
Citation: Mpanti, A.; Nikolopoulos,

S.D.; Palios, L. Adding a Tail in

Classes of Perfect Graphs. Algorithms

2023, 16, 289. https://doi.org/

10.3390/a16060289

Academic Editors: Bogdan Zavalnij,

Miklós Krész and Sándor Szabó

Received: 8 May 2023

Revised: 30 May 2023

Accepted: 31 May 2023

Published: 3 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Adding a Tail in Classes of Perfect Graphs
Anna Mpanti, Stavros D. Nikolopoulos * and Leonidas Palios *

Department of Computer Science & Engineering, University of Ioannina, 45110 Ioannina, Greece;
ampanti@cs.uoi.gr
* Correspondence: stavros@cs.uoi.gr (S.D.N.); palios@cs.uoi.gr (L.P.)

Abstract: Consider a graph G which belongs to a graph class C. We are interested in connecting a
node w 6∈ V(G) to G by a single edge uw where u ∈ V(G); we call such an edge a tail. As the graph
resulting from G after the addition of the tail, denoted G + uw, need not belong to the class C, we
want to compute the number of non-edges of G in a minimum C-completion of G + uw, i.e., the
minimum number of non-edges (excluding the tail uw) to be added to G + uw so that the resulting
graph belongs to C. In this paper, we study this problem for the classes of split, quasi-threshold,
threshold and P4-sparse graphs and we present linear-time algorithms by exploiting the structure of
split graphs and the tree representation of quasi-threshold, threshold and P4-sparse graphs.

Keywords: edge addition; completion; split graph; quasi-threshold graph; threshold graph;
P4-sparse graph

1. Introduction

Given a graph G, an edge connecting a vertex w 6∈ V(G) to a vertex u of G is a tail
added to G; let us denote the resulting graph as G + uw. If G belongs to a class C of graphs,
this need not hold for the graph G + uw. Hence, we are interested in computing the number
of non-edges of G in a minimum C-completion of G + uw, i.e., the minimum number of non-
edges (excluding the tail uw) to be added to G + uw so that the resulting graph belongs to
C; such non-edges are called fill edges. The problem is trivial for several graph classes (e.g.,
planar, bipartite, chordal, weakly chordal, {gem}-free, {house,hole,domino}-free, perfect
graphs) but is not so for many other classes. Furthermore, we note that this problem is
an instance of the more general (C,+k)-MinEdgeAddition problem [1] in which we add k
given non-edges in a graph belonging to a class C and we want to compute a minimum
C-completion of the resulting graph.

Computing a minimum completion of an arbitrary graph into a specific graph class
is an important and well-studied problem with applications in areas involving graph
modeling with missing edges due to lacking data, e.g., molecular biology and numerical
algebra [2,3]. Unfortunately, minimum completions into many interesting graph classes,
such as split graphs, chordal graphs and cographs, are NP-hard to compute [4–8]. This led
researchers towards the computation of minimal completions [9–16], the solution of prob-
lems with restricted input [17–21], parameterized algorithms [22–25] and approximation
algorithms [26].

A related field is that of the dynamic recognition (or on-line maintenance) problem
on graphs: a series of requests for the addition or the deletion of an edge or a vertex
(potentially incident on a number of edges) are submitted and each is executed only if the
resulting graph remains in the same class of graphs. Several authors have studied this
problem for different classes of graphs and have given algorithms supporting some or all
the above operations [27–31].

The motivation of our work is that many classes of perfect graphs arise quite naturally
in real-world applications. More specifically, split, cographs, threshold, quasi-threshold,
P4-sparse graphs are used in computer storage optimization, analysis of genetic structure,

Algorithms 2023, 16, 289. https://doi.org/10.3390/a16060289 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16060289
https://doi.org/10.3390/a16060289
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6684-8459
https://orcid.org/0000-0001-8630-3835
https://doi.org/10.3390/a16060289
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16060289?type=check_update&version=2

Algorithms 2023, 16, 289 2 of 19

information hiding, synchronization of parallel processes, etc [32]. The classes of threshold
and quasi-threshold graphs find applications in set-packing problems, parallel processing
and resource allocation problems [33–35]. The importance of the study of P4-sparse graphs
in practical applications is due to the fact that graphs that are unlikely to have more than
a few chordless paths of length 3 appear in a number of contexts [36]; applications in
scheduling, clustering and computational semantics have been the driving forces behind
the study of P4-sparse graphs, as well as their natural generalization of cographs, which
have a nice tree structure and bounded clique width, implying efficient algorithms for
several problems [37–40].

In this paper, we consider the tail addition problem, a special case of the general
completion problem and we show that it admits minimum completions for the classes of
split, threshold, quasi-threshold and P4-sparse graphs. Given the (K, S)-partition of a given
split graph or the tree representation of a given quasi-threshold, threshold or P4-sparse
graph, our algorithms run in optimal O(n) time where n is the number of vertices of G.
These algorithms are a first step towards the solution of the (C,+1)-MinEdgeAddition
problem [1] for each of these four classes C of graphs.

2. Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. For a graph G,
we denote by V(G) and E(G) the vertex set and edge set of G, respectively. The subgraph
of G induced by a subset S of vertices of G is denoted G[S]. The neighborhood NG(x) of
a vertex x of the graph G is the set of all the vertices of G which are adjacent to x. The
closed neighborhood of x is defined as NG[x] := NG(x) ∪ {x}. The degree of a vertex x in G,
denoted degG(x), is the number of vertices adjacent to x in G; thus, degG(x) = |NG(x)|. A
vertex of a graph is universal if it is adjacent to all other vertices of the graph. We extend
this notion to a subset of the vertices of a graph G and we say that a vertex is universal in a
set S ⊆ V(G), if it is universal in the induced subgraph G[S].

Finally, 2K2 is the disconnected graph on 4 vertices in which each vertex is incident
on exactly 1 edge and Pk (Ck resp.) denotes the chordless path (chordless cycle resp.) on k
vertices; in each P4, the unique edge incident on its first or last vertex is called a wing.

3. Split Graphs

Split graphs were first studied by Földes and Hammer [41] and independently intro-
duced by Tyshkevich and Chernyak [42]; since then, they have been the focus of many
research papers. An undirected graph G is split if its vertex set V(G) admits a partition
K ∪ S such that K induces a clique and S induces an independent set [32,43]; the partition
into K, S can be computed in time proportional to the size of the graph [44]. It also holds
that a graph is split if and only if it contains no induced C4, C5 or 2K2. As a result of the
definition, the complement and every induced subgraph of a split graph is split.

Lemma 1. Let G be a split graph with vertex partition into a clique K and an independent set S, u
a vertex of G, uw a tail and QK,S the set of vertices in K that have no neighbors in S. Then, in a
minimum split-completion of the graph G + uw, the number of fill edges (excluding the tail uw) is 0
if u ∈ K, |K| − degG(u) if u ∈ S and QK,S = ∅ and |K| − 1− degG(u) if u ∈ S and QK,S 6= ∅.

Proof. If u ∈ K, no fill edge (in addition to uw) is needed, which is optimal, since G + uw
is a split graph with clique K and independent set S ∪ {w}. Below, we consider that u ∈ S.

First, assume that QK,S = ∅. A split completion of G + uw can be obtained by
connecting u to all its non-neighbors in K; the resulting graph is split with clique K ∪ {u}
and independent set S ∪ {w}. To prove its optimality, suppose for contradiction that there
existed a split completion of G + uw that uses fewer than |K| − degG(u) fill edges. Then,
there would exist a vertex a ∈ K \ NG(u) which is not incident on any fill edge. If there
existed one more vertex b ∈ K \ (NG(u) ∪ {a}) not incident on any fill edge as well, then
the edges ab and uw would form a 2K2, a contradiction. Thus, all the fill edges would be

Algorithms 2023, 16, 289 3 of 19

incident on the vertices in K \ (NG(u) ∪ {a}); note that these vertices induce a clique in
G. However, then, because QK,S = ∅, there exists z ∈ S ∩ NG(a) and the edges az and uw
would form a 2K2, a contradiction again.

Next assume that u ∈ S and QK,S 6= ∅; let p be any vertex in QK,S. Then, the graph G
is split with clique K′ = K \ {p} and independent set S′ = S ∪ {p} and for each x ∈ K′, it
holds that NG(x) ∩ S′ 6= ∅, which implies that QK′ ,S′ = ∅. Then, from the case for u ∈ S
and QK,S = ∅, we conclude that the number of fill edges (excluding uw) in a minimum
split-completion of G + uw is |K′| − degG(u) = |K| − 1− degG(u).

We note that the above case is a special case of the minimum completion for the vertex
addition case in [28].

Lemma 1 directly implies that given a split partition of the given graph G with a
maximal independent set, the minimum number of fill edges can be computed in O(|V(G)|)
time; otherwise, the time complexity is O(|V(G)|+ |E(G)|).

4. Threshold and Quasi-Threshold Graphs

Threshold Graphs. A well-known subclass of perfect graphs called threshold graphs are
those whose independent vertex set subsets can be distinguished by using a single linear
inequality: a graph G is threshold if there exists a threshold assignment [α, t] consisting
of a labeling α of the vertices by non-negative integers and an integer threshold t such
that a set S ⊆ V(G) is independent if and only if α(v1) + α(v2) + · · ·+ α(vp) ≤ t where
vi ∈ S, 1 ≤ i ≤ p. Chvátal and Hammer [33] first proposed threshold graphs in 1973 and
proved that the threshold graphs are precisely the graphs that contain no induced C4, P4
or 2K2.

Nikolopoulos [45] proved that every threshold graph admits a unique rooted tree
representation as shown in Figure 1(left): each tree node stores a vertex set Vi,j (these
sets partition the vertex set of the graph) with each Vi,1 inducing a clique and each of the
remaining sets containing a single vertex (note that the tree nodes that store these singleton
sets have no descendants) and the vertices in the union of the sets stored in the nodes on a
path from a tree node to any one of its descendants induce a clique. Thus, the vertices in
Vk,1 are adjacent to all the vertices in

⋃
i>k Vi,j, the vertices in

⋃
i Vi,1 induce a clique and the

vertices in
⋃

i
⋃

j≥2 Vi,j form an independent set.

· · ·

V0,1

V1,1

V2,1

Vh,1 Vh,kh

V2,k2

V1,k1

· · ·

· · ·

w

u

Figure 1. (left) The structure of the tree representation of a threshold graph [45]; (right) Formation
for the addition of the tail uw.

Regarding the addition of a tail to a threshold graph, we show the following lemma.

Lemma 2. Let G be a threshold graph and let the nodes of its tree representation TG store the
sets Vi,j for all 0 ≤ i ≤ h and 1 ≤ j ≤ ki where k0 = 1 and ki ≥ 2 for i ≥ 1 (Figure 1(left)).
Consider the addition of a tail uw where u ∈ V(G). Then, there exists a minimum threshold
completion of the graph G + uw which uses f fill edges (excluding the tail uw) where:

(i) If u ∈ Vp,1, then f = min0≤`≤p

{(
∑

p
s=`+1(ks − 1)

)
+ ∑`−1

s=0 |Vs,1|
}

;

Algorithms 2023, 16, 289 4 of 19

(ii) If u ∈ Vp,j where 2 ≤ j ≤ kp, then f = min{ f1, f2} where

f1 = ∑h
r=p |Vr,1|+ minp≤`≤h

{(
∑h

s=`+1(ks − 1)
)
+ ∑`−1

s=0 |Vs,1|
}

and

f2 = ∑h
r=p |Vr,1|+ min0≤`≤p−1

{(
∑h

s=`+1(ks − 1)
)
+ ∑`−1

s=0 |Vs,1|
}
− 1.

Proof. Let GOPT be a minimum threshold completion of the graph G + uw whose tree
representation TOPT has nodes storing sets V′i,j where 0 ≤ i ≤ h′, 1 ≤ j ≤ k′i where

k′0 = 1 and k′i ≥ 2 for i ≥ 1; moreover, let K′ =
⋃h′

s=0 V′s,1 and S′ =
⋃h′

s=1
⋃k′s

t=2 V′s,t =
(V(G) ∪ {w}) \ K′. Below, we give the properties of the structure of TOPT .

Since u, w are adjacent in GOPT , u, w cannot both belong to S′. Additionally, we can
assume that u ∈ K′; if u ∈ S′ then w ∈ K′ which implies that NGOPT [u] ⊆ K′ ⊆ NGOPT [w]
and thus we can exchange u and w, obtaining a threshold completion of G + uw using the
same number of fill edges in which u ∈ K′. The u, w exchange can also be applied if u ∈ V′i,1
and w ∈ V′j,1 with i > j; thus, if u, w ∈ K′ with u ∈ V′i,1 and w ∈ V′j,1, we can assume that
i ≤ j.

In fact, it is not possible that both u, w belong to K′ unless V′h′ ,1 = {u, w}: if u, w ∈ V′h′ ,1
and |V′h′ ,1| > 2, then if we replace the treenode containing the set V′h′ ,1 by the 3-treenode
subtree with V′h′ ,1 = {u}, V′h′+1,1 = V′h′ ,1 \ {u, w} and V′h′+1,2 = {w}, we obtain a threshold
completion of G + uw using fewer fill edges than in GOPT , a contradiction; if u ∈ V′i,1 where
i < h′, then, if w ∈ V′p,1 with p > i or if w ∈ V′p,q where p > i + 1 and q ≥ 2, we move w
in a new set V′i+1,k′i+1+1 and thus obtain fewer fill edges again. Hence, u ∈ V′i,1 and either

i = h′ and V′h′ ,1 = {u, w} or i < h′ and w ∈ V′i+1,j with j ≥ 2. We consider separately these
two cases:

A. Consider that u ∈ V′i,1 with i < h′ and w ∈ V′i+1,j with j ≥ 2. Then, V′i,1 = {u}
since otherwise removing u, w from TOPT (note that if k′i+1 = 2 then the set V′i,1 \
{u} is merged with the set V′i+1,1) and then reinserting them as in the formation of
Figure 1(right) just above the node storing V′i,1 \ {u} would lead to the omission of the
fill edges connecting w to the vertices in V′i,1 \ {u}, in contradiction with the optimality
of GOPT .
Let B′ =

⋃h′
s=i+1

⋃k′s
t=1 V′s,t; the set B′ contains the vertices (including w) stored in all the

descendants in TOPT of the node storing {u}. Let r be the smallest index such that there
exists a vertex z ∈ Vr,1 ∩ B′ and let X =

⋃h
s=r+1

⋃ks
t=1 Vs,t; note that Vr,1 ∪ X ⊆ NG[z].

Then, Vr,1 ∪ X ⊆ B′, since otherwise any vertex in D = B′ \ (Vr,1 ∪ X) would belong
to
⋃i−1

s=0 V′s,1 (because D ⊆ NG[z]) and thus would be incident on a fill edge connecting
it to w in GOPT ; this would imply that GOPT is not optimal compared to replacing
GOPT [B′ ∪ Vr,1 ∪ D ∪ {u}] by G[(B′ \ {w}) ∪ Vr,1 ∪ D] along with u being universal
in B′ ∪Vr,1 ∪ D and w being adjacent to all vertices in {u} ∪ ((

⋃i−1
s=0 V′s,1) \ D) which

does not use the fill edges connecting w to the vertices in D. In the same way, we can
show that if u ∈ Vp,1, the vertices in

⋃h
s=p+1

⋃ks
t=1 Vs,t also belong to B′.

The optimality of GOPT also implies that the subtree resulting from TOPT after having
removed the descendants of the node storing {u} is identical to the tree for G[V(G) \
(B′ ∪Vr,1 ∪D)] = G

[
{u} ∪

(⋃r−1
s=0

⋃ks
t=1 Vs,t

)
∪⋃kr

t=2 Vr,t

]
with the node for {u} placed

at the leftmost node in the lowermost level. Therefore,

– if u ∈ Vp,1, the tree TOPT results from the tree TG of G after we have removed u
from Vp,1 and have inserted the Formation of Figure 1(right) just above any of
the nodes storing the set Vs,1 for s = 0, . . . , p (note that if Vp,1 = {u}, then the
removal of u implies that the nodes storing Vp+1,t for 2 ≤ t ≤ kp+1 are linked
to the node of the formation of Figure 1(right) storing {u} if the formation is
placed just above the node storing Vp,1; otherwise, they are linked to the node
storing Vp−1,1);

– if u ∈ Vp,j with j ≥ 2, the tree TOPT results from TG after we have removed the
node for Vp,j and have inserted the formation of Figure 1(right) just above any of

Algorithms 2023, 16, 289 5 of 19

the nodes storing the set Vs,1 for s = 0, . . . , h (as mentioned, if p < h and kp = 2,
the removal of u implies that the nodes storing Vp,1 and Vp+1,1 will be merged
and if p = h and kp = 2, the removal of u implies that the node storing Vp,1 will
be merged with the node storing {u} in the formation of Figure 1(right) if the
formation is placed just above the node storing Vp,1 or with the node storing
Vp−1,1 in any other placement of the formation).

B. Consider that V′h′ ,1 = {u, w}. Then, it has to be the case that in G either u ∈ Vh,1 or
u ∈ Vp,j where j ≥ 2. First, suppose, for contradiction, that u ∈ Vp,1 with p < h; then,
if we link a node storing {w} as a child of the node storing Vp,1 in TG, we obtain a
threshold completion of the graph G + uw with fewer fill edges, a contradiction. Next,
if u ∈ Vh,1 then Vh,1 = {u}; otherwise, in order to obtain V′h′ ,1 = {u, w} in TOPT , we
need to move all vertices in Vh,1 \ {u} into the set Vh−1,1, thus adding the fill edges
connecting these vertices to {w} ∪ ⋃kh

t=2 Vh,t, but if we replace the node storing Vh,1
by the 3-treenode subtree with Vh,1 = {u}, Vh+1,1 = Vh,1 \ {u} and Vh+1,2 = {w}, we
obtain a threshold completion of G + uw without these fill edges, a contradiction.

Next, we rely on the structure of the tree TOPT shown above; we consider the two
cases in the statement of the lemma; we have:

(i) Consider that u ∈ Vp,1 in TG. We consider two cases:

(a) Assume that p < h or if p = h and |Vh,1| ≥ 2. Then, we remove u from Vp,1
and add the formation of Figure 1(right) just above each node storing V`,1 for
0 ≤ ` ≤ p which results in fill edges connecting u to all vertices in

⋃p
s=`+1

⋃ks
t=2 Vs,t

and w to all vertices in
⋃`−1

s=0 Vs,1 which yields the number of fill edges stated in
the lemma taking into account that ∑ks

t=2 |Vs,t| = ks − 1.
(b) Assume that p = h and Vh,1 = {u}. Then, we try

* adding w in Vh,1 which results in fill edges connecting w to all vertices in⋃h−1
s=0 Vs,1 and

* removing u from Vh,1 (and linking the nodes for the sets Vh,t for all
t = 2, . . . , kh to the node storing Vh−1,1) and adding the formation of
Figure 1(right) just above each node storing V`,1 for 0 ≤ ` ≤ h− 1 which
results in the fill edges stated in Case (a) for p = h and 0 ≤ ` ≤ h− 1.

Combining the two cases, we obtain the number of fill edges stated in the lemma
in this case too.

(ii) Consider that u ∈ Vp,j where 2 ≤ j ≤ kp. Then, we remove u (that is, we assume
that Vp,j becomes empty) and add the formation of Figure 1(right) just above each
node storing V`,1 for 0 ≤ ` ≤ h which results in fill edges connecting u to all vertices
in (

⋃h
r=p Vr,1) ∪

⋃h
s=`+1

⋃ks
t=2 Vs,t and w to all vertices in

⋃`−1
s=0 Vs,1 which yields the

number of fill edges stated in the lemma taking into account that ∑ks
t=2 |Vs,t| = ks − 1

and that if ` < p we must subtract 1 for the removed u.

The number of fill edges in Lemma 2 results from using the formation in Figure 1(right)
above each node in the path from the node storing Vp,1 to the root of TG in Case (i) and
above each node in the path from the node storing Vh,1 to the root of TG in Case (ii) taking
into account the removal of the node storing the set Vp,j = {u}.

Lemma 2 implies that given the tree representation TG of the given threshold graph G,
the minimum number of fill edges can be computed in O(|V(G)|) time; otherwise, the time
complexity is O(|V(G)|+ |E(G)|).

Quasi-threshold Graphs. A graph G is called quasi-threshold or QT-graph for short, if G
contains no induced C4 or P4 [34,46–48]. The class of quasi-threshold graphs is a subclass of
the class of cographs and properly contains the class of threshold graphs [32,49–51]. Brades
et al. [52] proposed the heuristic Quasi-Threshold Mover algorithm to solve the problem

Algorithms 2023, 16, 289 6 of 19

of transforming a given graph into a quasi-threshold graph using a small number of edge
additions and deletions, which they later used to solve the inclusion-minimal version of
the problem [53].

Nikolopoulos and Papadopoulos [54] have shown, among other properties, a unique
rooted tree representation of QT-graphs which is a generalization of the tree representation
of threshold graphs (Figure 2): the tree nodes store disjoint vertex subsets, each inducing a
clique and the vertex sets stored in the tree nodes on a path from a tree node to any of its
descendants, induce a clique. It has been proven that a graph is QT-graph if and only if it
admits such a tree representation [55,56]. Then, by generalizing the approach in Case (i) of
Lemma 2, we can show the following lemma.

. . .

. . .

V0,1

V1,1

Vh,kh

Figure 2. The tree representation of a quasi-threshold graph.

Lemma 3. Let G be a QT-graph and TG its tree representation. Moreover, let u be a vertex of G
for which we assume without loss of generality that u ∈ Vp,1 and that the vertex sets stored in the
tree nodes on the path from the root of TG to the node storing Vp,1 are in order V0,1, V1,1, . . . , Vp,1.
Consider the addition of a tail uw to G. Then, any minimum QT completion of the graph G + uw
uses min0≤`≤p

{(
∑

p
s=`+1 ∑ks

t=2 |Vs,t|
)
+ ∑`−1

s=0 |Vs,1|
}

fill edges (excluding the tail uw).

As previously, Lemma 3 implies that given the tree representation of the given quasi-
threshold graph G, the minimum number of fill edges can be computed in O(|V(G)|) time;
otherwise, the time complexity is O(|V(G)|+ |E(G)|).

5. P4-Sparse Graphs

A graph in which every set of five vertices induces at most one P4 is P4-sparse [57]
(Figure 3 depicts the seven forbidden subgraphs for the class of P4-sparse graphs). The
P4-sparse graphs are perfect and also perfectly orderable [57] and properly contain many
graph classes, such as the cographs, the P4-reducible graphs, etc (see [37,38,58]). They have
received considerable attention in recent years and find applications in applied mathemat-
ics and computer science (e.g., communications, transportation, clustering, scheduling,
computational semantics) in problems that deal with graphs featuring “local density”
properties.

F2 F3F1

F4 F5

F0

F6

Figure 3. The forbidden subgraphs for the class of P4-sparse graphs [38].

Algorithms 2023, 16, 289 7 of 19

For a P4-sparse graph, either the graph or its complement is disconnected with the
connected components inducing P4-sparse graphs or it induces a spider. A graph H is
called a spider if its vertex set V(H) admits a partition into sets S, K, R such that:

• The set S is an independent set, the set K is a clique and |S| = |K| ≥ 2;
• Every vertex in R is adjacent to every vertex in K and to no vertex in S;
• There exists a bijection f : S→ K such that for each vertex s ∈ S either NG(s) ∩ K =

{ f (s)} or NG(s) ∩ K = K− { f (s)}; in the former case, the spider is thin, in the latter it
is thick (see Figure 4).

R

K

S

R

K

S

Figure 4. (left) A thin spider; (right) a thick spider.

Note that for |S| = |K| = 2, the spider is simultaneously thin and thick. To avoid
ambiguity, in the following, for thick spiders we assume that |K| ≥ 3.

In [38], Jamison and Olariu showed that each P4-sparse graph G admits a unique tree
representation, up to isomorphism, called the P4-sparse tree T(G) of G, which is a rooted
tree such that:

(i) Each internal node of T(G) has at least two children provided that |V(G)| ≥ 2;
(ii) The internal nodes are labeled by one of 0, 1 or 2 (0-, 1-, 2-nodes, respectively) and the

parent node of each 0- or 1-node t has a different label than t;
(iii) The leaves of the P4-sparse tree are in a one-to-one correspondence with the vertices

of G; if the least common ancestor of the leaves corresponding to two vertices vi, vj of
G is a 0-node (1-node, resp.) then the vertices vi, vj are non-adjacent (adjacent, resp.)
in G, whereas the vertices corresponding to the leaves of a subtree rooted at a 2-node
induce a spider.

The structure of the P4-sparse tree implies the following lemma.

Lemma 4. Let G be a P4-sparse graph and let H = (S, K, R) be a thin spider of G. Moreover, let
s ∈ S and k ∈ K be vertices that are adjacent in the spider.

P1. Every vertex of the spider is adjacent to all vertices in NG(s) \ {k}.
P2. Every vertex z ∈ K \ {k} is adjacent to all vertices in NG(k) \ {s, z}.

Let G be a given graph to which we want to add the tail uw with u ∈ V(G). Let
t0t1 · · · thu be the path from the root t0 of the P4-sparse tree TG of G to the leaf associated
with u. Moreover, let Vi (0 ≤ i < h) be the set of vertices associated with the leaves of the
subtrees rooted at the children of ti except for ti+1, and Vh be the set of vertices associated
with the leaves of the subtrees rooted at the children of th except for the leaf associated with
u (see Figure 5). The sets V0, V1, . . . , Vh form a partition of V(G) \ {u}.

We show that there always exists a minimum P4-sparse completion of the graph
G + uw in which u and w appear together in a small number of different formations.

Lemma 5. Let G be a P4-sparse graph and TG be its P4-sparse tree. Consider the addition of a
tail uw incident on a node u of G. Then, there exists a minimum P4-sparse completion G′ of the
graph G + uw such that for the P4-sparse tree TG′ of G′, one of the following three cases holds:

1. The nodes u, w in TG′ have the same parent node which is a 2-node corresponding to a thin
spider (S, K, R) with u ∈ K and w ∈ S.

Algorithms 2023, 16, 289 8 of 19

2. The P4-sparse tree TG′ results from TG by replacing the leaf for u by the 3-treenode Formation 1
shown in Figure 6(left).

3. The P4-sparse tree TG′ results from TG by removing the leaf for u and replacing a 1- or a
2-node t in the path from the root of TG to the leaf for u by the 5-treenode Formation 2 in
Figure 6(right).

t0

V0
t1

V1
th

Vh

u

Figure 5. The path t0t1 · · · thu from the root t0 of the P4-sparse tree to the leaf associated with u and
the vertex sets V0, V1, . . . , Vh.

1

u0

1

uw

w

t

Z

Figure 6. (left) Formation 1; (right) Formation 2 where t is a 1- or a 2-node. Formation 1 is a special
case of Formation 2 when Z = ∅.

Proof. Let GOPT be a minimum P4-sparse completion of the graph G + uw and let TOPT be
its P4-sparse tree. We consider the following cases:

A. The leaves associated with u, w in TOPT do not have the same parent node: Let TR be the
P4-sparse tree obtained from TOPT by using Formation 2 just above the least common
ancestor t of w and u in TOPT (Figure 7); let GR be the P4-sparse graph corresponding
to the tree TR. Then, GR uses no more fill edges than TOPT . To see this, let t′ be the
child of t that is an ancestor of the leaf for u (note that t′ may coincide with the leaf for
u). Since u, w are adjacent in GOPT , t is a 1- or a 2-node. In either case, w is adjacent to
all vertices in (Z ∪ {u}) \ X corresponding to the leaves of the subtree of TOPT rooted
at t′ and all these edges, except for the tail uw, are fill edges. If t is a 1-node, then
u is adjacent to all vertices in X (Figure 7) and thus GR uses no more fill edges than
GOPT . If t is a 2-node, then u is adjacent to all the vertices in the clique KX of the
corresponding spider (which includes w). Moreover, because w ∈ KX, w is adjacent
to all the vertices in KX \ {w} and to at least one vertex in the independent set for a
total of |KX | fill edges; these fill edges can be used to connect u to the vertices in the
independent set of the spider and thus GR uses no more fill edges in this case too.
Therefore, the graph GR is a minimum P4-sparse completion of G + uw.

Recall that in the P4-sparse tree TG of G, the path from the root t0 to u is t0t1 · · · thu
and Vi (0 ≤ i ≤ h) is the set of vertices associated with the leaves of the subtrees rooted at
the children of ti except for ti+1 (where th+1 is the leaf associated with u); see Figure 5.

Algorithms 2023, 16, 289 9 of 19

u

X

w

1

u0

w

t

Z

t

Z ∪ {u, w}

Figure 7. (left) The P4-sparse tree TOPT in which the leaves for u, w do not have the same parent
node and have node t as their least common ancestor; (right) The P4-sparse tree TR obtained by using
Formation 2 just above node t which results in no more fill edges than those in GOPT .

We first observe that the induced subgraph GR[Z] induced by the set of vertices Z
corresponding to the leaves of the subtree of TR rooted at node t coincides with the in-
duced subgraph G[Z] (otherwise, GOPT would include fill edges that could be removed
in contradiction to its optimality); then, let t = tk. It also holds that node t in TR is a 1- or
a 2-node, since node t was a 1- or a 2-node in TOPT , as well. Let A = V(G) \ (Z ∪ {u}).
Note that there is no set Vj such that x ∈ Vj ∩ A, y ∈ Vj ∩ Z and x is a neighbor of u in G;
otherwise, we can move x to Z together with y; because y is in Z, all adjacencies from y to
all the vertices in V(G) \ (Vj ∪ {u}) in G are maintained and this will also hold for x and
the fill edge xw will be removed, a contradiction to the optimality of GR. Similarly, there is
no set Vj such that x ∈ Vj ∩ A, y ∈ Vj ∩ Z and y is a non-neighbor of u in G; otherwise, we
can move y to A together with x, thus omitting the fill edge uy. This implies that for each
i = 0, 1, . . . , h, either Vi ⊆ A or Vi ⊆ Z and since t = tk, Vk ⊆ Z.

Finally, there exists no j > k such that Vj ⊆ A. Suppose that there existed such a Vj
and let j be the largest such index. Then, because t = tk is a 1- or a 2-node and k < j, there
would exist a vertex z ∈ Vk which would be adjacent to all vertices in Vj. This implies that
in TR, the least common ancestor of z and the vertices in Vk would be a 1-node; thus, u and
w would be adjacent to all vertices in Vj and if we moved Vj to Z then we would have fewer
fill edges, a contradiction to the optimality of GR. Therefore, the tree TR is as described in
Case 3 of the statement of the lemma.

B. The leaves associated with u, w in TOPT have the same parent node p: Then, since u, w
are adjacent, the parent node p is either a 1-node or a 2-node.

(i) The parent node p of u, w in TOPT is a 1-node: Then, the leaves associated with u and
w are the only children of p (Formation 1): otherwise, we can use Formation 2 as
shown in Figure 8 which requires fewer fill edges. Then, w will be adjacent to all
neighbors of u in TOPT ; this and the optimality of GOPT imply that TOPT results
from TG by replacing the leaf for u by Formation 1.

(ii) The parent node p of u, w in TOPT is a 2-node: Let H = (S, K, R) be the corresponding
spider. If H is thick (thus |K| ≥ 3), then no matter whether the tail uw is an S-
K, K-K or R-K edge, the sum of degrees of u, w in H (excluding uw) is at least
|V(H)| − 3 + |K| − 2 (consider an S-K edge). However, we would have added no
more fill edges if we had made u universal in G[V(H) \ {w}] and then applied
Formation 2 at the parent of the leaf for u (then Z = V(H) \ {u, w}) using
|V(H)| − 2 ≤ |V(H)|+ |K| − 5 fill edges.
In the same way, we show that we would have added no more fill edges if H
were a thin spider and the tail uw were a K-K or K-R edge. Then, either u ∈ K
and w ∈ S or u ∈ S and w ∈ K; in the latter case, we exchange u and w for the
same total number of fill edges and obtain u ∈ K and w ∈ S again.

Algorithms 2023, 16, 289 10 of 19

1

u

Z

w

0

1

uZ w

1

Figure 8. A transformation that reduces the number of fill edges.

5.1. Adding a Tail to a Spider

In this section, we consider adding a tail uw to a spider H = (SH , KH , RH) where
u ∈ V(H). In the following two lemmas, we address the cases of a thin or a thick spider H,
respectively.

Lemma 6. Consider the addition of a tail uw to a thin spider H = (SH , KH , RH) where u is a
vertex of H. Then, for the number f of fill edges (excluding the tail uw) in a minimum P4-sparse
completion of the graph H + uw, the following holds:

1. if u ∈ SH , f = |KH | − 1 if RH = ∅ and f = |KH | otherwise;
2. If u ∈ KH , f = |KH | − 1;
3. If u ∈ RH , Then f = min{ |RH \ NH [u]|, |KH |+ f ′ } where f ′ is the number of fill edges

(excluding uw) in a minimum P4-sparse completion of the graph H[RH] + uw.

Proof. 1. Let v ∈ KH be the neighbor of u in H. Then, we can obtain a P4-sparse graph
as follows: if RH = ∅, we connect u to all vertices in KH \ {v} (we obtain a thin spider
with S = (SH \ {u}) ∪ {w}, K = (KH \ {v}) ∪ {u} and R = {v}; that is, the tail uw is a
wing of a P4 of a thin spider); otherwise, we connect v to all vertices in {w} ∪ (SH \ {u}),
which makes v universal in V(H) ∪ {w} and u, w form a separate connected component in
G[V(G) \ {v}]; the total number of fill edges (excluding the tail uw) is precisely |KH | − 1 if
RH = ∅ and KH otherwise.

Moreover, this is the minimum number of fill edges (excluding uw) needed. First, we
note that for each pair ki, si where ki ∈ KH \ {v} and si ∈ SH \ {u}, the vertices v, u, w, ki, si
define an F5 or an F3 depending on whether the vertices v, w are adjacent or not, which
implies that at least |KH | − 1 fill edges (excluding uw) are needed. Then, if there is a way of
obtaining a P4-sparse graph by adding fewer than the number of fill edges mentioned in
Case 1 of the statement of the lemma, it has to be the case that (i) RH 6= ∅, (ii) each pair
ki, si where ki ∈ KH \ {v} and si ∈ SH \ {u} is incident on exactly 1 fill edge and (iii) no
more fill edges exist. Let r ∈ RH and k ∈ KH \ {v}. Then, the vertices v, u, w, k, r induce a
forbidden subgraph (an F5 if k is non-adjacent to both u, w or an F6 (F1, resp.) if k becomes
adjacent to u (w, resp.) by means of a fill edge); thus, at least KH fill edges are needed in
this case.

2. Let v ∈ SH be the neighbor in H of u ∈ KH . Then, connecting u to all vertices in
SH \ {v} (which makes u universal in H) or connecting w to all vertices in KH \ {u} yields a
P4-sparse graph. Moreover, this is the minimum number of fill edges (excluding the tail uw)
that need to be added. Suppose, for contrast, that we obtain a P4-sparse graph after having
added fewer than |KH | − 1 fill edges (excluding uw) to the thin spider H. Then, there exists
a pair of adjacent vertices s, k with s ∈ SH \ {v} and k ∈ KH \ {u} such that neither s nor k
is incident on a fill edge. Then, the vertices u, v, w, s, k induce a forbidden subgraph F5 or
F3 if w and v are adjacent or not, respectively, a contradiction.

3. The term RH \ NH [u] corresponds to making u universal in H[RH], in which case
the resulting graph is P4-sparse (it is a thin spider with S = SH ∪ {w}, K = KH ∪ {u}
and R = RH \ {u}). The term |KH |+ f ′ corresponds to adding |KH | fill edges connecting
w to the vertices in KH and then computing a minimum P4-sparse completion of the
graph H[RH] + uw. Note that no minimum P4-sparse completion of H + uw exists with u

Algorithms 2023, 16, 289 11 of 19

not being universal in RH and with using fewer than |KH | fill edges incident on the vertices
in SH ∪ KH : if there were such a minimum P4-sparse completion H′ of H + uw, then in
H′, there would exist a non-neighbor r ∈ RH and a pair of adjacent vertices s, k where
s ∈ SH and k ∈ KH such that neither s nor k would be incident on a fill edge; but then, in
H′, the vertices u, w, r, s, k induce an F4 or an F3 if w, r have been connected by a fill edge or
not, respectively, which leads to a contradiction. In turn, if H′ has at least |KH fill edges
incident on vertices in SH ∪ KH then H′[RH ∪ {w}] would be P4-sparse using fewer than f ′

fill edges in contradiction to the minimality of f ′.

(If u ∈ RH , the former case corresponds to making u universal in G[RH] and the latter
to inserting w in RH by making it adjacent to all the vertices in KH . Furthermore, note
that if u ∈ RH and u’s parent node is the 2-node corresponding to the thin spider H, then
RH = {u} and no fill edges are needed.)

Lemma 7. Consider the addition of a tail uw to a thick spider H = (SH , KH , RH) where u is a
vertex of H. Then, for the number f of fill edges (excluding the tail uw) in a minimum P4-sparse
completion of the graph H + uw, the following holds:

1. If u ∈ SH ,

f =



|KH | − 1 = 2 if |KH | = 3 and RH = ∅
|KH | = 3 if |KH | = 3 and |RH | = 1
|KH |+ 1 = 4 if |KH | = 3 and |RH | ≥ 2
|KH | if |KH | ≥ 4 and RH = ∅
|KH |+ 1 if |KH | ≥ 4 and |RH | ≥ 1;

2. If u ∈ KH , f = 1;
3. If u ∈ RH , then f = |KH | + f ′ where f ′ is the number of fill edges (excluding uw) in a

minimum P4-sparse completion of the graph H[RH] + uw.

Proof. 1. Let v ∈ KH be the non-neighbor of u in H. Let us first consider the case |KH | = 3.
If |RH | ≤ 2, we can obtain a P4-sparse graph after having added the fill edges vu and vw
(this implies that v becomes universal in (V(H) \ {v}) ∪ {w}) and those connecting u to
the vertices in RH if RH is non-empty; then the vertices in (V(H) \ {v}) ∪ {w} induce a
thin spider with K = (KH \ {v}) ∪ {u}, S = (SH \ {u}) ∪ {w} and R = RH , for a total
of |KH | − 1 + |RH | fill edges (excluding the tail uw). If |RH | ≥ 2, a P4-sparse graph is
obtained after in addition to the tail uw we add the fill edges vu, vw (again v is universal in
(V(H) \ {v}) ∪ {w}) and the fill edges connecting w to the vertices in KH \ {v} (then the
vertices in (V(H) \ {v}) ∪ {w} induce a thin spider with K = KH \ {v}, S = SH \ {u} and
R = RH ∪ {u, w}), for a total of |KH |+ 1 fill edges (excluding uw).

Now, consider the case that |KH | ≥ 4. If |RH | ≤ 1, we obtain a P4-sparse graph after
having made u universal by connecting it to the remaining vertices in SH by using |KH | − 1
fill edges and adding the fill edge uv and those connecting u to the vertices in RH if RH
is non-empty, for a total of |KH |+ |RH | fill edges (excluding uw). If |RH | ≥ 1, a P4-sparse
graph is obtained after having made v universal (by adding the fill edges vu and vw) and
after having connected w to all vertices in KH \ {v} (then the vertices in (V(H) \ {v})∪ {w}
induce a thick spider with K = KH \ {v}, S = SH \ {u} and R = RH ∪ {u, w}) for a total of
|KH |+ 1 fill edges (excluding uw).

Below we show the minimality of this solution. Recall that v ∈ KH is the non-neighbor
of u in H. We consider each of the five cases.

(i) |KH | = 3 and RH = ∅: Suppose, for contrast, that there is a P4-sparse completion of
H + uw with at most |KH | − 2 = 1 fill edge (excluding uw). If v is incident on the
unique fill edge (which connects v to u or w), then the vertices in S ∪ {v, w} induce
an F3. Now suppose that the fill edge is not incident on v. Moreover, there exists at
least one vertex s ∈ SH \ {u} that is not incident on the fill edge either. Then, the

Algorithms 2023, 16, 289 12 of 19

vertices u, v, w, s, k (where k ∈ KH is the non-neighbor of s in H) induce an F5 if k, w
are connected by the fill edge or an F2 otherwise.

(ii) |KH | = 3 and |RH | = 1: Let RH = {r}. Suppose, for contrast, that there is a P4-
sparse completion of H + uw with at most |KH | − 1 = 2 fill edges (excluding uw). We
distinguish three cases depending on whether v is incident on 0, 1 or 2 fill edges:

• v is not incident on a fill edge: If there exists a pair s, k of non-neighbors with
s ∈ SH \ {u} and k ∈ KH \ {v} such that none of s, k is incident on a fill edge to u
or w, the vertices u, v, w, s, k induce an F2. Otherwise, since the number of such
pairs is 2, for each such pair s, k, exactly one of s, k is incident on a fill edge to u or
w and no other fill edges exist. If there exists a vertex k ∈ KH \ {v} not incident
on a fill edge to w, the vertices u, v, w, k, r induce an F5; otherwise, each of the fill
edges connects each of the vertices in KH \ {v} to w and then u, v, w, s, k (for any
pair s, k of non-neighbors with s ∈ SH \ {u} and k ∈ KH \ {v}) induce an F5.

• v is incident on 1 fill edge (to u or w): Then, there is 1 more fill edge; hence,
there exist 2 vertices in the set (SH \ {u}) ∪ {r} that are not incident on a fill
edge connecting them to u or w and let these vertices be p1, p2. Then, the vertices
u, v, w, p1, p2 induce an F5 if p1, p2 are connected by a fill edge or an F3 otherwise.

• v is incident on 2 fill edges connecting it to u and w: Then, there is no other fill
edge. Then, the vertices u, w, k, k′, r (where {k, k′} = KH \ {v}) induce an F6.

(iii) |KH | = 3 and |RH | ≥ 2: Let r1, r2 be two vertices in RH . Suppose, for contrast, that
there is a P4-sparse completion of H + uw with at most |KH | = 3 fill edges (excluding
uw). Again, we distinguish three cases depending on whether v is incident on 0, 1 or 2
fill edges:

• v is not incident on a fill edge: Consider the case that there exists a vertex k ∈
KH \ {v} that is not incident on a fill edge to w. Let s ∈ SH be the non-neighbor
of k in H and A = (SH \ {u, s}) ∪ {r1, r2}; the set A contains 3 vertices which
are common neighbors of v, k. If at least one of these 3 vertices (say, p) is not
incident on a fill edge to u, w, then the vertices u, v, w, k, p induce an F5; otherwise,
all 3 of these vertices are incident on a fill edge to u, w (then these are all the fill
edges) and the vertices u, v, w, s, k induce an F2. On the other hand, if no such
vertex k exists, then both vertices in KH \ {v} are incident on a fill edge to w,
accounting for 2 of the 3 fill edges; then there exists a vertex s′ ∈ SH \ {u} which
is not incident on a fill edge to w and the vertices u, v, w, s′, k′ (where k′ ∈ KH is
the non-neighbor of s′) induce an F5.

• v is incident on 1 fill edge (to u or w): There are 2 more fill edges; hence, there
exist 2 vertices in the set (SH \ {u}) ∪ {r1, r2} that are not incident on a fill edge
connecting them to u or w and let these vertices be p1, p2. Then, the vertices
u, v, w, p1, p2 induce an F5 if p1, p2 are connected by a fill edge or an F3 otherwise.

• v is incident on 2 fill edges connecting it to u and w: Then, there is 1 more fill
edge; hence, there exists a vertex k ∈ KH \ {v} that is not incident on the fill
edge. Moreover, there exist 2 vertices in the set (SH \ {u, s}) ∪ {r1, r2} that are
not incident on a fill edge connecting them to u or w (where s ∈ SH is the non-
neighbor of k); let these vertices be p1, p2. Then, the vertices u, w, k, p1, p2 induce
an F5 if p1, p2 are adjacent or an F3 otherwise.

(iv) |KH | ≥ 4 and RH = ∅: Suppose, for contrast, that there is a P4-sparse completion of
H + uw with at most |KH | − 1 fill edges (excluding the tail uw). Again, we distinguish
three cases depending on whether v is incident on 0, 1 or 2 fill edges:

• v is not incident on a fill edge: If there exists a vertex s ∈ SH \ {u} not incident
on a fill edge to u, w or to its non-neighbor k ∈ KH in H, the vertices u, v, w, s, k
induce an F5 if k, w are connected by a fill edge or an F2 otherwise; if all vertices
in SH \ {u} are incident on a fill edge to u, w or their non-neighbor in KH , then
there are no more fill edges and the vertices u, v, w, k, k′ (for any k, k′ ∈ KH \ {v})
induce an F6.

Algorithms 2023, 16, 289 13 of 19

• v is incident on 1 fill edge (to u or w): Then, the remaining fill edges are at most
|KH | − 2 in total. If there exist two vertices s1, s2 ∈ SH \ {u} not incident on a
fill edge to u or w, the vertices u, v, w, s1, s2 induce an F5 or an F3 depending on
whether s1, s2 are connected by a fill edge or not. Thus, there cannot be two such
vertices s1, s2; this implies that the remaining fill edges are precisely |KH | − 2 and
they connect all but one vertex in SH \ {u} to u or w; let that vertex be s. Then,
the vertices u, v, w, s, k′ (where k′ ∈ KH \ {v} is a neighbor of s in H) induce an F6
or an F1 if the fill edge incident on v connects it to u or w, respectively.

• v is incident on 2 fill edges connecting it to u and w: Then, the remaining fill edges
are at most |KH | − 3 in total; hence, there exist two pairs of non-adjacent vertices
s1, k1 and s2, k2 with s1, s2 ∈ SH \ {u} and k1, k2 ∈ KH \ {v} such that none of
s1, s2, k1, k2 are incident on a fill edge to u or w. Let A = SH \ {u, s1, s2}; the set A
is the set of |KH | − 3 common neighbors of k1, k2 in SH other than u. If there exists
a vertex s ∈ A not incident on a fill edge to u or w, then the vertices u, w, k1, k2, s
induce an F6; otherwise, the remaining fill edges are precisely |KH | − 3 and they
connect each of the vertices in A to u or w; that is, none of the vertices in KH \ {v}
are incident on a fill edge. Then, the vertices u, w, s1, s2, k (where k is any vertex
in KH \ {v, k1, k2}) induce an F3.

(v) |KH | ≥ 4 and |RH | ≥ 1: Let r ∈ RH . Suppose, for contrast, that there is a P4-sparse
completion of H + uw with at most |KH | fill edge (excluding the tail uw). Again, w
distinguishes three cases depending on whether v is incident on 0, 1 or 2 fill edges:

• v is not incident on a fill edge: If there exists a vertex s ∈ SH \ {u} not incident
on a fill edge to u, w or to its non-neighbor k ∈ KH in H, the vertices u, v, w, s, k
induce an F5 if k, w are connected by a fill edge or an F2 otherwise; if all vertices
in SH \ {u} are incident on a fill edge to u, w or their non-neighbor in KH , which
account for the |KH | − 1 of the |KH | fill edges, there exist vertices k, k′ ∈ KH \ {v}
which are not incident on a fill edge and then the vertices u, v, w, k, k′ induce an F6.

• v is incident on 1 fill edge (to u or w): Then, the remaining fill edges are at most
|KH | − 1 in total. If all vertices in KH \ {v} are incident on a fill edge to w, then
no more fill edges exist and the vertices u, v, w, s1, s2 (for any s1, s2 ∈ SH \ {u})
induce an F3. Thus, there exists k ∈ KH \ {v} which is not incident on a fill edge
to w. The number of common neighbors of v, k in SH ∪ r is |KH | − 1. If each of
these vertices is incident on a fill edge to u or w, then no more fill edges exist and
the vertices u, v, w, s, k′ induce an F6 or an F1 depending on whether the fill edge
incident on v connects it to u or w, respectively, where s ∈ SH is the non-neighbor
of k and k′ is any vertex in KH \ {v, k}; hence, there exists a common neighbor p
not incident on a fill edge to u or w and the vertices u, v, w, k, p induce an F6 or
an F1 depending on whether the fill edge incident on v connects it to u or w,
respectively.

• v is incident on 2 fill edges connecting it to u and w: Then, the remaining fill edges
are at most |KH | − 2 in total; hence, there exists a pair of non-adjacent vertices s, k
(where s ∈ SH \ {u} and k ∈ KH \ {v}) which are not incident on a fill edge to u or
w. Let A = (SH \ {u, s}) ∪ {r}; the set A is a set of |KH | − 1 neighbors of k other
than u. Then, there exists a vertex p1 in A which is not incident on a fill edge to u
or w. If there exists a second vertex p2 in A not incident on a fill edge to u or w,
then the vertices u, w, k, p1, p2 induce an F5 if p1, p2 are connected by a fill edge or
an F3 otherwise. If each vertex in A \ {p1} is incident on a fill edge to u or w, then
the fill edges incident on these vertices account for the remaining |KH | − 2 fill
edges and the vertices u, w, s, k1, k2 (for any vertices k1, k2 ∈ KH \ {v, k}) induce
an F6.

Therefore, if we use fewer than the stated number of fill edges, in each case, the
resulting graph contains an induced forbidden subgraph, a contradiction.

2. Let v ∈ SH be the non-neighbor of u in H. Then, we obtain a P4-sparse graph
by connecting u to v; thus, u becomes universal in V(H) ∪ {w}. This is the minimum

Algorithms 2023, 16, 289 14 of 19

number of fill edges (excluding the tail uw) that need to be added since for any pair of
non-neighbors s, k with s ∈ SH \ {v} and k ∈ KH \ {u}, the vertices u, v, w, s, k induce a
forbidden subgraph F3, a contradiction.

3. By connecting w to all vertices in KH and then computing a minimum P4-sparse
completion of H[RH ∪ {w}], we obtain a P4-sparse graph and the number of fill edges
needed is |KH |+ f ′.

To prove the minimality of this number of fill edges, suppose, for contrast, that we
can obtain a P4-sparse graph from H + uw after having added at most |KH | − 1 fill edges
incident on vertices in SH ∪ KH (excluding the tail uw). Then, there exists a pair s1, k1 of
non-neighbors in H with s1 ∈ SH and k1 ∈ KH , none of which is incident on a fill edge to u
or w. We distinguish the following two cases that cover all possibilities.

• Each of the vertices in KH \ {k1} is incident on a fill edge to w. These are precisely all
the |KH | − 1 fill edges; hence none of the vertices in SH \ {s1} is incident on a fill edge.
Then, the vertices u, w, k1, s2, s3 (for any s2, s3 ∈ SH \ {s1}) induce an F3.

• There exists at least one vertex in KH \ {k1} that is not incident on a fill edge to w.
Let that vertex be k2. Then, if there exists another vertex k3 ∈ KH \ {k1, k2} that is
not incident on a fill edge to w as well, the vertices u, w, k2, k3, s1 induce an F6. On
the other hand, if each of the vertices in KH \ {k1, k2} is incident on a fill edge to w
(which implies that k3 is adjacent to w), then these fill edges are |KH | − 2 in total, with
only 1 remaining. If the non-neighbor s3 of k3 in SH is not incident on a fill edge to
u or w, then the vertices u, w, k1, k2, s3 induce an F6, whereas if it is adjacent to u or
w, then there are no more fill edges. In particular, if s3 is adjacent to u, the vertices
u, k1, k3, s1, s3 induce an F6 and if it is adjacent to w, the vertices u, w, k2, s1, s3 induce
an F4.

In each case, we get a contradiction. Thus every minimum P4-sparse completion of
H + uw requires at least |KH | fill edges incident on vertices of SH ∪ KH . Now, if there exists
a minimum P4-sparse completion H′ of H + uw having fewer than |KH |+ f ′ fill edges,
then the fact that at least |KH | of them are incident on vertices in SH ∪ KH implies that
H′[RH ∪ {w}] is P4-sparse using fewer than f ′ fill edges in contradiction to the minimality
of f ′.

If the (thin or thick) spider H belongs to a more general P4-sparse graph, then Lem-
mas 6 and 7 imply the following result.

Corollary 1. Let u be a vertex of a P4-sparse graph to which we add the tail uw. Let t0 · · · thu
be the path in the P4-sparse tree of G from the the root t0 to the leaf for u and let V0, . . . , Vh be
the corresponding vertex sets as mentioned before. Then, if node ti (0 ≤ i ≤ h) is a 2-node
corresponding to a spider H, the number of fill edges needed for a minimum P4-sparse completion of
the graph G + uw (excluding the tail uw) does not exceed the minimum number given by Lemmas 6
and 7 (if H is thin or thick, respectively) augmented by |(V0 ∪ · · · ∪Vi−1) ∩ NG(u)|.

The number of fill edges given in Corollary 1 corresponds to doing a minimum
P4-completion of the graph H + uw and not changing the rest of the P4-sparse tree TG of G.

5.2. The Algorithm

Recall that t0t1 · · · thu is the path in the P4-sparse tree TG of G from the root t0 to the
leaf for u and Vi (0 ≤ i < h) is the set of vertices associated with the leaves of the subtrees
rooted at the children of ti except for ti+1 and Vh is the set of vertices associated with the
leaves of the subtrees rooted at the children of th except for the leaf corresponding to u (see
Figure 5).

Next we prove the conditions under which a minimum P4-sparse completion of the
graph G + uw uses fewer fill edges than when using Formation 1 or 2.

Algorithms 2023, 16, 289 15 of 19

Lemma 8. There exists a minimum P4-sparse completion GOPT of the graph G + uw which uses
fewer fill edges than when using Formation 1 or 2 if and only if uw is a wing of a P4 in GOPT which
implies that

(i) either u is a vertex of a spider in G (Lemmas 6 and 7 apply)
(ii) or there exists j (0 ≤ j < h) such that tj is a 1-node, tj+1 is a 0-node and there exist vertices

a, b such that a ∈ Vj is universal in G[Vj] and b ∈ Vj+1 is isolated in G[Vj+1].

Then, in GOPT , the vertices u, w, a, b induce a P4 in a spider (S, K, R) with S = {w, b},
K = {u, a} and R = (Vj+1 \ {b}) ∪Vj+2 ∪ · · · ∪Vh.

Proof. If Formation 1 or Formation 2 cannot be used then Lemma 5 implies that uw is the
wing of a P4 in GOPT . If u is a vertex of a spider in G, then Lemmas 6 and 7 apply. So, below,
assume that u is not a vertex of a spider in G.

For the tail uw to be the wing of a P4 in GOPT , we can show that there exist vertices
x, y such that uxy is a P3 in the graph G: if u, x, y do not all belong to the same connected
component of G, then we could add the tail uw to the connected component of G to
which u belongs; thus, all the fill edges in GOPT incident on vertices in different connected
components (among which is at least one of ux and uy) will not be needed, a contradiction;
if u, x, y belong to the same connected component of G but do not form a P3, then because
u, y are not adjacent in GOPT and thus neither are in G, u, y are at distance 2 in G and there
exists a P3 uay in G (note that u, y cannot be at distance≥ 4 in G since then G would contain
an induced P5 = F2 and they cannot be at distance 3 either since then there exists a P4 uaby
in G and u would be a vertex of a spider in G).

Therefore, in the following, consider that the minimum P4-sparse completion GOPT of
G + uw contains an induced P4 wuab such that the graph G contains the induced P3 uab;
suppose that a ∈ Vj and b ∈ Vk. Then, since u, b are not adjacent in GOPT , they are not
adjacent in G either and thus their least common ancestor tk in the P4-sparse tree TG of G is
a 0-node; it cannot be a 2-node since then u would be a vertex of a spider. Moreover, a is a
common neighbor of both u, b and thus the least common ancestor tj of a, u in TG is a 1- or
a 2-node (in the latter case, a is a vertex of the clique of the spider) and j < k.

Let us now try forming the P4 wuab, which clearly will belong to a spider, say W =
(SW , KW , RW). We show that |SW | = |KW | = 2. First, note that the edge ab cannot belong
to a spider in G, since then u would belong to that spider as well (note that the vertices of
G not belonging to a spider are either adjacent to all vertices of the spider or to none of
them). So, suppose for contrast that the spider W has |SW | = |KW | ≥ 3 and let w, b, d ∈ SW
and u, a, c ∈ KW with the corresponding S-K pairs being w and u, b and a and d and c. The
spider W can be thin or thick.

• The spider W is thin. Then, ab ∈ E(G); otherwise, the removal of ab would produce
a P4-sparse graph with fewer fill edges (b is isolated in G[V(W)]), a contradiction;
similarly, cd ∈ E(G). Moreover, ac ∈ E(G): as above, if a, c do not belong to the same
connected component of the induced subgraph G[V(W)], then adding the tail uw to
the connected component of G[V(W)] to which u belongs would result in fewer fill
edges (e.g., the fill edge ac will not be needed); if a, c belong to the same connected
component of G[V(W)] but ac 6∈ E(G), then there exists a chordless path ρ connecting
them in the subgraph G[KW ∪ RW] and the vertices in V(ρ) ∪ {b, d} induce a P` with
` ≥ 5, in contradiction to the P4-sparseness of G. However, then, G contains the
P4 baks and ab belongs to a spider.

• The spider W is thick. Then, w ∈ SW is incident on the tail uw and |KW | − 2 ≥ 1 fill
edges. Since we can make u universal in G[V(W) \ {w}] by using a single fill edge
and then use Formation 2, it is clear that building spider W does not result in fewer
fill edges.

Thus, GOPT with a spider W with |KW | ≥ 3 has no fewer fill edges than if we use
Formation 2. Therefore, the P4 wuab belongs to a spider with clique size equal to 2, which
thus is thin. Then, Property P1 in Lemma 4 implies that w, u and a are adjacent to all the

Algorithms 2023, 16, 289 16 of 19

neighbors of b except for a in GOPT and thus at least to the neighbors of b except for a in G;
thus, in GOPT ,

• Fill edges connect vertex w to the vertices in ((V0 ∪ · · · ∪ Vk−1) \ {a}) ∩ NG(b) =
[(V0 ∪ · · · ∪Vk−1) \ {a}] ∩ NG(u);

• Vertex u and w are adjacent to all neighbors of b in Vk; that is, fill edges connect u to
the vertices in (Vk ∩ NG(b)) \ NG(u) and w to the vertices in Vk ∩ NG(b);

• Vertex a is adjacent to all the vertices in (Vj ∩ NG(b)) and thus fill edges connect a to
all vertices in (Vj ∩ NG(b)) \ NG[a] = (Vj ∩ NG(u)) \ NG[a].

Additionally, Property P2 in Lemma 4 implies that because a is adjacent to all the
vertices in Vj+1 ∪ · · · ∪Vh and to the vertices in Vj ∩ NG(a) in GOPT (because it is adjacent
to them in G), then so must be vertex u in GOPT ; thus, in GOPT , fill edges connect u to
the vertices in (Vj+1 ∪ · · · ∪ Vh) \ NG(u) and to the vertices in (Vj ∩ NG(a)) \ NG(u) (the
set (Vj ∩ NG(a)) \ NG(u) is non-empty if and only if tj is a 2-node).

Now, let us consider using Formation 2 right below node tj in the P4-sparse tree TG of
G; then, the number of fill edges is |(Vj+1 ∪ · · · ∪Vh) \ NG(u)|+ |(V0 ∪ · · · ∪Vj) ∩ NG(u)|;
the former term corresponds to fill edges incident on u, the latter to fill edges incident
on w. Then, because j < k and |((V0 ∪ · · · ∪Vk−1) \ {a}) ∩ NG(u)| = |(V0 ∪ · · · ∪Vk−1) ∩
NG(u)| − 1, the only possibility for GOPT to use fewer fill edges than using Formation 2
after node tj requires that

1. k− 1 = j =⇒ k = j + 1;
2. (Vj ∩ NG(u)) \ NG[a] = ∅;
3. Vk ∩ NG(b) = ∅ which implies that b is isolated in G[Vk] and also implies that (Vk ∩

NG(b)) \ NG(u) = ∅;
4. (Vj ∩ NG(a)) \ NG(u) = ∅ which implies that tj is a 1-node.

Requirement 4 implies that Vj ∩NG(u) = Vj which together with Requirement 2 imply
that NG[a] = Vj; that is, a is universal in G[Vj] and we have the second case in the statement
of the lemma.

Now we are ready to describe our algorithm for counting the number of fill edges in a
minimum P4-sparse completion of the graph G + uw. Note that every graph on 4 vertices
is P4-sparse since every forbidden graph for the class of P4-sparse graphs has 5 vertices
(Figure 3).

Algorithm 1 can be easily augmented to return a minimum cardinality set of fill edges.
The correctness of the algorithm follows from Lemmas 5, 6, 7 and 8 and Corollary 1. Let
G be the given graph and let n be the number of its vertices. If the P4-sparse tree TG of G
is given, an O(n)-time traversal of the tree enables us to compute the path t0t1 · · · thu, the
sets V0, . . . , Vh and the number of neighbors and non-neighbors of u in each of these sets;
additionally, the height of TG is O(n) and thus h = O(n). To avoid duplicate work in the
recursive calls, we store the numbers of neighbors and non-neighbors of u in each of the
sets V0, . . . , Vh for easy access and work from the highest 2-node and up, leaving the rest
for the recursive call at that node. Since all conditions can be checked in O(1)-time, the
entire algorithm runs in O(n) time.

Theorem 1. Let G be a P4-sparse graph on n vertices and let uw be a tail attached at node u of
G. If the P4-sparse tree of G is given, Algorithm P4-sparse-Tail-Addition computes the minimum
number of fill edges to be added to G + uw so that the resulting graph is P4-sparse in O(|V(G)|)
time.

If the P4-sparse tree TG of G is not given, then it can be computed in O(n + m) time
where m is the number of edges of G [37] and the entire algorithm takes O(n + m) time.

Algorithms 2023, 16, 289 17 of 19

Algorithm 1 P4-sparse-Tail-Addition(G,u,uw)
Input: a P4-sparse graph G, a vertex u ∈ V(G) and a tail uw to be added to G.
Output: the number of fill edges (excluding the tail uw) needed in a minimum

P4-sparse completion of the graph G + uw.

if |V(G)| ≤ 3 then {the graph G + uw is P4-sparse}
return(0);

compute the P4-sparse tree TG of G and the path t0t1 . . . th (h ≥ 1) from the root t0 of TG
to the parent node th of the leaf corresponding to u;
compute the sets of vertices Vi, 0 ≤ i ≤ h (see Figure 5);

min← |NG(u)|; {corresponds to Formation 1}

{apply (Lemma 5(iii) and Corollary 1}
for each ti (i = 0, 1, . . . , h) that is a 1- or a 2-node do
{use Formation 2 above each 1- or 2-node ti (Lemma 5(iii))}
`← |(V0 ∪ · · · ∪Vi−1) ∩ NG(u)|+ |(Vi ∪ · · · ∪Vh) \ NG(u)|;
update min if ` < min;
{if ti is a 2-node, apply Lemmas 6 or 7 and Corollary 1}
if ti is a 2-node then {spider H = (SH , KH , RH)}

if u ∈ SH ∪ KH then
`← number of fill edges according to Lemmas 6 or 7;

else {u ∈ RH}
if H is thin then

`← min{ |RH \ NH [u]|, |KH |+ P4-sparse-Tail-Addition(H,u,uw) };
else {H is thick}

`← |KH |+ P4-sparse-Tail-Addition(H,u,uw);
`← `+ |(V0 ∪ · · · ∪Vi−1) ∩ NG(u)|; {Corollary 1}
update min if ` < min;

{check for new P4 formation (Lemma 8)}
for each i = 0, 1, . . . , h− 1 such that ti is a 1-node and ti+1 is a 0-node do

if there exist vertex a ∈ Vi such that a is universal in Vi and
vertex b ∈ Vi+1 such that b has no neighbors in Vi+1 then

`← |(V0 ∪ · · · ∪Vi−1) ∩ NG(u)|+ |Vi \ {a}|+ |Vi+1 \ {b}|
+|(Vi+2 ∪ · · · ∪Vh) \ NG(u)|;

update min if ` < min;

return(min);

6. Open Problems

An immediate open problem is to try to devise fast algorithms for the tail addition
problem on other subclasses of perfect graphs such as interval, comparability and permuta-
tion graphs. Moreover, in light of the results in this paper, it would be interesting to try
to extend our approach to the (C,+1)-MinEdgeAddition problem [1] in which we want to
compute a minimum C-completion of the graph that results after the addition of 1 given
non-edge for the classes C of split, threshold, quasi-threshold and P4-sparse graphs, as well
as for other graph classes.

Finally, it is worth investigating the complexity of the (C,+k)-MinEdgeAddition
problem for fixed k ≥ 1 for different classes C of graphs.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Hellenic Foundation for Research and Innovation (H.F.R.I.)
under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and
the procurement of high-cost research equipment grant”, Project FANTA (eFficient Algorithms for
NeTwork Analysis), number HFRI-FM17-431.

Algorithms 2023, 16, 289 18 of 19

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nikolopoulos, S.D.; Palios, L. Adding an Edge in a Cograph. In WG 2005, LNCS; Kratsch, D., Ed.; Springer: Berlin/Heidelberg,

Germany, 2005; Volume 3787, pp. 214–226.
2. Goldberg, P.W.; Golumbic, M.C.; Kaplan, H.; Shamir, R. Four strikes against physical mapping of DNA. J. Comput. Biol. 1995, 2,

139–152. [CrossRef]
3. Natanzon, A.; Shamir, R.; Sharan, R. Complexity classification of some edge modification problems. Discrete Appl. Math. 2001,

113, 109–128. [CrossRef]
4. Burzyn, P.; Bonomo, F.; Durán, G. NP-completeness results for edge modification problems. Discrete Apll. Math. 2006, 154,

1824–1844. [CrossRef]
5. El-Mallah, E.; Colbourn, C. The complexity of some edge deletion problems. IEEE Trans. Circuits Syst. 1988, 35, 354–362.

[CrossRef]
6. Kashiwabara, T.; Fujisawa, T. An NP-complete problem on interval graphs. In Proceedings of the IEEE Symposium of Circuits

and Systems, Tokyo, Japan, 17–19 July 1979; pp. 82–83.
7. Mancini, F. Graph Modification Problems Related to Graph Classes. Ph.D. Thesis, University of Bergen, Bergen, Norway, 2008.
8. Yannakakis, M. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 1981, 2, 77–79. [CrossRef]
9. Crespelle, C. Linear-time minimal cograph editing. In Proceedings of the Fundamentals of Computation Theory: 23rd Interna-

tional Symposium, FCT 2021, Athens, Greece, 12–15 September 2021; Springer International Publishing: Cham, Switzerland, 2021;
pp. 176–189.

10. Crespelle, C.; Lokshtanov, D.; Phan, T.H.D.; Thierry, E. Faster and enhanced inclusion-minimal cograph completion. Discrete Appl.
Math. 2021, 288, 138–151. [CrossRef]

11. Fritz, A.; Hellmuth, M.; Stadler, P.F.; Wieseke, N. Cograph editing: Merging modules is equivalent to editing P4s. Art Discrete
Appl. Math. 2020, 3, P2-01. [CrossRef]

12. Heggernes, P.; Mancini, F. Minimal split completions. Discrete Appl. Math. 2009, 157, 2659–2669. [CrossRef]
13. Heggernes, P.; Mancini, F.; Papadopoulos, C. Minimal comparability completions of arbitrary graphs. Discrete Appl. Math. 2008,

156, 705–718. [CrossRef]
14. Heggernes, P.; Papadopoulos, C. Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions

and deletions. Theoret. Comput. Sci. 2009, 410, 1–15. [CrossRef]
15. Heggernes, P.; Telle, J.A.; Villanger, Y. Computing minimal triangulations in time O(nα log n) = o(n2.376). SIAM J. Discrete Math.

2005, 19, 900–913. [CrossRef]
16. Suchan, K.; Todinca, I. Minimal interval completion through graph exploration. Theoret. Comput. Sci. 2009, 410, 35–43. [CrossRef]
17. Bodlaender, H.L.; Kloks, T.; Kratsch, D.; Müller, H. Treewidth and minimum fill-in on d-trapezoid graphs. J. Graph Alg. Appl.

1998, 2, 1–28. [CrossRef]
18. Broersma, H.J.; Dahlhaus, E.; Kloks, T. A linear time algorithm for minimum fill-in and treewidth for distance hereditary graphs.

Discrete Appl. Math. 2000, 99, 367–400. [CrossRef]
19. Kloks, T.; Kratsch, D.; Spinrad, J. On treewidth and minimum fill-in of asteroidal triple-free graphs. Theoret. Comput. Sci. 1997,

175, 309–335. [CrossRef]
20. Kloks, T.; Kratsch, D.; Wong, C.K. Minimum fill-in on circle and circular-arc graphs. J. Alg. 1998, 28, 272–289. [CrossRef]
21. Meister, D. Computing treewidth and minimum fill-in for permutation graphs in linear time. In Proceedings of the 31st Interna-

tional Workshop on Graph-Theoretic Concepts in Computer Science (WG 2005), Metz, France, 23–25 June 2005; Volume 3787,
pp. 91–102.

22. Drange, P.G. Parameterized Graph Modification Algorithms. Ph.D. Thesis, University of Bergen, Bergen, Norway, 2015.
23. Kaplan, H.; Shamir, R.; Tarjan, R.E. Tractability of parameterized completion problems on chordal and interval graphs: Minimum

fill-in and physical mapping. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS 2004),
Rome, Italy, 17–19 October 2004; pp. 780–791.

24. Mancini, F. Minimum fill-in and treewidth of split+ke and split+kv graphs. In Algorithms and Computation (ISAAC 2007); Tokuyama,
T., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4835, pp. 881–892.

25. Villanger, Y.; Heggernes, P.; Paul, C.; Telle, J.A. Interval completion is fixed parameter tractable. SIAM J. Comput. 2009, 38,
2007–2020. [CrossRef]

26. Natanzon, A.; Shamir, R.; Sharan, R. A polynomial approximation algorithm for the minimum fill-in problem. In Proceedings of
the 30th Annual ACM Symposium on Theory of Computing (STOC 1998), Dallas, TX, USA, 24–26 May 1998; pp. 41–47.

27. Hell, P.; Shamir, R.; Sharan, R. A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J.
Comput. 2002, 31, 289–305. [CrossRef]

28. Heggernes, P.; Mancini, F. Dynamically maintaining split graphs. Discrete Appl. Math. 2009, 157, 2047–2069. [CrossRef]
29. Ibarra, L. Fully dynamic algorithms for chordal graphs and split graphs. ACM Trans. Alg. 2008, 4, 40. [CrossRef]

http://doi.org/10.1089/cmb.1995.2.139
http://dx.doi.org/10.1016/S0166-218X(00)00391-7
http://dx.doi.org/10.1016/j.dam.2006.03.031
http://dx.doi.org/10.1109/31.1748
http://dx.doi.org/10.1137/0602010
http://dx.doi.org/10.1016/j.dam.2020.08.002
http://dx.doi.org/10.26493/2590-9770.1252.e71
http://dx.doi.org/10.1016/j.dam.2008.08.010
http://dx.doi.org/10.1016/j.dam.2007.08.039
http://dx.doi.org/10.1016/j.tcs.2008.07.020
http://dx.doi.org/10.1137/S0895480104445010
http://dx.doi.org/10.1016/j.tcs.2008.09.053
http://dx.doi.org/10.7155/jgaa.00008
http://dx.doi.org/10.1016/S0166-218X(99)00146-8
http://dx.doi.org/10.1016/S0304-3975(96)00206-X
http://dx.doi.org/10.1006/jagm.1998.0936
http://dx.doi.org/10.1137/070710913
http://dx.doi.org/10.1137/S0097539700372216
http://dx.doi.org/10.1016/j.dam.2008.06.028
http://dx.doi.org/10.1145/1383369.1383371

Algorithms 2023, 16, 289 19 of 19

30. Shamir, R.; Sharan, R. A fully dynamic algorithm for modular decomposition and recognition of cographs. Discrete Appl. Math.
2004, 136, 329–340. [CrossRef]

31. Toyonaga, K.; Johnson, C.R.; Uhrig, R. Multiplicities: Adding a vertex to a graph. In Applied and Computational Matrix Analysis:
MAT-TRIAD; September 2015 Selected, Revised Contributions 6; Springer International Publishing: Berlin/Heidelberg, Germany,
2017; pp. 117–126.

32. Golumbic, M.C. Algorithmic Graph Theory and Perfect Graphs; Elsevier: Amsterdam, The Netherlands, 2004.
33. Chvátal, V.; Hammer, P.L. Set-Packing and Threshold Graphs, Research Report CORR 73-21; University of Warerloo: Waterloo, ON,

Canada, 1973.
34. Ma, S.; Wallis, W.D.; Wu, J. Optimization problems on quasi-threshold graphs. J. Comb. Inform. Syst. Sci. 1989, 14, 105–110.
35. Qiu, Z.; Tang, Z. On the eccentricity spectra of threshold graphs. Discrete Appl. Math. 2022, 310, 75–85. [CrossRef]
36. Jamison, B.; Olariu, S. Linear time optimization algorithms for P4-sparse graphs. Discrete Appl. Math. 1995, 61, 155–175.

[CrossRef]
37. Jamison, B.; Olariu, S. Recognizing P4-sparse graphs in linear time. SIAM J. Comput. 1992, 21, 381–406. [CrossRef]
38. Jamison, B.; Olariu, S. A tree representation for P4-sparse graphs. Discrete Appl. Math. 1992, 35, 115–129. [CrossRef]
39. Nikolopoulos, S.D.; Palios, L.; Papadopoulos, C. A fully-dynamic algorithm for the recognition of P4-sparse graphs. Theor.

Comput. Sci. 2012, 439, 41–57. [CrossRef]
40. Rose, D.J. A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equation. In Graph Theory

and Computing; Read, R.C., Ed.; Academic Press: New York, NY, USA, 1972; pp. 183–217.
41. Földes, S.; Hammer, P.L. Split graphs having Dilworth number two. Can. J. Math. 1977, 29, 666–672. [CrossRef]
42. Tyshkevich, R.I.; Chernyak, A.A. Yet another method of enumerating unmarked combinatorial objects. Mat. Zametki 1990, 48,

98–105. (In Russian) [CrossRef]
43. Maack, N.; Molter, H.; Niedermeier, R.; Renken, M. On finding separators in temporal split and permutation graphs. J. Comput.

Syst. Sci. 2023, 135, 1–14. [CrossRef]
44. Hammer, P.L.; Simeone, B. The splittance of a graph. Combinatorica 1981, 1, 275–284. [CrossRef]
45. Nikolopoulos, S.D. Recognizing cographs and threshold graphs through a classification of their edges. Inf. Process. Lett. 2000, 74,

129–139. [CrossRef]
46. Golumbic, M.C. Trivially perfect graphs. Discrete Math. 1978, 24, 105–107. [CrossRef]
47. Wolk, E.S. The comparability graph of a tree. Proc. Am. Math. Soc. 1962, 3, 789–795. [CrossRef]
48. Wolk, E.S. A note of the comparability graph of a tree. Proc. Am. Math. Soc. 1965, 16, 17–20.
49. Corneil, D.G.; Lerches, H.; Burlingham, L. Complement reducible graphs. Discrete Appl. Math. 1981, 3, 163–174. [CrossRef]
50. Corneil, D.G.; Perl, Y.; Stewart, L.K. A linear recognition algorithm for cographs. SIAM J. Comput. 1985, 14, 926–934. [CrossRef]
51. Veldman, H.J. A result on Hamiltonian line graphs involving restrictions on induced subgraphs. J. Graph Theory 1988, 12, 413–420.

[CrossRef]
52. Brandes, U.; Hamann, M.; Strasser, B.; Wagner, D. Fast quasi-threshold editing. In ESA 2015. LNCS; Bansal, N., Finocchi, I., Eds.;

Springer: Berlin/Heidelberg, Germany, 2015; Volume 9294, pp. 251–262.
53. Brandes, U.; Hamann, M.; Häuser, L.; Wagner, D. Skeleton-Based Clustering by Quasi-Threshold Editing. In Algorithms for Big

Data: DFG Priority Program 1736; Springer Nature: Cham, Switzerland, 2023; pp. 134–151.
54. Nikolopoulos, S.D.; Papadopoulos, C. The number of spanning trees in Kn-complements of quasi-threshold graphs. Graphs Comb.

2004, 20, 383–397. [CrossRef]
55. Kano, M.; Nikolopoulos, S.D. On the Structure of A-Free Graphs; Part II, TR-25-99; Department of Computer Science, University of

Ioannina: Ioannina, Greece, 1999.
56. Nikolopoulos, S.D. Parallel algorithms for Hamiltonian problems on quasi-threshold graphs. Parallel Distrib. Comput. 2004, 64,

48–67. [CrossRef]
57. Hoáng, C. Perfect Graphs. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 1985.
58. Brandstädt, A.; Le, V.B.; Spinrad, J. Graph Classes—A Survey. In SIAM Monographs in Discrete Mathematics and Applications; SIAM:

Philadelphia, PA, USA, 1999.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S0166-218X(03)00448-7
http://dx.doi.org/10.1016/j.dam.2021.12.024
http://dx.doi.org/10.1016/0166-218X(94)00012-3
http://dx.doi.org/10.1137/0221027
http://dx.doi.org/10.1016/0166-218X(92)90036-A
http://dx.doi.org/10.1016/j.tcs.2012.03.020
http://dx.doi.org/10.4153/CJM-1977-069-1
http://dx.doi.org/10.1007/BF01240267
http://dx.doi.org/10.1016/j.jcss.2023.01.004
http://dx.doi.org/10.1007/BF02579333
http://dx.doi.org/10.1016/S0020-0190(00)00041-7
http://dx.doi.org/10.1016/0012-365X(78)90178-4
http://dx.doi.org/10.1090/S0002-9939-1962-0172273-0
http://dx.doi.org/10.1016/0166-218X(81)90013-5
http://dx.doi.org/10.1137/0214065
http://dx.doi.org/10.1002/jgt.3190120312
http://dx.doi.org/10.1007/s00373-004-0568-x
http://dx.doi.org/10.1016/j.jpdc.2003.08.004

	Introduction
	Theoretical Framework
	Split Graphs
	Threshold and Quasi-Threshold Graphs
	P4-Sparse Graphs
	Adding a Tail to a Spider
	The Algorithm

	Open Problems
	References

