
Citation: Scheepers, C.; Engelbrecht,

A. The Porcupine Measure for

Comparing the Performance of

Multi-Objective Optimization

Algorithms. Algorithms 2023, 16, 283.

https://doi.org/10.3390/a16060283

Academic Editor: Roberto

Montemanni

Received: 19 April 2023

Revised: 26 May 2023

Accepted: 28 May 2023

Published: 31 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

The Porcupine Measure for Comparing the Performance of
Multi-Objective Optimization Algorithms
Christiaan Scheepers 1 and Andries Engelbrecht 2,3,*

1 Independent Researcher, Pretoria 0001, South Africa; tiaan.scheepers@gmail.com
2 Department of Industrial Engineering, Computer Science Division, Stellenbosh University, Stellenbosch 7600,

South Africa
3 Center for Applied Mathematics and Bioinformatics, Gulf Unversity of Science and Technology, Hawally

32093, Kuwait
* Correspondence: engel@sun.ac.za

Abstract: In spite of being introduced over twenty-five years ago, Fonseca and Fleming’s attainment
surfaces have not been widely used. This article investigates some of the shortcomings that may have
led to the lack of adoption of this performance measure. The quantitative measure based on attain-
ment surfaces, introduced by Knowles and Corne, is analyzed. The analysis shows that the results
obtained by the Knowles and Corne approach are influenced (biased) by the shape of the attainment
surface. Improvements to the Knowles and Corne approach for bi-objective Pareto-optimal front
(POF) comparisons are proposed. Furthermore, assuming M objective functions, an M-dimensional
attainment-surface-based quantitative measure, named the porcupine measure, is proposed for com-
paring the performance of multi-objective optimization algorithms. A computationally optimized
version of the porcupine measure is presented and empirically analyzed.

Keywords: multi-objective optimization; performance analysis; attainment surface

1. Introduction

First introduced by Fonseca and Fleming [1], attainment surfaces provide researchers in
multi-objective optimization with a means to accurately visualize the region dominated by
a Pareto-optimal front (POF). In many studies, approximated Pareto optimal fronts (POFs)
are shown by joining the non-dominated solutions using a curve. Fonseca and Fleming
reasoned that it is not correct to use a curve to join these non-dominated solutions. The
use of a curve creates a false impression that intermediate solutions exist between any two
non-dominated solutions. In reality, there is no guarantee that any intermediate solutions
exist. Fonseca and Fleming suggested that, instead of a curve, the non-dominated solutions
can be used to create an envelope that separates the dominated and non-dominated spaces.
The envelope formed by the non-dominated solutions is referred to as an attainment surface.

Despite being proposed in 1995, attainment surfaces have not seen wide use in the
comparison of multi-objective algorithms (MOAs). Instead, the well-known hypervolume
[2,3], inverted generational distance [4,5] and its improvements [6], and spread [7] measures
are frequently used to quantify and to compare the quality of approximated POFs. This
study provides an analysis of the shortcomings of attainment surfaces as a multi-objective
performance measure. Specifically, the attainment-surface-based measure proposed by
Knowles and Corne [8] is analyzed. Improvements to Knowles and Corne’s approach for
bi-objective optimization problems are developed and analyzed in this paper. Addition-
ally, an M-dimensional (where M is the number of objectives) attainment-surface-based
quantitative measure, named the porcupine measure, is proposed and analyzed.

The porcupine measure provides a way to quantify the ratio of the Pareto front when
one algorithm performs statistically significantly better than another algorithm. The objec-
tive of this paper is to introduce this new attainment-surface-based measure and to illustrate

Algorithms 2023, 16, 283. https://doi.org/10.3390/a16060283 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16060283
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0242-3539
https://doi.org/10.3390/a16060283
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16060283?type=check_update&version=1

Algorithms 2023, 16, 283 2 of 28

its applicability. For this purpose, the measure is applied to compare the performance of
arbitrary selected MOAs on a set of multi-objective optimization benchmark problems.
Note that the focus is not on an extensive comparison of multi-objective algorithms but
rather on validating the use of the porcupine measure as a statistically sound mechanism
to compare MOAs.

The remainder of this paper is organized as follows. Section 2 introduces multi-
objective optimization along with the definitions used throughout this paper. Section 3
presents the background and related work. Next, 2-dimensional attainment surfaces are
introduced in Section 4, followed by a weighted approach to produce attainment surfaces
in Section 5. The generalization to M dimensions is provided in Section 6. Finally, the
conclusions are given in Section 7.

2. Definitions

Without loss of generality, assuming minimization, a multi-objective optimization problem
(MOP) with M objectives is of the form

minimize ~f (~x) = (f1(~x), f2(~x), . . . , fM(~x)) (1)

with ~x ∈ F , fm : Rn → R for all m ∈ {1, . . . , M}, and where F ⊂ Rn is the feasible space
as determined by constraints; n is the dimension of the search space, and M is the number
of objective functions.

The following definitions are used throughout this paper.

Definition 1. (Domination) : A decision vector ~x1 ∈ F dominates a decision vector ~x2 ∈ F
(denoted by ~x1 ≺ ~x2) if and only if fm(~x1) ≤ fm(~x2) ∀ m ∈ {1, . . . , M} and ∃ m ∈ {1, . . . , M}
such that fm(~x1) < fm(~x2).

Definition 2. (Pareto optimal): A decision vector ~x1 ∈ F is said to be Pareto optimal if no
decision vector ~x2 ∈ F exists such that ~x2 ≺ ~x1.

Definition 3. (Pareto-optimal set): A set P = {~x1 ∈ F | @ ~x2 ∈ F : ~x2 ≺ ~x1}, where
P ⊆ Rn, is referred to as the Pareto-optimal solutions (POS).

Definition 4. (Approximated Pareto-optimal front): A set Q = {~f = (f1(~x∗), f2(~x∗), . . . , fM(~x∗)), ∀~x∗ ∈
P}, where Q ⊆ RM, is referred to as an approximation for the true POF

Definition 5. (Nadir objective vector): A vector that represents the upper bound of each objective
in the entire POF is referred to as a nadir point.

3. Background and Related Work

Fonseca and Fleming [1] suggested that the non-dominated solutions that make up
the approximated POF be used to construct an attainment surface. The attainment surface’s
envelope is defined as the boundary in the objective space that separates those points that
are dominated by, or equal to, at least one of the non-dominated solutions that make up the
approximated POF from those points for which no non-dominated solution dominates or
equals. Figure 1 depicts an attainment surface and the corresponding approximated POF.

The attainment surface envelope is identical to the envelope used during the calcu-
lation of the hypervolume metric [2,3]. In contrast to the hypervolume calculation, in
the case of an attainment surface, the envelope is not used directly in the calculation of
a performance metric. Instead, the attainment surface can be used to visually compare
algorithms’ performance by plotting the attainment surfaces for both algorithms.

For stochastic algorithms, variations in the performance over multiple runs (also
referred to as samples) are expected. Fonseca and Fleming [1] described a procedure to gen-
erate an attainment surface that represents a given algorithm’s performance over multiple
independent runs. The attainment surface for multiple independent runs is computed by

Algorithms 2023, 16, 283 3 of 28

first determining the attainment surface for each run’s approximated POF. Next, a number
of random imaginary lines is chosen, pointing in the direction of improvement for all the
objectives. For each line, the points of intersection with each of the lines and the attainment
surfaces are calculated. Figure 2a,b depict three attainment surfaces with intersection lines
and intersection points.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)
(b)

Figure 1. Example Pareto-optimal front and attainment surface. (a) An approximated Pareto-optimal
front. (b) Attainment surface.

f1

f2

(a)

f1

f2

(b)

f1

f2

Algorithm 1

Algorithm 2

(c)
Figure 2. Attainment surfaces. (a) Example attainment surfaces with intersection lines. (b) Example
attainment surfaces with unequally spread intersection lines. (c) Grand attainment surface.

For each line, the intersection points can be seen as a sample distribution that is uni-
dimensional and can thus be strictly ordered. By calculating the median for each of the
sample distributions, the objective vectors that are likely to be attained in exactly 50% of
the runs can be identified. The envelope formed by the median points is known as the 50%
grand attainment surface. Similar to how the median is used to construct the 50% grand
attainment surface, the lower and upper quantiles (25th and 75th percentiles) are used to
construct the 25% and 75% grand attainment surfaces.

Algorithms 2023, 16, 283 4 of 28

The sample distribution approach can also be used to compare performance between
algorithms. In order to compare two algorithms, two sample distributions—one for each of
the algorithms—are calculated per intersection line. Standard non-parametric statistical
test procedures can then be used to determine if there is a statistically significant difference
between the two sample distributions. Using the statistical test results, a combined grand
attainment surface, as depicted in Figure 2c, can be constructed, showing the regions where
each of the algorithms outperforms the other. Fonseca and Fleming [1] suggested that
suitable test procedures include the median test, its extensions to other quantiles, and tests
of the Kolmogorov–Smirnov type [9].

Knowles and Corne [8] extended the work carried out by Fonseca and Fleming and
used attainment surfaces to quantify the performance of their Pareto archives evolution
strategy (PAES) algorithm. Knowles and Corne identified four variables in the approach
proposed by Fonseca and Fleming, namely:

• How many comparison lines should be used;
• Where the comparison lines should go;
• Which statistical test should be used to compare the univariate distribution;
• In what form should the results be presented.

From their empirical analysis, Knowles and Corne found that at least 1000 lines should
be used. In order to generate the intersection lines, the minimum and maximum values for
each objective over the non-dominated solutions were found. The objective values were
then normalized according to the minimum and maximum values into the range [0, 1].
Intersection lines were then generated as equally spread lines from the origin rotated from
(0, 1) to (1, 0), effectively rotating 90°, covering the complete approximated POF.

For M-dimensional problems, where the number of objectives is M > 2, Knowles and
Corne suggested using a grid-based approach where points are spread equally on the M,
(M − 1)-dimensional hyperplanes. Each hyperplane corresponds to an objective value
fixed at the value 1.0. The intersection lines are drawn from the origin to these equally
distributed points. In the case of 3-dimensional problems, a 6× 6 grid would result in
108 (3× 6× 6) points and, thus, 108 intersection lines. Similarly, using a 16× 16 grid on a
3-dimensional problem would result in 768 intersection lines, and so forth.

For statistical significance testing, Knowles and Corne used the Mann–Whitney U
test [9] with a significance level of α = 0.05.

Finally, Knowles and Corne found that a convenient way to report the comparison
results was to use simple value pairs [a, b], hereafter referred to as the Knowles-Corne
measure (KC), where a gives the percentage of space for which algorithm A was found to
be statistically superior to algorithm B, and b gives the percentage where algorithm B was
found to be statistically superior to algorithm A. It can be noted that 100− (a + b) gives
the percentage where neither algorithm was found to be statistically superior to the other.

Knowles and Corne [8] generalized the definition of the comparison to compare more
than two algorithms. For K algorithms, the above comparison is carried out for all (K

2)
algorithm pairs. For each algorithm, k, two percentages are reported: ak, which is the region
where algorithm k was not worse than any other algorithm, and bk, which is the region
where algorithm k performed better than all the other (K− 1) algorithms. Note that ak ≥ bk
because the region described by bk is contained in the region described by ak.

Knowles and Corne [10] found that visualization of attainment surfaces in three di-
mensions is difficult due to the intersection lines not being evenly spread. As an alternative,
Knowles presented an algorithm inspired by the work conducted by Smith et al. [11] to
visually draw summary attainment surfaces using axis-aligned lines. The algorithm was
found to be particularly well suited for drawing 3-dimensional attainment surfaces.

Fonseca et al. [12] continued work on attainment surfaces by introducing the empirical
attainment function (EAF). The EAF is a mean-like, first-order moment measure of the
solutions found by a multi-objective optimiser. The EAF allows for intuitive visual compar-
isons between bi-objective optimization algorithms by plotting the solution probabilities as

Algorithms 2023, 16, 283 5 of 28

a heat map [13]. Fonseca et al. [14] studied the use of the second-order EAF, which allows
for the pairwise relationship between random Pareto-set approximations to be studied.

It should be noted that calculation of the EAF for three or more dimensions is not
trivial [15]. Efficient algorithms to calculate the EAF for two and three dimensions have
been proposed in [15]. Tušar and Filipič [16] developed approaches to visualize the EAFs
in two and three dimensions.

4. Regarding 2-Dimensional Attainment Surfaces

The attainment surface calculation approach developed by Fonseca and Fleming [1]
did not describe in detail how the intersection lines should be generated. Instead, it was
only stated that a random number of intersection lines, each pointing in the direction of
improvement for all the objectives, should be used. This approach worked well to construct
a visualization of the attainment surface.

When Knowles and Corne [8] extended the intersection line approach to develop a
quantitative comparison measure, they needed the lines to be equally distributed. If the
lines were not equally distributed, as depicted in Figure 2b, certain regions of the attainment
surface would contribute more than others, leading to misleading results.

Figure 3 depicts two example attainment surfaces with rotation-based intersection lines.
Figure 3a depicts a concave attainment surface. Visually, the rotation-based intersection
lines look to be equally distributed. Figure 3b, however, depicts a convex attainment
surface. Visually, the length of the attainment surface between the intersection lines is
larger in the regions closer to the objective axis than in the middle regions. Clearly, the
rotation-based intersection lines are not equally spaced for convex-shaped fronts when
comparing the length of the attainment surface represented by each intersection line.

0.0

0.4

0.8

1.2

0.0 0.4 0.8 1.2

f1(x)

f 2
(x

)

(a)

0.0

0.4

0.8

1.2

0.0 0.4 0.8 1.2

f1(x)

f 2
(x

)

(b)
Figure 3. Attainment surfaces with rotation-based intersection lines. (a) Concave POF. (b) Convex POF.

In order to address the unequal spacing of the rotation-based intersection lines, a new
approach to placing the intersection lines is proposed in this paper. To compensate for the
shape of the front, the intersection lines can be generated either inwardly or outwardly
positioned on a line, running from the extreme values of the attainment surface, based on
the shape of the attainment surfaces being compared. Figure 4 depicts the inward and
outward intersection line approaches for a convex shaped front. The regions are clearly
more equally spread for the inward intersection line approach.

However, the direction of the intersection lines is less desirable for comparison pur-
poses. At the edges, the intersection lines are parallel with the opposite objective’s axis.
Intuitively, it is more desirable that the intersection lines should be parallel to the closest
objective’s axis. Another disadvantage of the inward and outward approaches is that the
approach to be selected depends on the shape of the front, which is typically unknown. For
attainment surfaces that are not fully convex or concave, neither approach is suitable.

An alternative approach, referred to as attainment-surface-shaped intersection lines
(ASSIL) in this paper, is to generate the intersection lines along the shape of the attainment
surface. In order to equally spread the intersection lines, the Manhattan distance is used to

Algorithms 2023, 16, 283 6 of 28

calculate equal spacings for the intersection lines along the attainment surface. Figure 5
depicts the Manhattan distance calculation between two points on the approximated POF,
which is~q3 and~q1 in this case. ASSIL can be generated using Algorithm 1.

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0

f1(x)

f 2
(x

)

(a)

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

f1(x)

f 2
(x

)

(b)
Figure 4. Attainment surfaces with outward/inward intersection lines. (a) Inward. (b) Outward.

f1

f2

q31 − q11

q12 − q32

~q1 = (q11, q12)

~q2 = (q21, q22)

~q3 = (q31, q32)

~q4 = (q41, q42)

Figure 5. Attainment surface with Manhattan distance calculations.

Algorithm 1 Attainment-surface-shaped intersection line (ASSIL) generation.

1: Input: The optimal POF, Q = {~qi : i ∈ {1, . . . , I}} with I solutions and ~qi = (qi1, qi2)
2: Output: An attainment surface
3: Sort Q in ascending order by qi1
4: i← 1
5: Let N be the desired number of intersection lines
6: for in ← 1, . . . , N do
7: d← (in − 1)× (qI1−q11)+(q12−qI2)

N−1
8: while d < (qi1 − q11) + (q12 − qi2) do
9: i← i + 1

10: end while
11: if d = (qi1 − q11) + (q12 − qi2) then
12: ~̂q← ~qi
13: else if d ≤ (q(i+1)1 − q11) + (q12 − qi2) then
14: ~̂q← (q11 + (d− (q12 − qi2)), qi2)
15: else
16: ~̂q← (q(i+1)1, q12 − (d− (q(i+1)1 − q11)))
17: end if
18: θ ← iN−1

N−1 ×
π
2

19: From← (q̂1 − sin θ, q̂2 − cos θ)
20: To ← (q̂1 + sin θ, q̂2 + cos θ)

// Finally, draw the generated intersection line
21: drawIntersectionLine(From, To)
22: end for

Algorithms 2023, 16, 283 7 of 28

Intersection lines are spaced equally along the attainment surface. The intersection
lines are rotated incrementally such that the intersection lines at the ends of the attainment
surface are parallel to the objective axis.

Figure 6 depicts the attainment-surface-shaped intersection line approach. The gener-
ation of the intersection lines along the shape of the attainment surface allows for an equal
spacing of the intersection lines independent of the shape of the front. For all shapes that
the attainment surface can assume, whether convex, concave, or mixed, the intersection
lines are equally spread out.

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

f1(x)

f 2
(x

)

(a)

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

f1(x)

f 2
(x

)

(b)

Figure 6. Attainment surfaces with unbiased ASSIL. (a) Convex POF. (b) Concave POF.

The KC measure is calculated as shown in Algorithm 2.

Algorithm 2 Algorithm for the calculation of the KC measure.

1: Input: Intersection lines for algorithms A and B to be compared
2: Output: The KC measure
3: Let total = 0
4: Let winsA = 0
5: Let winsB = 0
6: for each intersection line l do
7: Let O be the strict ordering of the intersection points for algorithms A and B on

intersection line l
8: Let OA ⊂ O be the ordering of the intersection points for algorithm A on intersection

line l
9: Let OB ⊂ O be the ordering of the intersection points for algorithm B on intersection

line l
10: if OA is statistically significantly less than OB then
11: winsA = winsA + 1
12: else if OB is statistically significantly less than OA then
13: winsB = winsB + 1
14: end if
15: total = total + 1
16: end for
17: Return [100winsA

total , 100winsB
total]

An evaluation of the rotation-based and random intersection line approaches is pre-
sented using six artificially generated POF test cases based on those used by Knowles and
Corne [8]. Figure 7 depicts the six artificially generated POF test cases. Each of these artifi-
cially generated POF test cases was tested using six pof shape geometries, namely concave,
convex, linear, mixed, and disconnected geometries. Figure 8 depicts the five POF shape
geometries.

Table 1 summarises the true KC, the KC with rotation-based and random intersection
lines, and the KC with ASSIL results. Values in red indicate attainment surfaces obtained
that outperformed the control method (i.e., the true KC measure) by more than 5%, while

Algorithms 2023, 16, 283 8 of 28

values in blue indicate attainment surfaces that were found that were 5% worse than the
control method. For each of the approaches, 1000 intersection lines were used for the
calculation.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(b)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(c)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(d)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(e)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(f)
Figure 7. Test case Pareto-optimal fronts. Dots represent algorithm A, and triangles represent
algorithm B. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(b)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(c)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(d)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(e)
Figure 8. Test case Pareto-optimal front geometries. (a) Concave. (b) Convex. (c) Linear. (d) Mixed.
(e) Disconnected.

As expected, the ASSIL generation approach produced results much closer to the true
KC measure: the closer the POFs being compared are to the true POF, the more accurate
the comparison using the ASSIL generation approach becomes.

Tables 2 and 3 present a comparison of the varying results obtained from using the
various intersection line generation approaches. Results comparing the vector evalu-
ated particle swarm optimization (VEPSO) [17], optimized multi-objective particle swarm
optimization (OMOPSO) [18], and speed-constrained multi-objective particle swarm opti-
mization (SMPSO) [19] algorithms using the Zitzler-Deb-Thiele (ZDT) [20] and Walking
Fish Group (WFG) [21] test sets are presented. The choice of algorithms was arbitrary and
only for illustrative purposes. Results were obtained over 30 independent runs. For more

Algorithms 2023, 16, 283 9 of 28

details on the algorithms and parameters used, the interested reader is referred to [22]. The
characteristics of the problems are summarized in Table 4.

Table 1. Comparison of the results of KC measure with ASSIL; blue indicates performance of 5%
worse than the competing algorithm, and red indicates performance of 5% better than the competing
algorithm.

Case Geometry True
Intersection Line Generation Approach

Rotation-Based Random ASSIL

Case 1

Concave (73.27, 26.73) (71.00, 29.00) (76.80, 23.20) (73.20, 26.80)

Convex (70.37, 29.63) (85.10, 14.90) (85.60, 14.40) (70.30, 29.70)

Line (70.00, 30.00) (74.60, 25.40) (79.30, 20.70) (70.00, 30.00)

Mixed (69.67, 30.33) (73.20, 26.80) (82.10, 17.90) (69.80, 30.20)

Disconnected (77.50, 22.50) (82.70, 17.30) (86.90, 13.10) (77.50, 22.50)

Case 2

Concave (50.00, 50.00) (41.00, 59.00) (67.60, 32.40) (50.00, 50.00)

Convex (86.60, 13.40) (83.00, 17.00) (96.40, 3.60) (86.60, 13.40)

Line (66.67, 33.33) (59.00, 41.00) (81.30, 18.70) (66.60, 33.40)

Mixed (66.99, 33.01) (59.60, 40.40) (81.60, 18.40) (66.90, 33.10)

Disconnected (60.00, 40.00) (51.60, 48.40) (75.80, 24.20) (60.00, 40.00)

Case 3

Concave (79.21, 20.79) (73.80, 26.20) (92.60, 7.40) (79.20, 20.80)

Convex (97.81, 2.19) (97.20, 2.80) (99.90, 0.10) (97.80, 2.20)

Line (86.67, 13.33) (83.00, 17.00) (96.50, 3.50) (86.60, 13.40)

Mixed (88.01, 11.99) (84.80, 15.20) (95.60, 4.40) (87.90, 12.10)

Disconnected (90.00, 10.00) (87.30, 12.70) (97.60, 2.40) (90.00, 10.00)

Case 4

Concave (50.00, 50.00) (50.00, 50.00) (49.00, 51.00) (50.00, 50.00)

Convex (50.00, 50.00) (50.00, 50.00) (50.60, 49.40) (50.00, 50.00)

Line (50.00, 50.00) (50.00, 50.00) (54.00, 46.00) (50.00, 49.90)

Mixed (55.71, 44.29) (54.30, 45.70) (50.70, 49.30) (55.70, 44.30)

Disconnected (69.14, 30.86) (73.00, 27.00) (77.80, 22.20) (69.10, 30.90)

Case 5

Concave (50.00, 50.00) (50.00, 50.00) (49.50, 50.50) (50.00, 50.00)

Convex (50.00, 50.00) (50.00, 50.00) (50.40, 49.60) (50.00, 50.00)

Line (50.00, 50.00) (50.00, 50.00) (49.20, 50.80) (50.00, 50.00)

Mixed (45.56, 54.44) (45.30, 54.70) (43.40, 56.60) (45.60, 54.40)

Disconnected (45.43, 54.57) (45.00, 55.00) (45.40, 54.60) (45.40, 54.60)

Case 6

Concave (50.00, 50.00) (50.00, 50.00) (48.00, 52.00) (50.00, 50.00)

Convex (50.00, 50.00) (50.00, 50.00) (49.50, 50.50) (50.00, 50.00)

Line (50.00, 50.00) (50.00, 50.00) (49.30, 50.70) (50.00, 50.00)

Mixed (42.47, 57.53) (42.90, 57.10) (37.70, 62.30) (42.50, 57.50)

Disconnected (45.00, 55.00) (44.70, 55.30) (44.10, 55.90) (45.00, 55.00)

Algorithms 2023, 16, 283 10 of 28

Table 2. Intersection line comparison between VEPSO (V), SMPSO (S), and OMOPSO (O); blue
indicates performance of 5% worse than the competing algorithm, and red indicates performance of
5% better than the competing algorithm.

Problem Intersections V vs. O V vs. S S vs. O

ZDT1

Rotational (14.9, 66.4) (6.1, 80.6) (79.4, 1.1)
Inward (25.6, 55.5) (13.8, 65.4) (70.2, 3.9)
Outward (19.8, 62.7) (8.7, 75.6) (77.3, 1.6)
ASSIL (22.5, 60.1) (11.4, 72.2) (72.5, 4.3)

Table 2. Cont.

Problem Intersections V vs. O V vs. S S vs. O

ZDT2

Rotational (8.4, 64.3) (2.9, 73.6) (58.9, 3.9)
Inward (8.0, 63.4) (2.0, 74.3) (56.3, 0.9)
Outward (10.4, 62.7) (4.2, 70.5) (60.1, 5.7)
ASSIL (9.0, 63.9) (3.4, 72.6) (60.0, 3.8)

ZDT3

Rotational (13.4, 77.9) (3.9, 90.8) (81.4, 7.3)
Inward (7.1, 61.6) (2.1, 83.2) (72.4, 10.5)
Outward (16.4, 73.2) (4.9, 87.7) (78.4, 8.7)
ASSIL (12.5, 72.9) (3.2, 89.3) (74.8, 9.5)

ZDT4

Rotational (0.0, 99.9) (0.0, 99.9) (99.9, 0.0)
Inward (0.0, 87.9) (0.0, 88.1) (80.9, 0.0)
Outward (0.0, 100.0) (0.0, 100.0) (100.0, 0.0)
ASSIL (0.0, 100.0) (0.0, 97.7) (93.7, 0.0)

ZDT6

Rotational (40.1, 13.3) (15.2, 25.9) (58.9, 11.1)
Inward (64.6, 2.8) (15.6, 35.3) (73.3, 0.7)
Outward (50.6, 7.8) (6.1, 52.9) (64.5, 5.0)
ASSIL (59.4, 4.3) (10.9, 41.8) (52.3, 14.1)

Algorithms 2023, 16, 283 11 of 28

Table 3. Intersection line comparison between VEPSO (V), SMPSO (S), and OMOPSO (O); blue
indicatses performance of 5% worse than the competing algorithm, and red indicates performance of
5% better than the competing algorithm.

Problem Intersections V vs. O V vs. S S vs. O

WFG1

Rotational (0.0, 99.9) (0.2, 96.9) (28.6, 65.8)
Inward (0.0, 100.0) (0.2, 97.6) (38.4, 55.6)
Outward (0.0, 99.9) (0.2, 97.5) (26.6, 68.0)
ASSIL (0.0, 99.9) (0.2, 97.5) (27.2, 67.2)

WFG2

Rotational (0.0, 99.9) (0.0, 99.9) (0.0, 65.5)
Inward (0.0, 100.0) (0.0, 100.0) (0.0, 86.6)
Outward (0.0, 99.9) (0.0, 99.9) (0.0, 63.9)
ASSIL (0.0, 99.9) (0.0, 99.9) (0.0, 73.1)

WFG3

Rotational (0.0, 99.9) (0.0, 99.9) (0.0, 88.8)
Inward (0.0, 100.0) (0.0, 100.0) (0.0, 87.3)
Outward (0.0, 99.9) (0.0, 99.9) (0.0, 89.2)
ASSIL (0.0, 99.9) (0.0, 99.9) (0.0, 88.8)

WFG4

Rotational (0.0, 99.9) (0.0, 99.9) (99.9, 0.0)
Inward (0.0, 100.0) (0.0, 100.0) (100.0, 0.0)
Outward (0.0, 99.9) (0.0, 99.9) (99.9, 0.0)
ASSIL (0.0, 99.9) (0.0, 99.9) (99.9, 0.0)

WFG5

Rotational (16.9, 20.0) (0.1, 62.7) (52.4, 2.0)
Inward (10.1, 21.0) (0.2, 59.8) (39.9, 0.5)
Outward (18.6, 23.4) (0.2, 64.4) (55.0, 2.9)
ASSIL (16.2, 19.1) (0.2, 61.1) (50.3, 1.7)

WFG6

Rotational (25.6, 13.5) (0.0, 99.9) (99.9, 0.0)
Inward (9.9, 13.5) (0.0, 100.0) (100.0, 0.0)
Outward (29.6, 13.7) (0.0, 99.9) (99.9, 0.0)
ASSIL (23.3, 13.7) (0.0, 99.9) (99.9, 0.0)

WFG7

Rotational (0.0, 99.9) (0.0, 99.9) (0.0, 92.7)
Inward (0.0, 100.0) (0.0, 100.0) (0.0, 95.4)
Outward (0.0, 99.9) (0.0, 99.9) (0.0, 92.6)
ASSIL (0.0, 99.9) (0.0, 99.9) (0.0, 93.2)

Table 3. Cont.

Problem Intersections V vs. O V vs. S S vs. O

WFG8

Rotational (0.0, 99.9) (0.0, 99.9) (0.0, 94.6)
Inward (0.0, 100.0) (0.0, 100.0) (0.0, 95.8)
Outward (0.0, 99.9) (0.0, 99.9) (0.0, 94.4)
ASSIL (0.0, 99.9) (0.0, 99.9) (0.0, 95.1)

WFG9

Rotational (8.0, 30.3) (0.0, 99.9) (99.9, 0.0)
Inward (2.6, 41.1) (0.0, 100.0) (100.0, 0.0)
Outward (8.8, 27.9) (0.0, 99.9) (99.9, 0.0)
ASSIL (7.1, 31.5) (0.0, 99.9) (99.9, 0.0)

Algorithms 2023, 16, 283 12 of 28

Table 4. Properties of the ZDT and WFG problems.

Name Separability Modality Geometry

ZDT1 Separable Unimodal Convex
ZDT2 Separable Unimodal Concave
ZDT3 Separable Unimodal/multimodal Disconnected
ZDT4 Separable Unimodal/multimodal Convex
ZDT6 Separable Multimodal Concave
WFG1 Separable Unimodal Convex, mixed
WFG2 Non-separable Unimodal/multimodal Convex, disconnected
WFG3 Non-separable Unimodal Linear, degenerate
WFG4 Separable Multimodal Concave
WFG5 Separable Multimodal Concave
WFG6 Non-separable Unimodal Concave
WFG7 Separable Unimodal Concave
WFG8 Non-separable Unimodal Concave

WFG9 Non-separable Multimodal,
deceptive Concave

Variations in the results between the different intersection line generation approaches
can be seen. ZDT1, ZDT3, ZDT4, and ZDT6 all show variations in the results greater
than 5% for each of the comparisons. WFG1, WFG2, WFG5, WFG6, and WFG9 all show
variations in the results greater than 5% for at least one of the comparisons. The variations
are indicative of the bias towards certain attainment surface shapes shown by the various
intersection line generation approaches.

5. Weighted 2-Dimensional Attainment-Surface-Shaped Intersection Lines

As an alternative to the equally spread intersection lines used by ASSIL, intersection
lines can be generated along the shape of the POF, with at least one intersection line per
attainment surface line segment. Because the attainment surface segments are not all of
equal lengths, a weight is associated with each intersection line to balance the KC measure
result. The weighted attainment-surface-shaped intersection lines (WASSIL) generation
algorithm is given in Algorithm 3.

Figure 9 depicts a convex POF with WASSIL-generated intersection lines. The figure
clearly shows that the intersection lines are positioned along the attainment surface, and
due to the positioning, the lines are angled slightly differently from the intersection lines
in Figure 3b. The WASSIL algorithm should, for the test cases, result in a weighted KC
measure result that matches the true KC measure result.

Note that the weighted KC measure is calculated as shown in Algorithm 4.
Table 5 summarises the true KC measure, the KC measure with rotation-based and

random intersection lines, the KC measure with ASSIL, and the KC measure with WASSIL
results. For each of the approaches, 1000 intersection lines were used for the calculation.

Algorithm 3 Weighted attainment-surface-shaped intersection line (WASSIL) generation.

1: Input: The optimal POF, Q = {~qi : i ∈ {1, . . . , I}} with I solutions and ~qi = (qi1, qi2)
2: Output: An attainment surface
3: for each attainment line segment sl do
4: Let wl = length(sl)
5: Let c be the center of sl

6: Let θ = π(c1+(max(qi2−c2))
2d , for i = 1, . . . , I

7: Let p = (sin θ, cos θ)
8: //Draw the generated intersection line
9: drawIntersectionLineWithWeight(from=c− p,to=c + p,weight=wl)

10: end for

Algorithms 2023, 16, 283 13 of 28

0.0

0.3

0.6

0.9

1.2

0.0 0.3 0.6 0.9 1.2

f1(x)

f 2
(x

)

Figure 9. Convex POF and attainment surface with WASSILs.

Algorithm 4 Weighted KC measure algorithm

1: Input: Intersection lines for algorithms A and B to be compared
2: Output: The weighted KC measure
3: Let wtotal = 0
4: Let winsA = 0
5: Let winsB = 0
6: for each intersection line l do
7: Let wl be the weight associated with l
8: Let O be the strict ordering of the intersection points for algorithms A and B on

intersection line l
9: Let OA ⊂ O be the ordering of the intersection points for algorithm A on intersection

line l
10: Let OB ⊂ O be the ordering of the intersection points for algorithm B on intersection

line l
11: if OA is statistically significantly less than OB then
12: winsA = winsA + wl
13: else if OB is statistically significantly less than OA then
14: winsB = winsB + wl
15: end if
16: wtotal = wtotal + wl
17: end for
18: Return [100winsA

wtotal
, 100winsB

wtotal
]

For POF test cases 1 through 3, only 2 of the 15 measurements using the random
intersection line generation approach had a deviation from the true KC of less than 5%.
Overall, 50% of the measurements using the random intersection line generation approach
had a deviation greater than 5%. This confirms that the random intersection line generation
approach is not well suited for the KC calculation.

Algorithms 2023, 16, 283 14 of 28

Table 5. Comparison of the results of the KC measure with WASSIL; blue indicates performance
of 5% worse than the competing algorithm, and red indicates performance of 5% better than the
competing algorithm.

Case Geometry True Intersection Line Generation Approach
Rotation-Based Random ASSIL WASSIL

Case 1

Concave (73.27, 26.73) (71.00, 29.00) (79.90, 20.10) (73.20, 26.80) (73.27, 26.73)
Convex (70.37, 29.63) (85.10, 14.90) (87.40, 12.60) (70.30, 29.70) (70.37, 29.63)
Line (70.00, 30.00) (74.60, 25.40) (78.80, 21.20) (70.00, 30.00) (70.00, 30.00)
Mixed (69.67, 30.33) (73.20, 26.80) (78.30, 21.70) (69.80, 30.20) (69.67, 30.33)
Disconnected (77.50, 22.50) (82.70, 17.30) (87.60, 12.40) (77.50, 22.50) (77.50, 22.50)

Case 2

Concave (50.00, 50.00) (41.00, 59.00) (67.00, 33.00) (50.00, 50.00) (50.00, 50.00)
Convex (86.60, 13.40) (83.00, 17.00) (97.20, 2.80) (86.60, 13.40) (86.60, 13.40)
Line (66.67, 33.33) (59.00, 41.00) (85.60, 14.40) (66.60, 33.40) (66.67, 33.33)
Mixed (66.99, 33.01) (59.60, 40.40) (82.10, 17.90) (66.90, 33.10) (66.99, 33.01)
Disconnected (60.00, 40.00) (51.60, 48.40) (77.40, 22.60) (60.00, 40.00) (60.00, 40.00)

Case 3

Concave (79.21, 20.79) (73.80, 26.20) (93.20, 6.80) (79.20, 20.80) (79.21, 20.79)
Convex (97.81, 2.19) (97.20, 2.80) (100.00, 0.00) (97.80, 2.20) (97.81, 2.19)
Line (86.67, 13.33) (83.00, 17.00) (96.60, 3.40) (86.60, 13.40) (86.67, 13.33)
Mixed (88.01, 11.99) (84.80, 15.20) (95.70, 4.30) (87.90, 12.10) (88.01, 11.99)
Disconnected (90.00, 10.00) (87.30, 12.70) (97.50, 2.50) (90.00, 10.00) (90.00, 10.00)

Case 4

Concave (50.00, 50.00) (50.00, 50.00) (49.40, 50.60) (50.00, 50.00) (50.00, 50.00)
Convex (50.00, 50.00) (50.00, 50.00) (48.70, 51.30) (50.00, 50.00) (50.00, 50.00)
Line (50.00, 50.00) (50.00, 50.00) (52.30, 47.70) (50.00, 49.90) (50.00, 50.00)
Mixed (55.71, 44.29) (54.30, 45.70) (51.00, 49.00) (55.70, 44.30) (55.71, 44.29)
Disconnected (69.14, 30.86) (73.00, 27.00) (76.70, 23.30) (69.10, 30.90) (69.14, 30.86)

Case 5

Concave (50.00, 50.00) (50.00, 50.00) (48.90, 51.10) (50.00, 50.00) (50.00, 50.00)
Convex (50.00, 50.00) (50.00, 50.00) (47.80, 52.20) (50.00, 50.00) (50.00, 50.00)
Line (50.00, 50.00) (50.00, 50.00) (51.00, 49.00) (50.00, 50.00) (50.00, 50.00)
Mixed (45.56, 54.44) (45.30, 54.70) (43.40, 56.60) (45.60, 54.40) (45.56, 54.44)
Disconnected (45.43, 54.57) (45.00, 55.00) (40.60, 59.40) (45.40, 54.60) (45.43, 54.57)

Case 6

Concave (50.00, 50.00) (50.00, 50.00) (51.70, 48.30) (50.00, 50.00) (50.00, 50.00)
Convex (50.00, 50.00) (50.00, 50.00) (48.60, 51.40) (50.00, 50.00) (50.00, 50.00)
Line (50.00, 50.00) (50.00, 50.00) (51.70, 48.30) (50.00, 50.00) (50.00, 50.00)
Mixed (42.47, 57.53) (42.90, 57.10) (38.50, 61.50) (42.50, 57.50) (42.47, 57.53)
Disconnected (45.00, 55.00) (44.70, 55.30) (42.60, 57.40) (45.00, 55.00) (45.00, 55.00)

The rotation-based intersection line generation approach presented by Knowles and
Corne fared better than the random intersection line generation approach. Only 7 of the
30 measurements using the rotation-based intersection line generation approach had a
deviation greater than 5%. Case 1 with a convex POF fared worse with a deviation of almost
15% for both algorithms. Four of the five case 2 measurements using the rotation-based
intersection line generation approach had a deviation greater than 5%. For the remaining case
2 measurement, a deviation of at least 3% is noted. The results indicate the rotation-based
intersection line generation approach outperformed the random intersection line generation
approach with respect to accuracy. However, the results also indicate that the rotation-based
intersection line generation approach is not well suited for the KC calculation and that the
results vary based on the POF shape and the spread of the solutions.

As expected, the WASSIL generation approach produced results much closer to the
true KC: the closer the approximated POFs being compared are to the true POF, the more
accurate the comparison using theWASSIL generation approach becomes.

6. M-Dimensional Attainment Surfaces

For M-dimensional problems, Knowles and Corne [8] recommended that a grid-based
intersection line generation approach, as explained in Section 3, be used. Similar to the
rotational approach for 2-dimensional problems, the grid-based approach would lead to

Algorithms 2023, 16, 283 15 of 28

unbalanced intersection lines when measuring irregularly shaped POFs. Figure 10 shows
an example of an irregularly shaped 3-dimensional attainment surface.

Section 6.1 discusses the challenges that need to be addressed in order to generate
intersection lines for M-dimensional attainment surfaces. Sections 6.2 and 6.3 introduce
two algorithms to generate M-dimensional attainment surface intersection lines. The
first uses a naive (and computationally expensive) approach that produces all possible
intersection lines. The second is computationally more efficient, considering a minimal
set of intersection lines. Section 6.4 presents a stability analysis of the two proposed
algorithms to show that the computationally efficient approach performs similarly to the
naive approach with respect to comparison accuracy.

q1

q2

q3

~q1 ~q2

~q3

~q4

~q5

~q6

~q7

Figure 10. 3-dimensional attainment surface.

6.1. Generalizing Attainment Surface Intersection Line Generation to M Dimensions

For 2-dimensional problems, the ASSIL approach generates equally spread intersection
lines. Intuitively, generalization of the assil approach for M dimensions requires the
calculation of equally spread points over the M-dimensional attainment surface.

The calculation of equally spread points requires that the surface is divided into
equally sized M − 1-dimensional hypercubes. For the 3-dimensional case, this would
require dividing the attainment surface into equally sized squares. The intersection vectors
would be positioned from the middle of each square. The length of the edges would need
to be set to the greatest common divider of the lengths of the edges that make up the
attainment surface. Even for simple cases, this would lead to an excessive number of
squares. The more squares, the higher the computational cost of the measure.

In order to lower the computational cost of the measure, the number of squares needs
to be reduced. Because the square edge lengths are based on the greatest common divider,
there is no way to reduce the number of squares as long as the squares must be equal in
size. If the square sizes differ, the measure will be biased to areas with smaller squares.
Areas with smaller squares will carry more weight in the calculation because there will be
more of them.

In contrast to the ASSIL approach, the WASSIL approach does not require the inter-
section lines to be equally spread; instead, only a weight factor must be known for each
intersection line. For the 3-dimensional case, the weight factor for each intersection line
is calculated as the area of the squares that make up the attainment surface. The weight
factor for each intersection line is calculated as the area of the square by multiplying the
edge lengths. The weight factor also allows use of rectangles in the 3-dimensional case
(hyper-rectangles in the M-dimensional case) instead of equally sized squares.

6.2. Porcupine Measure (Naive Implementation)

This section presents the naive implementation for the n-dimensional attainment-surface-
based quantitative measurement named the porcupine measure. The naive implementation

Algorithms 2023, 16, 283 16 of 28

uses each of the n-dimensional values from each Pareto-optimal point to subdivide the
attainment surface in each of the dimensions. Figure 11 depicts an example of the subdivision
approach for each of the three dimensions, considering all intersection lines. Figure 12 depicts
the attainment surface, in 3-dimensional space, with the subdivisions visible.

q1

q3

~q1

~q2~q3

~q4

~q5

~q6

~q7

(a)

q1

q2

~q1

~q2

~q3

~q4
~q5

~q6

~q7

(b)

q3

q2

~q1

~q2

~q3

~q4
~q5

~q6

~q7

(c)
Figure 11. Top, front, and side view of attainment surface with naive subdivisions. (a) Top. (b) Front. (c)
Side.

q1

q2

q3

~q1 ~q2

~q3

~q4

~q5

~q6

~q7

Figure 12. A 3-dimensional attainment surface with naive subdivisions.

In addition to the calculation of the hyper-rectangles, the center point and intersection vec-
tor need to be calculated. The naive implementation of the porcupine measure is summarized
in Algorithm 5. For a more detailed algorithm listing, please refer to Appendix A.

Using the intersection lines generated by the above algorithm, two algorithms can
now be compared using a nonparametric statistical test, such as the Mann–Whitney U
test [9]. The porcupine measure is defined, similar to the weighted KC measure, as the
weighted sum of the intersection lines where a statistically significant difference exists
over the sum of all the weights (i.e., the percentage of the surface area of the attainment
surface, as determined by the weights, where one algorithm statistically performs superior
to another).

Algorithms 2023, 16, 283 17 of 28

Algorithm 5 Porcupine measure (naive implementation).

1: Input: The found POF
2: Output: The porcupine attainment surface
3: for each of the objective space basis vectors, mc, do
4: Project the attainment surface parallel to the basis vector, mc, onto the

orthogonal (M− 1)-dimensional subspace
5: Subdivide the projected attainment surface, in each dimension at every

Pareto-optimal point’s dimensional value, into hyper-rectangles
6: for each hyper-rectangle do
7: Let~c be the center point of the hyper-rectangle
8: Let w be the weight of the hyper-rectangle, equal to the product of the

hyper-rectangle’s edge lengths
9: for each dimension in objective space m ∈ {1, . . . , M} do

10: Let minm be the smallest of the mth-dimensional values of all the
Pareto-optimal points where at least one other dimensional value is
less than or equal to that of the corresponding center vector’s dimensional
value

11: Let maxm be the largest of the mth-dimensional values of all the
Pareto-optimal points

12: end for
13: Let ~p be the intersection vector, calculated as pm = cm−minm

maxm −minm
, where

pm is the mth component of the vector ~p, corresponding to the mth objective
function

14: drawIntersectionLineWithWeight (from = c− p, to = c + p, weight = w)
15: end for
16: end for

Figure 13 depicts an attainment surface with subdivisions and intersection vectors
generated using the naive approach. The porcupine measure’s name is derived from the
fact that the intersection vectors resembles the spikes of a porcupine.

q1

q2

q3

~q1 ~q2

~q3

~q4

~q5

~q6

~q7

Figure 13. A 3-dimensional attainment surface with naive subdivisions and intersection vectors.

6.3. Porcupine Measure (Optimized Implementation)

The large number of subdivisions that result from using the naive implementation of
the porcupine measure creates a computationally complex problem when performing the
statistical calculations required by the porcupine measure. To reduce the computational
cost of the porcupine measure, the naive implementation can be optimized by subdividing
the attainment surface only as necessary to accommodate the shape of the attainment
surface. Figure 14 depicts an attainment surface with the subdivision lines (dashed) as
generated by the optimized implementation.

Algorithms 2023, 16, 283 18 of 28

q1

q2

q3

~q1 ~q2

~q3

~q4

~q5

~q6

~q7

Figure 14. A 3-dimensional attainment surface with optimized subdivisions.

Note that the algorithm yields the minimum number of subdivisions such that the
results are independent of the dimension ordering of the Pareto-optimal points. This is by
design to allow for the reproducibility and increased stability of the results.

The optimized implementation of the porcupine measure is summarized in
Algorithm 6. For a more detailed algorithm listing, please refer to Appendix B.

Similar to the naive implementation, the porcupine measure is defined as the weighted
sum of the intersection lines where a statistically significant difference exists over the sum of
all the weights (the percentage of the surface area of the attainment surface, as determined
by the weights, where one algorithm statistically performs superior to another).

Figure 15 depicts an attainment surface with subdivisions and intersection vectors gener-
ated using the optimized implementation. As can be seen in the figure, the optimized imple-
mentation resulted in notably fewer subdivisions and intersection vectors. The lower number of
intersection vectors considerably reduces the computational complexity of the measure.

q1

q2

q3

~q1 ~q2

~q3

~q4

~q5

~q6

~q7

Figure 15. A 3-dimensional attainment surface with optimized subdivisions and intersection vectors.

6.4. Stability Analysis

In order to show that the optimized implementation provides results similar to the
naive implementation, 30 independent runs of each measure were executed. Each measure-
ment run calculated the porcupine measure using the approximated POFs as calculated by
30 independent runs of each of the algorithms being compared. A total of 30× 30 = 900
runs were executed for each algorithm being compared.

Algorithms 2023, 16, 283 19 of 28

Algorithm 6 Porcupine measure (optimized implementation).

1: Input: The found POF
2: Output: The porcupine attainment surface
3: Let~qmax be the nadir vector defined as (max {qs1}, max {qs2}, . . . , max {qsM}) for each

of the known Pareto-optimal points,~qs, of dimension M
4: for each of the objective space basis vectors, mc, do
5: Project the attainment surface parallel to the basis vector, mc, onto the

orthogonal (M− 1)-dimensional subspace
6: for each of the Pareto-optimal points,~qs do,
7: Let ~̂q be the vector with dimensional values set to the minimum dimen-

sional values that are dominated or the corresponding qmax value if no
minimum exists

8: Let Q̂ be the set of all points that dominate ~̂q but not~qs, filtered for
non-dominance

9: for each dimension m do,
10: Let Qm be the set of all the m’th dimensional values of the points in

Q̂ that fall inside the range [qsm, q̂m]
11: end for
12: Let Qmin be the set of all the minimum points that will affect the

calculation of ~p
13: Let Qmax be the set of all the maximum points that will affect the

calculation of ~p
14: Add all dimensional values of the points in Qmin and Qmax that fall

inside the range [qsm, q̂m] to the corresponding Qm set
15: Add additional values to the Qm sets to limit the side lengths to ∆max
16: Subdivide the projected attainment surface in each of the m dimen-

sions at every value in the Qm set into hyper-rectangles
17: for each hyper-rectangle do,
18: Let~c be the center point of the hyper-rectangle
19: Let w be the weight of the hyper-rectangle, equal to the product of

the hyper-rectangle’s edge lengths
20: for each dimension m do
21: Let minm be the smallest of the mth-dimensional values of all the

Pareto-optimal points where at least one other dimensional value
is less than or equal to that of the corresponding center vector’s dimen-
sional value

22: Let maxm is the largest of the mth-dimensional values of all the
Pareto-optimal points

23: end for
24: Let ~p be the intersection vector, calculated as

pm = cm−minm
maxm −minm

, where pm is the mth component of the vector ~p
25: drawIntersectionLineWithWeight (from = c− p, to = c + p, weight = w)
26: end for
27: end for
28: end for

Table 6 lists the results for the algorithm pairs that were compared. The algorithm pairs
are listed without a separator line between them. The results should thus be interpreted
by looking at both lines of the comparison. For each algorithm, the mean, standard
deviation (σ), minimum, and maximum for the naive and optimized implementations of
the porcupine measure with a maximum side length of 0.1 are listed.

The experimental results in [22] show that a maximum side length of 0.1 for the
optimized implementation yielded a good trade-off between accuracy of the results and
performance when compared with the naive implementation.

Statistical testing was performed to determine if there were any statistically significant
differences between the naive and optimized implementations’ results. The Mann–Whitney

Algorithms 2023, 16, 283 20 of 28

U test was used at a significance level of α = 0.05. The purpose of the statistical testing was
to determine if there was any information loss due to using the optimized implementation
compared to the naive implementation. The results indicated that for 52 out of the 54
measurements, or 96%, there were no statistically significant differences. Only for two cases,
namely the OMOPSO in the WFG3 OMOPSO vs. VEPSO comparison and the SMPSO in
the WFG3 VEPSO vs. SMPSO comparison, was a statistically significant difference noted.
In spite of the statistical difference, the ranking of the algorithms did not change. Based
on the results, it can, therefore, be concluded that the optimized implementation yielded
the same results as the naive implementation and no information was lost. Because no
information was lost when using the optimized implementation, it can be concluded that the
optimized implementation, with less computational complexity when compared to the naive
implementation, can be used when conducting comparisons of multi-objective algorithms.

The mean standard deviation was 2.743, and the maximum standard deviation was
7.022. The conclusion that can be drawn from the data is that the optimized implementation
of the porcupine measure is very robust because measurement values for each of the
samples were close to the average.

Table 6. Naive vs. optimized porcupine measure (3-objective WFG problem set).

Problem Algorithm
Naive Optimized

Mean σ Min Max Mean σ Min Max

WFG1

OMOPSO 3.054 2.178 0.2596 9.4 3.092 2.245 0.5106 9.728
SMPSO 32.34 6.054 17.29 43.92 32.38 6.132 16.57 42.92

OMOPSO 1.308 1.11 0.2418 4.886 1.32 1.153 0.2445 5.071
VEPSO 43.55 4.06 30.43 52.71 43.16 4.031 32.27 52.73

VEPSO 19.62 6.619 8.857 47.63 18.73 4.149 8.679 28.34
SMPSO 6.631 2.949 0.8017 17.61 6.701 2.782 3.491 17.05

WFG2

OMOPSO 49.88 6.116 32.83 60.57 49.29 6.517 30.85 60.54
SMPSO 0.01869 0.06869 0.0 0.3711 0.01736 0.06466 0.0 0.3442

OMOPSO 59.43 4.403 47.63 67.35 59.64 4.397 47.61 66.87
VEPSO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

VEPSO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SMPSO 59.76 4.612 46.3 66.91 59.83 4.716 46.26 67.61

WFG3

OMOPSO 26.98 4.088 18.44 37.32 28.99 4.524 20.43 43.72
SMPSO 3.099 2.262 0.1569 8.927 3.078 2.097 0.2126 7.497

OMOPSO 62.55 3.341 55.16 68.42 66.07 3.722 58.36 73.14
VEPSO 0.5199 0.1456 0.2931 0.8233 0.5875 0.1695 0.2527 0.8897

VEPSO 1.177 0.48 0.2131 2.315 1.243 0.5278 0.2095 2.5
SMPSO 59.17 3.402 52.04 64.47 62.57 3.668 55.66 69.12

WFG4

OMOPSO 26.78 2.433 22.7 30.65 26.37 2.919 20.3 31.05
SMPSO 9.348 1.915 5.002 13.57 9.306 1.989 5.122 13.62

OMOPSO 63.0 4.539 55.21 75.74 63.82 4.798 55.75 77.11
VEPSO 0.02337 0.03589 0.0 0.1569 0.02468 0.04244 0.0 0.1929

VEPSO 0.02615 0.09773 0.0 0.533 0.02406 0.08814 0.0 0.4763
SMPSO 71.11 3.919 62.78 80.38 71.92 4.072 63.2 82.07

Algorithms 2023, 16, 283 21 of 28

Table 6. Cont.

Problem Algorithm Naive Optimized
Mean σ Min Max Mean σ Min Max

WFG5

OMOPSO 25.67 4.393 17.47 34.0 25.79 4.472 17.55 34.4
SMPSO 17.61 3.64 11.16 27.63 17.65 3.824 10.68 27.83

OMOPSO 26.21 2.314 22.2 30.72 26.31 2.432 21.48 31.12
VEPSO 17.94 2.65 10.6 22.42 17.54 2.691 10.56 21.72

VEPSO 25.13 4.301 14.71 33.27 25.12 4.463 13.9 33.76
SMPSO 5.143 1.277 2.736 8.069 5.187 1.338 2.539 8.049

WFG6

OMOPSO 10.21 2.398 6.651 15.76 10.55 2.356 7.035 15.89
SMPSO 45.3 3.61 37.82 53.57 45.62 3.754 38.12 54.17
OMOPSO 11.93 4.704 6.098 22.65 12.29 4.854 5.991 23.65
VEPSO 16.05 5.158 5.421 25.88 16.53 5.414 5.566 26.5
VEPSO 1.02 0.8952 0.01929 3.795 1.046 0.9204 0.007599 3.983
SMPSO 20.61 6.907 8.904 37.24 20.94 7.022 8.945 37.69

WFG7

OMOPSO 38.86 3.64 31.77 44.27 39.28 3.516 32.12 44.38
SMPSO 3.892 0.9721 1.684 5.522 3.888 1.018 1.641 5.507
OMOPSO 74.41 2.681 67.75 78.68 74.72 2.743 67.8 79.15
VEPSO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

VEPSO 0.001361 0.007456 0.0 0.04084 9.506×
10−5 0.0005206 0.0 0.002852

SMPSO 73.39 2.598 68.5 77.94 73.69 2.682 68.92 79.15

WFG8

OMOPSO 41.21 4.789 31.08 49.28 41.55 4.954 30.95 49.24
SMPSO 3.049 0.948 1.443 5.066 3.106 0.9568 1.54 5.088
OMOPSO 70.18 3.918 63.04 77.36 70.49 3.847 63.4 77.46

VEPSO 6.884×
10−5 0.0002857 0.0 0.001467 0.0 0.0 0.0 0.0

VEPSO 0.1489 0.2362 0.0 1.023 0.1458 0.223 0.0 0.869
SMPSO 62.88 3.841 56.14 72.58 63.15 3.861 56.65 73.03

WFG9

OMOPSO 15.89 2.462 11.12 21.29 15.87 2.47 11.48 21.66
SMPSO 37.58 3.03 32.14 43.94 37.68 3.048 31.95 44.27
OMOPSO 20.7 2.526 16.86 25.28 20.61 2.515 16.9 26.05
VEPSO 23.59 1.801 19.21 26.88 24.0 1.795 19.61 27.51
VEPSO 1.206 0.7576 0.2238 3.162 1.219 0.8411 0.2526 3.605
SMPSO 21.91 5.093 12.24 31.96 21.8 5.307 11.12 32.25

For the experimentation that was carried out for this study, the runtime of the op-
timized implementation was notably faster than that of the naive implementation. A
difference on the orders of a few magnitudes was noticeable.

The computational complexity of the naive implementation is directly proportional to
the size of the Qm sets. It should be noted that, for the tested algorithms with an approxi-
mated POF size of 50 points tested over 30 independent samples, the optimal POF had a
typical size of 1250 points. The size of the Qm sets were thus approximately 1250 points.
For three dimensions, this resulted in a minimum computational complexity of at least
12503, or rather 1,953,125,000 (almost two billion). The optimized implementation resulted
in much-reduced computational complexity because only the necessary subdivisions were
made. The size of the Qm sets were much smaller. For the three-dimensional case, the
maximum edge length leads to a minimum complexity of at least (1

0.1)
3, or rather 1000

times lower than that of the naive version.

7. Conclusions

This article investigated shortcomings that may have led to the lack of adoption
of attainment-surface-based quantitative performance measurements for multi-objective
optimization algorithms. It was shown that the quantitative measure proposed by Knowles
and Corne was biased against convex Pareto-optimal fronts (POFs) when using rotational

Algorithms 2023, 16, 283 22 of 28

intersection lines. The attainment-surface-shaped intersection lines (ASSIL) generation
approach was proposed. The ASSIL generation approach was shown not to be biased
against any attainment surface shape.

An algorithm for an M-dimensional attainment-surface-based quantitative measure,
named the porcupine measure, was presented. Additionally, a computationally optimized
implementation of the porcupine measure was introduced and analyzed. The results indi-
cated that the optimized implementation performed as well as the naive implementation.

The porcupine measure allows for a quantitative comparison between M-dimensional
approximated POFs through the use of attainment surfaces. The porcupine measure
provides additional information on an algorithm’s performance when compared to another
algorithm, which was previously not quantifiable. A thorough comparison comparing the
state-of-the-art multi-objective optimization algorithms using the porcupine measure is left
as future work.

Author Contributions: Conceptualization, C.S. and A.E.; methodology, C.S. and A.E., formal analysis,
C.S., investigation, C.S., resources, C.S., data curation, C.S., writing—original draft preparation, C.S.,
writing–review and editing, A.E., visualization, C.S., supervision, A.E. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to further research being conducted on
the data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Naive Porcupine Measure Implementation

This appendix provides more detailed, step-by-step pseudocode implementation of
the naive porcupine measure.

Algorithms 2023, 16, 283 23 of 28

Algorithm A1 Naive porcupine measure intersection line generation.
First, determine the optimal POF using the POFs for all the samples of all the algorithms
being compared. Then, create sorted value sets containing the dimensional values of all the
Pareto-optimal points.

1: Let Q = {~qi : i ∈ {1, . . . , I}} be the optimal POF with
~qi = (qi1, qi2, . . . , qim, . . . , qiM).

2: Let Qm = sort{qim : i ∈ {1, . . . , I}} such that Qm1 is the
first element in the set Qm and QmI is the last.

Loop mc over the dimension 1 through M and loop ~d over all the index value combinations
for the sorted value sets.

3: n = 1
4: for all mc ∈ {1, . . . , M} do
5: for all combinations of

~d = (d1, d2, . . . , dmc−1, 0, dmc+1, . . . , dm, . . . , dM)
where dm ∈ {1, . . . , |Qm| − 1} ∀m ∈ {1, . . . , M},
m 6= mc do

Next, determine the “locked” dimension’s value, if it exists; if not, skip to the next combina-
tion of ~d. Next, determine the value of the mc dimension (hereafter referred to as the “locked”
dimension). If no value exists, skip to the next combination of ~d as no hyper-rectangle exists
for the current combination of ~d.

6: Let z = min{qimc : qim ≤ Qmdm∀m 6= mc,
m ∈ {1, . . . M}}
m ∈ {1, . . . , M}}

7: if z exist then
Determine the center and the weight factor of the hyper-rectangle formed from Qdm to
Qdm+1 for all dimensions m, except for the dimension mc, which is already calculated as z.

Algorithm A1 Cont.

8: Let~c = (c1, . . . , cm, . . . , cM) with

cm =

{
Qmdm+Qm(dm+1)

2 if m 6= mc
z otherwise

9: Let w = ∏M
m=1,m 6=mc

(Qm(dm+1) −Qmdm) BEGIN: Intersection vector
Determine the intersection vector, ~p, that is projected from the center point,~c. The result is
saved as a tuple, fn, containing the center, intersection vector, and weight factor.
10: Let ~p = (p1, . . . , pm . . . , pM)
11: for all mp ∈ {1, . . . , M} do
12: pmin = min{qimp : ∃m ∈ {1, . . . , M}, m 6= mp :

qim ≤ cm}
13: pmax = max{qimp : ∃m ∈ {1, . . . , M}, m 6= mp :

qim ≤ cm}
14: pmp =

cmp−pmin
pmax−pmin

15: end forEND: Intersection vector
16: Let fn = (~c,~p, w)
17: n = n + 1
18: end if
19: end for
20: end for
21: N = n

Appendix B. Optimized Porcupine Measure Implementation

This appendix provides a more detailed, step-by-step pseudocode implementation of
the optimized, computationally more efficient, porcupine measure.

Algorithms 2023, 16, 283 24 of 28

Algorithm A2 Optimized Porcupine Measure Intersection Line Generation
First, the optimal Pareto-optimal front and nadir vector,~qmax, are calculated.

1: let~qi ∈ Q where Q is the optimal POF and
~qi = (qi1, qi2, . . . , qiM).

2: let~qmax = (max{qi1}, . . . , max{qiM})
3: n = 1

Each point,~qs, in the optimal POF is processed separately for each dimension mc.
4: for all~qs ∈ Q do Hyper-rectangle sub-division based on non-dominance
5: for all mc ∈ {1, . . . , M} do

~̂q is set equal to the minimum value for each dimension that is dominated. If no such value
exists for the dimension, the value is set to the nadir vector’s value. The hyper-rectangles
formed by~qs are all contained between~qs and ~̂q.

6: let ~̂q = (q̂1, . . . , q̂M)
7: for all mb ∈ {1, . . . , M}, mb 6= mc do
8: let q̂mb = min{qmax mb ∪ qimb : qimb > qsmb

∧ qim ≤ qsm ∀m ∈ {1, . . . , M}, m 6= mb}
9: end for

The set Q̂s is defined as the set of all points that dominate parts of the area dominated by
~qs when all the mc-dimensional values are ignored. The set is filtered by removing all the
points dominated by other points in the set, again ignoring the dimension mc. Q̂s effectively
forms a mini-POF for~qs. For example, for point~q1 with mc = 3, the set Q̂s will contain~q2,
~q3, and~q4, and for mc = 2, the set Q̂s will contain~q2 and~q6.

Algorithms 2023, 16, 283 25 of 28

Algorithm A2 Cont.

10: let Q̂∗s = {~qi : qim ≤ q̂m ∧ qimc ≤ qsmc∧
∃m∗ ∈ {1, . . . , M}, m∗ 6= mc : qim∗ > qsm∗ ,
m ∈ {1, . . . , M}, m 6= mc}

11: let Q̂s = {~q : ~q ∈ Q̂∗s ,@~̃q ∈ Q̂∗s : q̃m ≤ qm,
∀m ∈ {1, . . . , M}, m 6= mc ∧ q̃m < qm,
∃m ∈ {1, . . . , M}, m 6= mc}

The set Qm is defined as the set of all the dimension values that are dominated by~qs along
with the maximum boundary value, q̂m, and the minimum boundary value, qs.
12: for all m ∈ {1, . . . , M}, m 6= mc do
13: let Qm = {qim : qsm < qim < q̂m,

~qi ∈ Q̂s ∪ q̂m ∪ qsm}
14: end for
15: let z = qsmc

The Qm set can now be used similarly to how it is used in the naive implementation to
calculate the hyper-rectangle subdivisions. However, additional subdivisions are necessary
to allow for accurate calculation of the intersection vector, ~p.
The set Qmin is iteratively constructed as the set that contains all the minimum points that
will influence the intersection vectors for hyper-rectangles that lie between the selected
point~qs and the maximum boundary point ~̂q.
16: let Qmin = ∅
17: for all mp ∈ {1, . . . , M} do
18: let ~̂q∗1 = ~̂q
19: t = 1
20: repeat
21: find~qi such that qimp = min{qimp :

∃m ∈ {1, . . . , M}, m 6= mp : qim < q̂∗tm}
22: add~qi to Qmin iff~qi 6∈ Qmin

23: q̂∗(t+1)m =

{
qim if qim > qsm ∧ qim < q̂∗tm
q̂∗tm otherwise

24: t = t + 1
25: until ∃m ∈ {1, . . . , M}, m 6= mp : qim ≤ qsm
26: end for
Dimensional values that fall within the range qsm to q̂m are added to the corresponding Qm
set.
27: for all m ∈ {1, . . . , M}, m 6= mc do
28: add qim to Qm ∀~qi ∈ Qmin, qsm < qim < q̂m
29: end for
Similar to Qmin, the set Qmax is iteratively constructed as the set that contains all the
maximum points that will influence the intersection vectors for hyper-rectangles that lie
between the selected point~qs and the maximum boundary point ~̂q.
30: let Qmax = ∅
31: for all mp ∈ {1, . . . , M} do
32: let ~̂q∗1 = ~̂q
33: t = 1
34: repeat
35: find~qi such that qimp = max{qimp :

∃m ∈ {1, . . . , M}, m 6= mp : qim < q̂∗tm}
36: add~qi to Qmax iff~qi 6∈ Qmax

37: q̂∗(t+1)m =

{
qim if qim > qsm ∧ qim < q̂∗tm
q̂∗tm otherwise

38: t = t + 1
39: until ∃m ∈ {1, . . . , M}, m 6= mp : qim ≤ qsm
40: end for

Algorithms 2023, 16, 283 26 of 28

Algorithm A2 Cont.
Dimensional values that fall within the range qsm to q̂m are added to the corresponding Qm
set.
41: for all m ∈ {1, . . . , M}, m 6= mc do
42: add qim to Qm ∀~qi ∈ Qmax, qsm < qim < q̂m
43: end for
Additional subdivision values can be added to the corresponding Qm set to control the
maximum side length, ∆max, of the hyper-rectangles.
44: for all m ∈ {1, . . . , M}, m 6= mc do
45: for all qm ∈ Qm do
46: if ∃ q∗m = min(q∗m ∈ Qm, q∗m > qm) then
47: δc = d q∗m−qm

∆max
e

48: δl =
q∗m−qm

δc
49: for δ = 1..δc do
50: add (δ× δl + qm) to Qm
51: end for
52: end if
53: end for
54: end for
Similar to the naive implementation, the Qm sets can now be used to calculate the hyper-
rectangles, the intersection vectors, the center points, and the weight factors. Hyper-
rectangles only exist if the Qm sets contain at least two values for all dimensions, except the
“locked” dimension, mc.
55: if |Qm| ≥ 2∀m ∈ {1, . . . , M}, m 6= mc then
56: for all m ∈ {1, . . . , M}, m 6= mc do
57: let Qm = sort{Qm}
58: end for
59: for all combinations of

~d = (d1, d2, . . . , dmc−1, 0, dmc+1, . . . , dm, . . . , dM)
where dm ∈ {1, . . . , |Qm| − 1} ∀m ∈ {1, . . . , M},
m 6= mc do

Only process hyper-rectangles that lie in the area that is exclusively dominated by the point
~qs and no other point in the set Q̂s, ignoring the “locked” dimension, mc. If Q̂s is empty
(|Q̂s| = 0), then there exists a single hyper-rectangle between ~qs and ~̂q with the “locked”
dimension, mc, equal to qsmc .
60: if |Q̂s| = 0 or @~̃q ∈ Q̂s : q̃m ≤ q̌m

∀m ∈ {1, . . . , M}, m 6= mc ∧ q̃m < q̌m
∃m ∈ {1, . . . , M}, m 6= mc with q̌m = Qmdm
∀m ∈ {1, . . . , M}, m 6= mc then

Determine the center point and weight factor of the hyper-rectangle formed from Qdm to
Qdm+1 for all dimensions m, except for the dimension mc, which is set to the value z.
61: let~c = (c1, . . . , cm, . . . , cM) with

cm =

{
Qmdm+Qm(dm+1)

2 if m 6= mc
z otherwise

62: let w = ∏M
m=1,m 6=mc

(Qm(dm+1) −Qmdm)

Finally, determine the intersection vector, ~p, that is projected from the center point,~c. The
result is saved as a tuple, fn, containing the center, intersection vector, and weight factor.

Algorithms 2023, 16, 283 27 of 28

Algorithm A2 Cont.

63: let ~p = (p1, . . . , pm . . . , pM)
64: for all mp ∈ {1, . . . , M} do
65: pmin = min{qimp : ~qi ∈ Qmin

∃m ∈ {1, . . . , M}, m 6= mp : qim ≤ cm}
66: pmax = max{qimp : ~qi ∈ Qmax

∃m ∈ {1, . . . , M}, m 6= mp : qim ≤ cm}
67: pmp =

cmp−pmin
pmax−pmin

68: end for
69: Let fn = (~c,~p, w)
70: n = n + 1
71: end if
72: end for
73: end if
74: end for
75: end for
76: N = n

References
1. Fonseca, C.M.; Fleming, P.J. On the Performance Assessment and Comparison of Stochastic Multiobjective Optimisers. In Parallel

Problem Solving from Nature—PPSN IV; Springer: Berlin/Heidelberg, Germany, 1995; Volume 1141, pp. 584–593.
2. Zitzler, E.; Thiele, L. Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Case Study. In Parallel Problem

Solving from Nature—PPSN V; Springer: Berlin/Heidelberg, Germany, 1998; pp. 292–301. https://doi.org/10.1007/BFb0056872.
3. Van Veldhuizen, D.A. Multiobjective Evolutionary Algorithms: Classifications, Analyses and New Innovations. Ph.D. Thesis, Air

Force Institute of Technology, Dayton, OH, USA, 1999. https://doi.org/10.1109/TE.1962.4322266.
4. Coello Coello, C.A.; Reyes-Sierra, M. A Study of the Parallelization of a Coevolutionary Multi-Objective Evolutionary Algorithm.

In Proceedings of the Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, 26–30 April 2004;
pp. 688–697. https://doi.org/10.1007/978-3-540-24694-7.

5. Reyes-Sierra, M.; Coello Coello, C.A. A New Multi-Objective Particle Swarm Optimizer with Improved Selection and Diversity
Mechanisms; Technical report; Evolutionary Computation Group at CINVESTAV-IPN: Mexico City, México, 2004.

6. Ishibuchi, H.; Masuda, H.; Tanigaki, Y.; Nojima, Y. An Analysis of Quality Indicators Using Approximated Optimal Distributions
in a Three-dimensional Objective Space. In Proceedings of the International Conference on Evolutionary Multi-Criterion
Optimization, Guimaraes, Portugal, 29 March–1 April 2015; pp. 110–125.

7. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. https://doi.org/10.1109/4235.996017.

8. Knowles, J.D.; Corne, D.W. Approximating the nondominated front using the Pareto Archived Evolution Strategy. Evol. Comput.
2000, 8, 149–172. https://doi.org/10.1162/106365600568167.

9. Gibbons, J.D.; Chakraborti, S. Nonparametric Statistical Inference, 5th ed.; Chapman and Hall: Strand, UK; CRC Press: Boca Raton,
FL, USA, 2010; p. 630.

10. Knowles, J.D. A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective
optimizers. In Proceedings of the 5th International Conference on Intelligent Systems Design and Applications 2005, ISDA ’05,
Warsaw, Poland, 8–10 September 2005; Volume 2005, pp. 552–557. https://doi.org/10.1109/ISDA.2005.15.

11. Smith, K.I.; Everson, R.M.; Fieldsend, J.E. Dominance measures for multi-objective simulated annealing. In Proceedings
of the IEEE Congress on Evolutionary Computation, Portland, OR, USA, 19–23 June 2004; Volume 1, pp. 23–30. https:
//doi.org/10.1109/CEC.2004.1330833.

12. Da Fonseca, V.G.; Fonseca, C.M.; Hall, A.O. Inferential Performance Assessment of Stochastic Optimisers and the Attainment
Function. In Proceedings of the Evolutionary Multi-Criterion Optimization, Zurich, Switzerland, 7–9 March 2001; Volume 1993,
pp. 213–225. https://doi.org/10.1007/3-540-44719-9_15.

13. López-Ibáñez, M.; Paquete, L.; Thomas, S. Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization.
In Experimental Methods for the Analysis of Optimization Algorithms; Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 209–222. https://doi.org/10.1007/978-3-642-02538-9_9.

14. Fonseca, C.M.; Da Fonseca, V.G.; Paquete, L. Exploring the Performance of Stochastic Multiobjective Optimisers with the
Second-Order Attainment Function. In Proceedings of the Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, 9–11
March 2005; Volume 3410, pp. 250–264. https://doi.org/10.1007/b106458.

15. Fonseca, C.M.; Guerreiro, A.P.; López-Ibáñez, M.; Paquete, L. On the Computation of the Empirical Attainment Function. In
Proceedings of the Evolutionary Multi-Criterion Optimization: 6th International Conference, EMO 2011, Ouro Preto, Brazil, 5–8
April 2011; pp. 106–120. https://doi.org/10.1007/978-3-642-19893-9_8.

https://doi.org/10.1007/BFb0056872
https://doi.org/10.1109/TE.1962.4322266
https://doi.org/10.1007/978-3-540-24694-7
https://doi.org/10.1109/4235.996017
https://doi.org/10.1162/106365600568167
https://doi.org/10.1109/ISDA.2005.15
https://doi.org/10.1109/CEC.2004.1330833
https://doi.org/10.1109/CEC.2004.1330833
https://doi.org/10.1007/3-540-44719-9_15
https://doi.org/10.1007/978-3-642-02538-9_9
https://doi.org/10.1007/b106458
https://doi.org/10.1007/978-3-642-19893-9_8

Algorithms 2023, 16, 283 28 of 28

16. Tušar, T.; Filipič, B. Visualizing Exact and Approximated 3D Empirical Attainment Functions. Math. Probl. Eng. 2014, 2014,
569346.

17. Parsopoulos, K.E.; Vrahatis, M.N. Particle swarm optimization method in multiobjective problems. In Proceedings of the ACM
Symposium on Applied Computing, Madrid, Spain, 10–14 March 2002; pp. 603–607. https://doi.org/10.1145/508791.508907.

18. Reyes-Sierra, M.; Coello Coello, C.A. Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and
ε-Dominance. In Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato,
Mexico, 9–11 March 2005; Volume 3410, pp. 505–519. https://doi.org/10.1007/978-3-540-31880-4_35.

19. Nebro, A.J.; Durillo, J.J.; García-Nieto, J.; Coello Coello, C.A.; Luna, F.; Alba, E. SMPSO: A New PSO-based Metaheuristic for
Multi-objective Optimization. In Proceedings of the IEEE Symposium on Multi-Criteria Decision-Making, Nashville, TN, USA,
30 March–2 April 2009; Volume 2, pp. 66–73. https://doi.org/10.1109/MCDM.2009.4938830.

20. Zitzler, E.; Deb, K.; Thiele, L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evol. Comput. 2000,
8, 173–195.

21. Huband, S.; Barone, L.; While, L.; Hingston, P. A Scalable Multi-objective Test Problem Toolkit. In Proceedings of the Third
International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, 9–11 March 2005; pp. 280–295.
https://doi.org/10.1007/978-3-540-31880-4_20.

22. Scheepers, C. Multi-guided Particle Swarm Optimization: A Multi-objective Particle Swarm Optimizer. Ph.D. Thesis, University
of Pretoria, Pretoria, South Africa, 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/508791.508907
https://doi.org/10.1007/978-3-540-31880-4_35
https://doi.org/10.1109/MCDM.2009.4938830
https://doi.org/10.1007/978-3-540-31880-4_20

	Introduction
	Definitions
	Background and Related Work
	Regarding 2-Dimensional Attainment Surfaces
	Weighted 2-Dimensional Attainment-Surface-Shaped Intersection Lines
	M-Dimensional Attainment Surfaces
	Generalizing Attainment Surface Intersection Line Generation to M Dimensions
	Porcupine Measure (Naive Implementation)
	Porcupine Measure (Optimized Implementation)
	Stability Analysis

	Conclusions
	Appendix A
	Appendix B
	References

