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Abstract: Database and data structure research can improve machine learning performance in many
ways. One way is to design better algorithms on data structures. This paper combines the use
of incremental computation as well as sequential and probabilistic filtering to enable “forgetful”
tree-based learning algorithms to cope with streaming data that suffers from concept drift. (Concept
drift occurs when the functional mapping from input to classification changes over time). The
forgetful algorithms described in this paper achieve high performance while maintaining high quality
predictions on streaming data. Specifically, the algorithms are up to 24 times faster than state-of-the-
art incremental algorithms with, at most, a 2% loss of accuracy, or are at least twice faster without any
loss of accuracy. This makes such structures suitable for high volume streaming applications.

Keywords: concept drift; machine learning; incremental algorithms; tree data structures

1. Introduction

Supervised machine learning [1] tasks start with a set of labeled data. Researchers
partition that data into training data and test data. They train their favorite models on
the training data and then derive accuracy results on the test data. The hope is that these
results will hold on to yet-to-be-seen data because the mapping between input data and
output label (for classification tasks) does not change, i.e., is independent and identically
distributed (i.i.d.).

This i.i.d. paradigm works well for applications such as medical research. In such
settings, if a given set of lab results L indicates a certain diagnosis d at time t, then that
same set of input measurements L will suggest diagnosis d at a new time t’.

However, there are many applications where the mapping between the input and
output label changes: movie recommendations, variants of epidemics, market forecasting,
or many real-time applications [2]. Predicting well in these non-i.i.d. settings is a challenge,
but it also presents an opportunity to increase speed because a learning system can judi-
ciously “forget” (i.e., discard) old data and learn a new input–output mapping on only the
relevant data and thus do so quickly. In addition to discarding data cleverly, such a system
can take advantage of the properties of the data structures to speed up their maintenance.

These intuitions underlie the basic strategy of the forgetful data structures we describe
in this paper. As an overview, our methodology is to apply the intuitions of the state-of-
the-art algorithms for streaming data with concept drift in a way that achieves high quality
and high speed. This entails changing incremental decision tree building techniques as
well as random forest maintenance techniques.

We will first introduce the design of our proposed algorithms in Section 3, then we
will describe how we tuned the hyperparameters in Section 4, and finally, we will compare
our algorithms with four state-of-the-art algorithms in Section 5. The comparison will be
based on accuracy, F1 score (where appropriate), and time.
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2. Related Work

The training process of many machine learning models is to take a set of train-
ing samples of the form (x1, y1), (x2, y2), . . . , (xN , yN), where in each training sample
(xi, yi) ∈ (Xtrain, Ytrain), xi is a vector of feature-values, and yi is a class label [3,4]. The goal
is to learn a functional mapping from the X values to the y values. In the case when the
mapping between X and y can change, an incremental algorithm will update the mapping
as data arrives. Specifically, after receiving the k-th batch of training data, the parameters
of the model f may change to reflect that batch. At the end of the n-th training batch,
the model fn can give a prediction of the following data point such that ŷn+1 = fn(xn+1).
This method of continuously updating the model on top of the previous model is called
incremental learning [5,6].

Conventional decision tree methods, such as CART [7], are not incremental. Instead,
they learn a tree from an initial set of training data once and for all. A naive incremental
approach (needed when the data is not i.i.d.) would be to rebuild the tree from scratch
periodically. However, rebuilding the decision tree can be expensive and if one waits
too long, accuracy will suffer. State-of-the-art methods, such as VFDT [8] or iSOUP-
Tree [9], incrementally update the decision tree with the primary goal of reducing memory
consumption. We review various methods here below and outline what we learn from them.

2.1. Hoeffding Tree

In the Hoeffding Tree (or VFDT) [10], each node considers only a fixed subset of the
training set, designated by a parameter n, and uses that data to choose the splitting attribute
and value of that node. In this way, once a node has been fitted on n data points, it will not
be updated anymore.

The number of data points n considered by each node is calculated using the Hoeffding

bound [11], n = R2ln(1/δ)
2ε2 , where R is the range of the variable, δ is the confidence fraction

which is set by user, and ε = Ĝ(x1)− Ĝ(x2) is the distance between the best splitter x1
and the second best splitter x2 based on the Ĝ function. Ĝ(·) (e.g., information gain) is the
measure used to choose spitting attributes. Thus, if ε is large, n can be small, because a
big difference in, say, information gain gives us the confidence to stop considering other
training points. Similarly, if δ is large, then intuitively we are allowed to be wrong with a
higher probability, so n can be small.

2.2. Adaptive Hoeffding Tree

The Adaptive Hoeffding Tree [12] will hold a variable-length window W of recently
seen data. We will have 1− δ confidence that the splitting attribute has changed if any two
sub-windows (say the older sub-window w and the newer sub-window w′) of W are “large
enough”, and their heuristic measurements are “distinct enough”. To define “large enough”
and “distinct enough”, the Adaptive Hoeffding tree uses the Hoeffding bound [11]: when∣∣Ĝ(w)− Ĝ(w′)

∣∣ is larger than 2 ∗ ε, where Ĝ(·) (e.g., information gain) is the measure used
to choose spitting attributes. If the two sub-windows are “distinct enough”, the older data
and the newer data have different best splitters. This means a concept drift has happened,
and the algorithm will drop all data in the older sub-window in order to remove the data
before the concept drift. While we adopt the intuition of dropping old data, we believe
a gradual approach can work better in which more or less data can be dropped but in a
continuous way depending on the amount of change in accuracy.

2.3. iSOUP-Tree

In contrast to the Hoeffding Tree, the iSOUP-Tree [9] uses the FIMT-MT method [13],
which works as follows. There are two learners at each leaf to make predictions. One
learner is a linear function y = wx + b used to predict the result, where w and b are
variables trained with the data and the results that have already arrived at this leaf, y is the
prediction result, and X is the input data. The other learner computes the average value of
the y from the training data seen so far. The learner with the lower absolute error will be
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used to make predictions. Different leaves in the same tree may choose different learners.
To handle concept drift, the more recent data will get more weight in these predictions than
the older data. We adopt the intuition of giving greater importance to newer data than to
older data. Our method is to delete older data with greater probability than newer data.
This achieves the same result as weighting and offers greater speed.

2.4. Adaptive Random Forest

In the adaptive random forest [14], each underlying decision tree is a Hoeffding Tree
without early pruning. Without early pruning, different trees tend to be more diverse.

To detect concept drift, the adaptive random forest uses the Hoeffding bound described
above. Further, each tree has two threshold interval levels to assess its performance in the
face of concept drift. When the lower threshold level of a tree T is reached (meaning T has
not been performing well) and T has no background tree, the random forest will create
a new background tree T′ that is trained like any other tree in the forest, but T′ will not
influence the prediction. If tree T already has a background tree T′′, T will be replaced
by T′′. When the higher threshold level of a tree T is reached (meaning the tree has been
performing very badly), even if no background tree T′ is present, the random forest will
delete T and replace it with a new tree. We adopt the intuition of deleting trees that do not
perform well. Our discarding rule is slightly more statistical in nature (with a t-test), but
the intuition is the same as in this algorithm.

2.5. Ensemble Extreme Learning Machine

Ensemble Extreme Learning Machine [15] is a single hidden layer feedforward neural
network whose goal is to classify time series. To detect concept drift, the method calculates
and records the accuracy and the standard deviation of each data block, where a data block
represents the data updated from the data stream each time. All data blocks are required
to be the same size. Suppose that pi is the accuracy and si is the standard deviation of
the newest block i, pbest and sbest are the highest accuracy and the corresponding standard
deviation recorded up to some point i-1 in the stream. Given that ε is a hyperparameter
representing the accuracy threshold, when pi + si < pbest + 2 ∗ sbest and ε < pi, the
system will not change the model at all (for lack of evidence of concept drift). When
pi + si ≥ pbest + 2 ∗ sbest but ε < pi, the system will update the model using the new data
(for evidence of mild concept drift). When ε ≥ pi, the system will forget all retained data
and all previous accuracy and standard deviations recorded and the system will retrain
the model with new data (for evidence of abrupt concept drift). Our problem and data
structure are different because we are concerned with prediction on tree structures, but we
appreciate the intuition of the authors’ detection and treatment of concept drift.

In summary, our forgetful data structures take much from the related work with
two primary innovations: (i) We discard data in a continuous fashion with respect to the
gain or loss in accuracy. (ii) We have designed our tree structures to support fast incremental
updates for streaming data.

3. Forgetful Data Structures

This paper introduces both a forgetful decision tree and a forgetful random forest
(having forgetful decision trees as components). These methods probabilistically forget old
data and combine the retained old data with new data to track datasets that may undergo
concept drift. In the process, the values of several hyperparameters are adjusted depending
on the relative accuracy of the current model.

Given an incoming data stream, our method (i) saves time by maintaining the sorted
order on each input attribute, (ii) efficiently rebuilds subtrees to process only incoming
data whenever possible (i.e., whenever a split condition does not change). This works for
both trees and forests, but because forests subsample the attributes, efficient rebuilding is
more likely for forests.
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To handle concept drift, we use three main ideas: (i) when the accuracy decreases,
discard more of the older data and discard trees that have poor accuracy; (ii) when the
accuracy increases, retain more old data; and (iii) vary the depth of the decision trees based
on the size of the retained data.

The accuracy value in this paper is measured based on the confusion matrix: the
proportion of true positive plus true negative instances relative to all test samples:

|TruePositive ∼ in ∼ testset|+ |TrueNegative ∼ in ∼ testset|
Size(testset)

3.1. Forgetful Decision Trees

When a new incoming data batch is acquired from the data stream, the entire decision
tree will be incrementally updated from the root node to the leaf nodes. The basic idea
of this routine is to retain an amount of old data determined by an accuracy-dependent
parameter called rSize (set in the routine Adapt Parameters). Next, the forgetful decision
tree is rebuilt recursively but avoids rebuilding the subtree of any node n when the splitting
criterion on n does not change. In that case, the subtree is updated rather than rebuilt.
Updating entails only sorting the incoming data batch and placing it into the tree, while
rebuilding entails sorting the new data with retained data and rebuilding the subtree.
When the incoming batch is small, updating is much faster than rebuilding. Please see the
detailed pseudocode and its explanation in Appendix A.

3.2. Adaptive Calculation of Retain Size and Max Tree Height

Retaining a substantial amount of historical data will result in higher accuracy when
there is no concept drift, because the old information is useful. When concept drift occurs,
rSize (the retained data) should be small, because old information will not reflect the new
concept (which is some new mapping from input to label). Smaller rSize will result in
increased speed. Thus, changing rSize can improve accuracy and reduce time. We use the
following rules:

• When accuracy increases (i.e., the more recent predictions have been more accurate
than previous ones) a lot, the model can make good use of more data. We want rSize to
increase with the effect so that we discard little or no data. When the accuracy increase
is mild, the model has perhaps achieved an accuracy plateau, so we increase rSize, but
only slightly.

• When accuracy changes little or not at all, we allow rSize to slowly increase.
• When accuracy decreases, we want to decrease rSize to forget old data, because this

indicates that concept drift has happened. When concept drift is mild and accuracy
decreases only a little, we want to retain more old data, so rSize should decrease only
a little. When accuracy decreases a lot, the new data may follow a completely different
functional mapping from the old data, so we want to forget most of the old data,
suggesting rSize should be very small.

To achieve the above requirements, we adaptively change rSize. Besides that, we also
adaptively change the maximum height of the tree (maxHeight). To avoid overfitting or
underfitting, we will set maxHeight to be monotonic with rSize. In addition, to handle the
cold start at the very beginning, we will not forget any data until more than a certain size
of data (call it warmSize) has arrived. We explain the details of adaptive parameters in
Appendix B.

3.3. Forgetful Random Forest

The forgetful random forest is based on the forgetful decision tree described above
in Section 3.1. Each random forest contains nTree forgetful decision trees. The update
and rebuild algorithms for each decision tree in the random forest are the same as those
described in Section 3.1 except:
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• Only a limited number of features are considered at each split, increasing the chance
of updating (rather than rebuilding) subtrees during recursion, thus saving time by
avoiding the need to rebuild subtrees from scratch. The number of features con-
sidered by each decision tree is uniformly and randomly chosen within the range(⌊√

nFeatures
⌋
+ 1, nFeatures

]
, where nFeatures is the number of features in the

dataset. Further, every node inside the same decision tree considers the same features.
• The update function for each tree will randomly and uniformly discard old data

without replacement, instead of discarding data based on time of insertion. Because
this strategy does not give priority to newer data, this strategy increases the diversity
of the data given to the trees.

• To decrease the correlation between trees and increase the diversity in the forest, we
give the user the option to choose the leveraging bagging [11] strategy to the data
arriving at each random forest tree. The size of the data after bagging is W times
the size of original data, where W is a random number with an expected value of 6,
generated by a Poisson(λ = 6) distribution. To avoid the performance loss resulting
from too many copies of the data, we never allow W to be larger than 10. Each data
item in the expanded data is randomly and uniformly selected from the original data
with replacement. We apply bagging to each decision tree inside the random forest.

When the overall random forest accuracy decreases, our method discards trees that
suffer from particularly poor performance. If the decrease is large, then forgetful random
forests discard many trees. If the decrease is small, then our method discards fewer. The
discarded trees will be replaced with the same data but different features. We will not
discard any tree unless we have enough confidence (which is 1− tThresh) that the accuracy
has decreased based on a two-sample t-test. The detailed pseudocode and accompanying
explanation of the forgetful random forests are in Appendix C.

4. Tuning the Values of the Hyperparameters

Forgetful decision trees and random forests have six hyperparameters to set, which
are (i) the evaluation function G(·) of the decision tree, (ii) the maximum height of trees
maxHeight, (iii) the minimum size of retained data following initial cold start warmSize,
(iv) for forgetful random forests, the empirical probability that concept drift has occurred
1-tThresh, (v) the number of trees in the forgetful random forest nTree, and (vi) the change
in the retained data size iRate. To find the best values for these hyperparameters, we
generated 18 datasets with different intensity of concept drifts, number of concept drifts,
and Gaussian noise, using a generator inspired by Harvard Dataverse [16].

Our tests on the 18 new datasets indicated that some hyperparameters have optimal
values (with respect to accuracy) that apply to all datasets. Others have optimal values
that vary slightly depending on the dataset but can be learned. While the details are in
Appendix D, here are the results of that study:

• The evaluation function can be a Gini Impurity [17] score or an entropy reduction
coefficient. Which one is chosen does not make a material difference, so we set G(·) to
entropy reduction coefficient for all datasets.

• The maximum tree height (maxHeight) is adaptively set based on the methods in
Section 3.2 to log base 2 of rSize. Applying other stopping criteria does not materially
affect the accuracy. For that reason, we ignore other stopping criteria.

• To mitigate the inaccuracies of the initial cold start, the model will not discard any data
in cold startup mode. To leave cold startup mode, the accuracy should be better than
random guessing on the last 50% of data, when rSize is at least warmSize. warmSize
adapts if it is too small, so we will set its initial value to 64 data items.

• To avoid discarding trees too often, we will discard a tree only when we have
1− tThresh confidence that the accuracy has changed. We observe that all datasets
enjoy a good accuracy when tThresh = 0.05.
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• There are nTree forgetful decision trees in each forgetful random forest. We observe
that the accuracy of all datasets stops growing after nTree > 20 both with bagging and
without bagging, so we will set nTree = 20.

• The adaptation strategy in Section 3.2 needs an initial value for parameter iRate, which
influences the increase rate of the retained data rSize. Too much data will be retained
if the initial iRate is large, but the accuracy will be low for lack of training data if
the initial value of iRate is small. We observe that the forgetful decision tree does
well when iRate = 0.3 or iRate = 0.4 initially. We will use iRate = 0.3 as our initial
setting and use it in the experiments of Section 5 for all our algorithms, because most
simulated datasets have higher accuracy at iRate = 0.3 than at iRate = 0.4.

5. Results

This section compares the following algorithms: forgetful decision tree, forgetful
random forest with bagging, forgetful random forest without bagging, Hoeffding Tree [8,18],
Hoeffding adaptive tree [12], iSOUP tree [9], train once, and adaptive random forest [14].
The forgetful algorithms use the hyperparameter settings from Section 4 on both the real
datasets and the synthetic datasets produced by others.

We measure time consumption, the accuracy and, where appropriate, the F1 score.
The following settings yield the best accuracy for the state-of-the-art algorithms with

which we compare:

• Previous papers [8,18] provide two different configurations for the Hoeffding tree. The con-
figuration from [8] usually has the highest accuracy, so we will use it in the following exper-
iment: split_con f idence = 10−7, grace_period = 200, and tie_threshold = 0.05. Because
the traditional Hoeffding tree cannot deal with concept drift, we set lea f _prediction =
Naive Bayes Adaptive to allow the model to adapt when concept drift happens.

• The designers of the Hoeffding adaptive tree suggest six possible configurations
of the Hoeffding adaptive tree, which are HAT-INC, HATEWMA, HAT-ADWIN,
HAT-INC NB, HATEWMA NB, and HAT-ADWIN NB. HAT-ADWIN NB has the
best accuracy, and we will use it in the following experiments. The configuration is
lea f _prediction = Naive Bayes, split_con f idence = 0.0001, grace_period = 200, and
tie_threshold = 0.05.

• The designers provide only one configuration for the iSOUP tree [9], so we will
use it in the following experiment. The configuration is lea f _prediction = adaptive,
split_con f idence = 0.0001, grace_period = 200, and tie_threshold = 0.05.

• For the train-once model, we will train the model only once with all of the data before
starting to measure accuracy and other metrics. The train-once model is never updated
again. In this case, we will use a non-incremental decision tree, which is the CART
algorithm [7], to fit the model. We use the setting with the best accuracy, which is
criterion = gini, and no other restrictions.

The designers of adaptive random forest provided six variant configurations of adap-
tive random forest [14]: the variants ARFmoderate, ARFf ast, ARFPHT , ARFnoBkg, ARFstdRF,
and ARFmaj. ARFf ast has the highest accuracy in most cases that we tested, so we will use
that configuration: δw = 0.01, δd = 0.001, and learners = 100.

5.1. Categorical Variables

Because the real datasets all contain categorical variables and the forgetful methods
do not handle those directly, we modified the categorical variables into their one-hot
encodings using the OneHotEncoder of scikit-learn [19]. For example, a categorical vari-
able color = {R, G, B} will be transferred to three binary variables isR = {True, False},
isG = {True, False}, and isB = {True, False}. In addition, all of the forgetful methods in
the following tests use only binary splits at each node.
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5.2. Metrics

In addition to accuracy, we use precision, recall, and F1 score to evaluate our methods.
Precision and recall are appropriate to problems where there is a class of interest, and the
question is which percentage of predictions of that class are correct (precision) and how
many instances of that class are predicted (recall). This is appropriate for the detection of
phishing websites. Accuracy is more appropriate in all other applications. For example, in
the electricity datasets, price up and price down are both classes of interest. Therefore, we
present precision, recall, and the F1 score for phishing only. We use the following formula
based on the confusion matrix:

• accuracy = |TruePositive|+|TrueNegative|
Size(test−set)

• precision = |TruePositive|
|TruePositive|+|FalsePositive|

• recall = |TruePositive|
|TruePositive|+|FalseNegative|

• F1score = |2∗TruePositive|
2∗|TruePositive|+|FalseNegative|+|FalsePositive|

In contrast to i.i.d. machine learning tasks, we do not partition the data into a training
set and a test set. Instead, when each batch of data arrives, we measure the accuracy and F1
score of the predictions on that batch, before we use the batch to update the models.

We start measuring accuracy and F1 score after the accuracy of the forgetful decision
tree flattens out, in order to avoid evaluating the predictions during initial start-up when
too little data has arrived to create a good model. For each dataset, all algorithms (state-of-
the-art and forgetful) will start measuring the accuracy and F1 score after the same amount
of data has arrived.

5.3. Datasets

We use four real datasets and two synthetic datasets to test the performance of our
forgetful methods against the state-of-the-art incremental algorithms. The forest cover type,
phishing, and power supply datasets suffer from frequent and mild concept drifts, the
electricity dataset suffers from frequent and drastic concept drift, and the two synthetic
datasets suffer from gradual and abrupt concept drifts, respectively. Thus, our test datasets
cover a variety of concept drift scenarios.

• The forest cover type (ForestCover) [20] dataset captures images of forests for each
30 ∗ 30 m cell determined from the US Forest Service (USFS) Region 2 Resource
Information System (RIS) data. Each increment consists of 400 image observations.
The task is to infer the forest type. This dataset suffers from concept drift because
later increments have different mappings from input image to forest type than earlier
ones. For this dataset, the accuracy first increases and then flattens out after the first
24, 000 data items have been observed, out of 581, 102 data items.

• The electricity [21] dataset describes the price and demand of electricity. The task is
to forecast the price trend in the next 30 min. Each increment consists of data from
one day. This data suffers from concept drift because of market and other external
influences. For this dataset, the accuracy never stabilizes, so we start measuring
accuracy after the first increment, which is after the first 49 data items have arrived,
out of 36, 407 data items.

• Phishing [22] contains 11, 055 web pages accessed over time, some of which are
malicious. The task is to predict which pages are malicious. Each increment consists
of 100 pages. The tactics of phishing purveyors get more sophisticated over time, so
this dataset suffers from concept drift. For this dataset, the accuracy flattens out after
the first 500 data items have arrived.

• Power supply [23] contains three years of power supply records of an Italian electrical
utility, comprising 29, 928 data items. Each data item contains two features, which
are the amount of power supplied from the main grid and the amount of power
transformed from other grids. Each data item is labelled with the hour of the day
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when it was collected (from 0 to 23). The task is to predict the label from the power
measurements. Concept drift arises because of season, weather, and the differences
between working days and weekends. Each increment consists of 100 data items, and
the accuracy flattens out after the first 1000 data items have arrived.

• The two synthetic datasets are from [16]. Both are time-ordered and are designed to
suffer from concept drift over time. One, called Gradual, has 41, 000 data points. Grad-
ual is characterized by complete label changes that happen gradually over 1000 data
points at three single points, and 10, 000 data items between each concept drift. An-
other dataset, called Abrupt, has 40, 000 data points. It undergoes complete label
changes at three single points, with 10, 000 data items between each concept drift. Each
increment consists of 100 data points. Unlike the datasets that were used in Section 4,
these datasets contain only four features, two of which are binary classes without
noise, and the other two are sparse values generated by sin(x) and sin−1(y), where x
and y are the uniformly generated random numbers. For both datasets, the accuracy
flattens out after 1000 data items have arrived.

To measure the statistical stability in the face of the noise caused by the randomized
setting of the initial seeds, we test all decision trees and random forests six times with differ-
ent seeds and record the mean values with a 95% confidence interval for time consumption,
accuracy, and F1 score.

The following experiments are performed on an Intel Xeon Platinum 8268 24C 205W
2.9 GHz Processor with 200 gigabytes of memory, Intel, Santa Clara, CA, USA.

5.4. Quality and Time Performance of the Forgetful Decision Tree

Figure 1 compares the time consumption of different incremental decision trees. For
all datasets, the forgetful decision tree is at least three times faster than the other incremen-
tal methods.
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the phishing dataset. The precision and recalls vary. For example, the Hoeffding adaptive
tree has a better precision but a worse recall than the forgetful decision tree, while the
iSOUP tree has a better recall but a worse precision. Overall, the forgetful decision tree has
a similar F1 score to the other incremental methods.
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5.5. Quality and Time Performance of the Forgetful Random Forest

Figure 4 compares the time performance of maintaining different random forests.
From this figure, we observe that the forgetful random forest without bagging is the fastest
algorithm. In particular, it is at least 24 times faster than the adaptive random forest. The
forgetful random forest with bagging is about 10 times slower than without bagging, but it
is still 2.5 times faster than the adaptive random forest.
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Figure 4. Time consumption of random forests. As can be seen on this logarithmic scale, the forgetful
random forest without bagging is at least 24 times faster than the adaptive random forest. The
forgetful random forest with bagging is at least 2.5 times faster than the adaptive random forest.

Figure 5 compares the accuracy of different random forests. From these figures, we
observe that the forgetful random forest without bagging is slightly less accurate than
the adaptive random forest (by at most 2%). By contrast, the forgetful random forest
with bagging has a similar accuracy compared to the adaptive random forest. For some
applications, the loss of accuracy might be acceptable in order to handle a high streaming
data rate.
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Figure 5. Accuracy of random forests. Without bagging, the forgetful random forest is slightly less
accurate (at most 2%) than the adaptive random forest. With bagging, the forgetful random forest has
a similar accuracy to the adaptive random forest.

Figure 6 compares the precision, recall, and F1 score of training different random
forests when these evaluations are appropriate. From these figures, we observe that the
forgetful random forest without bagging has a lower precision, recall, and F1 score than
the adaptive random forest (by at most 0.02). By contrast, the forgetful random forest with
bagging has a similar precision but a lower recall and F1 score (by at most 0.01) compared
to the adaptive random forest.
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Figure 6. F1 score of random forests: The forgetful random forest without bagging has a lower
precision, recall, and F1 score (by 0.02) compared to the adaptive random forest. The forgetful
random forest with bagging has a lower F1 score (by 0.01) but a similar precision to the adaptive
random forest.

6. Discussion and Conclusions

Forgetful decision trees and forgetful random forests constitute simple, fast and
accurate incremental data structure algorithms. We have found that:

• The forgetful decision tree is at least three times faster and at least as accurate as state-
of-the-art incremental decision tree algorithms for a variety of concept drift datasets.
When the precision, recall, and F1 score are appropriate, the forgetful decision tree has
a similar F1 score to state-of-the-art incremental decision tree algorithms.

• The forgetful random forest without bagging is at least 24 times faster than state-of-
the-art incremental random forest algorithms, but is less accurate by at most 2%.

• By contrast, the forgetful random forest with bagging has a similar accuracy to the most
accurate state-of-the-art forest algorithm (adaptive random forest) and is 2.5 faster.

• At a conceptual level, our experiments show that it was possible to set hyperparameter
values based on changes in accuracy on synthetic data and then apply those values
to real data. The main such hyperparameters are iRate (increase rate of size of data
retained), tThresh (the confidence interval that accuracy has changed), and nTree (the
number of decision trees in the forgetful random forests).

• Further our experiments show the robustness of our approach across a variety of
applications where concept drift is frequent or infrequent, mild or drastic, and gradual
or abrupt.

In summary, forgetful data structures speed up traditional decision trees and ran-
dom forests for streaming data and help them adapt to concept drift. Further, bagging
increases accuracy but at some cost in speed. The most pressing question for future work
is whether some alternative method to bagging can be combined with forgetfulness to
increase accuracy at less cost in a streaming concept drift setting.
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Figure A1. Main function of the forgetful decision tree. ||X|| refers to the number of rows in batch X.
Notice that coldStartup occurs only when data first appears. There are no further cold starts after
concept drifts.

The forgetful decision tree main routine (Figure A1) is called on the initial data and
each time a new batch (an incremental batch) of data is received. The routine will make
predictions with the tree before the batch and then update the batch. To avoid measuring
accuracy during cold start, accuracy results are recorded only after the accuracy flattens
out (i.e., when the accuracy changes 10% or less between the last 500 data items and the
previous 500 data items). BuildSubTree(·) and UpdateSubTree(·) are called by the main
routine. The BuildSubTree(·) (not shown) is essentially the original CART build algorithm,
and the UpdateSubTree(·) is designed as follows:

• The stopping criteria E(·) may combine one or more factors, such as maximum tree
height, minimum samples to split, and minimum impurity decrease. If the criteria
holds, then the node will not further split. In addition, if all data points in the node
have the same label, that node will not be split further. maxHeight controls E(·) and is
computed in AdaptParameters(.) below.

• The evaluation function G(·) evaluates the splitting score for each feature and each
splitting value. It will typically be a Gini Impurity [17] score or an entropy reduction
coefficient. As we discuss below, the functions minG and minGInc find split points
that minimize the weighted sum of scores of each subset of the data after splitting.
Thus, the score must be evaluated on many split points (e.g., if the input attribute

https://github.com/ZhehuYuan/Forgetful-Random-Forest.git
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is age, then possible splitting criteria could be age > 30, age > 32, . . . ) to find the
optimal splitting values.

• rSize determines the size of Xretained
n ∪Xi

n and Yretained
n ∪Yi

n to be retained when new data
for X and Y arrives. For example, suppose rSize = 100. Then | |Xi

n | |+ | |Xretained
n | | − 100

of the oldest of Xretained
n and Yretained

n (the data present before the incoming batch) will
be discarded. The algorithm then appends Xi

n and Yi
n to what remains of Xretained

n and
Yretained

n . All nodes in the subtrees will discard the same data items as the root node. In
this way, the tree is trained with only the newest rSize of data in the tree. Discarding
old data helps to overcome concept drift, because the newer data better reflects the
mapping from X to Y after concept drift. rSize should never be less than | |Xi

n | |, to
avoid forgetting any new incoming data. As mentioned above, upon initialization,
new data will be continually added to the structure without forgetting until accuracy
flattens out, which is controlled by coldStartup. rSize and coldStartup are computed
in AdaptParameters(.) below.
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incoming data and uses that data to update the best splitting points or prediction label for each node.
Note that the split on line 17 is likely to be less expensive than the split on line 13.

After the retained old data is concatenated with the incoming batch data, the decision
tree is updated in a top-down fashion using the UpdateSubTree(.) function (Figure A2)
based on G(.).
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At every interior node, function minGInc(.) calculates a score for every feature by
evaluating function G on the data allocated to the current node. This calculation leads to
the identification of the best feature and best value (or potentially values) to split on, with
the result that the splitting gives rise to two or more splitting values for a feature. The data
discarded in line 2 of UpdateSubTree(.) will not be considered by minGInc(.). If, at some
node, the best splitting value (or values) is different from the choice before the arrival of the
new data, the algorithm rebuilds the subtree with the data retained as well as the new data
allocated to this node (the BuildSubTree(.) function). Otherwise, if the best splitting value
(or values) is the same as the choice before the arrival of the new data, the algorithm splits
only the incoming data among the children and then recursively calls the UpdateSubTree(.)
function on these child nodes.

In summary, the forgetting strategy ensures that the model is trained only on the
newest rSize data. The rebuilding strategy determines whether a split point can be retained
in which case tree reconstruction is vastly accelerated using UpdateSubTree(.). Even if the
unshown BuildSubTree(.) is used, the calculation of the split point based on G(.) (e.g., Gini
score) is somewhat accelerated because the relevant data is already nearly sorted.

Appendix B. Ongoing Parameter Tuning

We use the AdaptParameters(.) function to adaptively change currentParams.rSize,
maxHeight, and currentParams.iRate based on changes in accuracy. AdaptParameters(.) is
called when new data is acquired from the data stream and before function UpdateSubTree(.)
is called. The rSize and maxHeight will be applied to the parameters when calling
UpdateSubTree(.). The iRate and rSize will also be inputs to the next call to the
AdaptParameters(.) function on this tree.

The AdaptParameters(.) function will first test the accuracy of the model on new
incoming data yielding newAcc. The function then recalls the accuracy that was tested
last time as lastAcc. Next, because we want newAcc and lastAcc to improve upon random
guessing, we subtract the accuracy of random uniform guessing from newAcc (the guessAcc
was already subtracted from lastAcc in the last update). We posit that the accuracy of
random guessing (guessAcc) to be 1/nClasses. The intuitive reason to subtract guessAcc
is that a lastAcc that is no greater than guessAcc suggests that the model is no better than
guessing just based on the number of classes. That, in turn, suggests that concept drift has
likely occurred so old data should be discarded.

Following that, AdaptParameters(.) will calculate the rate of change (rChange) of
rSize by:

• When newAcc/lastAcc ≥ 1, the max in the exponent will ensure that rChange will be
(newAcc/lastAcc)2. In this way, the rChange curves slightly upward when newAcc is
equal to, or slightly higher than lastAcc, but curves steeply upward when newAcc is
much larger than lastAcc.

• When newAcc/lastAcc < 1, rChange is equal to (newAcc/lastAcc)3−newAcc/lastAcc.
In this way, rChange is flat or curves slightly downward when newAcc is slightly
lower than lastAcc but curves steeply downwards when newAcc is much lower than
lastAcc.

• Other functions to set rChange are possible, but this one has the following desir-
able properties: (i) it is continuous regardless of the values of newAcc and lastAcc;
(ii) rChange is close to 1 when newAcc is close to lastAcc; (iii) when newAcc differs
from lastAcc significantly in either direction, rChange reacts strongly.

Numbered lists can be added. Finally, we will calculate and update the new rSize
by multiplying the old rSize by rChange. To effect a slow increase in currentParams.rSize
when newAcc ≈ lastAcc and rChange ≈ 1, we increase rSize by iRate∗||Xn|| in additional
to rSize(old) ∗ rChange, where iRate (the increase rate) is a number that is maintained from
one call to AdaptParameters(.) to another. The size of the incoming data is

∣∣∣∣Xi
n
∣∣∣∣, so rSize

cannot increase by more than
∣∣∣∣Xi

n
∣∣∣∣. In addition, we do not allow rSize to be less than
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∣∣∣∣Xi
n
∣∣∣∣, because we do not want to forget any new incoming data. When AdaptParameters(.)

is called the first time, we will set rSize = | |Xi
n | |+ | |Xretained

n | |.
The two special cases happen when newAcc ≤ 0 or lastAcc ≤ 0. When newAcc ≤ 0,

the prediction of the model is no better than random guessing. In that case, we infer that
the old data cannot help in predicting new data, so we will forget all of the old data by
setting rSize =

∣∣∣∣Xi
n
∣∣∣∣. When lastAcc ≤ 0 but newAcc > 0, then all the old data may be

useful. Thus, we set rSize = rSize+
∣∣∣∣Xi

n
∣∣∣∣.

The above adaptation strategy requires a dampening parameter iRate to limit the
increase rate of rSize. When the accuracy is large, the model may be close to its maximum
possible accuracy, so we may want a smaller iRate and in turn to increase rSize slower.
After a drastic concept drift event, when the accuracy has been significantly decreased, we
want to increase iRate to retain more new data after forgetting most of the old data. This
will accelerate the creation of an accurate tree after the concept drift. To achieve this, we
will adaptively change it as follows: set iRate (new) equal to iRate(old) ∗ lastAcc/newAcc
before each update to rSize. iRate will not be changed if either lastAcc ≤ 0 or newAcc ≤ 0.

Upon initialization, if the first increment is small, then newAcc may not exceed
1/nClasses, and the model will forget all of the old data every time. To avoid such poor
performance at cold start, the forgetful decision tree will be initialized in cold startup mode.
In cold startup mode, the forgetful decision tree will not forget any data. When rSize
reaches warmSize, the forgetful decision tree will leave cold startup mode if newAcc is
better than guessAcc since the last 50% data arrived. Otherwise, warmSize will be doubled.
The above process will be repeated until leaving cold startup mode.

Max tree height is closely related to the size of data retained in the tree. We want each
leaf node to have about one data item on average when the tree is perfectly balanced, so
we always set maxHeight = log2(rSize).

Appendix C. Algorithms for Forgetful Random Forests
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Figure A4. UpdateForest algorithm. This routine discards and rebuild trees when accuracy decreases
and then (optionally) updates each tree with bagged incoming data.

As for the forgetful decision tree main routine, the forgetful random forest main
routine (Figure A3) is called initially and then each time an incremental batch of data is
received. The routine will make predictions with the random forest before the batch and
then update the random forest. The main function of forgetful random forest describes
only the update part. Accuracy results apply after the accuracy flattens out to avoid
measuring accuracy during initial cold start. Flattening out occurs when the accuracy
changes 10% or less between the last 500 data items and the previous 500 data items.
UpdateForestRF(.) function will be called by the main routine to incrementally update the
forest. The UpdateForestRF(.) function is the same as the UpdateForest(.) function except
only features in allConsiders[tree] are considered.

In addition to updating each tree inside the forest, updating the random forest also in-
cludes discarding the trees with features that perform poorly after concept drift (Figure A4).
To achieve that, we will call the Discard(.) function (explained below) when newAcc is
significantly less than Acci−1. As in the UpdateForest(.) function, we will subtract the
accuracy of randomly and uniformly guessing one class out of nClasses from newAcc and
from Acci−1 to show the improvement of the model with respect to random guessing.
Significance is based on a p− value test: the accuracy of the forest has changed with a
p− value < tThresh based on a 2-sample t-test. The variable tThresh is a hyper-parameter
that will be tuned in Section 4 and Appendix D.

To detect slight but continuous decreases in accuracy, we will calculate Acci and Sizei
by the weighted average calculation in the pseudo-code when the change in accuracy is
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insignificant (p− value > tThresh). By contrast, when the change in accuracy is significant,
we will set Acci and Sizei to newAcc and

∣∣∣∣Xi
∣∣∣∣ after the Discard(.) function is called.

The Discard(.) function removes the ((Acci−1 − newAcc)/Acci−1) ∗ nTree decision
trees of the random forest having the least accuracy when evaluated on the new data. The
discarded trees are replaced with new decision trees. Each new tree will take all the data
from the tree it replaced, but the tree will be rebuilt, the allParams for that tree will be
re-initialized, and the considered features will be re-selected for that tree. After building
the new tree, the algorithm will test the tree on the latest data to calculate lastAcc and
lastSize of the new tree. In this way, new trees adapt their rSize and iRate based on the
newly arriving data.

Appendix D. Methods for Determining Hyperparameters

To find the best hyperparameters, we created 18 simulated datasets. Each dataset
contains 50, 000 data items labeled with {0, 1} without noise. Each item is characterized by
10 binary features. Each dataset is labeled with (C, I), where C means that it has (C− 1)
uniformly distributed concept drifts, and I is the intensity of the concept drift, while a
mild concept drift will drift one feature, a medium concept drift will drift three features,
and a drastic concept drift will drift 5 features. In addition, for each dataset, we have
one version without Gaussian noise and the other version with Gaussian noise (λ = 0,
std = 1, unit is the number of features). We tested the forgetful decision tree and forgetful
random forest with different initial hyperparameter values on these synthetic datasets.
We first set the evaluation function, maximum height function, and warmSize in advance,
because these parameters do not materially affect the accuracy. Then we use exhaustive
search on all possible combinations of the remaining three hyperparameters to find the
best values for them. To measure statistical stability in the face of the noise caused by the
random setting of the initial seeds, we tested the random forests six times with different
seeds and recorded the average accuracies. In our test, all curves (variable values against
accuracies) are flattened, and we choose the values that result in the best accuracy as our
default hyperparameters.
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