
Citation: Li, X.J.; Ma, M.; Sun, Y. An

Adaptive Deep Learning Neural

Network Model to Enhance

Machine-Learning-Based Classifiers

for Intrusion Detection in Smart

Grids. Algorithms 2023, 16, 288.

https://doi.org/10.3390/a16060288

Academic Editors: Frank Werner,

Francesco Bergadano and Giorgio

Giacinto

Received: 15 January 2023

Revised: 28 May 2023

Accepted: 30 May 2023

Published: 2 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

An Adaptive Deep Learning Neural Network Model to Enhance
Machine-Learning-Based Classifiers for Intrusion Detection in
Smart Grids
Xue Jun Li 1,*,†,‡ , Maode Ma 2,‡ and Yihan Sun 3,‡

1 Department of Electrical and Electronic Engineering, Auckland University of Technology,
Auckland 1010, New Zealand

2 College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar; acadmmd@gmail.com
3 School of Electrical and Electronic Engineering, Nanyang Technological University,

Singapore 639798, Singapore; suny0045@e.ntu.edu.sg
* Correspondence: xuejun.li@aut.ac.nz; Tel.: +64-9-921-9999
† Current address: Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
‡ These authors contributed equally to this work.

Abstract: Modern smart grids are built based on top of advanced computing and networking
technologies, where condition monitoring relies on secure cyberphysical connectivity. Over the
network infrastructure, transported data containing confidential information, must be protected as
smart grids are vulnerable and subject to various cyberattacks. Various machine learning based
classifiers were proposed for intrusion detection in smart grids. However, each of them has respective
advantage and disadvantages. Aiming to improve the performance of existing machine learning
based classifiers, this paper proposes an adaptive deep learning algorithm with a data pre-processing
module, a neural network pre-training module and a classifier module, which work together classify
intrusion data types using their high-dimensional data features. The proposed Adaptive Deep
Learning (ADL) algorithm obtains the number of layers and the number of neurons per layer by
determining the characteristic dimension of the network traffic. With transfer learning, the proposed
ADL algorithm can extract the original data dimensions and obtain new abstract features. By
combining deep learning models with traditional machine learning-based classification models, the
performance of classification of network traffic data is significantly improved. By using the Network
Security Laboratory-Knowledge Discovery in Databases (NSL-KDD) dataset, experimental results
show that the proposed ADL algorithm improves the effectiveness of existing intrusion detection
methods and reduces the training time, indicating a promising candidate to enhance network security
in smart grids.

Keywords: deep learning; machine learning; intrusion detection; smart grid; neural networks

1. Introduction

Aiming to provide secure and dependable electrical services, the smart grid integrates
power generation, transmission and distribution through digital communication technolo-
gies to detect and react to local changes in usage. The smart grid has two core subsystems:
Advanced Metering Infrastructure (AMI) and Supervisory Control And Data Acquisition
(SCADA), where AMI realises bi-directional data exchange between the electricity sup-
plier and the customer to improve the efficiency of electricity consumption, while SCADA
enables real-time monitoring and controlling of the transmission network [1]. However,
due to the dependence among components in smart grid, a cyber attack could still lead to
catastrophic failure of the entire grid [2]. Obviously, it is important to ensure the security of
smart grid. In the National Institute of Standards and Technology Interagency Report (NIS-
TIR) 7628, Guidelines for Smart Grid Cyber Security [3], information security in the smart

Algorithms 2023, 16, 288. https://doi.org/10.3390/a16060288 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16060288
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-2241-0767
https://orcid.org/0000-0003-1438-7018
https://doi.org/10.3390/a16060288
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16060288?type=check_update&version=1

Algorithms 2023, 16, 288 2 of 18

grid consists of three essential elements: confidentiality (only authorised users can access the
information), integrity (data must be accurate and consistent) and availability (information must
be available with low-latency to authorized parties when needed). Therefore, smart grid should
have self-healing and recovery capabilities to ensure communication and data security.

Cyber attacks on smart grid networks include control signal attacks, measurement
attacks, and control-signal-measurement attacks [4]. Typical threats that impede data
availability include flooding, route destruction, selective forwarding, wormhole, Byzantine
attacks and denial-of-service (DoS) attacks. In general, security solutions can be divided into
two main techniques, called prevention techniques and detection techniques. Prevention
techniques aim to protect network data from being intercepted and encryption is usually
adopted. Detection techniques aim to detect intruders [5], which include signature-based
detection and anomaly-based detection. The former compares the observed attack patterns
with known ones. The latter compares network traffic parameters with normal ones, where
a change from normal traffic simply declares the presence of an intruder.

This paper presents an adaptive deep learning (ADL) neural network model to im-
prove the recognition efficiency of anomalous attacks in smart grids. The proposed algo-
rithm determines the number of layers and neurons per layer of the model, depending on
the size of the smart grid. The contribution of this paper is threefold: Firstly, we propose an
adaptive deep learning algorithm with a data pre-processing module, a neural network
pre-training module and a classifier module, which work together classify intrusion data
types using their high-dimensional data features. Secondly, the proposed ADL algorithm
complements existing classification methods, and it can deployed with any existing fea-
ture classification algorithms to improve the classification performance. Finally, through
experiments using the NSL-KDD dataset, we show that the robustness and flexibility of the
proposed ADL algorithm. Altogether, by adding the proposed ADL algorithm, existing
classifier algorithms can effectively discriminate between large ranges of network traffic,
improve the accuracy of intrusion detection, converge faster, and reduce detection time
significantly. The rest of the paper is organised as follows. Section 2 discusses the related
work, while Section 3 presents the proposed ADL neural network model. Section 4 dis-
cusses the results, and Section 5 concludes the paper. For the sake of readability, Table 1
lists the abbreviations used in this paper.

Table 1. Nomenclature.

Abbreviation Term

ACE asymmetric convolutional encoder

ADL Adaptive deep learning

AMI Advanced Metering Infrastructure

BPNN Back Propagation Neural Network

CFS correlation-based feature selection

DBN deep belief network

DDoS distributed denial of service

DoS denial-of-service

DT Decision Tree

FDIA false data injection attacks

HAN Home Area Network

Algorithms 2023, 16, 288 3 of 18

Table 1. Cont.

Abbreviation Term

HEMS home energy management system

IDS Intrusion Detection System

IoT Internet of Things

KDD Knowledge Discovery in Databases

KNN K-nearest neighbour

LSTM long-short-term-memory

NISTIR National Institute of Standards and Technology
Interagency Report

NSL-KDD Network Security Laboratory - Knowledge
Discovery in Databases

R2L root-to-local

ReLU rectified linear activation function

SCADA Supervisory Control And Data Acquisition

SDF symbolic dynamic filtering

SVM Support Vector Machine

U2R user-to-root

WAN Wide Area Network

2. Related Work

A smart grid consists of Home Area Network (HAN), Neighborhood Area Network
(NAN) and Wide Area Network (WAN). The HAN consists of smart sensors, actuators
and a user interface like home energy management system (HEMS). The NAN collects
data from multiple HANs and transmits the data to the corresponding High Level Control
Centres [6]. The NAN is therefore a dedicated channel for information exchange between
the HAN and the WAN. Finally, the WAN connects multiple NANs, controlling the power
transmission.

The Intrusion Detection System (IDS) monitors and detects malicious behaviour by
collecting data information from key host nodes, building assessment models and analysing
the network for the presence of illegal behaviour [7,8]. The IDS detects the attack trajectory
of an attacked host and reports warnings to ensure the integrity of the network’s central
host system. This will make the smart grid resistant to external network attacks [9].

Intrusion detection involves data acquisition, intrusion analysis and intrusion response.
It reviews information from host logs, network segment protocol packets and gateways,
and checks the network data using anomaly detection algorithms and discriminatory
models [10]. The intrusion response module is used when anomalous attacks are reported
by the intrusion analysis module. The module takes pre-defined measures, such as network
disruption and alarm response, to prevent further deterioration of the situation.

Intrusion detection models are divided into host-based models, network-based models
and feature-based models. Host-based models analyse the operating system’s audit trail
and log messages of a single host [11]. They can detect viruses, malicious programs and
destructive intrusion attacks on hosts [12]. However, the model monitors a host’s memory,
which adversely affect the host’s performance. Additionally, its high memory space require-
ment does not support the handling of multiple attacks. For network-based models, they
protect hosts by monitoring the number of network packets in a gateway to determine the
network communication traffic of multiple hosts. This model can monitor large network
sections with less memory [13]. However, the model cannot analyse the information flow

Algorithms 2023, 16, 288 4 of 18

of an encrypted network. It results in low detection accuracy in large-scale high-speed
networks, thus it cannot handle fragmentation attacks. For feature-based detection model,
it matches network intrusions to defined attack features through the misuse detection
analysis system, which usually defines a separate feature for each anomalous event and
uses a database to store the features for maintenance and matching [14]. This model enables
efficient detection of correlated intrusion without generating excessive warning reports.
However, this model requires constant updating of the feature database to maintain the
system security, and it is unable to prevent malformed network attacks.

Intrusion detection methods include anomaly detection and misuse detection. The
former is behavioural detection, which assumes that all network attacks are anomalous
behaviour, then builds a model to differentiate normal behaviours from anomalous ones by
comparison. Anomaly detection requires a simplified and accurate amount of features and
reasonable threshold settings to ensure the optimal performance [15]. Anomaly detection
can quickly detect network intrusions, but it requires heavy computation, leading to
relatively high resource requirements. The latter monitors data at the gateway, compares
the data signature with those in the database to determine if an intrusion is present [16].
However, it is impossible to locate the intrusion. Additionally, digital signatures are system
dependent, making it difficult to standardise the detection procedure.

The KDD99 dataset was the data set used for The Third International Knowledge
Discovery and Data Mining Tools Competition, which was held in conjunction with The
Fifth International Conference on Knowledge Discovery and Data Mining (KDD-99). The
KDD99 dataset is the most widely used dataset for intrusion detection. It consists of
network data collected by Lincoln Laboratory over 69 days simulating the US Air Force
LAN system with various types of network hosts and attacks [11]. The Network Security
Laboratory - Knowledge Discovery in Databases (NSL-KDD) dataset is an improved version
of the KDD99 dataset. It removes most of the duplicate data from the original KDD99
dataset. Each data entry in NSL-KDD contains 41-dimensional features and 1-dimensional
label feature. Four types of feature data are available in the NSL-KDD, whose data label
can indicate whether the data is normal data or not [12], with the data tag indicating the
attack type.

The NSL-KDD data set includes four main parts, KDDTrain+, KDDTest+, KDDTrain+_
20Percent and KDDTest-21 [17], where KDDTrain+ and KDDTest+ contain 125,973 and
22,543 data sets, espectively. The redundant part of the KDD99 data set is eliminated,
KDDTrain+_20Percent provides an additional subset for training. In this dataset, network
data is divided into five types: Normal, DoS attacks, user-to-root (U2R) attacks, root-to-local
(R2L) attacks and Probe attacks. The normal type represents normal data; DoS attacks
prevent the destination host from responding to external requests and cause a waste of
resources; U2R attacks are user-unauthorised attacks, which attempt to gain root access;
R2L attacks are login and access attacks by unauthorised hosts on the system; Probe attacks
are port monitoring or port scanning. These five types include a total of 39 subtypes of
attack types [18]. The specific classifications are shown in the Table 2.

In this paper, NSL-KDD dataset is used for the experiments. The dataset is first
normalised to generate a standard dataset. With classical machine learning methods, a
classifier is built for the standard dataset as a control group, and then the data features are
extracted by the proposed ADL algorithm, and the generated data features are used to build
a classifier to evaluate the effectiveness and usefulness of the proposed ADL algorithm.

Algorithms 2023, 16, 288 5 of 18

Table 2. Summary of attacks types labeled in the NSL-KDD dataset.

Type Attack Description

Normal Normal data traffic Normal data type

DoS

Back, Land, Neptune,
Pod, Smurf, Teardrop,
Mailbomb, Processtable,
UDPstorm, Apache2, Worm

Denial of service attacks,
which make computers and
networks unable to provide
normal services

Probe
Satan, Nmap, Mscan, Saint,
IP sweep, Portsweep

Port attack, scan port
vulnerabilities to attack

U2R
Buffer overflow, Sql attack,
XtermLoadmodule, Rootkit,
Perl, Ps

Unauthorized users obtain
root vulnerabilities through
network vulnerabilities and
perform illegal operations

R2L

Guess password, Imap,
Multihop, Ftp write, Phf,
Warezmaster, Xclock,
Xsnoop, Snmpguess,
Snmpgetattack, Sendmail,
Httptunnel, Named

Remote attack, users remotely
log in operate illegally
through accounts and
passwords

2.1. Classification Algorithms

Intrusion detection scheme for smart grid based on machine learning refers to: con-
verting the network intrusion problems into a packet type classification problems based on
different intrusion types of packets, and using machine learning methods to train classifi-
cation models to identify and classify intrusion packet types. However, due to the large
number of network data features, if various features are used for training, it will increase
the training time and model complexity, and the hardware requirements will also increase.
To solve the problems of too many dimensions of network data features, there are various
methods to extract data feature dimensions for reducing data feature dimensions. Conse-
quently, intrusion detection can be treated as a packet type classification problem using
machine learning. Feature extraction is usually adopted to reduce computation, whose
common methods include correlation-based feature selection and encoding of data packets.
The former uses a correlation function to select subsets of data, thereby reducing data size.
The latter uses encoding to extract data features. Typical feature classification algorithms
include K-nearest neighbour (KNN), Naïve Bayes (NB) classifier, Back Propagation Neural
Network (BPNN) and Decision Tree (DT).

KNN Algorithm–The KNN algorithm first selects the value of K, which denotes the
number of nearest neighbours. Between a given data point x and its neighbour y, their
distance in the n-dimensional Euclidean space is

dxy =
√

∑n
i=1 (xi − yi)

2 (1)

Then it takes the K nearest neighbours as per the calculated Euclidean distance. Among
these K neighbours, the algorithm counts the number of points in each class. Finally,
it assigns x to that class for which the number of neighbours is maximum. The KNN
algorithm is relatively accurate with simple implementation. Nevertheless, its efficiency
will significantly decrease as the number of data points increases.

Naïve Bayes Algorithm—The Naïve Bayes classifier calculates conditional probability to
perform classification.

y = arg max
{

p(y = Ck)∏ p(x|y = Ck)
}

(2)

Algorithms 2023, 16, 288 6 of 18

With x = (x1, x2, . . . , xn), assuming that all features x are mutually independent, from
Bayesian theorem we have

p(Ck)p(x|Ck) = p(Ck)∏n
i=1 p(xi|Ck) (3)

Therefore, p(Ck|x) ∝ p(Ck)∏n
i=1 p(xi|Ck). With Laplace Smoothing, the prior proba-

bility is given by (where λ is the smoothing parameter)

pλ(Ck) =
∑N

i=1 I(yi = Ck) + λ

N + Kλ
(4)

The conditional probability is calculated using

pλ

(
x1 = aj|y = Ck

)
=

∑N
i=1 I

(
x1 = aj, yi = Ck

)
+ λ

∑N
i=1 I(yi = Ck) + Aλ

(5)

where K denotes the number of different values in y and A denotes the number of different
values in aj. Usually λ = 1.

BPNN–The BPNN consists of an input layer, a hidden layer and an output layer. Given
training set D = (x1, y1), (x2, y2), . . . , (xn, yn), x ∈ Rd, y ∈ RI , as shown in Figure 1, for the
jth node (neuron), x1, x2, . . . , xi are the inputs of the neuron, which are connected by the
weights of wj1,wj2, . . . ,wji to adjust the proportion of the input. Take the linear weighted
sum as input and θj as decision variable, hidden layer yj output is

yj = f
(
∑n

i=1 wjixi − θj

)
(6)

Figure 1. Illustration diagram shows how a Back Propagation Neural Network works.

The parameters are set through the training data to obtain a parametric model of the
prediction error, and the parameters are updated using the Gradient Descent method.

DT Algorithm–A DT consists of a root node, internal nodes and leaf nodes. The root
node contains the entire data set. The internal nodes use different features to make category
judgements and each leaf node represents the final judgement category. The complexity of
the DT model is related to the number of layers of the tree. Under DT, information gain is

Algorithms 2023, 16, 288 7 of 18

the expected reduction in entropy of target variable Y for data sample S, due to sorting on
variable A

G(S, A) = H(A)−∑v∈Values(A)

|Sv|
|S| H(Sv) (7)

Next, the impurity (e.g., data partition) of S is given by

Gini(S) = 1−
K

∑
i=1

(
|Ci,S|
|S|

)2

(8)

2.2. Feature Extraction Methods

Correlation-Based Feature Extraction–Correlation-based feature selection (CFS) uses the
evaluation function to select a feature subset. For two continuous random variables X and
Y, their linear correlation coefficient is given by

rXY =
∑i (xi − xi)(yi − yi)√

∑i (xi − xi)
2
√

∑i (yi − yi)
2

(9)

Automatic Encoder–Asymmetric Convolutional Encoder (ACE) can be used with a
convolutional neural network [19] for unsupervised feature learning to extract the local
features of the original data. The output of a hidden layer can be used as the input of the
next layer. In each round of training operation of the convolutional layer, the algorithm
first initialises k convolution sum, each convolution with weight w and bias b,

hk = f
(

x ∗ wk + bk
)

(10)

The convolutional layer output from the upper layer is reconstructed (with bias c)
to obtain the output data characteristics, which are adjusted by comparing the input and
output data.

y = f

(
K

∑
k=1

hk ∗ wk + ck

)
(11)

This method uses multiple iterations of convolution, which increases the computa-
tional complexity.

Recently, intrusion detection was also studied for Internet of Things (IoT) and Jan et al.
presented a lightweight intrusion detection method using supervised machine learning-
based support vector machine (SVM) to detect malicious data injection [20]. However, it is
difficult to apply it directly in smart grids due to different types of attacks. In [21], Karim-
ipour et al. presented an unsupervised anomaly detection based on statistical correlation
between measurements and time series partitioning to discover causal interactions between
the subsystems. It adopted feature extraction utilising symbolic dynamic filtering (SDF) to
reduce computational burden. In [22], Takiddin et al. presented an anomaly detector using
stacked autoencoders with a long-short-term-memory (LSTM)-based sequence-to-sequence
structure to detect electricity theft cyberattacks in smart grids. Inayat et al. presented an
extensive survey on various cybersecurity enhancements of smart grids to detect false data
injection attacks (FDIA), DoS attacks, distributed denial of service (DDoS) attacks, and
spoofing attacks [23]. Interestingly, Zhou et al. presented a comprehensive survey for deep-
learning-based abnormality detection in smart grids using multimodal image data [24],
which include visible light, infrared, and optical satellite images. In [25], Berghout et al.
reviewed different machine learning tools to detect cyberattacks in smart grids. In addition,
it also highlighted various challenges, drawbacks and possible solutions of machine learn-
ing based cybersecurity applications in smart grids. A latest anomaly detection approach
based on federated learning was proposed in [26], where machine learning models were
trained locally in smart meters without sharing data with a central server, thus ensuring

Algorithms 2023, 16, 288 8 of 18

user Privacy. Table 3 compares our work with those machine learning based works found
in the literature.

Table 3. Comparison of machine learning based intrusion detection techniques.

Works Learning Type Key Techniques Datasets

[5] Supervised
Particle swarm optimisation
based neural network

KDD99 and NSL-KDD

[13] Supervised Work embedding-based
deep learning

Intrusion Detection
Evaluation Dataset
(ISCX2012)

[14] Semi-supervised
Long short-term memory and
extreme gradient boosting with
genetic algorithm

NSL-KDD

[18] Unsupervised
Nonsymmetric deep
autoencoder KDD99 and NSL-KDD

[20] Supervised Support vector machine
Intrusion Detection
Evaluation Dataset
(CIC-IDS2017)

[21] Unsupervised
Feature extraction using
symbolic dynamic filtering

Data from testbed
from Matpower

[22] Supervised
Long short-term memory
with stacked autoencoders

State Grid Corporation
of China Dataset

[26] Supervised Federated Learning
KDD99, NSL-KDD and
CIDDS-001 datasets

This work Supervised
Adaptive deep learning
using deep belief network NSL-KDD

3. Proposed Adaptive Deep Learning

The proposed ADL algorithm consists of a data pre-processing module, a neural
network pre-training module and a classifier module. In the data pre-processing module,
the original dataset is normalised to generate a standard dataset. In the neural network
pre-processing module, the algorithm is used to train the model and adjust the parameters
to obtain a highly adaptive network model. The classifier module used high-dimensional
data features to train a classifier to determine the intrusion data type on the test dataset.

With the proposed ADL algorithm, we extract data features through hidden layer
neurons and change the distribution and structure of the data. The data features after
each hidden layer are more accurate and essential. Transfer learning is embedded in the
model so that it can be used for new tasks and improve the generalisation of the model.
Next, deep belief networks (DBNs) enable compressed coding of raw data to accurately
represent data features. A DBN consists of a multilayer Boltzmann machine network and a
supervised back propagation network. The proposed algorithm combines DBNs to infer
the appropriate number of hidden layers and the number of neurons per hidden layer
for the neural network based on the original input data, allowing the pre-trained model
to better match the size of the dataset and reduce the number of hidden layers. Too few
hidden layers lead to under-reporting, while too many hidden layers lead to over-fitting.
In the proposed ADL algorithm, parameters are used to control the training speed of the
model and the accuracy of classification prediction. As shown in Figure 2, by adjusting
the hidden layer, different data characteristics will be generated and transfer learning is
adopted as shown in Figure 3.

Algorithms 2023, 16, 288 9 of 18

Figure 2. Illustration diagram of the adaptive deep learning framework.

Figure 3. Illustration diagram of the model of transferring learning.

As explained in Algorithm 1, by the proposed ADL algorithm, the number of hidden
layers and the number of neurons are determined by the dimensionality of the original
training data and the parameter θ, which balances training time, output accuracy and
convergence speed. The range of θ is set from 0 to 1, with a step size of 0.1.

The ADL algorithm defines the number of neurons in each hidden layer of the deep
neural network. The neurons before the output layer are the dimensions of the neurons in
the highest layer. When θ is set close to 1, the feature dimension of the last hidden layer
of the pre-trained model is close to that of the original data; when θ is set close to 0, the
feature dimension of the last hidden layer of the pre-trained model is lower. The number
of neurons in the first layer of the neural network is pre-set to be the same as the original
data, and the data features are transformed through the hidden layers. The number of
hidden layers and the number of neurons are determined by the original training data and
θ. After the pre-training of the model, the back-propagation algorithm is used to adjust the
parameters of the preset network model. The error gradient between the input training data
vi and the model output data v′ i is adjusted, δh is the weight of the node from the hidden
layer to the next layer, and δj is the error gradient of node j. The training results were
obtained using the rectified linear activation function (ReLU), but experiments showed that
the normal ReLU may result in the weights not being updated. Therefore, when x ≤ 0, αx
is used instead of 0 and the value of α is set to a smaller value to ensure that the weights
can be updated correctly and speeds up the convergence of the network.

A(x) =
{

αx, x ≤ 0
x, x > 0

(12)

The output layer uses a sigmoid function to fit the output, ranging from 0.1 to 1, which
determines the behaviour and legitimacy of the data.

s(x) =
1

1 + e−x (13)

Algorithms 2023, 16, 288 10 of 18

Algorithm 1 Proposed ADL algorithm: where v is number of training data samples, θ is the
key parameter to balance the training speed and classification accuracy, η is the learning
rate. N represents the set of neurons in the neural network; l is the number of neuron
layers; D represents the dimension of the training data; and ni is the ith neuron. δk, δh, Wij,
and Oi∆Wij are the intermediate variables, Wij denotes the weights, and bj is the bias.

procedure ADL(v, θ, η) . adaptive deep learning
Ntraining_data ← v
if θ is empty then

θ ← 0.3
end if
if η is empty then

η ← 0.1
end if
N ← ∅
D ← sizeof(Ntraining_data)
l ← D/5
ni ← θ ∗ D
i← 2
while i ≤ l − 1 do

ni ←
(

D
/

i2
)
+ θ ∗ D

N.append(ni)
i← i + 1

end while
i← 1
while i ≤ l do

use N to build the current layer and the ni neuron node
end while
output layer function s(x)← 1

/
(1 + e−x)

for each training sample vi do
calculate the actual output of the model v′i

end for
δk ← v′i ∗ (1− v′ i) ∗ (vi − v′ i)
δh ← v′h ∗ (1− v′h) ∗Whk ∗ δk
Wij ←Wij + ∆Wij
Oi∆Wij ←Wij + η ∗Oi ∗ δj
bj ← δ ∗ bj

return x ∗W + b
end procedure

After the model has been trained, the remaining part of the network other than the
output layer is removed and the resultant model for the network is used for pre-processing.
The number of neurons in the last layer of the hidden layers is the feature dimension of the
output data. The algorithm determines the structure of the neural network through θ and
the data dimension. The features of the data output from the hidden layers are considered
as a downscaling of the original data. The smaller the dimension of the features generated
by the model, the faster the detection, at the expense of reduced accuracy.

Four performance metrics are evaluated, namely accuracy, precision, recall, and F1-
score. TP denotes the number of intrusion network data is correctly identified as intrusion
network data. TN denotes the number of normal network data is correctly identified
as normal network data. FP denotes the number of normal network data is incorrectly
identified as intrusion network data. FN denotes the number of intrusion network data is
wrongly identified as normal network data.

Accuracy is given by

sA =
TP + TN

TP + TN + FP + FN
(14)

Algorithms 2023, 16, 288 11 of 18

Precision is given by

sP =
TP

TP + FP
(15)

Recall rate is given by

sR =
TP

TP + FN
(16)

F1-score is given by

sF1 =
2sPsR

sP + sR
(17)

4. Results and Discussion
4.1. Preprocessing of Data

(a) IP Addresses and Port Numbers Removal—IP addresses and port numbers are
removed from source and destination hosts because IP address and port numbers in the
original dataset may lead to overtraining of neural networks and classifiers.

(b) Spaces Removal—Some tags in the dataset contain spaces that have no meaning in
the actual data representation, but return different results in the data classification process,
resulting in different classification of the packets. Thus, these spaces are removed.

(c) Label Encoding—The label of each piece of data is encoded. The label of each piece
of data in the dataset contains the type of attack corresponding to that data, with different
attack types corresponding to different specific strings. Encoding the strings into a specific
value simplifies the learning process for the classifier. In the machine learning module, the
classifier can learn the category values for each array.

(d) Data Normalisation—As the range of values taken from the data in the dataset
does not meet the requirements of the classifier, the data range and format needs to be
normalised to specify a minimum value for each data attribute. The normalisation and
standardisation of the data provides a consistent value for the classifier, improving the
correlation between the data and reducing the variability between the data features and
improves the efficiency of the classifier.

4.2. Performance Evaluation

There are two types of classifiers considered in this paper–those based on four tradi-
tional machine learning models and those based on adaptive deep neural networks. As
the training and test samples of the classifiers are the same, the interference of the data
samples on the model results is effectively eliminated and the confidence of the comparison
is improved.

80% of the data was used to train the proposed ADL model, while 80% of the remaining
20% data is used to train the classifier and 20% for testing. To verify the effectiveness of the
ADL algorithm, we compare its performance with that of a traditional machine learning
model for feature extraction. The experimental procedure uses the KNN, the DT, the NB
algorithm and the BPNN to train the classifier. The raw data was passed through an
adaptive deep neural network to obtain data features, which improved the classification
accuracy of the classifier overall and also reduced the detection time of the network for
abnormal data.

4.2.1. Two-Class Machine Learning Model

For the KNN algorithm, the value of K was set in the range of [3, 15] with a step
size of 2. The average accuracy of the classifier with different parameters was tested. The
experimental results show that the KNN algorithm produces better overall experimental
results for the classifier, with the highest accuracy rates at K = 3 and K = 5. Hereafter, we
use K = 3.

For the DT algorithm, the maximum depth of the tree and the minimum number
of samples are needed for the leaf nodes. The range of values for depth is set to [10, 30]
and the range of values for the minimum number of samples required by a leaf node is

Algorithms 2023, 16, 288 12 of 18

[2, 20]. First, the accuracy of classification of the DT algorithm at different depths was
tested. Experimental results show that by the DT algorithm has the highest accuracy when
the depth is 26 and the minimum number of leaf nodes is 2.

The confusion matrix is also known as the error matrix. It uses a matrix to visualize
the performance of a machine learning algorithm. The column data of the confusion matrix
represents the predicted values, while the row data represents the actual values. The
confusion matrix is introduced to indicate whether there is confusion between different
categories, i.e. whether there is a misclassification. The results of the confusion matrix
produced by different algorithms are shown in Figure 4. The X-axis represents the predicted
values and the Y-axis represents the true values. The values in the first quadrant represent
data where the predicted value is an attack and the true value is normal. The values in the
second quadrant represent data where the predicted value is normal and the true value is
normal. Values in the third quadrant represent data where the predicted value is normal
and the true value is an attack. A value in the fourth quadrant represents data for which
the predicted value is an attack and the true value is an attack. From Figure 4, we can see
that KNN outperforms other three classification techinques, followed by DT and BPNN.
The performance of Naïve Bayes is the worst in terms of two-class classification.

Figure 4. The confusion matrix results of two-class classification using the existing four classification
methods: KNN, Naïve Bayes, BPNN and DT.

The experimental results are shown in Figure 5. Results show that with two classi-
fications, all packets were divided into two categories–abnormal data and normal data.
The abnormal data was not further classified and the sample imbalance was relatively less
of a problem. However, in practical applications, the categories of abnormal data need
to be further divided, so the effect of sample imbalance on the training results should be
considered in the subsequent multi-classification cases.

Figure 5. Performance comparison of two-class classifications using the existing four classification
methods: KNN, Naïve Bayes, BPNN and DT.

Algorithms 2023, 16, 288 13 of 18

4.2.2. Multi-Class Machine Learning Model

In the same process as for the two classifications, dataset machine learning models
were used for training and testing. In order to more accurately simulate network attacks in
real life situations and to classify different attacks. This paper extends the two classifications
into multiple classifications to identify different types of attacks.

(1) KNN algorithm parameter setting: In order to save computational effort and
processing time, the range and step size of K values were set to be the same as in the case
of two classification. The experimental results show that the highest classification accuracy
is achieved with K = 3. The value of K is set in line with the case of two classification,
which reduces the complexity of the comparison and the difficulty of the calculation to
some extent.

(2) Decision Tree algorithm parameter setting: As in the case of two classification,
the algorithm needs to determine the maximum depth and minimum number of samples
required for the leaf nodes in the multi-level classification case. The range of values and
step size of each parameter are set to the same as in the two classification case.

The experimental results showed that the classification accuracy was stable at 99.84%
when the maximum depth of the tree was greater than or equal to 27. To reduce the
computational effort and the complexity of machine learning as much as possible, the
maximum depth of the tree was set to 27. Subsequently, the number of leaves and he
minimum number of samples of nodes was tested. The experimental results showed
that when the depth of the Decision Tree is 27, the classification accuracy of the classifier
decreases as the minimum number of samples of the leaf nodes increases. So the maximum
number of samples of the leaf nodes was set to 2.

For the KNN algorithm, K = 3 provides the best results. For the DT algorithms, result
show that optimal results are achieved when the maximum depth of the tree is 27 and the
maximum number of samples of the leaf nodes is 2. Figure 6 shows the confusion matrix
for multi-class classification by KNN, Naive Bayes, BPNN and DT. Figure 7 shows the
results for multiple classifications.

Figure 6. The confusion matrix results of multi-classification using the existing four classification
methods: KNN, Naïve Bayes, BPNN and DT.

After 10 experiments comparing the sF1 of the ADL neural network model and the
traditional machine learning classification model, it was demonstrated that the classification
performance of the ADL neural network model was better. Since the sF1 refers to the
weighted average of precision and recall, it can be concluded experimentally that the sF1 of
the ADL classifier reaches its highest value when θ = 0.8. By applying the ADL algorithm
with the traditional machine learning algorithm, the performance metrics of the classifier
were significantly improved. In particular, the sA of the NB algorithm improved from
94.84% to 98.77% and the sR improved from 95.06% to 99.75%. The improvements in
accuracy and recall were more pronounced than those model without the ADL algorithm
to extract features. The performance metrics are summarised in Table 4.

Algorithms 2023, 16, 288 14 of 18

Figure 7. Performance comparison of multi-classification using the existing four classification meth-
ods: KNN, Naïve Bayes, BPNN and DT.

In traditional machine learning, the NB algorithm has the worst performance, whose
performance is summarised in Table 5. Next, after adding the ADL algorithm to the
NB algorithm, Table 6 shows the effect of using the ADL algorithm on the performance
improvement of the NB algorithm. The reason for the negligible performance improvement
for the DoS data is that the main attacks in the network come from DoS attacks, so the
number of DoS attacks is large and better classification can be achieved without feature
extraction. R2L and U2R are relatively small data in the dataset and the performance
is greatly improved after feature extraction. The SA of R2L is improved from 84.13% to
91.32%, the SP increased from 91.23% to 96.44%, the SA of U2R increased from 28.49% to
43.83%, and the SP increased from 66.88% to 75.02%.

Table 4. Performance comparison of existing classifiers with and without the proposed adaptive deep
learning algorithm.

Model sA (%) sP (%) sR (%) SF1 (%)

kNN 99.89 99.89 99.89 99.89

kNN with ADL 99.23 99.49 98.74 99.15

Decision Tree 99.82 99.82 99.82 99.82

DT with ADL 99.58 99.72 99.58 99.65

Bayes 94.84 95.91 94.84 95.06

Bayes with ADL 98.77 95.25 99.75 97.70

BPNN 98.84 98.86 98.84 98.05

BPNN with ADL 99.15 99.36 99.82 99.13

Algorithms 2023, 16, 288 15 of 18

Table 5. Results using Naïve Bayes classifier.

Data Type sA (%) sP (%) sR (%) SF1 (%)

Normal 99.24 98.86 99.43 99.81

DoS 99.85 99.86 98.85 99.85

Probe 95.64 97.42 95.43 96.41

R2L 84.13 91.23 83.23 87.07

U2R 28.49 66.88 28.57 40.02

Table 6. Results using Naïve Bayes classifier together with the proposed ADL Algorithm.

Data Type sA (%) sP (%) sR (%) SF1 (%)

Normal 99.91 98.65 99.90 99.78

DoS 99.85 99.88 98.85 99.87

Probe 98.83 99.75 99.87 99.34

R2L 91.32 96.44 90.39 93.31

U2R 42.83 75.02 42.85 54.45

To investigate the effect of ADL algorithm on the classifier performance at different θ
values, parametric analysis of θ was carried out on selected datasets. The output efficiency
of the model was determined by comparing the accuracy of the classifier at different values
of θ. From the experimental results, θ can affect the accuracy of the classifier by adjusting
the dimensionality of feature extraction. When θ was set to [0.1, 0.5], the SA of the ADL
algorithm improved gracefully. When θ > 0.6, the SA of the ADL algorithm is saturated
and the stability of the ADL algorithm is high.

Through experiements using the NSL-KDD dataset, the performance of the naïve
Bayesian algorithm classifier is greatly improved after processing by the ADL algorithm
(see Table 6). The reason for the smaller performance improvement for the DoS data is that
the main attacks in the network environment come from Dos attacks, so the number of Dos
attacks is larger and better classification can be achieved without feature extraction. R2L
and U2L are relatively small data in the dataset and the performance is greatly improved
after feature extraction. The accuracy of R2L is improved from 84.13% to 91.32%, the
accuracy rate increased from 91.23% to 96.44%, the accuracy rate of U2L increased from
28.49% to 43.83%, and the accuracy rate increased from 66.88% to 75.02%.

Based on the CFS method, the data features of the subset are extracted using specific
measurement indicators, the correlation matrices of different feature subsets are established,
and the function values of the subset matrices are solved to select the best correlation
feature matrix A subset. The results of CFS are shown in Table 7. Next, coding-based
feature extraction methods often use ACE for feature extraction. Thus, for the sake of
comparison, we also present results of ACE in Table 8.

Table 7. Results using the Correlation Feature Selection Algorithm.

Data Type sA (%) sP (%) sR (%) SF1 (%)

Normal 99.58 100 97.2 83.9

DoS 99.76 97.5 99.3 89.7

Probe 99.81 84.7 99.7 91.6

R2L 24.36 55.6 99.7 90.3

U2R 60.17 82.3 99.7 72.08

Algorithms 2023, 16, 288 16 of 18

Table 8. Results using the Asymmetric Convolutional Encoder algorithm.

Data Type sA (%) sP (%) sR (%) SF1 (%)

Normal 99.58 100 99.64 99.82

DoS 99.76 100 99.81 99.90

Probe 99.81 100 99.32 96.61

R2L 24.36 100 88.36 93.83

U2R 10.17 41.32 47.23 44.08

The experimental results show that the proposed ADL algorithm together with the
NB algorithm (see Table 6) has a greater improvement in the classification accuracy of R2L
and U2R compared to the ACE algorithm, and the overall performance of the algorithm
is also better. This indicates that the algorithm is more efficient in intrusion detection for
small sample data. Also, the use of encoders is avoided, as is the possibility of increased
computational complexity. However, the sF1 of the ADL algorithm is relatively low and
could be improved in future work.

Results showed that the classification accuracy of the ADL algorithm increased as θ
increased in [0.1, 0.5]. The accuracy tends to saturate when θ is greater than 0.6, demonstrat-
ing the stability and feasibility of the proposed ADL algorithm. Meanwhile, comparison
results proved that the ADL algorithm is better than the CFS feature extraction algorithm
when the amount of sample data is large. Compared with the ACE feature extraction
algorithm, the ADL algorithm improves the classification accuracy of R2L and U2R.

5. Conclusions

This paper proposes an adaptive deep learning algorithm that determines the number
of hidden layers and neurons of a neural network by extracting the dimension of the
original data. By setting parameters to balance the detection time and output accuracy,
the proposed ADL algorithm can adapt to different network environments and network
sizes. Moreover, by combining the ADL algorithm with traditional machine learning
algorithms, they can effectively discriminate between large ranges of network traffic,
improve the accuracy of intrusion detection, converge faster, and reduce detection time
significantly. In particular, Naïve Bayes classification produces the worst performance
as compared to KNN, DT and BPNN. After adding the proposed ADL to Naïve Bayes
classification, its performance can be improved significantly. For example, the accuracy of
R2L is improved from 84.13% to 91.32%, the accuracy rate increased from 91.23% to 96.44%,
the accuracy rate of U2L increased from 28.49% to 43.83%, and the accuracy rate increased
from 66.88% to 75.02%. The proposed ADL algorithm can also improve the performance of
the other three traditional classifiers to different extent. For future work, a real-time packet
capture platform can be adopted for analysis and further optimisation of the proposed
ADL algorithm.

For future work, a real-time packet capture platform can be set up for further analysis
and optimisation of the proposed ADL algorithm. In particular, the experiment utilised
a combination of deep neural networks and traditional machine learning algorithms,
with specific parameters set for different network sizes to reduce the training time of the
network. However, the current process of parameter learning is resource-intensive in
terms of computational power and computational time, and future research could optimise
the learning time of parameters and the requirement for hardware computational power.
In addition, to study the complex data patterns and low footprint stealth attacks of the
contemporary network traffic, we plan to verify the performance of our proposed ADL
algorithm using the UNSW-NB15 dataset [27].

Algorithms 2023, 16, 288 17 of 18

Author Contributions: Conceptualization, X.J.L. and M.M.; methodology, M.M.; software, Y.S. and
M.M.; validation, Y.S., M.M. and X.J.L.; formal analysis, Y.S., M.M. and X.J.L.; writing—original draft
preparation, X.J.L.; writing—review and editing, X.J.L. and M.M.; supervision, M.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, Y.; Wang, L.; Xiang, Y. Power System Reliability Analysis With Intrusion Tolerance in SCADA Systems. IEEE Trans. Smart

Grid 2016, 7, 669–683. [CrossRef]
2. Nguyen, T.N.; Liu, B.-H.; Nguyen, N.P.; Chou, J.-T. Cyber Security of Smart Grid: Attacks and Defenses. In Proceedings of the

ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020.
3. Harvey, M.; Long, D.; Reinhard, K. Visualizing NISTIR 7628, Guidelines for Smart Grid Cyber Security. In Proceedings of the

2014 Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 28 February–1 March 2014; pp. 1–8.
4. Zhang, H.; Liu, B.; Wu, H. Smart Grid Cyber-Physical Attack and Defense: A Review. IEEE Access 2021, 9, 29641–29659. [CrossRef]
5. Khan, S.; Kifayat, K.; Bashir, A.K.; Gurtov, A.; Hassan, M. Intelligent intrusion detection system in smart grid using computational

intelligence and machine learning. Trans. Emerg. Telecommun. Technol. 2021, 32, e4062. [CrossRef]
6. Meng, W.; Ma, R.; Chen, H.-H. Smart grid neighborhood area networks: A survey. IEEE Netw. 2014, 28, 24–32. [CrossRef]
7. Khoei, T.T.; Slimane, H.O.; Kaabouch, N. A Comprehensive Survey on the Cyber-Security of Smart Grids: Cyber-Attacks,

Detection, Countermeasure Techniques, and Future Directions. arXiv 2022, arXiv:2207.07738.
8. Ding, J.; Qammar, A.; Zhang, Z.; Karim, A.; Ning, H. Cyber Threats to Smart Grids: Review, Taxonomy, Potential Solutions, and

Future Directions. Energies 2022, 15, 6799. [CrossRef]
9. Vaidya, B.; Makrakis, D.; Mouftah, H.T. Device authentication mechanism for Smart Energy Home Area Networks. In Proceedings

of the 2011 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 9–12 January 2011; pp. 787–788.
10. Bae, H.-S.; Lee, H.-J.; Lee, S.-G. Voice recognition based on adaptive MFCC and deep learning. In Proceedings of the 2016 IEEE

11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 5–7 June 2016; pp. 1542–1546.
11. Nicanfar, H.; Jokar, P.; Beznosov, K.; Leung, V.C.M. Efficient Authentication and Key Management Mechanisms for Smart Grid

Communications. IEEE Syst. J. 2014, 8, 629–640. [CrossRef]
12. Hao, J.; Kang, E.; Sun, J.; Wang, Z.; Meng, Z.; Li, X.; Ming, Z. An Adaptive Markov Strategy for Defending Smart Grid False Data

Injection From Malicious Attackers. IEEE Trans. Smart Grid 2018, 9, 2398–2408. [CrossRef]
13. Cui, J.; Long, J.; Min, E.; Mao, Y. WEDL-NIDS: Improving network intrusion detection using word embedding-based deep

learning method. In MDAI 2018: Modeling Decisions for Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 283–295.

14. Song, C.; Sun, Y.; Han, G.; Rodrigues, J.J.P.C. Intrusion detection based on hybrid classifiers for smart grid. Comput. Electr. Eng.
2021, 93, 107212. [CrossRef]

15. Hu, H.; Doufexi, A.; Armour, S.; Kaleshi, D. A Reliable Hybrid Wireless Network Architecture for Smart Grid Neighbourhood
Area Networks. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco,
CA, USA, 19–22 March 2017; pp. 1–6.

16. Gobena, Y.; Durai, A.; Birkner, M.; Pothamsetty, V.; Varakantam, V. Practical architecture considerations for Smart Grid WAN
network. In Proceedings of the 2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ, USA, 20–23 March 2011;
pp. 1–6.

17. Mohi-ud-din, G. “NSL-KDD”, IEEE Dataport, Published by IEEE, USA. Available online: https://dx.doi.org/10.21227/425a-3e55
(accessed on 29 December 2018).

18. Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A Deep Learning Approach to Network Intrusion Detection. IEEE Trans. Emerg. Top.
Comput. Intell. 2018, 2, 41–50. [CrossRef]

19. Dong, S.; Wang, P.; Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 2022, 40, 100379. [CrossRef]
20. Jan, S.U.; Ahmed, S.; Shakhov, V.; Koo, I. Toward a Lightweight Intrusion Detection System for the Internet of Things. IEEE Access

2019, 7, 42450–42471. [CrossRef]
21. Karimipour, H.; Dehghantanha, A.; Parizi, R.M.; Choo, K.-K.R.; Leung, H. A Deep and Scalable Unsupervised Machine Learning

System for Cyber-Attack Detection in Large-Scale Smart Grids. IEEE Access. 2019, 7, 80778–80788. [CrossRef]
22. Takiddin, A.; Ismail, M.; Zafar, U.; Serpedin, E. Deep Autoencoder-Based Anomaly Detection of Electricity Theft Cyberattacks in

Smart Grids. IEEE Syst. J. 2022, 16, 4106–4117. [CrossRef]
23. Inayat, U.; Zia, M.F.; Mahmood, S.; Berghout, T.; Benbouzid, M. Cybersecurity Enhancement of Smart Grid: Attacks, Methods,

and Prospects. Electronics 2022, 11, 3854. [CrossRef]
24. Zhou, F.; Wen, G.; Ma, Y.; Geng, H.; Huang, R.; Pei, L.; Yu, W.; Chu, L.; Qiu, R. A Comprehensive Survey for Deep-Learning-Based

Abnormality Detection in Smart Grids with Multimodal Image Data. Appl. Sci. 2022, 12, 5336. [CrossRef]

http://doi.org/10.1109/TSG.2015.2439693
http://dx.doi.org/10.1109/ACCESS.2021.3058628
http://dx.doi.org/10.1002/ett.4062
http://dx.doi.org/10.1109/MNET.2014.6724103
http://dx.doi.org/10.3390/en15186799
http://dx.doi.org/10.1109/JSYST.2013.2260942
http://dx.doi.org/10.1109/TSG.2016.2610582
http://dx.doi.org/10.1016/j.compeleceng.2021.107212
https://dx.doi.org/10.21227/425a-3e55
http://dx.doi.org/10.1109/TETCI.2017.2772792
http://dx.doi.org/10.1016/j.cosrev.2021.100379
http://dx.doi.org/10.1109/ACCESS.2019.2907965
http://dx.doi.org/10.1109/ACCESS.2019.2920326
http://dx.doi.org/10.1109/JSYST.2021.3136683
http://dx.doi.org/10.3390/electronics11233854
http://dx.doi.org/10.3390/app12115336

Algorithms 2023, 16, 288 18 of 18

25. Berghout, T.; Benbouzid, M.; Muyeen, S.M. Machine learning for cybersecurity in smart grids: A comprehensive review-based
study on methods, solutions, and prospects. Int. J. Crit. Infrastruct. Prot. 2022, 38, 100547. [CrossRef]

26. Jithish, J.; Alangot, B.; Mahalingam, N.; Yeo, K.S. Distributed Anomaly Detection in Smart Grids: A Federated Learning-Based
Approach. IEEE Access 2023, 11, 7157–7179. [CrossRef]

27. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia,
10–12 November 2015; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ijcip.2022.100547
http://dx.doi.org/10.1109/ACCESS.2023.3237554

	Introduction
	Related Work
	Classification Algorithms
	Feature Extraction Methods

	Proposed Adaptive Deep Learning
	Results and Discussion
	Preprocessing of Data
	Performance Evaluation
	Two-Class Machine Learning Model
	Multi-Class Machine Learning Model

	Conclusions
	References

