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Abstract: Many data analysis problems can be modeled as a constrained optimization problem
characterized by nonsmooth functionals, often because of the presence of `1-regularization terms.
One of the most effective ways to solve such problems is through the Alternate Direction Method of
Multipliers (ADMM), which has been proved to have good theoretical convergence properties even if
the arising subproblems are solved inexactly. Nevertheless, experience shows that the choice of the
parameter τ penalizing the constraint violation in the Augmented Lagrangian underlying ADMM
affects the method’s performance. To this end, strategies for the adaptive selection of such parameter
have been analyzed in the literature and are still of great interest. In this paper, starting from an
adaptive spectral strategy recently proposed in the literature, we investigate the use of different
strategies based on Barzilai–Borwein-like stepsize rules. We test the effectiveness of the proposed
strategies in the solution of real-life consensus logistic regression and portfolio optimization problems.

Keywords: ADMM; adaptive parameter selection; Barzilai–Borwein rules

1. Introduction

The alternating direction method of multipliers [1] (ADMM) has been recognized as a
simple but powerful algorithm to solve optimization problems of the form

minu∈Rn ,v∈Rm H(u) + G(v)
subject to Eu + Fv = d

(1)

where H : Rn → R∪ {+∞} and G : Rm → R∪ {+∞} are closed, proper, and convex
functions, E ∈ Rp×n, F ∈ Rp×m, d ∈ Rp. ADMM splits the problem into smaller pieces,
each of which is then easier to handle, blending the benefits of dual decomposition and
augmented Lagrangian methods [1]. Starting from an initialization (u0, v0, ξ0) and τ > 0,
at each iteration, ADMM updates the primal and dual variables as

uk+1 = argmin
u

H(u) +
τ

2

∥∥∥∥∥d− Eu− Fvk +
ξk

τ

∥∥∥∥∥
2

(2)

vk+1 = argmin
v

G(v) +
τ

2

∥∥∥∥∥d− Euk+1 − Fv +
ξk

τ

∥∥∥∥∥
2

(3)

ξk+1 = ξk + τ
(

d− Euk+1 − Fvk+1
)

. (4)

ADMM is guaranteed to converge under mild assumptions for any fixed value of
the penalty parameter τ, even if the subproblems are solved inexactly [2]. Despite this,
it is well-known that the choice of the parameter τ is problem-dependent and can affect
the practical performance of the algorithm, yielding a highly inefficient method when it
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is not properly selected. Some work has been done to develop suitable techniques for
tuning the values of τ at each iteration, with the aim of speeding up the convergence in
practical applications [3–6]. In [3], the authors proposed an adaptive strategy based on
primal and dual residuals, with the idea that τk forces both to have a similar magnitude.
Such a scheme is not guaranteed to converge; nevertheless, the standard convergence
theory (fixed values of τ) still applies if one assumes that τk becomes fixed after a finite
number of iterations. A more general and reliable approach has been introduced in [7],
where the authors proposed a strategy for automatic selection of the penalty parameter
in ADMM, borrowing ideas from spectral stepsize selection strategies in gradient-based
methods for unconstrained optimization [8–11]. In particular, starting from the analysis of
the dual unconstrained formulation of problem (1), in [7] an optimal penalty parameter at
each iteration is defined as the reciprocal of the geometric mean of Barzilai–Borwein-like
spectral stepsizes [8,10], corresponding to a gradient step of the Fenchel conjugates of the
functions H and G, respectively.

Relying on the procedure suggested in [7], this paper aims at investigating the practical
efficiency of ADMM, employing adaptive selections of the penalty parameter based on
different spectral stepsize rules. Indeed, spectral analysis of Barzilai–Borwein (BB) rules
(and their variants) has shown how different choices can influence the practical acceleration
of gradient-based methods for both constrained and unconstrained smooth optimization,
due to the intrinsic different abilities of such stepsizes of capturing the spectral properties
of the problem. Indeed, for strictly convex quadratic problems, the Barzilai–Borwein
updating rules correspond to the inverses of the Rayleigh quotients of the Hessian, thus
providing suitable approximations of the inverses of its eigenvalues. Such an ability has
been exploited within ad hoc steplength selection strategies to obtain practical accelerations
of gradient-based methods; moreover, this property is preserved in the case of general non-
quadratic minimization problems [9,11–13]. In this view, we combine the adaptive ADMM
scheme with state-of-the-art stepsizes to compute reliable approximations of the penalty
parameter τk at each iteration. The resulting variants of the ADMM scheme thus obtained
are compared on two real-life applications in the frameworks of binary classification on
distributed architectures and portfolio selection.

The paper is organized as follows. The adaptive ADMM algorithm is described in
Section 2. Numerical experiments are reported in Section 3. Finally, some conclusions are
drawn in Section 4.

2. Adaptive Penalty Parameter Selection in ADMM Method

In this section, we describe the strategy for automatic selection of the penalty parameter
in ADMM according to the procedure proposed in [7], in which the authors introduced
an adaptive selection of τ based on the spectral properties of the Douglas–Rachford (DR)
splitting method applied to the dual problem of (1).

Given a closed convex (proper) function f defined on Rn, the Fenchel conjugate of f is
the closed convex (proper) function f ∗ defined by

f ∗(x∗) = sup
x
{x>x∗ − f (x)} = − inf

x
{ f (x)− x>x∗},

(see [14]). The dual problem of (1) is given by

max
ξ∈Rp

ξ>d− H∗(E>ξ)− G∗(F>ξ), (5)

where H∗ and G∗ denote, respectively, the Fenchel conjugate of H and G. Problem (5) can
be equivalently rewritten as

min
ξ∈Rp

H∗(E>ξ)− ξ>d + G∗(F>ξ). (6)
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It can be proved that solving (1) by ADMM is equivalent to solving the dual problem
(6) by means of the DR method [15], which, in turn, is equivalent to applying the DR
scheme to

0 ∈ (E>∂H∗(E>ξ)− d) + F>∂G∗(F>ξ).

In this way, two sequences (ξ̄k)k and (ξk)k are generated such that

0 ∈ ξ̄k+1 − ξk

τk + (E>∂H∗(E> ξ̄k+1)− d) + F>∂G∗(F>ξk), (7)

0 ∈ ξk+1 − ξk

τk + (E>∂H∗(E> ξ̄k+1)− d) + F>∂G∗(F>ξk+1). (8)

Then, Proposition 1 in [7] proves that the choice of the parameter τk that guarantees
the minimal residual of (E>∂H∗(E>ξk+1)− d) + F>∂G∗(F>ξk+1) in DR steps is given by

τk =
√

αkβk (9)

where αk, βk > 0 are BB stepsizes arising by imposing the following quasi-Newton conditions:

αk = argmin
α∈R

∥∥∥α−1(ξ̄k − ξ̄k−1)− (φk − φk−1)
∥∥∥, (10)

βk = argmin
β∈R

∥∥∥β−1(ξk − ξk−1)− (ψk − ψk−1)
∥∥∥, (11)

where φk ∈ E>∂H∗(E> ξ̄k) − d, φk−1 ∈ E>∂H∗(E> ξ̄k−1) − d, ψk ∈ F>∂G∗(F>ξk), and
ψk−1 ∈ F>∂G∗(F>ξk−1). Note that 1/αk and 1/βk can be interpreted as spectral gradient
stepsizes of type BB1 for H∗(E> ξ̄k)− (ξ̄k)>d and G∗(F>ξk), respectively.

Based on the equivalence between DR and ADMM, the optimal DR stepsize τk defined
in (9) corresponds to the optimal penalty parameter for the ADMM scheme. Moreover,
to compute practical estimates of these optimal parameters for ADMM, the dual problem
is not required to be supplied, thanks to the theoretical link between primal and dual
variables. Indeed, the optimality condition for Problem (2) prescribes

0 ∈ ∂H(uk+1)− E>
(

ξk + τk(d− Euk+1 − Fvk)
)

,

which is equivalent to

E>
(

ξk + τk(d− Euk+1 − Fvk)
)
∈ ∂H(uk+1).

Recalling that for a closed proper convex function f , x ∈ ∂ f ∗(x∗) if and only if
x∗ ∈ ∂ f (x) (see [14], Corollary 23.5.1), from the previous relation, we obtain

uk+1 ∈ ∂H∗
(

E>
(

ξk + τk(d− Euk+1 − Fvk)
))

,

and, hence, it follows
Euk+1 − d ∈ E∂H∗

(
E> ξ̄k+1

)
− d, (12)

where ξ̄k+1 := ξk + τk(d− Euk+1 − Fvk). Similarly, from the optimality condition for the
subproblem (3), one can obtain

Fvk+1 ∈ F∂G∗(F>ξk+1). (13)
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From (12) and (13), we have

ξ̄k+1 ∈ ξk − τk
(
(E∂H∗(E> ξ̄k+1)− d) + F∂G∗(F>ξk)

)
, (14)

ξk+1 ∈ ξk − τk
(
(E∂H∗(E> ξ̄k+1)− d) + F∂G∗(F>ξk+1)

)
. (15)

Finally, one can define ∆ξ̄k−1 = ξ̄k − ξ̄k−1 and ∆H̄k−1 = ∂H̄(ξ̄k) − ∂H̄(ξ̄k−1), where
H̄(ξ) := H∗(E>ξ)− ξ>d, and the set subtraction is given by the Minkowski–Pontryagin
difference [16,17]. In particular, a practical computation of an element of ∆H̄k−1 can be
provided through quantities available at the current ADMM iteration by exploiting (12);
thus, with a slight abuse of notation, we may write

∆H̄k−1 = E(uk − uk−1).

Then, the two BB-based rules can be recovered as

αBB1
k = argmin

α∈R

∥∥∥α−1∆ξ̄k−1 − ∆H̄k−1
∥∥∥ =

‖∆ξ̄k−1‖2

(∆ξ̄k−1)>∆H̄k−1 , (16)

αBB2
k = argmin

α∈R

∥∥∥∆ξ̄k−1 − α∆H̄k−1
∥∥∥ =

(∆ξ̄k−1)>∆H̄k−1

‖∆H̄k−1‖2 . (17)

With a similar argument, the curvature estimates of Ḡ(ξ) := G∗(F>ξ) are provided by
the following stepsizes:

βBB1
k = argmin

β∈R

∥∥∥β−1∆ξk−1 − ∆Ḡk−1
∥∥∥ =

‖∆ξk−1‖2

(∆ξk−1)>∆Ḡk−1 , (18)

βBB2
k = argmin

β∈R

∥∥∥∆ξk−1 − β∆Ḡk−1
∥∥∥ =

(∆ξk−1)>∆Gk−1

‖∆Ḡk−1‖2 , (19)

where ∆ξk−1 = ξk − ξk−1 and ∆Ḡk−1 = F(vk − vk−1). The previous quasi-Newton condi-
tions express a local property of linearity of the dual subgradients with respect to the dual
variables. The validity of this assumption can be checked during the iterative procedure to
test the reliability of the spectral BB-based parameters. In particular, the stepsizes (16)–(19)
can be considered reliable when, respectively, the ratios

αcor =
(∆ξ̄k−1)>∆H̄k−1

‖∆ξ̄k−1‖‖∆H̄k−1‖
and βcor =

(∆ξk−1)>∆Ḡk−1

‖∆ξk−1‖‖∆Ḡk−1‖
(20)

are bounded away from zero.
Then, as safeguarding condition, the update of the penalty parameter is realized in

accordance with (9) when both the ratios in (20) are greater than a prefixed threshold
ε̄ ∈ (0, 1) expressing the required level of reliability provided by the estimates (10) and (11).
If only one of the ratios satisfies the safeguarding condition, the corresponding stepsize
is used to estimate τk, which eventually is set equal to the last updated value when both
stepsizes are considered inaccurate, i.e., when αcor ≤ ε̄ and βcor ≤ ε̄.

A general ADMM scheme with adaptive selection of the penalty parameter based
on the described procedure is outlined in Algorithm 1. We remark that different versions
of Algorithm 1 arise depending on the different rules selected for computing the spectral
stepsizes αk and βk in STEP 4. In particular, in the scheme originally proposed in [7], αk
and βk are provided by a generalization of the adaptive steepest descent (ASD) strategy
introduced in [10], which performs a proper alternation of larger and smaller stepsizes. In
the next section, we will compare this procedure with other updating rules based on both
single and alternating BB-based strategies.
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As final remark, we recall that a proof of the convergence of ADMM with variable
penalty parameter was provided in [3] under suitable assumptions on the increase and
decrease in the sequence {τk}k (see Section 4—Theorem 4.1 in [3]). Although this conver-
gence analysis cannot straightforwardly be applied to our case, as observed in [7], this issue
may be bypassed in practice by turning off the adaptivity after a finite number of steps.

Algorithm 1 A general scheme for ADMM with adaptive penalty parameter selection

Initialize u0, v0, ξ0, τ0 > 0, ε̄ ∈ (0, 1), n̄ ≥ 1
For k = 0, 1, 2, ...

STEP 1 Compute uk+1 by solving (2).

STEP 2 Compute vk+1 by solving (3).

STEP 3 Update ξk+1 by means of (4).

STEP 4 If mod (k, n̄) = 1 then

ξ̄k+1 := ξk + τk(d− Euk+1 − Fvk)
Compute spectral stepsizes αk, βk according to (10) and (11)
Compute correlations αcor, βcor
if αcor > εcor and βcor > εcor then

τk+1 =
√

αkβk

elseif αcor > ε̄ and βcor ≤ ε̄

τk+1 = αk

elseif αcor ≤ ε̄ and βcor > ε̄

τk+1 = βk

else

τk+1 = τk

endif

else

τk+1 = τk

endif

STEP 5 end for

3. Numerical Experiments

In this section we present the results of the numerical experiments performed to assess
the performances of Algorithm 1 equipped with different choices for the update of τk in
STEP 4. We compare the alternating strategy used in [7] with BB1-like rules αBB1

k (16)–(18),
BB2-like rules αBB2

k (17)–(19), and a different alternating strategy, based on a modified
version of the ABBmin rule [18], introduced in [19]. The five algorithms compared in this
section are the following:

• “Vanilla ADMM”, in which τk is fixed to τ0 throughout all iterations;
• “Adaptive ADMM”[7], in which αk and βk are set to

αk =

{
αBB2

k , if 2αBB2
k > αBB1

k ,

αBB1
k − αBB2

k
2 , otherwise,

βk =

{
βBB2

k , if 2βBB2
k > βBB1

k ,

βBB1
k − βBB2

k
2 , otherwise;

• “Adaptive ADMM-BB1”, in which αk and βk are set to αBB1
k and βBB1

k , respectively;
• “Adaptive ADMM-BB2”, in which αk and βk are set to αBB2

k and βBB2
k , respectively;
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• “Adaptive ADMM-ABBmin”, in which αk and βk are set to

αABBmin
k =

{
min

{
αBB2

j : j = max{1, k−mα}, . . . , k
}

, if αBB2
k < δkαBB1

k ,

αBB1
k , otherwise,

βABBmin
k =

{
min

{
βBB2

j : j = max{1, k−mα}, . . . , k
}

, if βBB2
k < δkβBB1

k ,

βBB1
k , otherwise,

where mα = 2, δ0 = 0.5, and δk is updated as follows:

δk+1 =

{
δk/1.2, if αBB2

k < δkαBB1
k
(
or βBB2

k < δkβBB1
k
)
,

δk · 1.2, otherwise.

For all the algorithms, following [7], we set εcor = 0.2 and n̄ = 2. The methods stop
when the relative residual is below a prefixed tolerance tol > 0 within a maximum number
of iterations, where the relative residual is defined by

max

{
‖rk

p‖2

max{‖Euk‖2, ‖Fvk‖2, ‖d‖2}
,
‖rk

d‖2

‖E>ξk‖2

}
, (21)

with rk
p = d− Euk − Fvk and rk

d = τkET F(vk − vk−1). All experiments were performed us-
ing MATLAB. Recently, the PADPD algorithm [20] has been proposed as an algorithm anal-
ogous to ADMM, but it has fixed stepsize and is out of the scope of this paper to compare.

3.1. Consensus `1-Regularized Logistic Regression

As a first experiment, we test the proposed algorithms on the solution of consensus
`1-regularized logistic regression (see Section 4.2 in [1,7]). Let us consider a dataset con-
sisting of M training pairs (Di, yi) ∈ Rn × {0, 1}. The aim is to build a linear classifier by
minimizing a regularized logistic regression functional, exploiting a distributed computing
architecture. One can do so by partitioning the original dataset into S subsets of size
m1, . . . , mS, such that ∑S

s=1 ms = M, and solving the optimization problem

minx1,...,xS∈Rn ,z∈Rn

S

∑
s=1

ms

∑
j=1

log
(

1 + e−ys,j D>s,jxs

)
+ λ‖z‖1

s.t. xs − z = 0, f or s = 1, . . . , S,

(22)

where xs is the local variable on the s-th computational node, which acts as a linear classifier
of the s-th subset,

(
Ds,j, ys,j

)
represents the j-th training pair of the s-th subset, and z is the

global variable.
We can reformulate problem (22) as

minu,v H(u) + G(v)
s.t. u− Fv = 0

(23)

where we set u = (x>1 , . . . , x>S )
> ∈ RnS, v = z, H(u) = ∑S

s=1 ∑ms
j=1 log

(
1 + e−ys,j D>s,jxs

)
,

G(v) = λ‖v‖1, and F = (In, . . . , In)> (i.e., the stacking of S identity matrices of or-
der n). Scaling the dual variable, the augmented Lagrangian function associated with
problem (23) is

LA = H(u) + G(v) +
τ

2

∥∥∥∥u− Fv− ξ

τ

∥∥∥∥2
− τ

2

∥∥∥∥ ξ

τ

∥∥∥∥2
,

where ξ = (ξ>1 , . . . , ξ>S )> ∈ RnS, τ > 0. Starting from given estimates u0, v0, ξ0, and
τ0, and observing that the minimization problem in u can be split into S independent
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optimization problems in x1, . . . , xS, at each iteration k the adaptive ADMM updates the
estimates as

xk+1
1 = argmin

x∈Rn

m1

∑
j=1

log
(

1 + e−y1,j D>1,jx
)
+

τk

2

∥∥∥∥∥x− vk −
ξk

1
τk

∥∥∥∥∥
2

,

...
... (24)

xk+1
S = argmin

x∈Rn

mS

∑
j=1

log
(

1 + e−yS,j D>S,jx
)
+

τk

2

∥∥∥∥∥x− vk −
ξk

S
τk

∥∥∥∥∥
2

,

vk+1 = argmin
v

λ‖v‖1 +
τk

2

∥∥∥∥∥uk+1 − Fv− ξk

τk

∥∥∥∥∥
2

, (25)

ξk+1 = ξk + τk(uk+1 − Fvk+1). (26)

The S problems in (24), which are smooth unconstrained optimization problems, are
solved approximately via BFGS with a stopping criterion on the gradient and the objective
function with a tolerance set to 10 times the tolerance given to the ADMM scheme. The
minimization in (25) can be performed via a soft thresholding operator.

We considered 4 datasets from the LIBSVM (https://www.csie.ntu.edu.tw/~cjlin/lib
svmtools/datasets/, accessed on 1 February 2023) dataset collection; to simulate real-life
conditions, we created the instances by randomly extracted a training set consisting of 70%
of the available data. Table 1 reports the final number of training pairs (M) and the problem
dimension (n) for each of the datasets.

Table 1. Number of training pairs M and problem dimension n for each dataset.

Name M n

a9a 22,793 123
cod-rna 41,675 8
ijcnn1 34,994 22

phishing 7739 68

We considered λ = 1 for all problems to enforce sparsity in the solutions and ran all
the algorithms with τ0 = 1, stopping when the relative residual was below tol = 10−4

and/or the number of iterations reached 500. The results of the tests are reported in Figure 1
(left column) in terms of relative residual vs. number of iterations. We also report in the
same figure (right columns) the history of τk for each of the five algorithms.

From the pictures, it is clear that the four adaptive strategies are effective in reducing
the number of iterations needed for convergence with respect to the “Vanilla ADMM”.
Furthermore, the BB2 version is able to outperform the others in all the considered in-
stances. By looking at the second and fourth row (problems “cod-rna” and “phishing”), it
is interesting to observe that the performances of the adaptive strategies appear to decay
as soon as τk is kept fixed for a large number of iterations. This is particularly true for
algorithms “Adaptive ADMM” and “Adaptive ADMM-BB1”.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 1. Relative residual (left) and τk history (right) against number of iterations for the 4 consensus
logistic regression instances. From top to bottom: a9a, cod-rna, ijcnn1, phishing.

3.2. Portfolio Optimization

In the modern portfolio theory, an optimal portfolio selection strategy has to realize a
trade-off between risk and return. Recently, l1-regularized Markowitz models have been
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considered; the l1 penalty term is used to stabilize the solution process and to obtain sparse
solutions, which allow one to reduce holding costs [21–24]. We focus on a multi-period
investment strategy [23] that is either medium- or long-term; thus, it allows the periodic
reallocation of wealth among the assets based on available information. The investment
period is partitioned into m sub-periods, delimited by the rebalancing dates t1, ..., tm+1,
at which points decisions are taken. Let n be the number of assets and uj ∈ Rn the
portfolio held at the rebalancing date tj. The optimal portfolio is defined by the vector
u = (u>1 , u>2 , . . . , u>m)> ∈ RN , where N = m · n. A separable form of the risk measure
obtained by summing single period terms is considered

ρ(u) =
m

∑
j=1

u>j Cjuj,

where Cj ∈ Rn×n is the covariance matrix, assumed to be positive definite, estimated at tj.
With this choice, the model satisfies the time consistency property. l1-regularization has
been used to promote sparsity in the solution. Moreover, the l1 penalty term either avoids
or limits negative solutions; thus, it is equivalent to a penalty on short positions.

Let ξinit and ξterm be the initial wealth and the target expected wealth resulting from
the overall investment, respectively, and let rj be the expected return vector estimated at
time j. The l1-regularized selection can be formulated as the following compact constrained
optimization problem [23,24]:

minu
1
2 u>Cu + λ‖u‖1

s.t. Au = b
(27)

where C = diag(C1, C2, . . . , Cm) ∈ RN×N is a m×m diagonal block matrix, A is an m×m
lower bidiagonal block matrix, with blocks of dimension 1× n, defined as

diag(A) = (1>n , 1>n , . . . , 1>n ),
subdiag(A) = (−(1n + r1)

>, . . . ,−(1n + rm−1)
>),

and b = (ξinit, 0, 0, . . . , ξterm)> ∈ Rm. Methods based on Bregman iteration have proved
to be efficient for the solution of Problem (27) as well [23–26]. Now we reformulate
Problem (27) as

minu,v H(u) + G(v)
s.t. u− v = 0

(28)

where H(u) = 1
2 u>Cu restricted to the set {u | Au = b} and G(v) = λ‖v‖1. Scaling the

dual variable, the augmented Lagrangian function associated with Problem (28) is

LA = H(u) + G(v) +
τ

2

∥∥∥∥u− v− ξ

τ

∥∥∥∥2
− τ

2

∥∥∥∥ ξ

τ

∥∥∥∥2
,

where ξ, τ > 0. Starting from given estimates u0, v0, ξ0, and τ0, at each iteration k, adaptive
ADMM updates the estimates as

uk+1 = argmin
Au=b

1
2

u>Cu +
τk

2

∥∥∥∥∥u− vk − ξk

τk

∥∥∥∥∥
2

, (29)

vk+1 = argmin
v

λ‖v‖1 +
τk

2

∥∥∥∥∥uk+1 − v− ξk

τk

∥∥∥∥∥
2

, (30)

ξk+1 = ξk + τk(uk+1 − vk+1). (31)
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Given (uk, vk, ξk), the u update (29) is an equality-constrained problem that involves
the solution of the related Karush–Kuhn–Tucker (KKT) system (see [1], Section 4.2.5), which
results in a linear system with positive definite coefficient matrix. The minimization with
respect to v can be carried out efficiently using the soft thresholding operator.

We test the effectiveness on the real market data. We show results obtained using the
following datasets [26]:

• FF48 (Fama & French 48 Industry portfolios): Contain monthly returns of 48 from July
1926 to December 2015. We simulate investment strategies of length 10, 20, and 30
years, with annual rebalancing.

• NASDAQ100 (NASDAQ 100 stock Price Data): Contains monthly returns from Novem-
ber 2004 to April 2016. We simulate investment strategy of length 10, with annual re-
balancing.

• Dow Jones (Dow Jones Industrial): Contains monthly returns from February 1990 to
April 2016. We simulate investment strategy of length 10, with annual rebalancing.

We set for all the tests λ = 10−2 to enforce a sparse portfolio. We compared the 5
considered algorithms in terms of number of iterations needed to reach a tolerance 10−5

on the relative residual, letting them run for a maximum of 3000 iterations. Moreover, we
considered some financial performance measures expressing the goodness of the optimal
portfolios, i.e.,

• density: the number of nonzero elements in the solution (percentage) that gives an
estimation of holding cost;

• ratio: it estimates the risk reduction when the naive strategy (at each rebalancing
date the total wealth is equally divided among the assets) is taken as the benchmark,
defined as

ratio =
u>naiveCunaive

u>∗ Cu∗
,

where the numerator is the variance of the portfolio produced by the naive strategy
and the denominator is the variance of the optimal portfolio.

Tables 2–6 report the results of the experiments performed on the 5 datasets with
different choices for the value of τ0 (namely, 0.1, 0.5, 1) for a total of 15 instances.

The five algorithms are overall able to obtain equivalent portfolios when converging to
the desired tolerance. However, they behave quite differently in terms of iterations needed
to converge. In general, the adaptive strategies allow a reduction in the computational com-
plexity with respect to the Vanilla ADMM, which is unable to reach the desired tolerance in
9 out of 15 instances. Among the 4 adaptive strategies, “Adaptive ADMM-BB1” seems to be
the most effective, being able to outperform all the others in 9 out of 15 instances, and being
the second best in 4 out of 15, performing on average 20% of iterations more than the best
in this case. Unlike what happened in the case of consensus logistic regression problems,
here “Adaptive ADMM-BB2” and “Adaptive ADMM-ABBmin” appear to perform poorly,
suggesting that the use of too small of values for τk may slow down the convergence.

Table 2. Performance for portfolio FF48 with 10-year simulation.

Method Iterations Density Ratio

τ0 = 0.1
Vanilla ADMM 846 0.096 2.064
Adaptive ADMM [7] 321 0.096 2.064
Adaptive ADMM-BB1 190 0.096 2.064
Adaptive ADMM-BB2 458 0.096 2.064
Adaptive ADMM-ABBmin 509 0.096 2.064

τ0 = 0.5
Vanilla ADMM 3000 — —
Adaptive ADMM [7] 488 0.096 2.064
Adaptive ADMM-BB1 340 0.096 2.064
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Table 2. Cont.

Method Iterations Density Ratio

Adaptive ADMM-BB2 644 0.096 2.064
Adaptive ADMM-ABBmin 665 0.096 2.064

τ0 = 1
Vanilla ADMM 3000 — —
Adaptive ADMM [7] 283 0.096 2.064
Adaptive ADMM-BB1 232 0.096 2.064
Adaptive ADMM-BB2 617 0.096 2.064
Adaptive ADMM-ABBmin 618 0.096 2.064

Table 3. Performance for portfolio FF48 with 20-year simulation.

Method Iterations Density Ratio

τ0 = 0.1
Vanilla ADMM 871 0.111 2.430
Adaptive ADMM [7] 518 0.111 2.430
Adaptive ADMM-BB1 470 0.111 2.430
Adaptive ADMM-BB2 1698 0.111 2.430
Adaptive ADMM-ABBmin 298 0.111 2.430

τ0 = 0.5
Vanilla ADMM 3000 — —
Adaptive ADMM [7] 454 0.112 2.430
Adaptive ADMM-BB1 450 0.111 2.430
Adaptive ADMM-BB2 1291 0.111 2.430
Adaptive ADMM-ABBmin 1049 0.111 2.430

τ0 = 1
Vanilla ADMM 3000 — —
Adaptive ADMM [7] 454 0.111 2.430
Adaptive ADMM-BB1 361 0.111 2.430
Adaptive ADMM-BB2 1252 0.111 2.430
Adaptive ADMM-ABBmin 775 0.111 2.430

Table 4. Performance for portfolio FF48 with 30-year simulation.

Method Iterations Density Ratio

τ0 = 0.1
Vanilla ADMM 1700 0.147 5.134
Adaptive ADMM [7] 263 0.147 5.134
Adaptive ADMM-BB1 331 0.147 5.134
Adaptive ADMM-BB2 1806 0.147 5.134
Adaptive ADMM-ABBmin 281 0.147 5.134

τ0 = 0.5
Vanilla ADMM 3000 — —
Adaptive ADMM [7] 270 0.147 5.134
Adaptive ADMM-BB1 327 0.147 5.134
Adaptive ADMM-BB2 324 0.147 5.134
Adaptive ADMM-ABBmin 275 0.146 5.134

τ0 = 1
Vanilla ADMM 3000 — —
Adaptive ADMM [7] 252 0.147 5.134
Adaptive ADMM-BB1 269 0.147 5.134
Adaptive ADMM-BB2 458 0.147 5.134
Adaptive ADMM-ABBmin 595 0.146 5.134
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Table 5. Performance for portfolio NASDAQ100 with 10-year simulation.

Method Iterations Density Ratio

τ0 = 0.1
Vanilla ADMM 1421 0.023 2.005
Adaptive ADMM [7] 1140 0.023 2.005
Adaptive ADMM-BB1 906 0.023 2.005
Adaptive ADMM-BB2 3000 — —
Adaptive ADMM-ABBmin 3000 — —

τ0 = 0.5
Vanilla ADMM 1984 0.023 2.005
Adaptive ADMM [7] 1368 0.023 2.005
Adaptive ADMM-BB1 947 0.023 2.005
Adaptive ADMM-BB2 3000 — —
Adaptive ADMM-ABBmin 3000 — —

τ0 = 1
Vanilla ADMM 3000 — —
Adaptive ADMM [7] 1789 0.023 2.005
Adaptive ADMM-BB1 1307 0.023 2.005
Adaptive ADMM-BB2 3000 — —
Adaptive ADMM-ABBmin 3000 — —

Table 6. Performance for portfolio Dow Jones with 10-year simulation. εcor = 0.2.

Method Iterations Density Ratio

τ0 = 0.1
Vanilla ADMM 1211 0.065 1.370
Adaptive ADMM [7] 505 0.065 1.370
Adaptive ADMM-BB1 510 0.065 1.370
Adaptive ADMM-BB2 645 0.065 1.370
Adaptive ADMM-ABBmin 1573 0.065 1.370

τ0 = 0.5
Vanilla ADMM 3000 — —
Adaptive ADMM [7] 997 0.065 1.370
Adaptive ADMM-BB1 691 0.065 1.370
Adaptive ADMM-BB2 1077 0.065 1.370
Adaptive ADMM-ABBmin 1161 0.065 1.370

τ0 = 1
Vanilla ADMM 3000 — —
Adaptive ADMM [7] 511 0.065 1.370
Adaptive ADMM-BB1 678 0.065 1.370
Adaptive ADMM-BB2 910 0.065 1.370
Adaptive ADMM-ABBmin 1061 0.065 1.370

4. Conclusions

In this paper, we analyzed different strategies for the adaptive selection of the penalty
parameter in ADMM. Exploiting the equivalence between ADMM and the Douglas–
Rachford splitting method applied to the dual problem, as suggested in [7], optimal
penalty parameters can be estimated at each iteration from spectral stepsizes of a gradient
step applied to the Fenchel conjugates of the objective functions. To this end, we selected
different spectral steplength strategies based on the Barzilai–Borwein rules, which have
been proved to be very efficient in the context of smooth unconstrained optimization.

We compared the different adaptive strategies on the solution of problems coming
from distributed machine learning and multiperiod portfolio optimization. The results
show that, while adaptive versions of ADMM are usually more effective than the “vanilla”
one (using a prefixed penalty parameter), different strategies might perform better on
different problems. Moreover, in some cases, the proposed alternation rule might get stuck
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with a fixed penalty parameter, leading to a slower convergence. Future work will deal
with the analysis of an improved version of the adaptation strategies, aimed at solving the
aforementioned issue and their analysis on wider problem classes.
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