does not provide a certain level of data interpretability, then the modelling procedure may
be termed a failure. Authors of [73], in 1998, coined the term direct flows graph. It is a
more flexible and less accessory-oriented representation for process modelling. The use of
DFG has simplified the learning curve to approach process modelling. It has also aided
in minimising the gap between data modellers and the end user. Unlike Petri nets and
process graphs, the DFG shows only required information such as flow, activities and other
peripheral details. The logical section is hidden under a layer and need not be shown along
with the final resultant. Using DFGs as a tool was scarce during the early 2000s, as it was a
fresh concept still in adaptation.
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The boom in technology played its part in the rapid digitisation of the world. It gave
rise to enormous amounts of process data usable for analysis and experimentation. As
data increases, so does the complexity of the process model. Thus, the trend started from
here; to resolve the complexity of modern processes, we need a way to distinguish simple
and complex models, i.e., easy vs. hard to interpret. During this time, process mining was
also gaining a foothold in the markets as it helped analysts visualise and understand their
processes much better than traditional methods [74,75].

Initially, measuring the complexity of a process model was performed by borrowing
methods from neighbouring fields of software engineering and networking [76–78]. Lines
of code and correctness are a few examples of metrics migrated for usage in process mod-
elling. An increase in data generated resulted in these metrics reaching a saturation point,
after which using these metrics became very tedious and cumbersome. Hence, frameworks
and dimensions of measurements were proposed and developed, e.g., CPMQF [48]. Frame-
works such as SEQUEL [51,52] and QME [9] (Quality Assessment framework) suggested
using notations, statistics of activities, algorithm variations and many more as features to
analyse the metrics of a model. From the year 2006, many works summarised the progress
in the field and crafted a path to create a bridge between process mining technologies and
operational business processes. The works highlighted many issues faced in the sector
based on the approaches, quantifiers, analysis of results, representation and differences
within. Nevertheless, the principle remained the same: ensuring process information was
conveyed easily using process models [79–82].

Parallelly, the implementation of new algorithms took place with enhanced feedback.
The results focused on improving the algorithms and not just the visualisations. Ref. [83]
lists the most-ideal ways to judge the complexity of the model at the time. With insight
into algorithms and better feedback, modelling transformed from a static to a dynamic
phase. Mining and modelling were no longer only used on past data but also for simulation
and designing future usage. The usage of non-universal data attributes was high during
this time. These are fields of information that might not be available in datasets of various
domains. This led to a shift in using the basic three as the minimal standard for any event
log analysis. The 7PMG [30] proposed seven basic guidelines for process modelling. It gave
a baseline platform for evaluators and fellow modellers to generate a unified procedure for
model development. The years beyond 2013 saw many researchers propose metrics linked
to specific process modelling qualities (e.g., activity period, exclusiveness, generalisation,
flexibility, etc.).

At the same time, Wil van der Aalst and Jan Mendling published the process mining
discovery and metrics books [11,84]. Wil van der Aalst explicitly explained and started
the trend of using the four prominent metrics. Other authors proposed their metrics and
drove efforts to review and revise older frameworks to develop concise and present-gen
versions. The progressing years saw many authors start to use a handful of metrics as a
scale to compare and quantify their proposed metrics. Quality metrics including recall
fitness, precision, size and generalisation were widely utilised as an informal standard.

Figure 4 shows all the metrics discovered in our meta-review; they are classified based
on the three quality dimensions: understandability, complexity and interpretability. This
representation of metrics by the three qualities allows researchers to select metrics that
majorly read and impact a certain quality of the model. These types of diagrams can
be created in the community for various process modelling qualities that list the metrics
impacting them.
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Figure 4. The taxonomy of metrics (1997–2023), (* indicates metrics that are repeating in more than
one characteristic quality).

Appendix C lists all the metrics from our meta-review in detail.
We found that the metrics can be subdivided based on their technique of calculation,

as follows. Primitive: These are metrics that utilise older methods to be evaluated. They
use brute force approaches and are evaluated directly without mathematical formulation
or complex calculations. Calculative: Metrics under this category require performing
mathematical or algorithmic calculations to be evaluated. Behavioural: These metrics are
specific to the understandability quality, as they depend heavily on features of the log and
require analysis of log history to be evaluated. It should be noted that some metrics are
repeated within the modelling diagram and have been marked with a star (*).
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One of the main motives to perform the meta-review of metrics was derived from
the initial objectives: “to rate the extent to which a process model is understandable and can be
interpreted without the need for simplification” or, in simple words, “to be able to judge a process
model based on its understandability and complexity”. Hence, in the quest to find a suitable
approach, we began searching and experimenting with various metrics already published
in the community. However, the thought of selecting research articles only after a certain
year and ignoring the history (i.e., evolution to that point) puts us at a loss. Hence, the
meta-review was conducted to give a background analysis and summary of the various
approaches and techniques of evaluation to date.

3. Methodology

This section addresses RQ3 with an experiment involving real-world datasets. Using
the insight from the broad spectrum study and meta-review, we found four metrics that
have an ideal balance in representing the complexity and understandability of process
models. We have termed them the QUAD metrics. The mathematical adaptations of these
metrics were created and implemented via a process mining environment. Using real-
world datasets, we have analysed the behaviour of these metrics under various control
conditions. The results provide insight into how these metrics describe the technical aspect
of process models.

3.1. The QUAD Metrics

We have termed Fitness, Precision, Simplicity and Generalisation as the QUAD
metrics [85]. From the results of our meta-review, we have seen vast usage of the four
metrics. They have been used as primary dimensions for evaluating process models. Initial
testing revealed them to have a direct impact on the modelling qualities of understandability
and complexity. We performed technical analysis and derived mathematical equations for
each metric specific to our modelling environment and dataset attributes.

We have considered the following notations and terms to explain and describe the
formulations of the metrics. Let E be an event log with n events and M be a process model
of the same event log. T is a trace of events. C is the unique cases of events. Then, the
metrics are derived as follows:

1. Replay Fitness: Fitness is a measure that denotes how much of the behaviour present in
the event log can be reproduced by the process model. It can be elaborated as the extent
to which the model can reproduce the traces recorded in the event log. We have based
replay fitness of the work [86]. They have used an alignment-based approach to identify
the fitness of process models. This technique aligns as many events as possible from the
trace with activities in a single execution of the model. The formulation is as follows:

Replay Fitness = 1− | TE ∩ TM |
| CE |

(1)

where, TE is the traces from the event log, TM is the traces from the process model,
|TE ∩ TM| is the number of traces, that occur in event log and process model and CE is
the unique cases of events in the event log.
In our implementation, the numerator is calculated by aligning every case ID in the
event log from start to end and observing if the model can align all of them. In simpler
terms, we determine if the process model can replay every single trace as in the event
log. The denominator here is the total number of unique case IDs present in the event
log. On calculating, we obtain a rating between 0–1, where 1 indicates the process model
can fully replay every single trace present in the event log via the generated process
model and vice versa. This metric is measured on a scale of 0 to 100%, where 100%
indicates the complete alignment of the traces in the event log to that of the model;

2. Precision: Precision is a measure used to show how clearly the process behaviour de-
picted in the event logs can be captured by the model without oversimplifying the
model [86]. The metric aims to find out if there exist decisions that are possible in the
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model but never made in the log. At first glance, it may seem rather odd, as any mining
tool by definition would not intentionally add additional behaviour or, rather, what is
not given as input cannot be obtained as output. However, we found that it is possible
to have behaviour that is not seen in the event log since there is always a possibility of
not including every combination of edges and activities within the log. The measure
here is inspired by the so-called escaping edges concept [87,88], where escaping edges
are representations of decisions that are not made in the log but exist only in the model.
In situations when there are no escaping edges, the model is precise (state = 1). It is
formulated as follows:

Precision = 1−
| T′E ∩ TM |
| CE |

(2)

where TE represents the traces from the event log, TM represents the traces from the
process model, |T′E ∩ TM| is the number of traces that occur in exclusively in the process
model and not the event log and CE is the unique cases of events in the event log.
In our adaption, the numerator is calculated by checking if the process model has
additional behaviour which does not exist in the log. Additional behaviour is analysed
using individual traces from the event log. The denominator is calculated as the total
number of traces in the event log. When new data observed in the process model is not
seen in the event log, the model is considered not precise for that respective trace. It is
rated between 0 and 1, where 1 signifies the model has high precision. This metric is
measured on a scale of 0 to 100%, where 100% indicates no existence of unseen behaviour
in the model, as per the log. There is also a contradiction with calculating precision that
we have addressed in the discussions in Section 4. Another approach for precision is
seen in [89];

3. Generalisation: Generalisation is a measure of the level of abstraction in a process model.
It deals with overly precise models and tries to make sure over-abstraction is not
performed. It estimates how well the process model describes an unknown system and
not only the existing activities. If all parts of the process model are frequently used,
then the process model is likely to be generic, i.e., generalisation is high. If parts of the
model are infrequently visited then the generalisation is low. The authors [86] have based
generalisation off replay fitness. They use the data obtained from fitness as a leading edge
towards generalisation. The authors explain that, if a node is visited more often, then it
is certain that the behaviour is more frequent and, hence, more generalised. However, if
some parts of the process model are less frequently visited, then the generalisation is
bad. Our adaption is based on the same concept. The formulation is as follows:

Generalisation = 1−
Σa∈MA

√
Ex(a)−1

| MA |
(3)

where a denotes activities, MA is the activities present in the model and Ex(a) is the
number of executions of each activity referred.
In our version of generalisation, the numerator is calculated by determining the number
of times an activity in the model has been executed. The root inverse of the value is
generated and a cumulative sum of all individual unique events is calculated. This
metric is measured on a scale of 0 to 100%, where 100% indicates a generalised model in
which all parts are used equally;

4. Simplicity: Simplicity is a measure that describes how easily a model can be perceived by
a human subject. It can parallelly be termed model complexity. Simplicity is measured
by comparing the size of the model with the number of activities in the log. Using the
information from the model itself, simplicity is defined on the following principle: if
each activity is represented exactly once in the process graph, then that graph is considered to be
as simple as possible [86]. Therefore, simplicity is calculated as follows:

Simplicity =
| MD | + | EA − MA |
| MA | + | EA |

(4)
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where MD is the duplicate activities present in the model, EA is the unique activities
present in the event log, MA is the unique activities present in the process model and
EA −MA is the number of missing events in the model w.r.t to the log.
The numerator is calculated as the sum of the count of duplicate activities present in the
model and the count of missing activities in the model when compared to the event log.
The denominator is calculated as the sum of unique activities present in the model and
the unique activities present in the event log. This metric is also measured on a scale of
0 to 100%, where 100% indicates a complex model with many events and a lower value
represents a simpler model.

3.2. Experimentation

To demonstrate the use of the QUAD metrics, we used a combination of python3 and
ProFIT. ProFIT is a process mining tool that works based on the fuzzy heuristic miner
algorithm and generates process models specifically in the direct flows graph format. The
tool works similarly to other famous process mining software (PM4PY and ProM). Initially,
we started the implementation of these metrics on both ProFIT and PM4PY; however, the
PM4PY package did not provide the appropriate raw information to perform a ground-level
implementation of metrics. Hence, ProFIT was chosen as the main tool for implementation.
Currently, our implementation of metrics is specifically designed to work with input data
from ProFIT; our long game is to create an open-source library (e.g., GitHub) that can
be used by fellow researchers and the community to measure process models using any
modelling tool. Python3 was used to mathematically design and implement the metrics
for calculation.

3.2.1. Datasets Background and Information

The datasets chosen for this analysis and experimental study of metrics were specific
to the medical sphere. The selection criteria to choose the datasets are listed here:

• Should be a medical/healthcare domain dataset;
• Datasets should be open source;
• Should have sufficient events, activities and samples to generate sizeable process maps.

We searched for these datasets using Google Search and Kaggle datasets. Seven datasets fit
our criteria and application. Their statistics are summarised in Table 1.

1. Remote Patient Monitoring Data—Almazov Institute: This dataset was provided by
PMT online (an online patient healthcare monitoring system). It contains events trig-
gered by in-home blood pressure measurements made by patients suffering from arterial
hypertension [90];

2. Hospital Records of Dutch Hospital—Eindhoven University: This dataset was pub-
lished by Eindhoven University of Technology. The dataset consists of real-life event
logs of a Dutch academic hospital [91];

3. Hospital Billing Log—Eindhoven University: This event log was sourced from Eind-
hoven University of Technology. The event log was obtained from the financial modules
of the ERP system of a regional hospital [92];

4. Nurse Work Flow—Almazov Institute: This event log was provided by Almazov Na-
tional Research centre. It consists of data from the hospital access control system
concerning staff activities, laboratory procedures, branch communications. etc. [93];

5. Data Driven Process Discovery (An Artificial Event log)—Eindhoven University: This
dataset was generated by Eindhoven University. It is a synthetic event log that simulates
an artificial process log of a hospital (we have used the dataset with 0% noise) [94];

6. Central Venous Catheter Process—Conformance checking challenge 2019: This is a
dataset produced by Eindhoven University. It is also the dataset used for a Conformance
checking challenge in 2019. The dataset describes the procedure to perform central
venous catheter with ultrasound [95];
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7. Sepsis Treatment Pathway Dataset—Eindhoven University: This dataset was sourced
from Eindhoven University. It is a real-life event log consisting of events of sepsis cases
from a hospital and its treatment [96].

Table 1. Statistics of selected healthcare datasets.

# Dataset Name Number
of Entries

Number of
Unique Traces

Average
Trace length

Max
Trace Size

Min
Trace Size

Number of
Unique Events

1 Remote Patient
Monitoring Data 35,358 272 130 673 3 17

2 Real-Life
Event logs 150,291 1143 131 1814 1 615

3 Hospital Billing
Event Log 89,088 18,278 5 217 1 18

4 Nurse Work Flow
Event log 13,644 187 73 440 1 228

5
Data Driven Process
Discovery—Artificial
Event log

99,589 11,112 9 11 2 8

6 Central Venous
Catheter Process 697 20 35 59 26 29

7 Sepsis Treatment
Careflow Dataset 15,214 26 586 8111 1 16

Upon acquiring these datasets, we explored the data using Python3 and the PM4PY and
ProFIT toolkits. The discovery of data was performed in two stages:

• Stage 1: This stage involved sparsely overseeing the various attributes of the process
model and filtering fields that may not be useful to our application (e.g., Dataset 2
had 128 fields of information, such as “special code”, “diagnosis index”, etc.). These
additional fields were excluded and the basic three were retained in all datasets;

• Stage 2: In this stage, process models were visualised using Python3 and ProFIT. The
Activity field in all the datasets was cleaned and made uniform with respect to all event
logs. The filtering and cleaning were performed using a self-built Python script which
removed all unnecessary elements in the event data (e.g., ‘.’, ‘-’, ‘_’, etc.).

The two-stage filtered data were then used for all further experiments.

3.2.2. Setup

ProFIT produces a direct flows graph to visualise the process model. Direct flows
graphs are a robust method that facilitate the requirements of experts and novice users. The
miner in ProFIT has two control parameters to change the amount of information depicted
in the process model: Activity rate and Path rate. The activity rate controls the number
of events (activities) shown, based on their total frequency of occurrence in the event log.
The path rate controls the number of pathways (edges) connecting relative activities in the
event log. Similar to the activity rate, it is controlled based on the total frequency of usage.
Both rates can be varied on a scale of (0–100). In our experiment, the control parameters
were varied over two regimes. These specific variations generated process models that
produced a uniform pattern for analysis and generation of model ratings. The parameters
were varied in the following format:
Regime 1 (R1): The Activity rate (AR) is varied in steps of 1 between [0 and 100] (S1) and the
Path rate (PR) is varied in stages of [5], [20], [40], [60], [80], [100] (S2). (R1) can be observed
in Figure 5;
Regime 2 (R2): The Path Rate (PR) is varied in steps of 1 between [0 and 100] (S1) and
the Activity rate (AR) is varied in stages of [5], [20], [40], [60], [80], [100] (S2). (R2) can be
observed in Figure 5.
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Figure 5. The variation patterns of process control features (R1 and R2).

3.2.3. Metric Calculation

Each metric was individually programmed in Python3. The metric algorithms utilise
information extracted from the generated process model and respective event log. In ProFIT,
the process models are rendered using graphviz. A netgraph with text-based information
is parsed from ProFIT to the graphviz renderer in order to visualise the process model. We
used the net graph data as model interpretation for our algorithms. The source event log
remained the same for both the miner and the metric algorithms. Each metric algorithm is
split into phases which perform specific calculations and produce a numeric measure at
the end.

1. Calculation of Fitness: Fitness is calculated according to Formula (1). The full flow of
fitness calculation can be seen in Figure A1:

• Phase 1: Input of event log, activity rate and path rate;
• Phase 2: The event log is mined and the process model is generated. (The miner

function performs filtering and cleaning of the netgraph for metric calculation);
• Phase 3: Generation of a one-dimensional dictionary containing the source and

destination of all activities in the model;
• Phase 4: Generation of individual traces for each caseID and verification of replay

via the process model. E.g., a trace is chosen from the event log and is traversed
per caseID throughout the generated process model. If the trace is completely
retractable from start to end, then the respective caseID is deemed fit (1), else it is
deemed not fit (0);

• Phase 5: Once all the caseIDs have been checked for replayability, the final formula
of fitness is applied where the total number of traces that can be aligned with the
model and log is contrasted against the total number of unique caseIDs in the log;

• Phase 6: Generation of the percentage of fitness and output of final fitness.

For every iteration in path rate and activity rate, the algorithm is executed from phases 1 to
6. In each cycle, all caseIDs are verified for their respective fitness.

2. Calculation of Precision: The precision of a model is by far the most complicated metric
to be calculated, as there is a lot of ambiguity to deal with. The full flow of precision
calculation can be seen in Figure A2. It is generated as follows:

• Phase 1: Input of event log, activity rate and path rate;
• Phase 2: The event log is mined and the process model is generated. (The miner

function performs filtering and cleaning of the netgraph for metric calculation);
• Phase 3: Generation of a one-dimensional dictionary containing the source and

destination of all activities in the model;
• Phase 4: Conversion of the one-dimensional matrix into a path matrix which uses

0s and 1s to indicate the existence of “Path" and “No Path" between all activities
in the model. The matrix is used to generate all possible combinations from the
model to verify existing and imaginary paths in the process model;

• Phase 5: Generation of all possible combinations of traces in the process model.
A permutation algorithm generates them in sets of two activities (AB, BC, AC,
AA, BB, CC, etc.). Duplicates and redundancies are filtered before proceeding to
phase 6;
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• Phase 6: The trace creator, generates all possible combinations of traces from
the event log in pairs of two (AB, BC, AC, AA, BB, CC, etc.). Duplicates and
redundancies are filtered. The generated results are used to check combinations
that occur only in the process model and not in the log. This value is evaluated
against the total number of traces in the event log. The raw precision value of the
model is generated using Formula (2). As in Fitness, for every iteration of path
rate and activity rate, the algorithm is executed from phase 1 to 6. The precision is
likewise calculated at every iteration;

• Phase 7: Generation of the percentage of precision and output of final model
precision.

In phase 5, we faced an issue with the concept of precision itself, i.e., “how many repetitions
of an event can be considered for evaluation from the process model e.g., AA, AA, AA?”. We have
discussed this in Section 4. In our calculation of precision, we have limited the repetitions
to one (i.e., a combination can only occur once in the model).

3. Calculation of Generalisation: Generalisation is calculated according to Formula (3).
The full flow of generalisation calculation can be seen in Figure A3. It is calculated as
follows:

• Phase 1: Input of event log, activity rate and path rate;
• Phase 2: Data extraction of all activities in the event log and all activities in the

process model.;
• Phase 3: Information from phase 2 is used to calculate the number of executions

of each event in the process model and the total number of events present in
the process map. These values are then used in Formula (3) to calculate the raw
generalisation;

• Phase 4: Generation of the percentage of generalisation and output of final model
generalisation.

The generalisation is calculated for every iteration of path and activity rate and the al-
gorithm is executed from phase 1 to 4. Individual trace extraction is not required in
generalisation.

4. Calculation of Simplicity: The simplicity of a model is calculated as per Fromula (4).
The full flow of simplicity calculation can be seen in Figure A4. It is calculated as follows:

• Phase 1: Input of event log, activity rate and path rate;
• Phase 2: Data extraction of all activities in the event log and all activities in the

process model;
• Phase 3: Information generated from phase 2 is used to calculate The sum of all

duplicate and missing activities. It is evaluated against the sum of all events in
the process model and the event log;

• Phase 4: The percentage of simplicity is generated for the model.

The simplicity is calculated for every iteration in activity and path rate by repeating phases
1 to 4. Similar to generalisation, individual trace extraction is not required.

3.3. Results

To understand the behaviour of metrics on the datasets, we plotted the performance of
each metric in both regimes. The performance graph depicts the changes in quality ratings
against one control element (either activity or path rate). We have analysed each metric
individually and contrasted them against each other as groups. Every metric has two
performance graphs showcasing either regime individually for all seven datasets. Within
the performance graphs, each sample (S) is represented using abbreviations S1–S7.

“Fitness is the amount of behaviour present in the event log that can be reproduced by the
model”. Figures 6 and 7 show the fitness in R1 and R2, respectively. At a glance, there seems
to be more than one behaviour of fitness in R1. However, by observing individually, the
fitness for all datasets increases gradually or stays steady. Fitness in S1, S2 and S3 differ in
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steps of varying sizes. These steps indicate the addition of an event into the process model.
Adding new events increases the number of paths within the model. This allows for an
increased number of replayable traces. Therefore, the overall fitness of the model increases
with the addition of new events. Figures A5 and A6 show an example of S1 in R1 @ PR 80.
The number of paths is seen to be increasing as the number of activities increases from 9 to
12. At path rates less than 100, we can observe that the fitness does not reach 100% in any
dataset. This is because there is always a certain number of paths hidden due to their low
frequency of occurrence; they are only viewable at 100% control rates. Hence, the fitness
does not reach 100%, as all traces cannot be replayed by the process model. In S4, S5, S6
and S7, the fitness remains constant for certain periods of activity rates as no new paths are
being added to the model; therefore, there is no increase in the number of repayable traces.

Figure 6. Fitness ratings of datasets 1 to 7 in R1.

In R2, we see similar behaviour as in R1, except the increasing nature of fitness is faster
and more gradual. The number of paths seems to have more influence in replaying the
traces when activities remain constant.
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Figure 7. Fitness ratings of datasets 1 to 7 in R2.

A measure of the amount of behaviour only possible in the model and not in the event log is
called Precision. Figures 8 and 9 show the behaviour of precision in R1 and R2, respectively.

Figure 8. Precision ratings of datasets 1 to 7 in R1.
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Figure 9. Precision ratings of datasets 1 to 7 in R2.

In general, the precision for all the datasets is decreasing in R1. In Figure 8, activity
rate gradually impacts the precision of the model. As the path rate increases, the precision
reduces. All the samples follow consistent behaviour of gradual decrease in precision with
varying step sizes. The precision reaches the lowest value when both path rate and activity
rate are at 100%. This is because, despite showing all available traces and events, there are
still many possible combinations that were not shown in the log but are theoretically possi-
ble in the model. The slow change in precision is seen in path rates of smaller magnitude;
for path rates with higher magnitude, the precision reduces faster since the number of
possible combinations increases exponentially. Similar to R1, the precision in R2, shown in
Figure 9, reduces as it approaches 100% of activity rate and path rate. The rate of precision
reduction in R2 is lesser than in R1, as the number of activities does not have a major impact
on creating paths for new combinations.

Generalisation is a measure of the level of abstraction that takes place in a process model. A
model with uniform usage across all parts has good generalisation, while a model with
infrequent usage across some parts has bad generalisation. Figures 10 and 11 show the
behaviour of generalisation in R1 and R2.
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Figure 10. Generalisation ratings of datasets 1 to 7 in R1.

The behaviour of generalisation across all datasets is similar in R1. The generalisation
rating is constant for majority of the time, which indicates all parts of the model are being
used consistently. When reaching 100% activity rate, there is a sudden drop observed in
S2 and S3, while S1 and S4 have a gradual decrease in their generalisation. S5, S6 and S7
are mostly constant throughout, with minor fluctuations nearing 100% activity rate. The
variation in generalisation indicates the addition of an event into the model. In S1 and S4,
the events being added after 50% activity rate are less frequently used; hence, all parts of
the model are not equally used, thereby reducing the overall generalisation of the model.
In S2 and S3, the huge dip in generalisation is due to the appearance of sparsely occurring
events added at 100% activity rate. These events cause the process model to be less generic,
resulting in low overall generalisation rating. In S5 and S6, the frequency of events have
very similar thresholds. This causes most of the events to be shown within very small
intervals of the activity rate. Hence, the number of activities remains constant throughout.
This also means that all the activities are equally utilised in the event log itself, thus making
the process model generic.

The activity rate controls the number of activities shown in the process model; there-
fore, an increase in activities impacts the generalisation based on the frequency of occur-
rence of the events. When frequent events are shown, the generalisation is high, since the
events are used consistently throughout. When infrequent events are added, the generalisa-
tion is low, since certain parts of the model are not always used. This can be observed in
Figures A7 and A8, where the number of infrequent activities correlates to the reduction in
generalisation. The red circles indicate the new events that were added at each iteration of
activity rate in R1. In our adaptation of this metric, the path rate does not have an impact
on the generalisation in R1, since we account only for the activities and not the edges. By
adding edges for the calculation, the results might not be conclusive, as the concept of
generalisation is designed to measure the events in the model that is most often used. The
addition and removal of paths will not have a direct effect directly the threshold of activities
is maximum.

The behaviour of generalisation in R2 is straightforward, as observable in Figure 11.
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Figure 11. Generalisation ratings of datasets 1 to 7 in R2.

The generalisation stays constant throughout the increase in path rate because the
number of activities is fixed in R2. E.g., at activity rate = 5, only 5% of the most frequent
activities are shown. Thereby, the model will have a fixed number of events throughout
the variation in path rate in R2. In S1, at activity rates 5 to 80, the generalisation is almost
maximum. This is due to the total number of activities being constant throughout the
analysis. All the events are used in the model equally throughout R2. At AR = 100, the
generalisation decreases, due to the addition of all paths present in the event log. These
paths are not utilised as much as the major ones; hence, the model is less generic than
before. Figures A9 and A10 showcases this behaviour. Similarly, in datasets 2–7, each stage
of activity holds the total amount of events constant. Therefore, the generalisation in R2
has no impact on the change in path rate and only changes when the activity rate is varied
by its stages.

Simplicity is a measure to understand how easily the model can be perceived by a human
subject. Figures 12 and 13 show the behaviour of simplicity in R1 and R2. The behaviour
of simplicity is equated to the complexity or difficulty in understanding the model. The
greater amount of events present in the model, the more difficult it is to understand for a
human subject. In this adaptation of Simplicity, the number of interconnections was not
involved in calculating the metric. Hence, in R2, despite the change in path rate producing a
change in the model, the simplicity remains at the same level, (i.e., due to the mathematical
formulation not accounting for the paths).
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Figure 12. Simplicity ratings of datasets 1 to 7 in R1.

In R1, the behaviours of the datasets have an increasing trend with gradual steps and
constant behaviour. Samples S1, S2, S3, S4, S6 and S7 have a step-wise increasing behaviour
for simplicity. These steps are instances when new events are added to the process model.
Thus, increasing the number of activities and edges impacts the complexity of the process
model. The Figures A11 and A12 show an example of S7 in R1. The increase in activity
rates at path rate 100 correlates to the increase in complexity, as in Figure 12 (i.e., the rapid
change in complexity is seen only at the end process models, visible in Figure A12). S2
and S3 have a smoother curve, which is due to the presence of many activities with varied
thresholds.

S5, as seen in generalisation, has many activities with similar frequency counts, thereby
passing the threshold at the same time. This results in many of the activities being shown
most of the time and no addition of new events except in the extremes. Figure A13 shows
an example of when the model stays constant throughout, from activity rate 5 to 95% at
path rate 100%, after which there is a change in the model and it continues to remain
constant.

Simplicity in R2 is similar to the behaviour of generalisation in R2. Its behaviour is
shown in Figure 13. In all the datasets, the number of activities remains constant throughout
the cycle of path rates from 0 to 100. With the number of activities remaining constant
throughout, the number of paths is the only feature that can be increased. However, since
the paths can only be drawn for existing activities on the process model and it not being
included in the calculation, all the models have constant activities but with varying levels
of interconnections. Hence, this version of the simplicity formulation produces a constant
behaviour in R2, yet, if a formulation is created to measure the paths, it would take into
account the detail being produced from the interconnections. The behaviour can be seen in
Figure A13; dataset 5 is in R2 and the simplicity remains the same throughout.
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Figure 13. Simplicity ratings of datasets 1 to 7 in R2.

Further, we have included full-scale process graphs for select datasets in R1 and R2.
Due to the limitation of size and detail, only four datasets were compact enough to be
reproduced on sheets. Appendixes A14–A21 show full-scale process models for datasets
1, 3, 5 and 7, respectively. The process maps can be correlated with the behaviour of the
QUAD metrics in Figures 6–13 in both R1 and R2. When observed horizontally (from left to
right) the process maps are in R1 order and when observed vertically (from top to bottom)
the process maps are in R2 order.

4. Discussion

Our work provided a ton of insight into metrics and the evaluation of process models.
In this section, we have listed important issues that were encountered during this work.
Addressing these issues will further improve the understanding of process models.

Metrics, preferences and their application. Every person is accustomed to their pref-
erences. Complex process models are suitable for industry professionals, as they portray
information in greater detail. However, beginners would find complex models very hard
to understand. Using a constant model for both audiences results in differences in detail
being experienced by either party. This causes a loss of information. To answer this issue,
there are several ways we have considered. The first method would be the generation
of personalised models depending on the intended user’s preferences, background and
subject knowledge. The possible backdrop of this method would be the aggressive collec-
tion of personal data. A more realistic approach involves creating a universal model that
describes a process within a balance of complexity (i.e., a model that can be useful for both
beginners and experts). Metrics and evaluation techniques can be used to determine the
optimal range of information to be described via the model. The accuracy of this range can
be further improved by incorporating secondary data from the process model (e.g., size of
traces, avg. size, number of unique events, etc.).

Figure 14 describes the behaviour of QUAD metrics when an event log is tested in R1.
This graph explains the performance of the model and, by analysis, we find the optimal
range where models have a balance between all the metrics.
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Figure 14. An optimal range for a process model in R1.

At activity rate 50%, it can be observed that the fitness is greater than 75%, indicating
that 3/4 of the traces from the event log can be replayed by the model. The generalisation
is good, signalling that most parts of the model are used equally. The precision at the same
point has started to reduce but is greater than 75%, signalling that the model might have
a small amount of behaviour unseen in the event log. The simplicity is low, indicating
that the model is easy to interpret. From these observations, it can be concluded that the
region near the 50% mark can be termed as the optimal range, since the models generated
within this area during simulation have a good balance between all metrics. This result
proves that the model is not aligned with any party (expert or novice). Hence, by using
metrics, balanced models can be estimated and used for universal purposes. When required,
individual models with weightings on specific features such as complexity, fitness, etc. can
be explicitly created for usage (e.g., if all traces should be shown in the model, then the
point at which fitness is 100% should be chosen).

Looping in precision. During our experiment, we encountered an issue while calcu-
lating precision. It is best explained with an example. Consider a process model with the
following flow {AB, BC, CA, BA}. To calculate precision, we calculate the various possible
paths between two points. To evaluate, we utilise the full trace of individual caseIDs to
check for behaviour not seen in the event log. In the exemplar process model depicted in
Figure 15, the model starts at A and ends at C. It has one intermediate event B.

Figure 15. Process model to demonstrate the looping threshold.

We can notice there exists a looping construct BA and CA. The presence of loops
gives rise to uncertainty, i.e., How many times should an occurrence of a loop be included for
evaluating precision? For example, a trace in this event log could consist of the sequence
ABABABABABC as one of its entries. If we set our looping threshold to three (i.e., any
activity can repeat only three times), the precision of this example would be negative. This
is because of the existence of duplicate events that are not recorded, giving an impression
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of too much existing behaviour. This can also be seen in our experimentation of precision in
R1. Some samples cross the 0% mark and start generating negative precision values. This
is due to the same issue [97–99].

Specific changes occurring due to variations in the event log during process map
creation. This is an example of the inclusion and exclusion of events causing changes in
the metrics recorded. In our experiment, we faced issues with our datasets when using
“START” and “STOP” events within our models (i.e., the trace begins with an event “START”
and ends with “STOP”). Some of our datasets did not explicitly have this event within them,
while a few did. We decided to remove the START and STOP events and then evaluate
our metrics. Before taking this decision, we analysed the possible issues that may arise by
including and excluding these events.
By excluding START and STOP

• The traces are uniform for universal analysis;
• Traces begin and end with activities from the log, resulting in directly analyzable

pure information;
• By excluding START and STOP, instances of measurement are scaled exactly to their

logs and not the collective size.

By including START and STOP

• In datasets without the keywords, traces have to be explicitly extracted and modified,
thereby increasing pre-processing time;

• When there is more than one event that leads to a STOP, there is an imbalance in
precision and generalisation, since they would be additional events that individually
(tracewise) lead to the end but collectively result in a mismatch [100–103].

Why choose understandability and complexity? From our study, we find that the
main motive and objective of process modelling is to present event log data to humans in a
simple form. The quality of complexity covers many terminologies that give the idea of
"not difficult". Understandability gives the idea of “easy to understand”. These two qualities
appreciate each other and provide a certain platform to clearly state whether a model is
simple or complex without forgetting about metric constructs [104].

Emphasis on using pre-processed data for analysis of events: This is a crucial issue.
As mentioned earlier in Section 2, the basic three are vital for process mining and modelling.
However, the task data should undergo careful pre-processing, as this can cause issues
when evaluating metrics. In our experiment, we faced an issue when there was the usage
of English and Cyrillic alphabets together. Our pre-processing was designed for filtering
and cleaning English alphabets. However, we overlooked the Cyrillic alphabet which led
to more events being present than in the event log, resulting in process models with an
increased number of activities to be generated. The evaluation of models with proper
per-processing was found to have an equal number of activities as in the event log, thus
avoiding irregular metric ratings.

Limitations of the work: By performing this study and experiment, we found certain
limitations in the technical aspect. In our work, we have focused on three human-centric
qualities (understandability, interpretability and complexity). However, many more quali-
ties can be explored and used to classify metrics (e.g., modifiability, expressiveness, com-
patibility, etc.). Classifying metrics based on such qualities requires an increased depth of
research and narrow exploration strategies.

ProFIT process mining toolkit currently works only using the fuzzy heuristic mining
algorithm and visualises data using the direct flows graph (DFG). In comparison to other
mining algorithms and visualisations, there are limitations with using this technique (e.g.,
the Petri-nets can show more event data that is hidden in DFGs and other mining algorithms
may project the data in a different perspective). Hence, there is an opportunity to explore
the various mining and visualisation techniques; however, our experiment focuses only on
the behaviour of the fuzzy heuristic miner and the DFG visualisation.
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In our adaptation of the QUAD metrics, we noticed that Simplicity and Generalisation
produce constant graphs in R2. At first, we assumed this was an error. However, the reason
for this behaviour is due to the non-inclusion of interconnections (edges) from the model
into the calculation of the metric (i.e., the paths connecting the model are not used in the
calculation of the event log). From our experimental results, we plan to improve these
metrics and produce a version that utilises all elements of the process model for evaluation.

The source code created in Python3 for cleaning the data was specifically crafted
only for the selected event logs. To use new event logs with variable characters present, a
universal filtering system should be created for each event log.

In our work, we have focused on using medical datasets as the prime domain to
showcase the usage of QUAD metrics and their behaviour. Nevertheless, the metrics
are expandable to all domains with adaptations. By using the QUAD metrics, major
characteristics of medical procedures can be identified and optimised. For instance, the
generalisation metric can verify the frequency of elements in the medical procedure and
eradicate operations that may increase the duration of the process. Fitness can be used as a
scale to visualise the whole process and analyse the complete medical procedure without
the need to extract metadata of the operation. Similarly, other metrics can be used to
identify individual characteristics of medical procedures that allow for the optimisation
and restructuring of processes. By applying these aspects, medical procedures can be
improved, therefore, benefiting the medical community and, ultimately, the end user (i.e.,
the patient).

In our experiment, we observed instances where the process models had bottlenecks
and peculiar operations that impacted the overall interpretability of the model. For example,
in dataset 5, the process models present in Figures A18 and A19 show that the events
“Triage" and “Register" occur in almost all the process models but, with increased activity
rates, a third event “Check" tends to bottleneck all events taking place after it. This causes
the medical process to be dependent on the “Check" event at every iteration and may also
increase the duration of the medical procedure. An ideal solution would be to split this
event into smaller sub-events that are relevant to the medical operations being performed,
thereby improving the efficiency of all processes after. This change can also be viewed via
the metrics where the complexity of the model will slightly increase at the expense of better
interpretability, generalisation and fitness.

5. Conclusions and Future Work

Achieving a balance between complexity and interpretability is vital to fulfilling the
goal of process mining. Process models can be understood by the end user only if they are
fit for purpose. Hence, metrics and evaluation techniques mentioned in this work provide
researchers with a guide to enter and dive into assessment techniques for process modelling.
The taxonomy of metrics collectively cumulates all the viable measures proposed by fellow
authors during the time frame of 1997 to 2023 and classifies them based on three human-
centric process modelling qualities. We present a once-and-for-all solution to the vast
amount of metrics in the community using the taxonomy. Researchers can use our work to
find metrics and evaluation techniques instead of studying many articles to find the right fit.
Together with the broad spectrum review, the taxonomy follows through by summarising
the history of how to evaluate a process model and provides a steady learning curve for
beginners in the domain. We have chosen the four most widely used metrics from the
tracked literature and termed them the QUAD metrics. These metrics utilise universal
attributes of a process model for evaluation and can be used to assess the vital properties
of the model. The performance and behaviour of these metrics under various control
conditions have been showcased using real-world healthcare event logs. The conclusions
drawn from the experiment will aid researchers in the analysis and selection of metrics for
future applications. Our implementations of the QUAD metrics are adaptable to datasets
from all domains with reconfiguration (i.e., they are universal). Modellers can obtain
significant insight into the interpretability of their models by evaluating their process
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graphs with these metrics. Therefore, we propose to use the QUAD metrics as a universal
standard of evaluation for process models. The insight from these metrics can be used to
fine-tune and craft visualisations specific to certain qualities or audiences. We believe that
our experiment provides crucial information that will aid future researchers to progress in
the evaluation phase of modelling.

In future studies, we aim to create open-source access to our implementation of the
QUAD metrics and introduce add-ons for universally used process mining software such as
PM4PY. We consider the insights from our study to be generalised input for the community
and scalable to all domains. We aim to resolve the limitations of this study by including
more process modelling qualities for metric analysis and implementing re-conceptualised
versions of simplicity and generalisation metrics to account for both activity and path rates.
We plan to create a universal filtering script that is applicable to all domain data types
within process modelling.
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Appendix A. Metric Methodology Flowcharts

Figure A1. Workflow for Fitness.
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Figure A2. Workflow for Precision.
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Figure A3. Workflow for Generalisation.
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Figure A4. Workflow for Simplicity.
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Appendix B. Process Model Graphs

Figure A5. P1: Impact of adding activities on fitness—sample 1.
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Figure A6. P2: Impact of adding activities on fitness—sample 1.
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Figure A7. P1: Impact on generalisation due to addition of activities in R1—sample 1.
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Figure A8. P2: Impact on generalisation due to addition of activities in R1—sample 1.
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Figure A9. Impact on generalisation of the process model when in R2—sample 1–part 1.

Figure A10. Impact on generalisation of the process model when in R2—sample 1–part 2.

Figure A11. P1: Impact on simplicity in R1—sample 7.
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Figure A12. P2: Impact on simplicity in R1—sample 7.

Figure A13. Impact on simplicity in R2—sample 5.
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Figure A14. Process model graphs of dataset 1 in R1 and R2.
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Figure A15. Process model graphs of dataset 1 in R1 and R2.
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Figure A16. Process model graphs of dataset 3 in R1 and R2.
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Figure A17. Process model graphs of dataset 3 in R1 and R2.
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Figure A18. Process model graphs of dataset 5 in R1 and R2.
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Figure A19. Process model graphs of dataset 5 in R1 and R2.
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Figure A20. Process model graphs of dataset 7 in R1 and R2.
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Figure A21. Process model graphs of dataset 7 in R1 and R2.
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Appendix C. Taxonomy of Metrics

# Metric Year Auth Def. Demo Type Src

1 Number of Activities (NOA) 2006 J. Cardoso et al. Counts the number of activities in a process. Y D [83]
2 Number of Activities and Con-

trol flow elements (NOAC)
2006 J. Cardoso et al. Counts the number of activities and control flow elements in a process. Y D [83]

3 Number of Activities, Joins and
Splits (NOAJS)

2006 J. Cardoso et al. Counts the number of activities, splits and joins in a process. (XOR, OR, AND) Y D [83]

4 Cyclomatic Complexity (CYC) 1976 T.J. McCabe Indicates the process’s control flow complexity by counting number of edges
(e) and nodes (n) in the process graph.

Y D [105]

5 Control Flow Complexity (CFC) 2005 J. Cardoso The metric is calculated by adding the CFC’s of all split constructs (XOR, OR,
AND).

Y PD [106,
107]

6 Process Volume (HPC_V) 2006 J. Cardoso et al. Calculates the volume of a process using number of nodes and edges. Y D [83]
7 Process Length (HPC_N) 2006 J. Cardoso et al. Calculates a length of the process using number of nodes and edges. Y D [83]
8 Process Difficulty (HPC_D) 2006 J. Cardoso et al. Calculates a difficulty of the process using number of nodes and edges. Y D [83]
9 Complexity of a Procedure (PC) 1981 S. Henry, D. Kafura Using the number of calls to/from the module the metric is evaluated as PC =

length * (fan-in * fan-out)^2.
Y D [108]

10 Interface Complexity (IC) 2006 S. Henry, D. Kafura Using the number of inputs and outputs of an activity, the metric is evaluated
as IC = length * (number of inputs * number of outputs)^2.

Y D [108]

11 Coefficient of Network Complex-
ity (CNC)

2006 Antti M. Latva-
Koivisto

Complexity CNC is calculated by dividing the number of arcs by the number
of activities, joins and splits. (No of arcs / (No of activities, joins, and splits)).

N D [1]

12 Restrictiveness estimator (RT) 2006 Antti M. Latva-
Koivisto

The metric calculates the number of sequences in the graph. N D [1]

13 Complexity index (CI) 2006 J. Cardoso et al. The metric performs an algorithmic calculation of the minimal number of node
reductions required to reduce the process graph into a single node.

N D [83]

14 Cognitive Complexity Metrics
(Weights)

2006 V Gruhn, R Laue Using a pre-defined cognitive weight scale for BPM, the individual weight of
the model is generated.

N PD [109]

15 Cognitive Functionality Size
(CFS )

2003 Shau and WangJ
Shao, Y Wang

Evaluated using the cognitive functional size of the model. Y S [110]

16 Extended Cardoso Metrics
(EcaM)

2009 KB Lassen, WMP
van der Aalst

The metric follows Cardoso approach for petri nets. It works by penalizing
direct successor states in the model.

Y D [77]

17 Extended Cyclomatric Metrics
(EcyM)

2009 KB Lassen, WMP
van der Aalst

The behavioural complexity of the graph is calculated by creating and analysing
a reachability matrix.

Y D [77]

18 Structuredness Metric (SM) 2009 KB Lassen, WMP
van der Aalst

The structuredness of a model is a combination of behavioural and syntax
complexity together.

Y PD [77]
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# Metric Year Auth Def. Demo Type Src

19 Coupling 2015 J Cardoso et al. Measured by counting the number of interconnections between modules. (If
two activities have one ore more common data elements then they are termed
as a ‘couple’).

Y PD [111]

20 Cohesion (Activity and Process
Cohesion)

2015 J Cardoso et al. The relativity between elements of a module is evaluated by determining the
mean of all activity cohesion values. (i.e., sum of all cohesion values divided
by the number of activities).

Y PD [111,
112]

21 Modularity 2015 J Cardoso et al. A black box approach defined by authors. It utilises any visual component of
process model graphs to measure overall modularity.

Y S [111]

22 Size and Complexity Size 2015 J Cardoso et al. Direct measurement of the size of the process model using all available features
of the model. Similar to LOC metrics.

Y D [111]

23 Cross Connectivity Metric (CC) 2008 I Vanderfeesten
et al.

Measures the strength of connections between nodes in a model and provides
a relation between tightly knit nodes vs weakest link.

Y D [113]

24 Separability 2007 J Mendling, G Neu-
mann

Calculated by obtaining a ratio of the number of cut vertices to the number of
nodes.

Y D [114]

25 Sequentiality 2007 J Mendling, G Neu-
mann

Calculated as the ratio of arcs of a sequence to the total number of arcs. Y PD [114]

26 Structuredness 2007 J Mendling, G Neu-
mann

Calculated as the numerical ratio of the number of nodes in the reduced process
graph to the number of nodes in the original graph.

Y PD [114]

27 Cyclicity 2007 J Mendling, G Neu-
mann

Calculated as the ratio between the number of nodes in any cycle in the model
to the total number of nodes.

Y PD [114]

28 Parallelism 2007 J Mendling, G Neu-
mann

The number of concurrent paths obtained after introduction of new control
nodes such as AND or OR.

Y PD [114]

29 Precision 2016 HT Yang et al. The number of correctly retrieved relationships divided by the total number of
retrieved relationships.

Y PD [115]

30 Recall 2016 HT Yang et al. The number of correctly retrieved relationships divided by the total number of
correct relationships possible.

Y PD [115]

31 F-Measure Generic harmonic mean of precision and recall.
32 Precision at k 2017 WJ Vlietstra et al. The number of reference compounds found up to rank k, divided by k (where

k is the subset of compounds in the process graph).
Y PD [116]

33 Recall at k 2017 WJ Vlietstra et al. The fraction of reference compounds found up to rank k (where k is the subset
of compounds in the process graph).

Y PD [116]

34 Average Precision 2014 N Shang et al. The average of the precision values measured at the point at which each correct
results is retrieved for one example/trace.

Y PD [117]
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# Metric Year Auth Def. Demo Type Src

35 Mean Average Precision 2014 N Shang et al. The mean of average precision across all examples/samples. Y PD [117]
36 Precision over time 2006 M Yetisgen-Yildiz,

W Pratt
Precision calculated at time intervals which coincide with the time of event log
data.

Y PD [118]

37 Recall over time 2006 M Yetisgen-Yildiz,
W Pratt

Recall calculated at time intervals which coincide with the time of event log
data.

Y PD [118]

38 11-point average interpolated
precision

2009 M Yetisgen-Yildiz,
W Pratt

Relational evaluation to check how precision changes as recall levels increase
for different log based datasets.

Y S [119]

39 Area Under Curve Generic plot of metric operating characteristics for Models.
40 Accuracy 2015 S Sang et al. Amount of activity that is not supposed to be observed in the event log (similar

to precision).
N D [120]

41 Cumulative Gain 2017 WJ Vlietstra et al. Calculated by dividing the number of the weight points found up to rank k by
k.

Y D [116]

42 Mean Reciprocal Rank The mean of the reciprocal rank of the highest ranking correct answer.
43 Correlation Analysis Generic approach to relate one metric against another.
44 Density Metric 2008 J Mendling A structural metric calculated as a ratio of total number of arcs to the maximum

number of arcs.
Y PD [84]

45 Imported Coupling of a Process
metric (ICP)

2009 W Khlif et al. The number of messages per subprocess divided by the sequence flows sent by
the task of the subprocess or the subprocess itself.

N PD [121]

46 Exported Coupling of a Process
metric (ECP)

2009 W Khlif et al. The number of messages per subprocess divided by the sequence flows Re-
ceived by the task of the subprocess or the subprocess itself.

N PD [121]

47 Fan-in/Fan-out metric (FIO) 2006 V Gruhn, R Laue The count of all incoming and outgoing edges in a module of a graph evaluated
using the formulation: ((fan-in)×(fan-out))2.

N PD [122]

48 Diameter 2008 J Mendling The length of the longest path from a start node to an end node in a process
model.

Y S [84]

49 Number of nodes metric (Sn(G)) 2008 J Mendling Number of nodes in a process model graph. Y S [84]
50 Degree of connectors 2008 J Mendling The average number of nodes a connector is connected to. Y S [84]
51 Sequentiality metric (S(G)) /Se-

quentiality ratio
2008 J Mendling The ratio between the number of arcs between none connector nodes divided

by the total number of arcs.
Y D [84]

52 Max depth 2008 J Mendling The maximum depth of all nodes. Y D [84]
53 Concurrency 2008 J Mendling The sum of the output—degree of AND-joins and OR-joins minus one. Y D [84]
54 Heterogeneity 2008 J Mendling The entropy of the model over different connector types. Y D [84]
55 Cognitive complexity measure

(W)
2006 V Gruhn, R Laue A cognitive weight that measures the effort needed for comprehending the

model.
Y D [109]
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# Metric Year Auth Def. Demo Type Src

56 Fitness 2012 JCAM Buijs et al. The ability of a model to reproduce the behaviour contained in a log. Y S [86]
57 Generalization K fold cross vali-

dation
1995 R Kohavi The ability of an automated discovery algorithm to discover process models

that generate traces that are not present in the log, but can be produced by the
business process during operation.

N S [123]

58 Generalization 2012 JCAM Buijs et al. The extent to which the resulting model will be able to reproduce future
behaviour of the process.

Y PD [86]

59 Alignment based Precision 2012 JCAM Buijs et al. The ability of a model to generate only the behaviour found in the log or the
amount of behaviour that is present only in the log and not made in the model.

Y S [86]

60 Simplicity 2012 JCAM Buijs et al. The number of activities in the log is used to measure the perceived complexity
of the model.

Y S [86]

61 Soundness 1997 WMP Van der Aalst Evaluates the behavioural quality of a model by checking for incomplete criteria
such as option to complete, proper completion and absence of dead transitions.

Y S [124]

62 Number of sub processes 2018 N Wang et al. The total number of subprocesses in the model. Y S [125]
63 Place/Transition degree (P/T –

CD)
2018 N Wang et al. The weighted sum of average number of arcs per transition to the average

number of arcs per place.
Y S [125]

64 Cyclomatic Number (CN) 2018 N Wang et al. The number of linearly independent paths in a process model where directions
of the arcs are ignored (A measure of branching).

Y D [125]

65 Average Connector Degree
(ACD)

2018 N Wang et al. Measures the average number of connecting nodes by calculating the average
count of incoming and outgoing arcs of places/ transitions per connector.

Y PD [125]

66 Average number of activities per
sub process

2018 N Wang et al. The metric is evaluated as the average number of activities per subprocess for
different levels of process model abstraction.

Y PD [125]

67 Number of event classes and
variants

2018 N Wang et al. A count of unique process variants and unique activity classes. Y PD [125]

68 Split-join ratio 2006 V Gruhn, R Laue Evaluates the number of incoming and outgoing elements at splits (XOR, OR,
AND).

Y D [122]

69 Nesting Depth (ND) 2006 V Gruhn, R Laue The number of decisions in the control flow necessary to perform an activity. Y PD [122]
70 Cognitive Complexity (CC) 2006 Y Wang, J Shao Using derived weights for control structures, It is a measure of difficulty of

understandability of a process model.
Y S [126]

71 Average Gateway Degree (AGD) 2012 L Sánchez-
González et al.

The average number of incoming and outgoing edges of gateway nodes in a
process model.

Y S [127]

72 Maximum Gateway Degree
(MGD)

2012 L Sánchez-
González et al.

The maximum sum of incoming and outgoing edges of the gateways. Y S [127]
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# Metric Year Auth Def. Demo Type Src

73 Gateway Mismatch (GM) 2012 L Sánchez-
González et al.

The sum of gateway pairs that do not have match with each other. Y S [127]

74 Gateway Heterogeneity (GH) 2012 L Sánchez-
González et al.

The extent to which different types of gateways are used in the model. Y S [127]

75 Total Number of Sequence Flows
(TNSF)

2006 E Rolón et al. Total number of sequence flows in a graph. Y D [128,
129]

76 Total Number of Events (TNE) 2006 E Rolón et al. and L
Sánchez-González
et al.

Total number of events in the model. Y D [120,
128]

77 Total Number of Gateways
(TNG)

2006 E Rolón et al. Total number of gateways in the model. Y D [128]

78 Number of Sequence Flows from
Events (NSFE)

2006 E Rolón et al. Number of sequence flows incoming from an event. Y D [128]

79 Number of Message Flows
(NMF)

2006 E Rolón et al. Number of message flows between participants in the process. Y D [128]

80 Number of Sequence Flows from
Gateways (NSFG)

2006 E Rolón et al. Number of sequence flows incoming from gateway. Y D [128]

81 Connectivity Level between
Pools (CLP)

2006 E Rolón et al. Connectivity level between pools of activities. Y D [128]

82 Total Number of Data Objects
(TNDO)

2006 E Rolón et al. Total number of data objects in the process model. Y D [128]

83 Number of Inclusive Decisions
(NID)

2006 E Rolón et al. Indicates the number of points of inclusive decision, and merging of the model. Y D [128]

84 Number of Parallel Forking
(NPF)

2006 E Rolón et al. Indicates the number of points of parallel forking and joining of the process. Y D [128]

85 Number of Pools (NP) 2006 E Rolón et al. Number of pools in the process. Y D [128]
86 Number of Complex Decisions

(NCD)
2006 E Rolón et al. Indicates the number of points of complex decision merging of the model. Y D [128]

87 Number of Exclusive gateways
based on Data (NEDDB)

2006 E Rolón et al. Indicates the number of points of exclusive decision and merging based on
data of the model.

Y D [128]

88 Number of Exclusive gateways
based on Events (NEDEB)

2006 E Rolón et al. Indicates the number of points of exclusive decision and merging based on
events of the model.

Y D [128]

89 Number of Intermediate Mes-
sage Events (NIMsE)

2006 E Rolón et al. Number of intermediate messages between events. Y D [128]
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# Metric Year Auth Def. Demo Type Src

90 Number of End Message Events
(NEMsE)

2006 E Rolón et al. Number of end message events. Y D [128]

91 Total Number of Collapsed pro-
cesses (TNCS)

2006 E Rolón et al. Total number of collapsed sub-process of the model. Y D [128]

92 Connectivity Level between Ac-
tivities (CLA)

2006 E Rolón et al. Connectivity level between activities. Y D [128]

93 Anti-patterns 2000 J Paakki et al. Commonly occurring solutions to a problem that are known to have negative consequences
is evaluated.

Y S [18,
130]

94 Knot count 2007 V Gruhn et al. and
MR Woodward
et al.

A measure of the number of paths associated when transfer of control intersect (overlap). Y PD [18,
131]

95 Log-Based Complexity (LBC) 2007 J Cardoso The number of unique log traces that can be generated from the execution of a workflow. Y S [132]
96 Average Vertex degree ((A)VG) 2008 J Mendling Summarises whether vertices are connected to many or to few other vertices, where degree

d(v) of a vertex is the number of edges that are connected to it.
Y S [84]

97 Quantity of Decisions to be made
per pool/participant (CUDP)

2010 N Debnath et al. Evaluates the quantity of decision nodes inside a pool in the model. Y S [133]

98 Quantity of tasks executed in a
specific pool/participant (CTP)

2010 N Debnath et al. Evaluates the the load level for each pool. Y S [133]

99 Quantity of tasks of a swim-lane
of a pool (CTSP)

2010 N Debnath et al. Evaluates the organization and distribution of tasks inside a pool. Y S [133]

100 Proportion of task distribution
per Participant (PTP)

2010 N Debnath et al. Evaluates the proportion of tasks for one task in relation to the total of process tasks. Y S [133]

101 Proportion of tasks per swim-
lane of a Specific Pool (PTSP)

2010 N Debnath et al. Calculated as the proportion of tasks per actor (swim-lane) of a specific participant (pool). Y S [133]

102 Quantity of Subprocesses per
pool (NSBPart)

2010 N Debnath et al. The number of sub-processes per participant. Y S [133]

103 Quantity of Message Flows be-
tween two pools (NFPart)

2010 N Debnath et al. The number of messages (Flowing) between two participants. Y S [133]

104 Durfee Square Metric (DSP) 2012 K Kluza, GJ Nalepa Calculates the relation between occurrence, frequency and threshold of an element. Y D [134]
105 Perfect Square Metric (PSM) 2012 K Kluza, GJ Nalepa It is Pth (unique) largest number such that the top element occurs at least (P×2) times. Y D [134]
106 Structural complexity by Cheng 2008 Cheng, Chen-Yang The expected amount of information required for defining the state of the process flow. Y S [135]
107 Interaction Complexity by

Cheng
2008 Cheng, Chen-Yang The relation between average information in the model and complexity of the same model. Y S [135]

108 Usability Complexity by Cheng 2008 Cheng, Chen-Yang The relation between the number of interactions in the model vs the operators required to
complete a task in consideration.

Y S [135]

109 Total Operational Complexity by
Cheng

2008 Cheng, Chen-Yang The euclidean norm of the structural, interactional and usability complexities used according
to their weightage.

Y S [135]
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110 GQM-based Complexity Metrics 2008 AAA Ghani et al. Used to asses the understandability and maintainability of the process model by designing
a set of questions aimed to fulfil the goal and adapting the metrics to them.

Y D [136]

111 Gateway Complexity Indicator
(GCI)

2012 L Sánchez-
González et al.

It is the weighted sum of (CFC, GM, GH, AGD, MGD, TNG). Y D [20]

112 Trace based L2M precision and
recall

2019 AF Syring et al. Recall is defined as the number of traces occurring in both event log and model divided by
the number of traces in the log, The precision is defined as the number of traces occurring in
both log and model divided by the number of traces in the model.

N PD [137]

113 Frequency based L2M recall 2019 AF Syring et al. The number of times a unique trace occurs in both event log and model divided by the
length of the trace.

N PD [137]

114 Causal footprint recall 2019, 2004 AF Syring et al. and
WMP Van der Aalst
et al.

The causal dependency between two activities. (If activity X is followed by Y but Y is never
followed by X then, there is a causal dependency between X and Y.)

Y D [3,
137]

115 Token replay recall 2019, 2008 AF Syring et al. and
A Rozinat et al.

The recall is calculated by replaying the log on the model and counting the mismatches as
missing and remaining tokens.

Y D [3,
137]

116 Alignment recall 2012 WMP Van der Aalst
et al.

The metric maps steps taken in the event log to that of the model and tracks the deviations
occurring between them during replay of the logs.

Y D [138]

117 Behavioural recall 2009 S Goedertier et al. The metric is determined using true positive and false negative conditions between event
log and process model (i.e. Transitional state of activities).

Y PD [139]

118 Projected recall 2018 SJJ Leemans et al. Calculated by projecting the event log and model on all possible subsets of activities of
size k and solving the fraction of behaviour allowed by the minimal log-automaton, then
divided by the allowed minimal model-automaton per projection.

Y PD [140]

119 Continued parsing measure 2006 A Weijters et al. Calculated by counting the number of input and output activities, in active and inactive
state w.r.t the model and the event log.

Y PD [141]

120 Eigenvalue recall 2018 A Polyvyanyy et al. Calculated by evaluating the relational eigenvalues of event log and metric and setting them
in relation.

Y PD [142]

121 Simple behavioural appropriate-
ness

2008 A Rozinat et al. The mean number of enabled/used transitions for each unique trace in relation to the visible
traces in the process model.

Y PD [143]

122 Advanced behavioural appropri-
ateness

2008 A Rozinat et al. Calculated by describing the relation between event log and process model by analysing
whether activities follow each other or precede each other.

Y PD [143]

123 ETC-one/ETC-rep 2010 J Munoz-Gama
et al.

Evaluates the states of the model visited by the event log. For each, state the precision,
which is calculated as the weighted sum of non escaping edges to the total edges.

Y PD [144]

124 Behavioural specificity (precM)
and Behavioural precision

2009 S Goedertier et al. Calculated by generating a confusion matrix of true positive, false positive and true negative
relations between model and event log.

Y PD [139]

125 Weighted negative event preci-
sion

2013 SKLM vanden
Broucke et al.

Calculated by generating matching subsets of preceding events in the log and finding their
occurrence frequency.

Y PD [145]
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126 Projected precision 2018 SJJ Leemans et al. Calculated by analysing the conjunction of behaviour between model and event log. The
final numeric is attained by making subsets of activities and averaging against the total
number of subsets.

Y PD [140]

127 Anti-alignment precision 2016 BF van Dongenm
et al.

The anti-alignment of each trace averaged by the total number of traces, where a single trace
removed from the log makes it impossible for the rest of the log and model, to be precise.

Y PD [146]

128 Eigenvalue precision 2018 A Polyvyanyy et al. Calculated as the relational behavioural eigenvalues of log and metric when in relation. Y PD [142]
129 Weighted negative event gener-

alization
2013 SKLM vanden

Broucke et al.
The weightage of events that could be replayed without errors that confirm the model is
general.

Y PD [145]

130 Anti-alignment generalization 2016 BF van Dongenm
et al.

The maximum distance between the states visited by the log and the states visited by the
anti-alignment log (i.e., the subset of log without a trace).

Y PD [146]

131 Completeness 2009 C Batini et al. Calculated as the number of NOT null values divided by the total number of values in event
log or model (values can be activities or edges).

N D [147]

132 Consistency 2009 C Batini et al. Calculated as the number of consistent values divided by the number of total values (values
can be activities or edges).

N D [147]

133 Uniqueness 2009 C Batini et al. Calculated as the number of duplicates in the log or model. N D [147]
134 Appropriate amount of data 2009 C Batini et al. The number of data units needed to represent a trace or log divided by the number of data

units provided in the model.
N D [147]

135 Tasks 2008 H Reijers, J
Mendling

Total number of tasks in the model or event log. Y PD [148]

136 Nodes 2008 H Reijers, J
Mendling

Total number of nodes in the process model. Y PD [148]

137 Arcs 2008 H Reijers, J
Mendling

Total number of arcs in the model. Y PD [148]

138 Subproc 2008 H Reijers, J
Mendling

Total number of subprocesses in model. Y PD [148]

139 To 1992 LG Soo, Y Jung-Mo Average number of outgoing edges from transitions (tasks). Y PD [149]
140 Po 1992 LG Soo, Y Jung-Mo Average number of outgoing edges from places (milestones). Y PD [149]
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