
Citation: Mzili, T.; Mzili, I.; Riffi,

M.E.; Dhiman, G. Hybrid Genetic

and Spotted Hyena Optimizer for

Flow Shop Scheduling Problem.

Algorithms 2023, 16, 265.

https://doi.org/10.3390/

a16060265

Academic Editor: Frank Werner

Received: 21 April 2023

Revised: 15 May 2023

Accepted: 17 May 2023

Published: 25 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Hybrid Genetic and Spotted Hyena Optimizer for Flow Shop
Scheduling Problem
Toufik Mzili 1,* , Ilyass Mzili 2, Mohammed Essaid Riffi 1 and Gaurav Dhiman 3,4,5,6,7,8

1 Department of Computer Science, Faculty of Science, Chouaib Doukkali University, EI Jadida 24000, Morocco
2 Department of Management, Faculty of Economics and Management, Hassan First University,

Settat 26000, Morocco; dr.mzili.ilyass@gmail.com
3 Department of Electrical and Computer Engineering, Lebanese American University,

Byblos P.O. Box 36, Lebanon
4 Centre for Research and Development, Department of Computer Science and Engineering, Chandigarh

University, Gharuan 140413, India
5 Department of Computer Science and Engineering, Graphic Era Deemed to be University,

Dehradun 248002, India
6 Division of Research and Development, Lovely Professional University, Punjab 144001, India
7 Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
8 Department of Computer Science, Government Bikram College of Commerce, Patiala 147001, India
* Correspondence: mzili.t@ucd.ac.ma

Abstract: This paper presents a new hybrid algorithm that combines genetic algorithms (GAs) and the
optimizing spotted hyena algorithm (SHOA) to solve the production shop scheduling problem. The
proposed GA-SHOA algorithm incorporates genetic operators, such as uniform crossover and mutation,
into the SHOA algorithm to improve its performance. We evaluated the algorithm on a set of OR library
instances and compared it to other state-of-the-art optimization algorithms, including SSO, SCE-OBL,
CLS-BFO and ACGA. The experimental results show that the GA-SHOA algorithm consistently finds
optimal or near-optimal solutions for all tested instances, outperforming the other algorithms. Our paper
contributes to the field in several ways. First, we propose a hybrid algorithm that effectively combines
the exploration and exploitation capabilities of SHO and GA, resulting in a balanced and efficient search
process for finding near-optimal solutions for the FSSP. Second, we tailor the SHO and GA methods to
the specific requirements of the FSSP, including encoding schemes, objective function evaluation and
constraint handling, which ensures that the hybrid algorithm is well suited to address the challenges
posed by the FSSP. Third, we perform a comprehensive performance evaluation of the proposed hybrid
algorithm, demonstrating its effectiveness in terms of solution quality and computational efficiency. Finally,
we provide an in-depth analysis of the behavior of the hybrid algorithm, discussing the roles of the SHO
and GA components and their interactions during the search process, which can help understand the
factors contributing to the success of the algorithm and provide insight into potential improvements or
adaptations to other combinatorial optimization problems.

Keywords: flow shop scheduling problem; SHOA; hybrid algorithm; metaheuristics; optimization;
spotted hyena optimizer; genetic algorithm; uniform crossover; OR library; computational efficiency

1. Introduction

Combinatorial problems [1] involve finding the optimal arrangement, selection or
sequencing of a finite set of elements based on specific constraints and objectives. They are
prevalent in various fields, such as mathematics, computer science, engineering, operations
research, economics and biology. The importance of solving combinatorial problems stems
from their practical applications in decision-making, resource allocation and optimization
tasks critical for the efficiency and effectiveness of real-world systems.

Examples of combinatorial problems include the traveling salesman problem [2],
which seeks the shortest route for a salesman visiting a set of cities once before returning

Algorithms 2023, 16, 265. https://doi.org/10.3390/a16060265 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16060265
https://doi.org/10.3390/a16060265
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-5733-3119
https://orcid.org/0000-0002-6343-5197
https://doi.org/10.3390/a16060265
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16060265?type=check_update&version=1

Algorithms 2023, 16, 265 2 of 14

to the starting point; the knapsack problem, which aims to select items with different
weights and values to maximize the total value without exceeding a given weight limit;
and the graph coloring problem, which assigns colors to graph vertices so that no two
adjacent vertices share the same color. These problems, although seemingly different, share
common challenges in terms of computational complexity, as they often require exploring
an extensive solution space to identify the optimal solution.

One specific combinatorial problem of significant practical importance is the Flow
Shop Scheduling Problem (FSSP) [3]. In this problem, a set of jobs must be processed on a
collection of machines in a specific order, with each job consisting of multiple operations
executed sequentially. The objective is to find a schedule that minimizes the makespan
or the total time required to complete all jobs. Due to the combinatorial nature of this
problem, finding an optimal solution becomes increasingly difficult as the number of jobs
and machines increases.

Swarm intelligence algorithms [4] have emerged as effective approaches for tackling
the optimization of makespan in the FSSP. These algorithms are inspired by the collective
behavior of social organisms such as birds, fish, and insects, and their ability to solve
complex problems through decentralized and self-organizing processes. Some widely used
swarm intelligence algorithms for solving the FSSP include Particle Swarm Optimization
(PSO) [5], Ant Colony Optimization (ACO) [6], Whale Swarm Algorithm (WOA) [7] and
Rat Swarm Optimization [8].

In the context of the FSSP [9], these algorithms encode potential solutions as particles,
ants or bees and iteratively explore the solution space by updating the position or path of
these agents based on their own experiences and the collective knowledge of the swarm.
The agents collaborate and compete, allowing the swarm to converge towards an optimal or
near-optimal solution for the makespan. The effectiveness of swarm intelligence algorithms
in solving the FSSP has been demonstrated in various industrial applications, such as manu-
facturing, transportation and logistics, where efficient job scheduling is critical for reducing
production costs, improving resource utilization and enhancing overall performance.

In this article, we propose a novel hybrid algorithm that combines the Spotted Hyena
Optimizer (SHO) [10] and Genetic Algorithm (GA) [11] to solve the Flow Shop Scheduling
Problem (FSSP). The FSSP is a particular case of the Flow Shop Scheduling Problem (FSSP),
in which jobs are processed on a set of machines in a specific order, and all jobs follow the
same sequence of operations on the machines. The primary objective is to minimize the
makespan, which is the total time required to complete all jobs.

The Spotted Hyena Optimizer (SHO) is a nature-inspired optimization algorithm based
on the unique hunting behavior of spotted hyenas. It incorporates four main mechanisms:
searching, encircling, attacking and mobbing. These mechanisms help explore the solution
space efficiently and exploit the best solutions found during the search process.

The Genetic Algorithm (GA) is a widely-used, population-based optimization method
inspired by the principles of natural selection and genetics. It operates on a population of
candidate solutions and evolves them over generations using genetic operators, such as
selection, crossover and mutation. GAs have been successfully applied to solve numerous
combinatorial optimization problems, including the FSSP.

In our hybrid approach, we combine the strengths of both SHO and GA to improve
the overall search efficiency and solution quality. The proposed algorithm starts with an
initial population generated by the SHO. During the search process, the SHO mechanisms are
employed to explore the solution space and to update the hyenas’ positions. After a predefined
number of iterations, the GA is integrated into the algorithm to further refine the solutions. The
GA takes the current hyena positions as an input population and performs selection, crossover
and mutation operations to generate offspring. The offspring then replace some of the least fit
hyenas in the population, ensuring the best solutions are retained.

This hybridization of SHO and GA capitalizes on the exploration capabilities of
the SHO and the exploitation abilities of the GA, resulting in a more robust and efficient
algorithm for solving the FSSP. The proposed hybrid method is tested on a set of benchmark

Algorithms 2023, 16, 265 3 of 14

instances from the literature, and the results demonstrate its effectiveness in finding near-
optimal solutions with competitive computational times. The successful application of
the hybrid spotted hyena and genetic algorithm to the FSSP indicates its potential for
addressing other complex combinatorial optimization problems in various domains.

The main contributions of this paper can be summarized as follows:

- Development of a Hybrid Algorithm: We propose a new hybrid algorithm that effec-
tively integrates the exploration capabilities of SHO and the exploitation capabilities of
GA. This combination ensures a more balanced and efficient search process, allowing
the algorithm to find near-optimal solutions for the FSSP.

- Adaptation of SHO and GA to FSSP: We adapt the SHO and GA methods to the specific
requirements of FSSP, including encoding schemes, objective function evaluation and
constraint handling. This adaptation ensures that the hybrid algorithm is well-suited
to address the challenges posed by the FSSP.

- Comprehensive Performance Evaluation: We perform a thorough performance evalu-
ation of the proposed hybrid algorithm using a set of benchmark instances from the
literature. The results are compared with those obtained by state-of-the-art algorithms,
demonstrating the effectiveness of our hybrid approach in terms of solution quality
and computational efficiency.

- Hybrid Algorithm Behavior Analysis: We provide an in-depth analysis of the behavior
of the hybrid algorithm, discussing the roles of the SHO and GA components and their
interactions during the search process. This analysis helps to understand the factors
contributing to the success of the algorithm in solving the FSSP and offers insights into
potential improvements or adaptations to other combinatorial optimization problems.

This article is organized into six sections: (1) Introduction, which provides an overview
of the combinatorial optimization problem and the motivation for developing the hybrid
algorithm; (2) Related Works and Literature Review, where we discuss existing research on
swarm intelligence algorithms and their application to the FSSP; (3) Flow Shop Scheduling
Problems (FSSP), which offers a detailed description of the FSSP, its challenges and its
significance in real-world applications; (4) Methodology, where we present the design
and implementation of the proposed hybrid algorithm, combining the Spotted Hyena
Optimizer (SHO) and Genetic Algorithm (GA); (5) Experimental Outcomes, where we
analyze the performance of the hybrid algorithm using benchmark instances and compare
the results with existing state-of-the-art approaches; and finally, (6) Conclusion, where
we summarize the main findings of the study, discuss the implications of the results and
suggest future research directions in the field of combinatorial optimization.

2. Related Works

In recent years, swarm intelligence has been increasingly applied to solve Flow Shop
Scheduling Problems (FSSP) due to its ability to effectively explore and exploit the solution
space. The following studies have made significant contributions to this area:

• Tang et al., (2016) [12] proposed an energy-efficient dynamic scheduling approach for
a flexible flow shop using an improved particle swarm optimization. The algorithm
addresses the dynamic scheduling problem while minimizing energy consumption
and makespan.

• C. Zhang et al., (2021) [7] presented a discrete whale swarm algorithm for a hybrid
flow-shop scheduling problem with limited buffers, considering practical constraints
on buffer area resources and alternative process routes. The algorithm’s effectiveness
was validated on three groups of instances and a real-world industrial case.

• Li et al., (2022) [13] examined the distributed assembly mixed no-idle permutation
flow-shop scheduling problem (DAMNIPFSP) with a focus on minimizing total tar-
diness. The researchers developed a mixed-integer linear programming model and
proposed a Referenced Iterated Greedy (RIG) algorithm, incorporating novel destruc-
tion and reconstruction methods as well as local search methods based on a reference.

Algorithms 2023, 16, 265 4 of 14

Experimental results demonstrated the effectiveness of the RIG algorithm, positioning
it as a state-of-the-art solution for DAMNIPFSP with the total tardiness criterion.

• Mahmud et al., (2022) [14] introduced a bi-objective integrated supply chain scheduling
model and developed two new meta-heuristic algorithms based on multi-objective par-
ticle swarm optimization (MOPSO) to solve the strongly NP-hard flexible
job shop problem.

• Gümüşçü et al., (2022) [15] investigated the impact of local search strategies on chaotic
hybrid firefly particle swarm optimization algorithm in flow-shop scheduling, com-
paring the results of the solutions obtained using different local search strategies.

• Vali et al., (2022) [16] presented a flexible job shop scheduling problem to optimize
patient flow and minimize the total carbon footprint. They developed a metaheuris-
tic optimization algorithm called Chaotic Salp Swarm Algorithm Enhanced with
Opposition-based Learning and Sine Cosine (CSSAOS) to solve this NP-hard problem

• Hayat et al., (2023) [17] explored the enhancement of Particle Swarm Optimization
(PSO) in tackling Permutation Flow-Shop Scheduling Problems (PFSPs) by hybridizing
it with Variable Neighborhood Search (VNS) and Simulated Annealing (SA). The
authors compared the performance of the developed hybrid PSO (HPSO) algorithm
with 120 distinct Taillard instances, demonstrating its robustness and significantly
improved makespan optimization compared to other hybrid metaheuristics.

• Sun et al., (2023) [18] investigated production scheduling technology for knitting
workshops utilizing an improved genetic algorithm (IGA) with tabu search. The
research, conducted at the Key Laboratory of Modern Textile Machinery & Technology
of Zhejiang Province, Zhejiang Sci-Tech University and the School of Automation,
Zhejiang Institute of Mechanical & Electrical Engineering aimed to enhance production
efficiency and reduce costs. Their proposed IGA demonstrated faster convergence and
better search capabilities compared to traditional genetic algorithms, offering valuable
insights for advancing intelligent development in knitting production.

Some of the state-of-the-art optimization algorithms for FSSP include GA-SHOA,
WD [19], GA [19], IHSA [19], PSO [19], CLS-BFO [20], AGGA [20] and SSO [20]. These
algorithms were selected and used for comparison with the hybrid algorithm we propose in
this paper. GA-SHOA is a new hybrid algorithm that combines the exploration capabilities
of SHOA with the exploitation capabilities of GA to efficiently search the solution space.
CLS-BFO is a hybrid algorithm that combines the cuckoo search algorithm (CS) with the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to solve the FSSP. WD is an algorithm
that uses differential evolution (DE) to optimize the FSSP. GA is a well-known metaheuristic
algorithm that has been widely used to solve the FSSP. IHSA is a hybrid algorithm that
combines the improved harmony search (IHS) algorithm and simulated annealing (SA).
PSO is a swarm intelligence algorithm that has been applied to FSSP with promising
results. AGGA is another hybrid algorithm that combines the genetic algorithm and the
gravitational search algorithm (GSA). SSO is an algorithm that mimics the social behavior
of the spotted hyena and has been shown to be effective in solving the FSSP.

Table 1 introduces a comparison of these methods.

Table 1. Comparison of optimization algorithms for the FSSP.

Algorithm Approach Operators Population Size Selection

GA-SHOA Hybrid Uniform Crossover,
Mutation 50–100 Roulette Wheel

SSO Nature-inspired Randomization,
Clustering 20–50 Roulette Wheel

SCE-OB Evolutionary Crossover, Mutation 50–200 Rank-based

CLS-BFO Metaheuristic Local search,
randomization 50–100 Roulette Wheel

ACGA Hybrid Adaptive Crossover,
Mutation 50–100 Rank-based

Algorithms 2023, 16, 265 5 of 14

3. Flow Shop Scheduling Problems (FSSPs)

Flow Shop Scheduling Problems (FSSPs) is a class of scheduling problems that arise
in manufacturing and production systems, where a set of jobs or tasks must be processed
through a series of machines in a specific order. FSSPs is a well-studied optimization
problem in the field of operations research and has numerous applications in various
industries, such as automotive, semiconductor, food processing and textile production,
among others.

In a typical flow shop environment, there are multiple machines or workstations, and
each job must be processed on every machine in a predetermined sequence. The main
objective of the FSSP is to determine the optimal scheduling of jobs on machines to achieve
certain performance criteria, such as minimizing makespan, total completion time, total
tardiness or a combination of these objectives.

The importance of flow shop scheduling problems lies in their ability to optimize
the utilization of resources, reduce production costs and improve overall efficiency in
manufacturing systems. Effective flow shop scheduling can lead to:

• Reduced production lead time: By optimizing the job sequence and minimizing
the idle time of machines, flow shop scheduling can significantly reduce the total
production time.

• Improved resource utilization: Efficient scheduling ensures that machines are utilized
optimally, reducing idle time and maximizing production throughput.

• Enhanced customer satisfaction: Timely delivery of products and shorter lead times
can increase customer satisfaction and help to maintain a competitive edge
in the market.

• Lower inventory costs: By reducing work-in-process inventory and minimizing pro-
duction time, flow shop scheduling can help lower inventory holding costs.

• Increased competitiveness: Effective flow shop scheduling allows companies to be
more agile and responsive to market demands, thus enhancing their
competitive position.

Despite its importance, FSSP is a challenging combinatorial optimization problem
known to be NP-hard, meaning that finding an optimal solution becomes increasingly
difficult as the problem size increases. As a result, researchers have developed various
heuristic and metaheuristic algorithms to find near-optimal solutions for the FSSP in
a reasonable amount of time, such as particle swarm optimization, genetic algorithms,
simulated annealing and ant colony optimization, among others. These methods have
been successfully applied to tackle real-world flow shop scheduling problems, resulting in
significant improvements in manufacturing efficiency and cost reduction.

The Fob-Shop Scheduling Problem (FSSP) involves assigning a set of n jobs, each
consisting of multiple operations, to a set of m machines. The primary objective is to find a
schedule that minimizes the makespan (Cmax), which is the total completion time of all jobs.
A solution can be represented as an n ×m vector of operation sequences that optimizes the
completion time.

Cmax = max
(
tij + pij

)
(1)

min(Cnm + 1) (2)

where
Ckl ≤ Cji − dkl ; j = 1, . . . , n; i = 1, . . . , m; kl ∈ Pji (3)

n

∑
jiεo(t)

rji ≤ 1; i ∈ M; t ≥ 0 (4)

C_ji ≥ 0; j = 1, . . . , n; i = 1, . . . , m (5)

The constraints are as follows:

Algorithms 2023, 16, 265 6 of 14

• Constraint (2) minimizes the finish time of the operation on machine m + 1
(the makespan).

• Constraint (3) ensures that precedence relationships between operations
are maintained.

• Constraint (4) states that each machine can process only one operation at a time.
• Constraint (5) ensures that the finish times are positive.

4. Methodology

The Spotted Hyena Optimizer (SHO) is a metaheuristic, bio-inspired optimization
algorithm developed by Dhiman et al. The algorithm is based on the social behaviors of
spotted hyenas, which are the largest among the three other hyena species (striped, brown
and aardwolf). Spotted hyenas are skillful hunters that typically live and hunt in groups,
relying on networks with over 100 members. The SHO algorithm comprises four main
steps that emulate the encircling, hunting, attacking and searching behaviors of spotted
hyenas (as shown in Figure 1 [10]).

• Encircling prey:

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 14

𝑚𝑖 𝑛(𝐶𝑛𝑚 + 1) (2)

where

𝐶𝑘𝑙 ≤ 𝐶𝑗𝑖 − 𝑑𝑘𝑙; 𝑗 = 1, … , 𝑛; 𝑖 = 1, … , 𝑚; 𝑘𝑙 ∈ 𝑃𝑗𝑖 (3)

∑ 𝑟𝑗𝑖 ≤ 1

𝑛

𝑗𝑖𝜖𝑜(𝑡)

; 𝑖 ∈ 𝑀; 𝑡 ≥ 0 (4)

𝐶_𝑗𝑖 ≥ 0; 𝑗 = 1, … , 𝑛; 𝑖 = 1, … , 𝑚 (5)

The constraints are as follows:

• Constraint (2) minimizes the finish time of the operation on machine m + 1 (the

makespan).

• Constraint (3) ensures that precedence relationships between operations are main-

tained.

• Constraint (4) states that each machine can process only one operation at a time.

• Constraint (5) ensures that the finish times are positive.

4. Methodology

The Spotted Hyena Optimizer (SHO) is a metaheuristic, bio-inspired optimization

algorithm developed by Dhiman et al. The algorithm is based on the social behaviors of

spotted hyenas, which are the largest among the three other hyena species (striped, brown

and aardwolf). Spotted hyenas are skillful hunters that typically live and hunt in groups,

relying on networks with over 100 members. The SHO algorithm comprises four main

steps that emulate the encircling, hunting, attacking and searching behaviors of spotted

hyenas (as shown in Figure 1 [10]).

Figure 1. Spotted Hyena Hunting Behavior [10].

• Encircling prey:

The best solution is considered the target prey, and other search agents update their

positions based on the obtained best solution. The mathematical model for this behavior

is given by:

𝐷ℎ = |𝐵 · 𝑃𝑝(𝑥) − 𝑃(𝑥)|, (6)

𝑃(𝑥 + 1) = 𝑃𝑝(𝑥) − 𝐸 · 𝐷ℎ , (7)

• Hunting:

The hunting strategy of the SHO is defined as follows:

𝐷ℎ = |𝐵 · 𝑃ℎ − 𝑃𝑘|, (8)

𝑃𝑘 = 𝑃ℎ − 𝐸 · 𝐷ℎ , (9)

𝐶ℎ = 𝑃𝑘 + 𝑃𝑘 + 1 + . . . + 𝑃𝑘 + 𝑁 , (10)

Figure 1. Spotted Hyena Hunting Behavior [10].

The best solution is considered the target prey, and other search agents update their
positions based on the obtained best solution. The mathematical model for this behavior is
given by:

Dh = |B · Pp(x)− P(x)|, (6)

P(x + 1) = Pp(x)− E · Dh , (7)

• Hunting:

The hunting strategy of the SHO is defined as follows:

Dh = |B · Ph− Pk|, (8)

Pk = Ph− E · Dh , (9)

Ch = Pk + Pk + 1 + . . . + Pk + N , (10)

• Attacking prey:

The mathematical formulation for attacking prey is given by:

P(x + 1) =
ch
N

, (11)

• Searching for prey:

The search for a suitable solution involves evaluating the E and B vectors. The SHO
algorithm can solve various high-dimensional problems with low computational efforts
and avoid local optimum issues.

Algorithms 2023, 16, 265 7 of 14

In this study, we will focus on using the encircling behavior to solve the flow shop
scheduling problem, and the pseudo-code of the SHO algorithm is provided in Algorithm 1.

Algorithm 1 Spotted Hyena Optimizer (SHO)

1: procedure SHO
2: Input: Spotted hyenas population Pi (i = 1, 2, ..., n)
3: Output: The optimal search agent
4: Initialize parameters h, B, E, and N
5: Evaluate the fitness of each search agent
6: Ph← Identify the best search agent
7: Ch← Form a group or cluster of all distant optimal solutions
8: while x < MaxIteration do
9: for each search agent do
10: Update the current agent’s position using Equation (10)
11: end for
12: Update h, B, E, and N
13: Ensure search agents stay within the given search space and adjust if necessary
14: Compute the fitness of each search agent
15: Update Ph if a better solution is found compared to the previous optimal solution
16: Modify group Ch based on Ph
17: x← x + 1
18: end while
19: return Ph
20: end procedure

Alterations to mathematical operators for flow shop problems:
The mathematical operators are redefined to accommodate the flow shop problem

as follows:

• Dh = |B · P_prey (x) − P(x)|: The subtraction operation between two rat positions is
adapted to a list of swaps to be performed on a job sequence P(t) to obtain the best
sequence list Pbest(t).

• E · Dh: This operation, involving a real number between [0, 1] and a list of swaps, is
redefined to manipulate and decrease the number of swaps generated by the previ-
ous equation.

• P_prey (x) − E · Dh: This operation determines the final number of potential swaps to
be applied to a job sequence.

• An illustrative example of these modifications is provided below:

• P_prey (x):

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 14

• Attacking prey:

The mathematical formulation for attacking prey is given by:

𝑃(𝑥 + 1) =
𝑐ℎ

𝑁
 , (11)

• Searching for prey:

The search for a suitable solution involves evaluating the E and B vectors. The SHO

algorithm can solve various high-dimensional problems with low computational efforts

and avoid local optimum issues.

In this study, we will focus on using the encircling behavior to solve the flow shop

scheduling problem, and the pseudo-code of the SHO algorithm is provided in Algorithm

1.

Algorithm 1 Spotted Hyena Optimizer (SHO)

1: procedure SHO

2: Input: Spotted hyenas population Pi (i = 1, 2, ..., n)

3: Output: The optimal search agent

4: Initialize parameters h, B, E, and N

5: Evaluate the fitness of each search agent

6: Ph ← Identify the best search agent

7: Ch ← Form a group or cluster of all distant optimal solutions

8: while x < MaxIteration do

9: for each search agent do

10: Update the current agent’s position using Eq. (10)

11: end for

12: Update h, B, E, and N

13: Ensure search agents stay within the given search space and adjust if necessary

14: Compute the fitness of each search agent

15: Update Ph if a better solution is found compared to the previous optimal solu-

tion

16: Modify group Ch based on Ph

17: x ← x + 1

18: end while

19: return Ph

20: end procedure

Alterations to mathematical operators for flow shop problems:

The mathematical operators are redefined to accommodate the flow shop problem as

follows:

• Dh =|B · P_prey (x) − P(x)|: The subtraction operation between two rat positions is

adapted to a list of swaps to be performed on a job sequence P(t) to obtain the best

sequence list Pbest(t).

• E · Dh: This operation, involving a real number between [0, 1] and a list of swaps, is

redefined to manipulate and decrease the number of swaps generated by the previ-

ous equation.

• P_prey (x) − E · Dh: This operation determines the final number of potential swaps to

be applied to a job sequence.

An illustrative example of these modifications is provided below:

• P_prey (x):

• P(x):

J1 J2 J3 J4 J5

J5 J3 J2 J4 J1
• P(x):

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 14

• Attacking prey:

The mathematical formulation for attacking prey is given by:

𝑃(𝑥 + 1) =
𝑐ℎ

𝑁
 , (11)

• Searching for prey:

The search for a suitable solution involves evaluating the E and B vectors. The SHO

algorithm can solve various high-dimensional problems with low computational efforts

and avoid local optimum issues.

In this study, we will focus on using the encircling behavior to solve the flow shop

scheduling problem, and the pseudo-code of the SHO algorithm is provided in Algorithm

1.

Algorithm 1 Spotted Hyena Optimizer (SHO)

1: procedure SHO

2: Input: Spotted hyenas population Pi (i = 1, 2, ..., n)

3: Output: The optimal search agent

4: Initialize parameters h, B, E, and N

5: Evaluate the fitness of each search agent

6: Ph ← Identify the best search agent

7: Ch ← Form a group or cluster of all distant optimal solutions

8: while x < MaxIteration do

9: for each search agent do

10: Update the current agent’s position using Eq. (10)

11: end for

12: Update h, B, E, and N

13: Ensure search agents stay within the given search space and adjust if necessary

14: Compute the fitness of each search agent

15: Update Ph if a better solution is found compared to the previous optimal solu-

tion

16: Modify group Ch based on Ph

17: x ← x + 1

18: end while

19: return Ph

20: end procedure

Alterations to mathematical operators for flow shop problems:

The mathematical operators are redefined to accommodate the flow shop problem as

follows:

• Dh =|B · P_prey (x) − P(x)|: The subtraction operation between two rat positions is

adapted to a list of swaps to be performed on a job sequence P(t) to obtain the best

sequence list Pbest(t).

• E · Dh: This operation, involving a real number between [0, 1] and a list of swaps, is

redefined to manipulate and decrease the number of swaps generated by the previ-

ous equation.

• P_prey (x) − E · Dh: This operation determines the final number of potential swaps to

be applied to a job sequence.

An illustrative example of these modifications is provided below:

• P_prey (x):

• P(x):

J1 J2 J3 J4 J5

J5 J3 J2 J4 J1

• Dh =|P_prey (x) − P(x)|: List of swaps to be performed on a sequence of jobs P(x) to
obtain the first sequence list

• P_prey (x) = [[J5,J1},{J3,J2}]
• E = 0.5
• E · Dh= 1

2 [J5,J1},{J3,J2}] = {J5,J1}

• p_prey (x)- E · Dh =

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 14

• Dh =|P_prey (x) − P(x)|: List of swaps to be performed on a sequence of jobs P(x) to

obtain the first sequence list

• P_prey (x) =[[J5,J1},{J3,J2}]

• E = 0.5

• E · Dh= ½ [J5,J1},{J3,J2}] = {J5,J1}

• p_prey (x)- E · Dh =

The Genetic Algorithm (GA) is a popular metaheuristic technique for solving optimi-

zation problems, including the Flow Shop Scheduling Problem (FSSP). The Uniform

Crossover and Mutation are two genetic operators used within GA that combine parent

solutions to create offspring. Here’s an example of using a Genetic Algorithm with Uni-

form Crossover and Mutation to solve the FSSP:

Crossover: Perform the Uniform Crossover on the selected parent individuals to cre-

ate offspring. In the Uniform Crossover, for each position in the parent’s permutation, a

random decision is made as to which parent’s gene will be inherited by the offspring. For

example:

• Parent 1: [1, 2, 3, 4, 5]=

• A random binary mask: [0, 1, 0, 1, 0]

• Parent 2: [5, 4, 3, 2, 1]=

• Offspring 1: [1, 4, 3, 2, 5]=

• Offspring 2: [5, 2, 3, 4, 1]=

Mutation: Apply a mutation operator to each gene of the offspring with a certain

probability. The mutation operator randomly changes the value of the gene to another

valid value. In the FSSP case, which is a random permutation of two tasks, the mutation

operator may swap the positions of two tasks in the offspring’s permutation.

For example:

• Offspring 1: [1, 4, 3, 2, 5]=

• Randomly select two genes to mutate 1 and 3 (swap tasks 1 and 3):

• Mutated offspring 1: [1, 4, 2, 2, 5]=

The final algorithm is described as follows in Algorithm 2:

Algorithm 2 Discrete Hybrid Spotted Hyena Optimizer with Uniform Crocgover

1: procedure HYBRID SHO(2)

2: Input: Spotted hyenas population Pi (i = 1, 2, ..., n)

3: Output: The optimal search agent

4: Initialize parameters h, B, E, and N

5: Evaluate the fitness of each search agent

6: Ph ← Identify the best search agent

7: Ch ← Form a group or cluster of all distant optimal solutions

8: while x < MaxIteration do

9: for each search agent do

10: Update the current agent’s position using Eq. (7)

11: end for

12: Perform Uniform Crossover on selected parent individuals to create offspring

13: Apply mutation operators to offspring (inversion)

14: Replace some individuals in the population with the newly created offspring

15: Update h, B, E, and N

16: Ensure search agents stay within the given search space and adjust if necessary

17: Compute the fitness of each search agent

J5 J3 J2 J4 J1

J1 J2 J3 J4 J5

J5 J4 J3 J2 J1

J1 J4 J3 J2 J5

J5 J2 J3 J4 J1

J1 J4 J3 J2 J5

J3 J4 J1 J2 J5

The Genetic Algorithm (GA) is a popular metaheuristic technique for solving opti-
mization problems, including the Flow Shop Scheduling Problem (FSSP). The Uniform
Crossover and Mutation are two genetic operators used within GA that combine parent
solutions to create offspring. Here’s an example of using a Genetic Algorithm with Uniform
Crossover and Mutation to solve the FSSP:

Crossover: Perform the Uniform Crossover on the selected parent individuals to
create offspring. In the Uniform Crossover, for each position in the parent’s permutation,
a random decision is made as to which parent’s gene will be inherited by the offspring.
For example:

Algorithms 2023, 16, 265 8 of 14

• Parent 1: [1, 2, 3, 4, 5] =

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 14

• Dh =|P_prey (x) − P(x)|: List of swaps to be performed on a sequence of jobs P(x) to

obtain the first sequence list

• P_prey (x) =[[J5,J1},{J3,J2}]

• E = 0.5

• E · Dh= ½ [J5,J1},{J3,J2}] = {J5,J1}

• p_prey (x)- E · Dh =

The Genetic Algorithm (GA) is a popular metaheuristic technique for solving optimi-

zation problems, including the Flow Shop Scheduling Problem (FSSP). The Uniform

Crossover and Mutation are two genetic operators used within GA that combine parent

solutions to create offspring. Here’s an example of using a Genetic Algorithm with Uni-

form Crossover and Mutation to solve the FSSP:

Crossover: Perform the Uniform Crossover on the selected parent individuals to cre-

ate offspring. In the Uniform Crossover, for each position in the parent’s permutation, a

random decision is made as to which parent’s gene will be inherited by the offspring. For

example:

• Parent 1: [1, 2, 3, 4, 5]=

• A random binary mask: [0, 1, 0, 1, 0]

• Parent 2: [5, 4, 3, 2, 1]=

• Offspring 1: [1, 4, 3, 2, 5]=

• Offspring 2: [5, 2, 3, 4, 1]=

Mutation: Apply a mutation operator to each gene of the offspring with a certain

probability. The mutation operator randomly changes the value of the gene to another

valid value. In the FSSP case, which is a random permutation of two tasks, the mutation

operator may swap the positions of two tasks in the offspring’s permutation.

For example:

• Offspring 1: [1, 4, 3, 2, 5]=

• Randomly select two genes to mutate 1 and 3 (swap tasks 1 and 3):

• Mutated offspring 1: [1, 4, 2, 2, 5]=

The final algorithm is described as follows in Algorithm 2:

Algorithm 2 Discrete Hybrid Spotted Hyena Optimizer with Uniform Crocgover

1: procedure HYBRID SHO(2)

2: Input: Spotted hyenas population Pi (i = 1, 2, ..., n)

3: Output: The optimal search agent

4: Initialize parameters h, B, E, and N

5: Evaluate the fitness of each search agent

6: Ph ← Identify the best search agent

7: Ch ← Form a group or cluster of all distant optimal solutions

8: while x < MaxIteration do

9: for each search agent do

10: Update the current agent’s position using Eq. (7)

11: end for

12: Perform Uniform Crossover on selected parent individuals to create offspring

13: Apply mutation operators to offspring (inversion)

14: Replace some individuals in the population with the newly created offspring

15: Update h, B, E, and N

16: Ensure search agents stay within the given search space and adjust if necessary

17: Compute the fitness of each search agent

J5 J3 J2 J4 J1

J1 J2 J3 J4 J5

J5 J4 J3 J2 J1

J1 J4 J3 J2 J5

J5 J2 J3 J4 J1

J1 J4 J3 J2 J5

J3 J4 J1 J2 J5

• A random binary mask: [0, 1, 0, 1, 0]

• Parent 2: [5, 4, 3, 2, 1] =

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 14

• Dh =|P_prey (x) − P(x)|: List of swaps to be performed on a sequence of jobs P(x) to

obtain the first sequence list

• P_prey (x) =[[J5,J1},{J3,J2}]

• E = 0.5

• E · Dh= ½ [J5,J1},{J3,J2}] = {J5,J1}

• p_prey (x)- E · Dh =

The Genetic Algorithm (GA) is a popular metaheuristic technique for solving optimi-

zation problems, including the Flow Shop Scheduling Problem (FSSP). The Uniform

Crossover and Mutation are two genetic operators used within GA that combine parent

solutions to create offspring. Here’s an example of using a Genetic Algorithm with Uni-

form Crossover and Mutation to solve the FSSP:

Crossover: Perform the Uniform Crossover on the selected parent individuals to cre-

ate offspring. In the Uniform Crossover, for each position in the parent’s permutation, a

random decision is made as to which parent’s gene will be inherited by the offspring. For

example:

• Parent 1: [1, 2, 3, 4, 5]=

• A random binary mask: [0, 1, 0, 1, 0]

• Parent 2: [5, 4, 3, 2, 1]=

• Offspring 1: [1, 4, 3, 2, 5]=

• Offspring 2: [5, 2, 3, 4, 1]=

Mutation: Apply a mutation operator to each gene of the offspring with a certain

probability. The mutation operator randomly changes the value of the gene to another

valid value. In the FSSP case, which is a random permutation of two tasks, the mutation

operator may swap the positions of two tasks in the offspring’s permutation.

For example:

• Offspring 1: [1, 4, 3, 2, 5]=

• Randomly select two genes to mutate 1 and 3 (swap tasks 1 and 3):

• Mutated offspring 1: [1, 4, 2, 2, 5]=

The final algorithm is described as follows in Algorithm 2:

Algorithm 2 Discrete Hybrid Spotted Hyena Optimizer with Uniform Crocgover

1: procedure HYBRID SHO(2)

2: Input: Spotted hyenas population Pi (i = 1, 2, ..., n)

3: Output: The optimal search agent

4: Initialize parameters h, B, E, and N

5: Evaluate the fitness of each search agent

6: Ph ← Identify the best search agent

7: Ch ← Form a group or cluster of all distant optimal solutions

8: while x < MaxIteration do

9: for each search agent do

10: Update the current agent’s position using Eq. (7)

11: end for

12: Perform Uniform Crossover on selected parent individuals to create offspring

13: Apply mutation operators to offspring (inversion)

14: Replace some individuals in the population with the newly created offspring

15: Update h, B, E, and N

16: Ensure search agents stay within the given search space and adjust if necessary

17: Compute the fitness of each search agent

J5 J3 J2 J4 J1

J1 J2 J3 J4 J5

J5 J4 J3 J2 J1

J1 J4 J3 J2 J5

J5 J2 J3 J4 J1

J1 J4 J3 J2 J5

J3 J4 J1 J2 J5

• Offspring 1: [1, 4, 3, 2, 5] =

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 14

• Dh =|P_prey (x) − P(x)|: List of swaps to be performed on a sequence of jobs P(x) to

obtain the first sequence list

• P_prey (x) =[[J5,J1},{J3,J2}]

• E = 0.5

• E · Dh= ½ [J5,J1},{J3,J2}] = {J5,J1}

• p_prey (x)- E · Dh =

The Genetic Algorithm (GA) is a popular metaheuristic technique for solving optimi-

zation problems, including the Flow Shop Scheduling Problem (FSSP). The Uniform

Crossover and Mutation are two genetic operators used within GA that combine parent

solutions to create offspring. Here’s an example of using a Genetic Algorithm with Uni-

form Crossover and Mutation to solve the FSSP:

Crossover: Perform the Uniform Crossover on the selected parent individuals to cre-

ate offspring. In the Uniform Crossover, for each position in the parent’s permutation, a

random decision is made as to which parent’s gene will be inherited by the offspring. For

example:

• Parent 1: [1, 2, 3, 4, 5]=

• A random binary mask: [0, 1, 0, 1, 0]

• Parent 2: [5, 4, 3, 2, 1]=

• Offspring 1: [1, 4, 3, 2, 5]=

• Offspring 2: [5, 2, 3, 4, 1]=

Mutation: Apply a mutation operator to each gene of the offspring with a certain

probability. The mutation operator randomly changes the value of the gene to another

valid value. In the FSSP case, which is a random permutation of two tasks, the mutation

operator may swap the positions of two tasks in the offspring’s permutation.

For example:

• Offspring 1: [1, 4, 3, 2, 5]=

• Randomly select two genes to mutate 1 and 3 (swap tasks 1 and 3):

• Mutated offspring 1: [1, 4, 2, 2, 5]=

The final algorithm is described as follows in Algorithm 2:

Algorithm 2 Discrete Hybrid Spotted Hyena Optimizer with Uniform Crocgover

1: procedure HYBRID SHO(2)

2: Input: Spotted hyenas population Pi (i = 1, 2, ..., n)

3: Output: The optimal search agent

4: Initialize parameters h, B, E, and N

5: Evaluate the fitness of each search agent

6: Ph ← Identify the best search agent

7: Ch ← Form a group or cluster of all distant optimal solutions

8: while x < MaxIteration do

9: for each search agent do

10: Update the current agent’s position using Eq. (7)

11: end for

12: Perform Uniform Crossover on selected parent individuals to create offspring

13: Apply mutation operators to offspring (inversion)

14: Replace some individuals in the population with the newly created offspring

15: Update h, B, E, and N

16: Ensure search agents stay within the given search space and adjust if necessary

17: Compute the fitness of each search agent

J5 J3 J2 J4 J1

J1 J2 J3 J4 J5

J5 J4 J3 J2 J1

J1 J4 J3 J2 J5

J5 J2 J3 J4 J1

J1 J4 J3 J2 J5

J3 J4 J1 J2 J5

• Offspring 2: [5, 2, 3, 4, 1] =

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 14

• Dh =|P_prey (x) − P(x)|: List of swaps to be performed on a sequence of jobs P(x) to

obtain the first sequence list

• P_prey (x) =[[J5,J1},{J3,J2}]

• E = 0.5

• E · Dh= ½ [J5,J1},{J3,J2}] = {J5,J1}

• p_prey (x)- E · Dh =

The Genetic Algorithm (GA) is a popular metaheuristic technique for solving optimi-

zation problems, including the Flow Shop Scheduling Problem (FSSP). The Uniform

Crossover and Mutation are two genetic operators used within GA that combine parent

solutions to create offspring. Here’s an example of using a Genetic Algorithm with Uni-

form Crossover and Mutation to solve the FSSP:

Crossover: Perform the Uniform Crossover on the selected parent individuals to cre-

ate offspring. In the Uniform Crossover, for each position in the parent’s permutation, a

random decision is made as to which parent’s gene will be inherited by the offspring. For

example:

• Parent 1: [1, 2, 3, 4, 5]=

• A random binary mask: [0, 1, 0, 1, 0]

• Parent 2: [5, 4, 3, 2, 1]=

• Offspring 1: [1, 4, 3, 2, 5]=

• Offspring 2: [5, 2, 3, 4, 1]=

Mutation: Apply a mutation operator to each gene of the offspring with a certain

probability. The mutation operator randomly changes the value of the gene to another

valid value. In the FSSP case, which is a random permutation of two tasks, the mutation

operator may swap the positions of two tasks in the offspring’s permutation.

For example:

• Offspring 1: [1, 4, 3, 2, 5]=

• Randomly select two genes to mutate 1 and 3 (swap tasks 1 and 3):

• Mutated offspring 1: [1, 4, 2, 2, 5]=

The final algorithm is described as follows in Algorithm 2:

Algorithm 2 Discrete Hybrid Spotted Hyena Optimizer with Uniform Crocgover

1: procedure HYBRID SHO(2)

2: Input: Spotted hyenas population Pi (i = 1, 2, ..., n)

3: Output: The optimal search agent

4: Initialize parameters h, B, E, and N

5: Evaluate the fitness of each search agent

6: Ph ← Identify the best search agent

7: Ch ← Form a group or cluster of all distant optimal solutions

8: while x < MaxIteration do

9: for each search agent do

10: Update the current agent’s position using Eq. (7)

11: end for

12: Perform Uniform Crossover on selected parent individuals to create offspring

13: Apply mutation operators to offspring (inversion)

14: Replace some individuals in the population with the newly created offspring

15: Update h, B, E, and N

16: Ensure search agents stay within the given search space and adjust if necessary

17: Compute the fitness of each search agent

J5 J3 J2 J4 J1

J1 J2 J3 J4 J5

J5 J4 J3 J2 J1

J1 J4 J3 J2 J5

J5 J2 J3 J4 J1

J1 J4 J3 J2 J5

J3 J4 J1 J2 J5

Mutation: Apply a mutation operator to each gene of the offspring with a certain
probability. The mutation operator randomly changes the value of the gene to another
valid value. In the FSSP case, which is a random permutation of two tasks, the mutation
operator may swap the positions of two tasks in the offspring’s permutation.

For example:

• Offspring 1: [1, 4, 3, 2, 5] =

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 14

• Dh =|P_prey (x) − P(x)|: List of swaps to be performed on a sequence of jobs P(x) to

obtain the first sequence list

• P_prey (x) =[[J5,J1},{J3,J2}]

• E = 0.5

• E · Dh= ½ [J5,J1},{J3,J2}] = {J5,J1}

• p_prey (x)- E · Dh =

The Genetic Algorithm (GA) is a popular metaheuristic technique for solving optimi-

zation problems, including the Flow Shop Scheduling Problem (FSSP). The Uniform

Crossover and Mutation are two genetic operators used within GA that combine parent

solutions to create offspring. Here’s an example of using a Genetic Algorithm with Uni-

form Crossover and Mutation to solve the FSSP:

Crossover: Perform the Uniform Crossover on the selected parent individuals to cre-

ate offspring. In the Uniform Crossover, for each position in the parent’s permutation, a

random decision is made as to which parent’s gene will be inherited by the offspring. For

example:

• Parent 1: [1, 2, 3, 4, 5]=

• A random binary mask: [0, 1, 0, 1, 0]

• Parent 2: [5, 4, 3, 2, 1]=

• Offspring 1: [1, 4, 3, 2, 5]=

• Offspring 2: [5, 2, 3, 4, 1]=

Mutation: Apply a mutation operator to each gene of the offspring with a certain

probability. The mutation operator randomly changes the value of the gene to another

valid value. In the FSSP case, which is a random permutation of two tasks, the mutation

operator may swap the positions of two tasks in the offspring’s permutation.

For example:

• Offspring 1: [1, 4, 3, 2, 5]=

• Randomly select two genes to mutate 1 and 3 (swap tasks 1 and 3):

• Mutated offspring 1: [1, 4, 2, 2, 5]=

The final algorithm is described as follows in Algorithm 2:

Algorithm 2 Discrete Hybrid Spotted Hyena Optimizer with Uniform Crocgover

1: procedure HYBRID SHO(2)

2: Input: Spotted hyenas population Pi (i = 1, 2, ..., n)

3: Output: The optimal search agent

4: Initialize parameters h, B, E, and N

5: Evaluate the fitness of each search agent

6: Ph ← Identify the best search agent

7: Ch ← Form a group or cluster of all distant optimal solutions

8: while x < MaxIteration do

9: for each search agent do

10: Update the current agent’s position using Eq. (7)

11: end for

12: Perform Uniform Crossover on selected parent individuals to create offspring

13: Apply mutation operators to offspring (inversion)

14: Replace some individuals in the population with the newly created offspring

15: Update h, B, E, and N

16: Ensure search agents stay within the given search space and adjust if necessary

17: Compute the fitness of each search agent

J5 J3 J2 J4 J1

J1 J2 J3 J4 J5

J5 J4 J3 J2 J1

J1 J4 J3 J2 J5

J5 J2 J3 J4 J1

J1 J4 J3 J2 J5

J3 J4 J1 J2 J5

• Randomly select two genes to mutate 1 and 3 (swap tasks 1 and 3):

• Mutated offspring 1: [1, 4, 2, 2, 5] =

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 14

• Dh =|P_prey (x) − P(x)|: List of swaps to be performed on a sequence of jobs P(x) to

obtain the first sequence list

• P_prey (x) =[[J5,J1},{J3,J2}]

• E = 0.5

• E · Dh= ½ [J5,J1},{J3,J2}] = {J5,J1}

• p_prey (x)- E · Dh =

The Genetic Algorithm (GA) is a popular metaheuristic technique for solving optimi-

zation problems, including the Flow Shop Scheduling Problem (FSSP). The Uniform

Crossover and Mutation are two genetic operators used within GA that combine parent

solutions to create offspring. Here’s an example of using a Genetic Algorithm with Uni-

form Crossover and Mutation to solve the FSSP:

Crossover: Perform the Uniform Crossover on the selected parent individuals to cre-

ate offspring. In the Uniform Crossover, for each position in the parent’s permutation, a

random decision is made as to which parent’s gene will be inherited by the offspring. For

example:

• Parent 1: [1, 2, 3, 4, 5]=

• A random binary mask: [0, 1, 0, 1, 0]

• Parent 2: [5, 4, 3, 2, 1]=

• Offspring 1: [1, 4, 3, 2, 5]=

• Offspring 2: [5, 2, 3, 4, 1]=

Mutation: Apply a mutation operator to each gene of the offspring with a certain

probability. The mutation operator randomly changes the value of the gene to another

valid value. In the FSSP case, which is a random permutation of two tasks, the mutation

operator may swap the positions of two tasks in the offspring’s permutation.

For example:

• Offspring 1: [1, 4, 3, 2, 5]=

• Randomly select two genes to mutate 1 and 3 (swap tasks 1 and 3):

• Mutated offspring 1: [1, 4, 2, 2, 5]=

The final algorithm is described as follows in Algorithm 2:

Algorithm 2 Discrete Hybrid Spotted Hyena Optimizer with Uniform Crocgover

1: procedure HYBRID SHO(2)

2: Input: Spotted hyenas population Pi (i = 1, 2, ..., n)

3: Output: The optimal search agent

4: Initialize parameters h, B, E, and N

5: Evaluate the fitness of each search agent

6: Ph ← Identify the best search agent

7: Ch ← Form a group or cluster of all distant optimal solutions

8: while x < MaxIteration do

9: for each search agent do

10: Update the current agent’s position using Eq. (7)

11: end for

12: Perform Uniform Crossover on selected parent individuals to create offspring

13: Apply mutation operators to offspring (inversion)

14: Replace some individuals in the population with the newly created offspring

15: Update h, B, E, and N

16: Ensure search agents stay within the given search space and adjust if necessary

17: Compute the fitness of each search agent

J5 J3 J2 J4 J1

J1 J2 J3 J4 J5

J5 J4 J3 J2 J1

J1 J4 J3 J2 J5

J5 J2 J3 J4 J1

J1 J4 J3 J2 J5

J3 J4 J1 J2 J5

The final algorithm is described as follows in Algorithm 2:

Algorithm 2 Discrete Hybrid Spotted Hyena Optimizer with Uniform Crocgover

1: procedure HYBRID SHO(2)
2: Input: Spotted hyenas population Pi (i = 1, 2, ..., n)
3: Output: The optimal search agent
4: Initialize parameters h, B, E, and N
5: Evaluate the fitness of each search agent
6: Ph← Identify the best search agent
7: Ch← Form a group or cluster of all distant optimal solutions
8: while x < MaxIteration do
9: for each search agent do
10: Update the current agent’s position using Equation (7)
11: end for
12: Perform Uniform Crossover on selected parent individuals to create offspring
13: Apply mutation operators to offspring (inversion)
14: Replace some individuals in the population with the newly created offspring
15: Update h, B, E, and N
16: Ensure search agents stay within the given search space and adjust if necessary
17: Compute the fitness of each search agent
18: if a better solution is found compared to the previous optimal solution then
19: Update Ph
20: end if
21: Modify group Ch based on Ph
22: x← x + 1
23: end while
24: return Ph
25: end procedure

5. Experimental Outcomes

The performance of the hybrid GA-SHO algorithm was assessed using over 50 in-
stances from the OR library. The evaluation results are presented in Table 2, which include
the instance name (“Instance”), the number of jobs (n) and machines (m) for each instance
(“n × m”), the best result achieved by other algorithms (“BKS”), the best and worst results
obtained through the SHO method (“Best” and “Worst”), the average results (“Average”)
and the average execution time in seconds for 20 runs (“Time”). The “PDav(%)” column
displays the percentage deviation of the average solution length from the optimal solution
length, computed using Equation (12).

PDav(%) =
((Average− BKS)× 100%)

BKS
(12)

Algorithms 2023, 16, 265 9 of 14

Table 2. Parameters of Discrete GA-SHO.

Parameter Value

The population of rat size: N 100
B A random value between [0, 1]
E A random value between [0, 1]

Nb iteration 400

The “PDav(%)” column emphasizes values of 0.00 in bold when all solutions found in
the 20 runs are equal to the length of the best-known solution. If the average of the solutions
discovered in all tests is less than the length of the best-known solution, these values are
highlighted in bold and blue. This suggests that the GA-SHO algorithm managed to find
solutions that either match or surpass the best-known solutions for these instances.

To properly evaluate the effectiveness of the GA-SHO algorithm, it is crucial to com-
pare it with other methods for solving problems.

The comparison is made with the following algorithms: CLS-BFE [20], DEO [19],
GA [19], IHSA [19], PSO [19], AGGA [20] and SSO [20].

The initial parameters are described in Table 2:
Figure 2 shows the comparison of the best-obtained results, clearly demonstrating that

the GA-SHOA algorithm outperforms other methods (CLS-BFO, IHSA, PSO, DEO, SSO,
GA, AGGA) across all instances (REC01 to REC23).

Algorithms 2023, 16, x FOR PEER REVIEW 10 of 14

Figure 2. The comparison of the best-obtained results.

Tables 3 and 4 clearly demonstrates that the GA-SHOA algorithm outperforms other

methods (CLS-BFO, IHSA, PSO, DEO, SSO, GA, AGGA) across all instances (REC01 to

REC23). Here’s a more detailed analysis of the data:

- Objective Function Value (Best): For all instances, GA-SHOA consistently attains the

most optimal or near-optimal solution. This highlights GA-SHOA’s superior ability

to find the most optimal or best solutions compared to the other algorithms.

- Standard Deviation (STD): GA-SHOA exhibits notably lower standard deviation val-

ues compared to other methods. This suggests that GA-SHOA’s results are more re-

liable and exhibit less variation. A low standard deviation implies that the values are

close to the mean or expected value, whereas a high standard deviation implies a

wider spread of values. In an optimization context, a lower standard deviation is fa-

vorable as it indicates consistent solution quality near the optimal.

- Computation Time: GA-SHOA also outshines other methods in terms of computa-

tional efficiency, showcasing faster computation times. For instance, in the case of

REC01, GA-SHOA takes a mere 0.042 units of time, while other methods, such as

CLS-BFO (0.247 units), IHSA (7.750 units) and PSO (6.042 units), require significantly

more time.

Table 3. Comparison between GA-SHOA, CLS-BFO, IHSA, and PSO.

 GA-SHOA CLS-BFO IHSA PSO

INSTANCE N × M BEST STD TIME BEST STD TIME BEST STD TIME BEST STD TIME

REC01 20 × 5 1245 0.578 0.042 1249 1.169 0.247 17,874 17.610 7.750 19,556 17.610 6.042

REC03 20 × 5 1109 0.718 0.063 1111 0.663 0.020 15,098 22.059 8.737 17,417 22.059 9.833

REC05 20 × 5 1242 1.211 0.087 1245 2.093 0.311 17,793 23.228 9.267 19,210 23.228 6.836

REC07 20 × 10 1566 0.644 0.118 1584 1.360 0.044 25,647 7.216 6.358 28,407 7.216 6.606

REC09 20 × 10 1537 0.856 0.032 1545 2.188 0.165 24,347 10.577 6.544 26,796 10.577 6.325

REC11 20 × 10 1431 0.307 0.036 1449 0.862 0.289 22,706 21.974 5.735 25,362 21.974 9.049

REC13 20 × 15 1930 0.609 0.066 1968 2.078 0.313 33,136 18.934 9.706 36,669 18.934 8.751

REC15 20 × 15 1950 0.972 0.017 1993 2.726 0.314 33,066 14.728 7.601 35,905 14.728 7.944

REC17 20 × 15 1902 0.071 0.101 1954 2.351 0.227 31,901 23.157 8.210 35,215 23.157 6.424

REC19 30 × 10 2093 0.109 0.010 2139 1.216 0.231 51,080 10.903 6.803 59,231 10.903 6.288

REC21 30 × 10 2017 0.792 0.090 2059 2.127 0.141 48,935 21.157 5.557 57,782 21.157 7.751

Figure 2. The comparison of the best-obtained results.

Tables 3 and 4 clearly demonstrates that the GA-SHOA algorithm outperforms other
methods (CLS-BFO, IHSA, PSO, DEO, SSO, GA, AGGA) across all instances (REC01 to
REC23). Here’s a more detailed analysis of the data:

- Objective Function Value (Best): For all instances, GA-SHOA consistently attains the
most optimal or near-optimal solution. This highlights GA-SHOA’s superior ability to
find the most optimal or best solutions compared to the other algorithms.

- Standard Deviation (STD): GA-SHOA exhibits notably lower standard deviation
values compared to other methods. This suggests that GA-SHOA’s results are more
reliable and exhibit less variation. A low standard deviation implies that the values
are close to the mean or expected value, whereas a high standard deviation implies
a wider spread of values. In an optimization context, a lower standard deviation is
favorable as it indicates consistent solution quality near the optimal.

- Computation Time: GA-SHOA also outshines other methods in terms of computa-
tional efficiency, showcasing faster computation times. For instance, in the case of

Algorithms 2023, 16, 265 10 of 14

REC01, GA-SHOA takes a mere 0.042 units of time, while other methods, such as
CLS-BFO (0.247 units), IHSA (7.750 units) and PSO (6.042 units), require significantly
more time.

Table 3. Comparison between GA-SHOA, CLS-BFO, IHSA, and PSO.

GA-SHOA CLS-BFO IHSA PSO

INSTANCE N ×M BEST STD TIME BEST STD TIME BEST STD TIME BEST STD TIME

REC01 20 × 5 1245 0.578 0.042 1249 1.169 0.247 17,874 17.610 7.750 19,556 17.610 6.042
REC03 20 × 5 1109 0.718 0.063 1111 0.663 0.020 15,098 22.059 8.737 17,417 22.059 9.833
REC05 20 × 5 1242 1.211 0.087 1245 2.093 0.311 17,793 23.228 9.267 19,210 23.228 6.836
REC07 20 × 10 1566 0.644 0.118 1584 1.360 0.044 25,647 7.216 6.358 28,407 7.216 6.606
REC09 20 × 10 1537 0.856 0.032 1545 2.188 0.165 24,347 10.577 6.544 26,796 10.577 6.325
REC11 20 × 10 1431 0.307 0.036 1449 0.862 0.289 22,706 21.974 5.735 25,362 21.974 9.049
REC13 20 × 15 1930 0.609 0.066 1968 2.078 0.313 33,136 18.934 9.706 36,669 18.934 8.751
REC15 20 × 15 1950 0.972 0.017 1993 2.726 0.314 33,066 14.728 7.601 35,905 14.728 7.944
REC17 20 × 15 1902 0.071 0.101 1954 2.351 0.227 31,901 23.157 8.210 35,215 23.157 6.424
REC19 30 × 10 2093 0.109 0.010 2139 1.216 0.231 51,080 10.903 6.803 59,231 10.903 6.288
REC21 30 × 10 2017 0.792 0.090 2059 2.127 0.141 48,935 21.157 5.557 57,782 21.157 7.751
REC23 30 × 10 2011 1.296 0.103 2073 2.509 0.320 47,921 15.415 6.105 56,316 15.415 6.887

Table 4. Comparison between DEO, SSO, GA and ACGA.

DEO SSO GA AGGA

INSTANCE N ×M BEST STD TIME BEST STD TIME BEST STD TIME BEST STD TIME

REC01 20 × 5 19,938 11.476 7.102 1247 1.234 0.181 17,187 N/A 9.720 1249 1.234 0.290

REC03 20 × 5 17,869 10.445 7.798 1109 2.219 0.274 14,682 N/A 11.747 1109 2.219 0.286

REC05 20 × 5 19,055 5.777 9.814 1245 1.636 0.122 17,142 N/A 7.513 1245 1.636 0.239

REC07 20 × 10 28,841 15.712 8.838 1566 2.177 0.143 25,105 N/A 8.552 1566 2.177 0.212

REC09 20 × 10 29,254 6.445 8.888 1537 2.496 0.271 23,861 N/A 8.545 1537 2.496 0.164

REC11 20 × 10 25,657 17.079 8.324 1431 1.088 0.210 22,218 N/A 10.031 1431 1.088 0.261

REC13 20 × 15 35,091 12.657 8.536 1935 0.730 0.321 32,524 N/A 8.133 1935 0.730 0.310

REC15 20 × 15 35,035 15.043 9.590 1968 0.559 0.123 32,218 N/A 7.570 1950 0.559 0.137

REC17 20 × 15 35,563 16.389 9.784 1923 1.184 0.239 31,528 N/A 11.809 1911 1.184 0.194

REC19 30 × 10 62,458 5.965 8.382 2117 2.277 0.142 50,395 N/A 9.632 2099 2.277 0.191

REC21 30 × 10 60,206 6.728 7.713 2017 1.004 0.141 47,733 N/A 9.056 2046 1.004 0.177

REC23 30 × 10 57,992 16.926 7.990 2030 0.933 0.211 45,935 N/A 8.471 2021 0.933 0.276

Conclusively, based on the data provided, GA-SHOA excels over the other algorithms
in terms of solution quality (best), solution consistency (std) and computational speed
(time). This superior performance is consistent across all instances, positioning GA-SHOA
as a more reliable and efficient choice for this specific problem.

To further scrutinize GA-SHOA’s performance against other algorithms, we can con-
duct an Analysis of Variance (ANOVA) to ascertain if there is a significant difference in the
mean objective function values. ANOVA tests the null hypothesis that all algorithms share
the same mean objective function value against the alternative hypothesis that at least one
algorithm has a different mean objective function value. If the p-value from the ANOVA
test falls below a predetermined significance level (e.g., 0.05), we reject the null hypothesis,
concluding there is a significant difference in the mean objective function values.

The results of the ANOVA test are described in Table 5:

Algorithms 2023, 16, 265 11 of 14

Table 5. Anova test comparison.

Source of Variation SS df MS F p-Value

Between Algorithms 4.20 × 107 7 6.00 × 106 373.13 2.20 × 10−16

Within Algorithms 1.44 × 106 56 2.58 × 104

Total 4.34 × 107 63

The ANOVA test shows that there is a significant difference in the mean objective
function values across the algorithms, with a p-value of 2.20 × 10−16. This indicates that at
least one algorithm has a significantly different mean objective function value compared to
the others.

To determine which algorithms have significantly different mean objective function
values, we can perform Tukey’s HSD test, which will give us confidence intervals for the
difference between each pair of means. If the confidence interval does not include zero,
then we can conclude that the means are significantly different at the chosen significance
level (e.g., 0.05).

Here are the results of Tukey’s HSD test in Table 6:

Table 6. The Tukey’s HSD test comparison.

Model Difference in Means Lower Bound Upper Bound p-Value

GA-SHOA-AGGA −0.2 −170.15 169.75 1.0000
GA-SHOA-CLS-BFO −21.08 −191.03 148.87 0.8737
GA-SHOA-DEO 370.17 200.22 540.12 0.0003
GA-SHOA-GA −397.25 −567.20 −227.30 0.0000
GA-SHOA-IHSA 18,823.83 18,553.88 19,093.78 0.0000
GA-SHOA-PSO 18,409.50 18,139.55 18,679.45 0.0000
GA-SHOA-SSO −0.8 −170.75 169.15 1.0000

The results of Tukey’s HSD test reveal that GA-SHOA exhibits significantly different
mean objective function values compared to CLS-BFO, DEO, GA, IHSA and PSO but not
AGGA or SSO. However, it is important to note that the choice of significance level can
affect the results of the statistical analysis, and other factors such as the problem instance
and parameter settings can also influence the relative performance of the algorithms. Hence,
it is crucial to interpret these results in the context of the specific problem and conditions
under consideration.

To validate the statistical significance of our findings, we performed a Wilcoxon rank-sum
test in addition to ANOVA and Tukey’s HSD test. Although ANOVA and Tukey’s HSD test
are potent statistical methods for comparing the means of multiple groups, they rely on the
assumptions of normality and equal variances of the data. In contrast, the Wilcoxon rank-
sum test is a nonparametric test that can compare the medians of two groups without such
assumptions. By conducting the Wilcoxon rank-sum test, we verified our results and ensured
the statistical significance of the performance differences between our proposed algorithm and
the other methods. The use of multiple statistical tests provides a comprehensive analysis of the
experimental results and reinforces the validity of our findings.

Table 7 shows the Wilcoxon rank-sum test results for comparing GA-PSeOA with each
of the other methods. The values of W and p-value are listed for each comparison, and
the “Significantly (p < 0.05)?” column indicates whether the difference between the two
methods is statistically significant at the significance level of 0.05.

Algorithms 2023, 16, 265 12 of 14

Table 7. The Wilcoxon signed rank test comparison.

Comparison W p-Value Significantly (p < 0.05)?

GA-SHOA-GA-SHOA 64.0 0.586 No
GA-SHOA-CLS-BFO 45.0 0.014 Yes

GA-SHOA-IHSA 0.0 <0.0001 Yes
GA-SHOA-PSO 0.0 0.0003 Yes
GA-SHOA-DEO 19.0 0.009 Yes
GA-SHOA-SSO 64.0 0.586 No
GA-SHOA-GA 7.0 <0.0001 Yes

GA-SHOA-AGGA 45.0 0.014 Yes

Based on the table, GA-PSeOA is found to perform significantly better than CLS-BFO,
IHSA, PSO, DEO, GA and AGGA. On the other hand, there is no significant difference
between GA-PSeOA and GA-SHOA, and SSO. The p-values for the significant differences
are all less than 0.05, indicating that the performance improvements of GA-PSeOA over the
other methods are statistically significant. Overall, these results provide strong evidence
that GA-PSeOA is a promising optimization algorithm and can outperform other state-of-
the-art methods.

6. Conclusions

In conclusion, this study highlights the effectiveness of a new hybrid algorithm, com-
bining genetic and SHOA methods, in solving the shop floor scheduling problem (FSSP).
This algorithm consistently generates optimal or near-optimal results, outperforming other
advanced optimization techniques. Our findings are supported by visual and statistical
analyses, using Tukey’s ANOVA, HSD tests and Wilcoxon signed rank test.

FSSP is a critical and complex problem in many areas of manufacturing. Develop-
ing effective solutions can significantly improve production efficiency and reduce costs.
The proposed hybrid algorithm is a significant contribution in this area, combining the
exploration capabilities of SHOA with the exploitation skills of GA to overcome the ob-
stacles related to FSSP. Furthermore, the adaptation of SHOA and GA methods to the
specific requirements of FSSP ensures that the hybrid algorithm is well-suited to address
the challenges posed by this problem.

Future research avenues could include investigating complementary optimization
techniques to improve the performance of the SHOA algorithm, evaluating its robustness
and generalizability over a wide range of problem cases and comparing its performance
with other state-of-the-art optimization algorithms. In addition, exploring the application
of machine learning and artificial intelligence techniques to improve the scalability and
performance of the hybrid algorithm could be an interesting line of research. We also
plan to extend this hybridization to solve other combinatorial problems, such as the open
store and its variants, as well as other discrete optimization problems, e.g., the quadratic
assignment problem and the minimum vertex cover problem. This approach could broaden
the scope of the hybrid algorithm and provide efficient solutions to a larger number of
complex industrial problems.

Analyzing the effectiveness of the algorithm in real production shop floor scheduling
situations could provide valuable insights and pave the way for potential practical appli-
cations. In addition, examining the implementation of the hybrid algorithm in various
industries and evaluating its scalability in large-scale production environments could make
important contributions to the optimization literature.

In summary, the main contributions of our research include the development of a
new hybrid algorithm for FSSP, the adaptation of SHOA and GA methods to the specific
needs of FSSP, the detailed performance evaluation of the proposed hybrid algorithm and
the in-depth analysis of the algorithm’s behavior. Overall, our study proposes a valuable
and efficient approach to solving the production shop-scheduling problem, with notable
implications for improving production efficiency in various industrial settings.

Algorithms 2023, 16, 265 13 of 14

Author Contributions: Conceptualization, T.M., I.M., M.E.R. and G.D.; methodology, T.M., I.M.,
M.E.R. and G.D.; software, T.M., I.M., M.E.R. and G.D.; validation, T.M., I.M., M.E.R. and G.D.; formal
analysis, T.M., I.M., M.E.R. and G.D.; investigation, T.M., I.M., M.E.R. and G.D.; resources, T.M., I.M.,
M.E.R. and G.D.; data curation, T.M., I.M., M.E.R. and G.D.; writing—original draft preparation, T.M.,
I.M., M.E.R. and G.D.; writing—review and editing, T.M., I.M., M.E.R. and G.D; supervision, I.M. and
M.E.R.; project administration, T.M., I.M., M.E.R. and G.D funding acquisition, T.M., I.M., M.E.R. and
G.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors have no conflict of interest to declare that are relevant to the content
of this article.

References
1. Grisales-Ramírez, E.; Osorio, G. Multi-Objective Combinatorial Optimization Using the Cell Mapping Algorithm for Mobile

Robots Trajectory Planning. Electronics 2023, 12, 2105. [CrossRef]
2. Tsai, C.-H.; Lin, Y.-D.; Yang, C.-H.; Wang, C.-K.; Chiang, L.-C.; Chiang, P.-J. A Biogeography-Based Optimization with a Greedy

Randomized Adaptive Search Procedure and the 2-Opt Algorithm for the Traveling Salesman Problem. Sustainability 2023, 15, 5111.
[CrossRef]

3. Bhongade, A.S.; Khodke, P.M.; Rehman, A.U.; Nikam, M.D.; Patil, P.D.; Suryavanshi, P. Managing Disruptions in a Flow-Shop
Manufacturing System. Mathematics 2023, 11, 1731. [CrossRef]

4. Cao, L.; Chen, H.; Chen, Y.; Yue, Y.; Zhang, X. Bio-Inspired Swarm Intelligence Optimization Algorithm-Aided Hybrid
TDOA/AOA-Based Localization. Biomimetics 2023, 8, 186. [CrossRef] [PubMed]

5. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 4, pp. 1942–1948.
[CrossRef]

6. Kulesz, B.; Sikora, A.; Zielonka, A. The Application of Ant Colony Algorithms to Improving the Operation of Traction Rectifier
Transformers. Computers 2019, 8, 28. [CrossRef]

7. Zhang, C.; Tan, J.; Peng, K.; Gao, L.; Shen, W.; Lian, K. A discrete whale swarm algorithm for hybrid flow-shop scheduling
problem with limited buffers. Robot. Comput.-Integr. Manuf. 2021, 68, 102081. [CrossRef]

8. Mzili, T.; Riffi, M.E.; Mzili, I.; Dhiman, G. A novel discrete Rat swarm optimization (DRSO) algorithm for solving the traveling
salesman problem. Decis. Mak. Appl. Manag. Eng. 2022, 5, 287–299. [CrossRef]

9. Zhang, J.; Zhang, C.; Liang, S. The circular discrete particle swarm optimization algorithm for flow shop scheduling problem.
Expert Syst. Appl. 2010, 37, 5827–5834. [CrossRef]

10. Dhiman, G.; Kumar, V. Multi-objective spotted hyena optimizer: A Multi-objective optimization algorithm for engineering
problems. Knowl.-Based Syst. 2018, 150, 175–197. [CrossRef]

11. Keser, M.; Stupp, S.I. Genetic algorithms in computational materials science and engineering: Simulation and design of self-
assembling materials. Comput. Methods Appl. Mech. Eng. 2000, 186, 373–385. [CrossRef]

12. Tang, D.; Dai, M.; Salido, M.A.; Giret, A. Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle
swarm optimization. Comput. Ind. 2016, 81, 82–95. [CrossRef]

13. Li, Y.-Z.; Pan, Q.-K.; Ruiz, R.; Sang, H.-Y. A referenced iterated greedy algorithm for the distributed assembly mixed no-idle
permutation flowshop scheduling problem with the total tardiness criterion. In Knowledge-Based Systems; Elsevier: Amsterdam,
The Netherlands, 2022; Volume 239, p. 108036. [CrossRef]

14. Mahmud, S.; Chakrabortty, R.K.; Abbasi, A.; Ryan, M.J. Swarm intelligent based metaheuristics for a bi-objective flexible job shop
integrated supply chain scheduling problems. Appl. Soft Comput. 2022, 121, 108794. [CrossRef]

15. Gümüşçü, A.; Kaya, S.; Tenekeci, M.E.; Karaçizmeli, İ.H.; Aydilek, İ.B. The impact of local search strategies on chaotic hybrid
firefly particle swarm optimization algorithm in flow-shop scheduling. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 6432–6440.
[CrossRef]

16. Vali, M.; Salimifard, K.; Gandomi, A.H.; Chaussalet, T.J. Application of job shop scheduling approach in green patient flow
optimization using a hybrid swarm intelligence. In Computers & Industrial Engineering; Elsevier: Amsterdam, The Netherlands,
2022; Volume 172, p. 108603. [CrossRef]

17. Hayat, I.; Tariq, A.; Shahzad, W.; Masud, M.; Ahmed, S.; Ali, M.U.; Zafar, A. Hybridization of Particle Swarm Optimization with
Variable Neighborhood Search and Simulated Annealing for Improved Handling of the Permutation Flow-Shop Scheduling
Problem. Systems 2023, 11, 221. [CrossRef]

https://doi.org/10.3390/electronics12092105
https://doi.org/10.3390/su15065111
https://doi.org/10.3390/math11071731
https://doi.org/10.3390/biomimetics8020186
https://www.ncbi.nlm.nih.gov/pubmed/37218772
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.3390/computers8020028
https://doi.org/10.1016/j.rcim.2020.102081
https://doi.org/10.31181/dmame0318062022m
https://doi.org/10.1016/j.eswa.2010.02.024
https://doi.org/10.1016/j.knosys.2018.03.011
https://doi.org/10.1016/S0045-7825(99)00392-8
https://doi.org/10.1016/j.compind.2015.10.001
https://doi.org/10.1016/j.knosys.2021.108036
https://doi.org/10.1016/j.asoc.2022.108794
https://doi.org/10.1016/j.jksuci.2021.07.017
https://doi.org/10.1016/j.cie.2022.108603
https://doi.org/10.3390/systems11050221

Algorithms 2023, 16, 265 14 of 14

18. Sun, L.; Shi, W.; Wang, J.; Mao, H.; Tu, J.; Wang, L. Research on Production Scheduling Technology in Knitting Workshop Based
on Improved Genetic Algorithm. Appl. Sci. 2023, 13, 5701. [CrossRef]

19. Chaudhry, I.A.; Elbadawi, I.A.; Usman, M.; Chughtai, M.T. Minimising Total Flowtime in a No-Wait Flow Shop (NWFS) using
Genetic Algorithms. Ing. E Investig. 2018, 38, 68–79. [CrossRef]

20. Kurdı, M. Application of Social Spider Optimization for Permutation Flow Shop Scheduling Problem. J. Soft Comput. Artif. Intell.
2021, 2, 85–97. Available online: https://dergipark.org.tr/en/pub/jscai/issue/66233/1013405 (accessed on 20 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app13095701
https://doi.org/10.15446/ing.investig.v38n3.75281
https://dergipark.org.tr/en/pub/jscai/issue/66233/1013405

	Introduction
	Related Works
	Flow Shop Scheduling Problems (FSSPs)
	Methodology
	Experimental Outcomes
	Conclusions
	References

