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Abstract: This paper studies various deep learning models for word-level lip-reading technology,
one of the tasks in the supervised learning of video classification. Several public datasets have been
published in the lip-reading research field. However, few studies have investigated lip-reading
techniques using multiple datasets. This paper evaluates deep learning models using four publicly
available datasets, namely Lip Reading in the Wild (LRW), OuluVS, CUAVE, and Speech Scene by
Smart Device (SSSD), which are representative datasets in this field. LRW is one of the large-scale
public datasets and targets 500 English words released in 2016. Initially, the recognition accuracy of
LRW was 66.1%, but many research groups have been working on it. The current the state of the art
(SOTA) has achieved 94.1% by 3D-Conv + ResNet18 + {DC-TCN, MS-TCN, BGRU} + knowledge
distillation + word boundary. Regarding the SOTA model, in this paper, we combine existing models
such as ResNet, WideResNet, WideResNet, EfficientNet, MS-TCN, Transformer, ViT, and ViViT, and
investigate the effective models for word lip-reading tasks using six deep learning models with
modified feature extractors and classifiers. Through recognition experiments, we show that similar
model structures of 3D-Conv + ResNet18 for feature extraction and MS-TCN model for inference are
valid for four datasets with different scales.

Keywords: lip-reading; word recognition; deep neural network; LRW; OuluVS; CUAVE; SSSD;
3D convolutional layer; ResNet; WideResNet; EfficientNet; transformer; ViT; ViViT; MS-TCN

1. Introduction

This paper focuses on word lip-reading technology that estimates the utterance content
from visual information only without audio information. This paper uses “words,” but
more precisely, it includes both words and short phrases. This technology is expected to
be used in the following cases where it is difficult to use audio-based speech recognition:
it is used in noisy environments where it is difficult to obtain speech, in public places
where it is difficult to speak, and used by people with disabilities who cannot speak due
to laryngectomy. Since various problems can be solved using lip-reading technology, it is
expected to be one of the next-generation communication tools.

As an academic framework, lip-reading technology is classified as supervised learning
for video data. There are several topics for research on lip-reading; shooting directions
such as frontal and side [1], recognition targets such as single sound [2,3], word [4–9], and
sentence [10–12]. Word recognition is an active research topic, and various algorithms have
been proposed.

Word lip-reading has been studied since the early days of lip-reading technology.
However, research has become active with the release of datasets such as OuluVS [13],
CUAVE [14], SSSD [15], LRW [4], CAS-VSR-W1k (LRW-1000) [16], and RUSAVIC [17], and
the introduction of deep learning. In particular, research groups using LRW, one of the
large-scale datasets, have been competing for several percent accuracies in recent years
(https://paperswithcode.com/sota/lipreading-on-lip-reading-in-the-wild, accessed on
26 April 2023).
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This paper explores various deep learning models and their effectiveness in word
lip-reading. While many papers use one or two datasets, this paper conducts experiments
on four publicly available datasets; LRW, OuluVS, CUAVE, and SSSD.

This paper is organized as follows. Section 2 describes the related research. Section 3
summarizes the basic model of the deep learning model considered in this paper. Section 4
introduces the deep learning model investigated in this paper. Section 5 shows recognition
experiments on four datasets, and Section 6 concludes this paper.

2. Related Research

There are many studies on word lip-reading techniques. Here, this paper focuses on
research targeting LRW.

LRW is a dataset published by Chung et al. in 2016 [4] (https://www.robots.ox.ac.
uk/~vgg/data/lip_reading/lrw1.html, accessed on 26 April 2023) and is a large-scale
lip-reading research dataset containing 500 English words. LRW is used as a benchmark
in the lip-reading field. LRW contains utterance scenes clipped from news and discussion
programs broadcast from 2010 to 2016 by the British Broadcasting Corporation (BBC),
which collectively manages radio and television in the United Kingdom. While most
datasets are utterance scenes in which the speaker was recording in a roughly specified
posture, LRW has the feature of recording utterance scenes in a natural posture even
though it is a TV program. The number of speakers is more than 1000. LRW consists of
three types of data: training data, validation data, and test data, and provides video data
containing 488,766 scenes, 25,000 scenes, and 25,000 scenes, respectively. The train data
contain 800–1000 scenes per word, and the validation and test data contain 50 scenes per
word. All scenes are extracted face images with 256× 256 pixels, the frame rate is 25 fps,
the scene length is 1.16 s, and the number of frames is 29. The total recording time of the
three types is about 173 h.

CAS-VSR-W1k [16], which contains 1000 Chinese words, is a large-scale open dataset
containing word utterance scenes. The state-of-the-art (SOTA) recognition accuracies of
LRW and CAS-VSR-W1k are 94.1% [18] and 55.7% [19], respectively. Academically, it is
desirable to target CAS-VSR-W1k, which has a high degree of task difficulty. Since we
could not obtain CAS-VSR-W1k, we target LRW.

Chung et al., who published LRW, proposed four convolutional neural network
(CNN) models based on VGG-M [4]. Among the four models, the multiple towers model
obtained the highest recognition rate of 66.1%. This model has a structure in which
the convolutional layers for all frames are provided in the first layer. The outputs of all
subsequent convolutional layers are connected to one and input to the second convolutional
layer. The following year, Chung et al. proposed a new network with a watch, listen, attend,
and spell (WLAS) structure, obtaining 76.2% [10]. In WLAS, the encoder consists of a CNN
model that is an improved version of VGG-M, which extracts features from each input
frame image, and a long short-term memory (LSTM) that summarizes the output of the
features from the CNN model. The decoder consists of LSTM, attention, and softmax.

According to the paper with the code site (https://paperswithcode.com/sota/lipreading-
on-lip-reading-in-the-wild, accessed on 26 April 2023), SOTA in LRW is currently the result
of Ma et al. [18]. The model architecture consists of 3D-Conv + ResNet18 in the front stage
and a Temporal model in the backstage with a mouth region of interest (ROI) as input. The
temporal model is an ensemble of three different models; densely connected temporal con-
volutional networks (DC-TCNs), multi-scale temporal convolutional networks (MS-TCNs),
and bidirectional gated recurrent units (BGRUs). In addition to the model architecture, they
applied data augmentation, self-distillation, and word boundary indicators to improve the
recognition accuracy. Many other papers have recently discussed the model training strategy,
but the model architecture is often 3D-Conv + ResNet18 + MS-TCN [6,8,20]. The second highest
accuracy in LRW is 3D Conv + EfficientNetV2 + Transformer + TCN structure, which obtained
a recognition rate of 89.5%, proposed by Koumparoulis et al. [21]. The structure with the third
highest accuracy 88.7% is Vosk + MediaPipe + LS + MixUp + SA + 3DResNet-18 + BiLSTM +

https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrw1.html
https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrw1.html
https://paperswithcode.com/sota/lipreading-on-lip-reading-in-the-wild
https://paperswithcode.com/sota/lipreading-on-lip-reading-in-the-wild
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CosineWR [22], where Vosk is a voice activity detection model, which can detect speech regions
even in heavy acoustically noisy conditions. MediaPipe is a machine-learning library provided
by Google (https://developers.google.com/mediapipe, accessed on 26 April 2023). LS means
label smoothing [23], SA means a squeeze-and-attention (SA) module, and CosineWR means
cosine annealing warm restarts. This study uses two datasets, LRW and RUSAVIC [17], for
evaluation. The Russian Audio-Visual Speech in Cars (RUSAVIC) is a multi-speaker and
multi-modal corpus. The number of speakers is 20, and the number of phrases is 68.

3. Basic Model

In this section, we explain preprocessing and summarize the basic models of deep
learning, data augmentation, distance learning, and fine-tuning discussed in this paper.

3.1. Preprocessing

To begin the process, we follow the same preprocessing steps as the existing method by
our previous research [15]. The datasets we are working with, namely OuluVS and CUAVE,
contain not only the speaker’s face but also their upper body and the background. Hence,
we first extract the face rectangle from the input image using face detection processing. Sev-
eral face detectors have been proposed, including non-deep learning approaches that use
Haar-like features and histograms of oriented gradients (HOG) [24,25] and deep learning
approaches such as RetinaFace [26]. This paper uses the face detector implemented in the
dlib library (http://dlib.net/, accessed on 26 April 2023).

Facial landmark detection helps determine the location of facial parts such as eyes,
eyebrows, nose, and lips. This is an important process for stable ROI extraction. In this
paper, we utilize the method proposed by Kazami and Sullivan [27], which is a typical facial
landmark detection method implemented in the dlib library. A total of 68 facial landmarks
are detected.

The size and rotation normalization process is applied based on the detected facial
landmarks. At first, two variables of deye, the distance between two eyes, and θ, the angle
between two eyes, are calculated. Then, an affine transformation is applied using deye and
θ. Specifically, the scale is changed so that deye becomes 200 pixels, and the image is rotated
so that θ becomes 0 degrees.

Then, the following equation extracts the upper left coordinate (L, T), lower right
coordinate (R, B), and the size of S× S pixels of the lipROI.

L = (xllip + xrlip)/2− S/2,

T = (yllip + yrlip)/2− S/3,

R = L + S,

B = T + S.

Here, the two points (xllip, yllip) and (xrlip, yrlip) are the landmark coordinates of the
left and right corners of the mouth, respectively. The extracted lipROI is fed to the deep
learning model.

3.2. Three-Dimensional Convolution

Many deep learning models investigated in this paper will be described later in
Section 4, which extract features using ResNet. The input data are time-series image data
(lipROIs). For this reason, we first apply a 3D convolution. Specifically, the structure shown
in Figure 1 is used.

https://developers.google.com/mediapipe
http://dlib.net/
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3D Convolution

Batch Normalization

ReLU

3D Max Pooling

Figure 1. Structure of a 3D convolutional layer.

3.3. Resnet

Residual network (ResNet) [28] is a well-known model that introduces a residual block
and a shortcut connection into an existing CNN model. The convolutional layer of CNN
extracts features by combining them with the pooling layer, and it is thought that advanced
and complex features can be extracted by stacking layers. However, when deep structures
are used, there is a problem that training does not progress due to the gradient vanishing
or exploding gradients. Therefore, ResNet solves the problem by training the residual
function referenced from the layer’s input instead of training the optimal output found in a
layer. The residual block combines a convolutional layer and a skip connection, summing
the outputs of the two passes. One of the residual blocks combines convolutional layers,
and the other is the identity function. If this structure does not require transformations in
additional layers, it can be handled by setting the weight to zero.

3.4. WideResNet

WideResNet [29] is an improved model of ResNet. The purpose of ResNet is to deepen
the layers, but there is a problem stemming from the fact that deeper layers implies a lower
computational efficiency in terms of performance. This is believed because many layer
weights become meaningless, which is called the reduced feature reuse problem. WideRes-
Net was proposed as a solution to this problem. WideResNet improves the computational
efficiency and performance by increasing the number of channels for convolution in the
residual block and introducing the dropout.

3.5. EfficientNet

In order to improve the accuracy of the image classification model, various measures,
such as increasing the number of layers, widening the width (channel) of the model,
and increasing the resolution of the input image, were implemented independently. On
the other hand, EfficientNet [30] is a model that introduces a compound coefficient that
simultaneously performs three changes in a well-balanced manner. EfficientNet proposed
eight models, namely EfficientNet-B0–EfficientNet-B7, which are automatically designed
using neural architecture search (NAS) [31]. NAS is a method that automatically optimizes
a dedicated network structure to scale the composite coefficients in a balanced manner.

3.6. Transformer

Transformer is a model that uses only attention without recurrent neural network
(RNN) or CNN [32]. Transformer is based on the encoder–decoder model and incorporates
self-attention and a position-wise feed-forward network.

Self-attention calculates the similarity and importance among its own data. The input
of the transformer is divided into Query Q, Key K, and Value V. Here, Q is the input data
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and represents what to search in the input data. K is used to measure how similar the object
to be searched and the Q are. V is an element that outputs an appropriate V based on K.
These features are transformed in the fully connected layer, and the inner product of K and
V is taken. The inner product is then normalized by softmax so that the sum of the weights
for a single Q is 1.0. Finally, the output is obtained by multiplying the obtained weight
by V. A position-wise feed-forward network is an independent neural network for each
data position that consists of two fully connected layers. Located after the attention layer, it
linearly transforms the output of the attention layer.

3.7. ViT

Vision transformer (ViT) [33] is a model that divides an image into patches and
treats each patch image as a word. Specifically, the image is divided into N patches
xN and passes through the transformer E to obtain one-dimensional Exi . Let xcls be the
classification token and Ep ∈ R(N+1)×D be the location information, z0, which is the input
of the transformer, which is prepared from N Exi , where i is i = 1, . . . , and N and D is the
number of dimensions of the latent vector. This feeds the input z into the transformer. The
transformer consists of multi-head self-attention (MSA), layer normalization (LN), and
multilayer perceptron (MLP).

3.8. ViViT

Since the video vision transformer (ViViT) [34] constructs the input token z from a
video that does not handle 3D data, the method of obtaining the patch x is different from
ViT. In ViT, an image is divided into patches and input tokens are obtained, whereas in
ViViT, tablets are obtained by collecting patches on the spatio-temporal axis.

In addition, there are encoders with two different roles as a device to capture the
time-series information. One is an encoder for capturing the spatial information. It extracts
the tokens from the same time frames, interacts, and creates an average classified token xcls
through a transformer. The concatenated xcls representing each time is input to the second
time-series encoder. Classification is realized using xcls output from the second encoder as
a classifier.

3.9. MS-TCN

TCN [35] is a network that uses CNN for series data. It achieves higher accuracy than
RNN, such as LSTM, in tasks for time-series data such as natural language and music.
TCN consists of a combination of 1D fully convolutional networks and casual convolutions.
Furthermore, Martinez et al. proposed a model using MS-TCN [6]. MS-TCN incorporates
multiple timescales into the network to mix short-term and long-term information during
feature coding.

3.10. Data Augmentation

In the research field of image recognition, data augmentation (DA) is widely used to in-
crease the number of image data by applying operations such as slightly rotating the image
or flipping it horizontally. This paper applies RandAugment (RA) [36], which randomly
selects the DA method. Various transformations include identity, autocontrast adjustment,
histogram equalization, rotation, solarization, color adjustment, posterization, contrast,
brightness, sharpness, horizontal shearing, vertical shearing, horizontal translation, vertical
translation, and generate NRA images. This paper applies the MixUp [37] with a weight of
0.4. MixUp is a data augmentation technique that generates a weighted combination of
random image pairs from the training data.

3.11. Distance Learning

Distance learning is a method of learning a function that maps data to a feature space
so that similar data are brought closer to each other and dissimilar data are separated from
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each other. This paper applies ArcFace [38], which proposes distance learning using angles,
one of the methods with high accuracy in face recognition.

In ArcFace, class classification can solve distance learning by replacing the softmax
loss of class classification with angular margin Loss. Softmax Loss has the property of
increasing the similarity between samples of the same class but not forcing the similarity
of other classes to be low. In ArcFace, the input weights W and feature values xi are
normalized, and the bias b is set to 0. This gives WT

j xi = ‖Wj‖‖xi‖ cos θj,i = cos θj,i. θj,i
is the angular distance between the feature xj,i and the center position Wj of the j class.
Therefore, cos θj,i represents the cosine similarity between the feature xi and the j class. In
addition, the convergence of learning is stabilized by setting the scaling parameter s as a
hyperparameter. Furthermore, a linear separation space is secured by directly adding the
margin to the angle space.

3.12. Fine-Tuning

Fine-tuning (FT) is used to re-train the weights of the entire model using the weights
of the trained network as the initial values to construct a highly accurate model. This paper
uses four public datasets: LRW, OuluVS, CUAVE, and SSSD. Among them, LRW is larger
than the other datasets. Therefore, FT using the model learned by LRW is applied to the
three datasets excluding LRW.

4. Target Models

Referring to the SOTA model [18], this paper investigates six deep learning models
shown in Figure 2. The numerical values in the figure indicate the layers that make up the
model as one block and indicate the output size of each block. NF is the number of input
sequential image frames, and NC is the number of classes, which is the number of units in
the output layer.

4.1. 3D-Conv + ResNet18 + MS-TCN

An overview of the model diagram is shown in Figure 2a. Extract 512-dimensional
features from input images using 3D-Conv + ResNet18. After that, it trains the temporal
changes of the features obtained by MS-TCN. MS-TCN has three convolutional layers with
kernel sizes of 3, 5, and 7, and obtains short-term and long-term information.

4.2. 3D-Conv + ResNet18 + ViT

As shown in Figure 2b, this model extracts 512-dimensional features from input images
using 3D-Conv + ResNet18 and then trains temporal changes using ViT. Normally, the
input of ViT is an image, but in this paper, the extracted features are regarded as image
patches and input to ViT for training.

4.3. 3D-Conv + WiderResNet18 + MS-TCN

As shown in Figure 3a, this paper uses a model with permuted layers of ResNet. The
activation function is changed from ReLU to swish (SiLU). Training is performed in the
same way as ResNet18 + MS-TCN. In WideResNet, it is desirable to expand the number of
dimensions of features to be extracted. However, this paper uses the same dimensions as
ResNet18 due to resource constraints, as shown in Figure 3b.
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(a) 3D-Conv + ResNet18 + MS-TCN

(b) 3D-Conv + ResNet18 + VIT

(c) 3D-Conv + WideResNet18 + MS-TCN

(d) 3D-Conv + WideResNet18 + Transformer

(e) 3D-Conv + EfficienNet-b0 + MS-TCN

(f) VIT + MS-TCN
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Figure 2. Target models.
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(a) ResNet

Convolution

Batch Normalization

ReLU

Convolution

ReLU

Batch Normalization

+

Batch Normalization

SiLU

Convolution

Batch Normalization

SiLU

Convolution

+

(b) WideResNet

Figure 3. Structures of ResNet and WideResNet.

4.4. 3D-Conv + WiderResNet18 + Transformer

3D-Conv + WideResNet18 extracts 768-dimensional features from input images and
then trains temporal changes using transformer. The transformer is originally multi-head
self-attention, but single attention is used in this experiment.

4.5. 3D-Conv + EfficientNet-b0 + MS-TCN

3D-Conv + EfficientNet-b0 extracts 512-dimensional features from input images and
MS-TCN trains temporal changes.

4.6. ViT + MS-TCN

It is possible to recognize by ViT alone, but in this paper, ViT is used as a feature
extractor, as shown in Figure 2f. ViT extracts 100-dimensional features from each frame
image, and MS-TCN trains temporal changes. In ViT, a feature vector called a class token
inserted at the beginning of each frame image is extracted as a feature value of each
frame image.

5. Evaluation Experiment

Several datasets have been published in the lip-reading field. Four public datasets
shown in Table 1 are used in this experiment.

Table 1. Overview of the four datasets used in our experiments.

Name Year Language # of Speakers Content

LRW [4] 2016 English 1000+ 500 words
OuluVS [13] 2009 English 20 10 greeting phrases
CUAVE [14] 2002 English 36 10 digits
SSSD [15] 2018 Japanese 72 25 words

We applied the preprocessing described in Section 3.1 to extract the grayscale lipROIs.
The image size S× S of the lipROIs of LRW, OuluVS, CUAVE, and SSSD are 96× 96 pixels,
64× 64 pixels, 64× 64 pixels, and 64× 64 pixels, respectively. Figure 4 shows the lipROIs
of OuluVS, CUAVE, and SSSD. Inputs to 3D-Conv, ViT, and ViViT are image data randomly
extracted from 88× 88 pixels, 90× 90 pixels, and 87× 87 pixels, respectively.



Algorithms 2023, 16, 269 9 of 15

Figure 4. Extracted lipROIs (left: OuluVS, center: CUAVE, right: SSSD).

We used PyTorch to implement each model. To train our network, we utilized Adam
with the decoupled weight decay (AdamW) [39] along with certain parameters such as
β1 = 0.9, β2 = 0.999, ε = 10−8, and a weight decay of 0.01. The training was conducted for
80 epochs, using an initial learning rate of 0.0003 and a mini-batch size 32 for models using
ResNet18 and WideResNet18 and 16 for other models. As for the transformer, single-head
attention was used due to insufficient resources. We employed a cosine annealing schedule
to decay the learning rate without warm-up steps. We gave NRA = 2 as a parameter in RA.

5.1. LRW

Table 2 shows the top-1 accuracy and the number of parameters for each model
described in Section 4. In the table, the upper row is the accuracy of other representative
papers, and the lower row is the accuracy of this paper. “—” means that the reference does
not show the number of parameters in this model. Although the recognition accuracy of
this research did not reach the recognition accuracy of SOTA, the following things were
clarified by examining various models.

Table 2. Recognition results (LRW).

Model Top-1 Params
Acc. (%) ×106

Multi-Tower 3D-CNN [4] 61.1 —
WLAS [10] 76.2 —
3D-Conv + ResNet34 + Bi-LSTM [40] 83.0 —
3D-Conv + ResNet34 + Bi-GRU [41] 83.39 —
3D-Conv + ResNet18 + MS-TCN [6] 85.3 —
3D-Conv + ResNet18 + MS-TCN + MVM [20] 88.5 —
3D-Conv + ResNet18 + MS-TCN + KD [8] 88.5 36.4
Alternating ALSOS + ResNet18 + MS-TCN [42] 87.0 41.2
Vosk + MediaPipe + LS + MixUp + SA
+ 3D-Conv + ResNet-18 + BiLSTM + Cosine WR [22] 88.7 —
3D-Conv + EfficientNetV2 + Transformer + TCN [21] 89.5 —
3D-Conv + ResNet18 + {DC-TCN, MS-TCN, BGRU} (ensemble)
+ KD + Word Boundary [18] 94.1 —

3D-Conv + ResNet18 + MS-TCN (ours) 87.4 36.0
3D-Conv + ResNet18 + MS-TCN + RA (ours) 85.3 36.0
3D-Conv + ResNet18 + MS-TCN + ArcFace (ours) 86.7 36.0
3D-Conv + ResNet18 + ViT (ours) 83.8 30.1
3D-Conv + WideResNet18 + MS-TCN (ours) 86.8 36.0
3D-Conv + WideResNet18 + Transformer (ours) 79.2 11.2
3D-Conv + EfficientNet-b0 + MS-TCN (ours) 80.6 32.3
ViT + MS-TCN (ours) 79.9 24.0
ViViT (ours) 72.4 3.9
ViViT + RA (ours) 75.6 3.9

As a feature extractor, it can be confirmed that ResNet18 is superior to other models.
The analysis of mouth movements, which is the target of our experiment, has a smaller
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difference in movements than in other video classification tasks, such as human action
recognition. In addition, other feature extractors did not obtain the expected accuracy
because the image’s resolution was small. The model used in this experiment is a model
that achieves high accuracy in image recognition, but these are usually input with high-
resolution images such as 224× 224 pixels. This research is video recognition, and it is
necessary to put many images in the memory at once, so the experiment was performed at
a low resolution due to memory constraints. Therefore, effective feature values could not
be obtained in deep layers.

It was found that MS-TCN tends to obtain recognition accuracy in the inference part
of the latter stage. As for MS-TCN, we conducted experiments using RA and ArcFace,
but the recognition accuracy decreased. We suspect that this is because the application
of the RA-generated image data is unsuitable for the task or the model’s generalization
performance deteriorated due to the excessive application to the training data.

We consider the details of the recognition results for 3D-Conv + ResNet18 + MS-TCN,
which had the highest accuracy among the models investigated in this paper. Among
500 words, 15 words with low recognition rates are listed in Table 3. In the table, the
4th column shows words with many mistakes, and the numbers in parentheses are the
misrecognition rate. From the table, it can be confirmed that words with a low recognition
rate are misrecognized as similar words. Among the 500 words, 252 had a recognition rate
of 90.0% or higher.

Table 3. Fifteen words with low recognition rate (LRW).

Order Word Top-1 Acc. (%) Most Misrecognized Word

486 ABOUT 64 AMONG (10)
BECAUSE 64 ABUSE (10)

488 ACTUALLY 62 ACTION (6)
COULD 62 EUROPEAN, SHOULD (4)
MATTER 62 AMONG (6)
NEEDS 62 YEARS (8)
THINGS 62 YEARS (6)

493 THEIR 60 THERE (20)
UNDER 60 DURING, LONDON (4)
UNTIL 60 STILL (8)

496 SPEND 58 SPENT (18)
THESE 58 THINGS (8)

498 THING 56 BEING, NOTHING, THESE (4)
499 THINK 50 THING (16)
500 THERE 44 THEIR (12)

5.2. OuluVS

OuluVS [13] contains ten sentences spoken by 20 speakers, comprising 17 males and
3 females. The contents of the 10 sentences are (1) “excuse me”, (2) “good bye”, (3) “have a
good time”, (4) “hello”, (5) “how are you”, (6) “I am sorry”, (7) “nice to meet you”, (8) “see
you”, (9) “thank you”, and (10) “you are welcome”. For each speaker, five utterance scenes
are recorded for each sentence. The image size is 720× 576 pixels, the frame rate is 25 fps,
and the speaker speaks in front of a white background.

The leave-one-person-out cross-validation method was applied to 20 speakers in
the evaluation experiment, and the average recognition rate was obtained. Here, the
training and test data per speaker are 19 speakers× 10 sentences× 5 scenes = 950 scenes
and 1 speaker × 10 sentences × 5 scenes = 50 scenes, respectively. Table 4 shows the
recognition rate of the four training conditions and other methods. Here, NRA = 3 was set
for RA, and the training data were padded. AE, MF, and AU in [5,7,43] stand for feature
names based on the auto-encoder, motion feature, and action unit, respectively. FOMM
in [7] means a first-order motion model and generates utterance scenes. From the table,
3D-Conv + ResNet18 + MS-TCN + RA + FT obtained the highest recognition accuracy
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of 97.2%. It can be confirmed that the recognition accuracy is improved by fine-tuning
with LRW.

Table 4. Recognition results (OuluVS).

Model Top-1 Acc. (%)

Multi-Tower 3D-CNN [4] 91.4
AE + GRU [43] 81.2
FOMM → AE + GRU [7] 86.5
{MF + AE + AU} + GRU [5] 86.6

3D-Conv + ResNet18 + MS-TCN (ours) 90.1
3D-Conv + ResNet18 + MS-TCN + RA (ours) 93.1
3D-Conv + ResNet18 + MS-TCN + FT (ours) 95.1
3D-Conv + ResNet18 + MS-TCN + RA + FT (ours) 97.2

5.3. CUAVE

In CUAVE [14], utterance scenes are taken from 36 speakers, comprising 19 males
and 17 females. The utterance contents are “zero”, “one”, “two”, “three”, “four”, “five”,
“six”, “seven”, “eight”, and “nine”. A feature of CUAVE is that it includes frontal-face
speech scenes and side-face speech scenes. Furthermore, not only utterances in which the
speaker is standing still but scenes in which the speaker speaks while moving are recorded.
It also includes scenes in which two speakers speak at the same time. The image size is
720× 480 pixels, the frame rate is 29.97 fps, and the speaker speaks in front of a green
background. In this experiment, we use a scene where the speaker stands still and speaks
five samples per word.

The same leave-one-person-out cross-validation method as OuluVS was applied in
the experiment, and the average recognition rate was obtained. The training and test
data per speaker are 35 speakers× 10 sentences× 5 scenes = 1750 scenes and 1 speaker×
10 sentences× 5 scenes = 50 scenes, respectively. Table 5 shows the recognition rate of
experimental conditions and other methods. However, NRA = 3. From the table, 3D-
Conv + ResNet18 + MS-TCN + RA + FT obtained the highest recognition accuracy as well
as OuluVS.

Table 5. Recognition results (CUAVE).

Model Top-1 Acc. (%)

AE + GRU [43] 72.8
FOMM → AE + GRU [7] 79.8
{MF + AE + AU} + GRU [5] 83.4
3D-CNN (ours) 84.4

3D-Conv + ResNet18 + MS-TCN (ours) 87.6
3D-Conv + ResNet18 + MS-TCN + RA (ours) 90.0
3D-Conv + ResNet18 + MS-TCN + FT (ours) 93.7
3D-Conv + ResNet18 + MS-TCN + RA + FT (ours) 94.1

5.4. SSSD

SSSD [15] consists of 25 utterances, comprising 10 Japanese numeric words and
15 greetings (https://www.saitoh-lab.com/SSSD/index_en.html, accessed on 26 April
2023). The 25 words are (1) /ze-ro/ (zero), (2) /i-chi/ (one), (3) /ni/ (two), (4) /sa-N/
(three), (5) /yo-N/ (four), (6) /go/ (five), (7) /ro-ku/ (six), (8) /na-na/ (seven), (9) /ha-chi/
(eight), (10) /kyu/ (nine), (11) /a-ri-ga-to-u/ (thank you), (12) /i-i-e/ (no), (13) /o-ha-yo-u/
(good morning), (14) /o-me-de-to-u/ (congratulation), (15) /o-ya-su-mi/ (good night),
(16) /go-me-N-na-sa-i/ (I am sorry), (17) /ko-N-ni-chi-wa/ (good afternoon), (18) /ko-N-
ba-N-wa/ (good evening), (19) /sa-yo-u-na-ra/ (goodbye), (20) /su-mi-ma-se-N/ (excuse
me), (21) /do-u-i-ta-shi-ma-shi-te/ (you are welcome), (22) /ha-i/ (yes), (23) /ha-ji-me-ma-
shi-te/ (nice to meet you), (24) /ma-ta-ne/ (see you), and (25) /mo-shi-mo-shi/ (hello).

https://www.saitoh-lab.com/SSSD/index_en.html
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Unlike OuluVS, CUAVE, and LRW, SSSD is filmed using a smart device. An image of the
lower half of a face of 300× 300 pixels extracted after normalization processing is applied
for scale, and rotation is provided. The frame rate is 30 fps. The number of provided
scenes is 72 speakers× 25 words× 10 samples = 18,000 scenes. As a competition using
SSSD, the second machine lip-reading challenge was held in 2019, and 5000 scenes of test
data were released.

For the accuracy evaluation, we used 18,000 scenes as training data and an extra 5000
scenes as test data, using the same task as the second machine lip-reading challenge to
obtain recognition accuracy. The results are shown in Table 6. NRA gave 3 like OuluVS
and CUAVE. From the table, 3D-Conv + ResNet18 + MS-TCN + FT obtained the highest
recognition accuracy of 95.14%. While OuluVS and CUAVE obtained high recognition
accuracy when RA was applied, SSSD obtained the highest recognition rate when RA was
not applied. We presume that SSSD has more training data than OuluVS and CUAVE and
can train sufficiently without applying RA.

Table 6. Recognition results (SSSD).

Model Top-1 Acc. (%)

LipNet 90.66

3D-Conv + ResNet18 + MS-TCN (ours) 93.08
3D-Conv + ResNet18 + MS-TCN + RA (ours) 93.68
3D-Conv + ResNet18 + MS-TCN + FT (ours) 95.14
3D-Conv + ResNet18 + MS-TCN + RA + FT (ours) 94.86

6. Conclusions

We conducted a study on word lip-reading using deep-learning models. Our goal was
to find an effective model for this task. We explored different combinations of models such
as ResNet, WideResNet, EfficientNet, Transformer, and ViT, referring to the SOTA model.
While many papers use one or two datasets, recognition experiments were conducted using
four public datasets, namely LRW, OuluVS, CUAVE, and SSSD, with different sizes and
languages. As a result, we found that 3D-Conv + ResNet18 is a good model for feature
extraction, and MS-TCN is a good model for inference. Although we did not propose a
model that surpasses SOTA, our study confirmed the effectiveness of these models.

This paper investigates an effective word lip-reading model on four public datasets.
There are other lip-reading datasets not used in this paper. In the future, we will work on
experiments including other datasets. Since it has been clarified that the model structure is
effective for lip-reading, we will also verify the training method of the model in the future.
The recognition target of this paper is words, but sentence lip-reading has also been actively
researched in recent years. Sentence lip-reading is also a target task for the future.
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Abbreviations
The following abbreviations are used in this manuscript:

AE Auto-Encoder
AU Action Unit
BBC British Broadcasting Corporation
BGRU Bidirectional Gated Recurrent Unit
CNN Convolutional Neural Network
DA Data Augmentation
DC-TCN Densely Connected Temporal Convolutional Network
FOMM First-Order Motion Model
FT Fine-Tuning
HOG Histograms of Oriented Gradient
LN Layer Normalization
LRW Lip Reading in the Wild
LS Label Smoothing
LSTM Long Short-Term Memory
MF Motion Feature
MLP Multilayer Perceptron
MSA Multi-head Self-Attention
MS-TCN Multi-Scale Temporal Convolutional Network
NAS Neural Architecture Search
RA RandAugment
ResNet Residual Network
RNN Recurrent Neural Network
ROI Region of Interest
RUSAVIC Russian Audio-Visual Speech in Cars
SA Squeeze-and-Attention
SiLU Swish
SSSD Speech Scene by Smart Device
SOTA State of the Art
ViT Vision Transformer
ViViT Video Vision Transformer
WLAS Watch, Listen, Attend, and Spell
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