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Abstract: The identification of druggable proteins has always been the core of drug development.
Traditional structure-based identification methods are time-consuming and costly. As a result,
more and more researchers have shifted their attention to sequence-based methods for identifying
druggable proteins. We propose a sequence-based druggable protein identification model called
DrugFinder. The model extracts the features from the embedding output of the pre-trained protein
model Prot_T5_Xl_Uniref50 (T5) and the evolutionary information of the position-specific scoring
matrix (PSSM). Afterwards, to remove redundant features and improve model performance, we
used the random forest (RF) method to select features, and the selected features were trained and
tested on multiple different machine learning classifiers, including support vector machines (SVM),
RF, naive Bayes (NB), extreme gradient boosting (XGB), and k-nearest neighbors (KNN). Among
these classifiers, the XGB model achieved the best results. DrugFinder reached an accuracy of 94.98%,
sensitivity of 96.33% and specificity of 96.83% on the independent test set, which is much better
than the results from existing identification methods. Our model also performed well on another
additional test set related to tumors, achieving an accuracy of 88.71% and precision of 93.72%. This
further demonstrates the strong generalization capability of the model.

Keywords: druggable protein; transformer-based models; machine learning; feature extraction

1. Introduction

Druggability, a fundamental concept in drug discovery, pertains to the capacity of a
biological target to exhibit a strong binding affinity towards therapeutic drugs [1]. Proteins,
being essential components and regulators of critical physiological processes in the human
body, represent a significant reservoir of bio-druggable targets with substantial potential for
therapeutic interventions. However, it is important to recognize that not all proteins pos-
sess the necessary attributes to effectively serve as drug targets. The current landscape of
drug development programs is confronted by a limited pool of known druggable proteins,
encompassing only approximately 2% of the entire human proteome [2,3]. This scarcity of
druggable proteins poses notable constraints, impeding the discovery and advancement of
novel drugs. It constrains the range of potential therapeutic targets, hindering progress
towards the development of innovative treatment options. Consequently, there exists a
compelling imperative to identify and comprehensively characterize additional druggable
proteins. The expansion of the repertoire of viable therapeutic targets assumes critical
importance in surmounting the limitations imposed by this scarcity. By widening the spec-
trum of druggable protein targets, researchers can unlock novel avenues for drug discovery,
thereby fostering opportunities for innovative therapeutic interventions spanning diverse
disease contexts. Therefore, there is an urgent need to discover more druggable proteins [4].

The traditional approach in biology involves analyzing the physical and chemical
properties of proteins in a laboratory to identify druggable proteins [5,6]. This provides
limited help in drug development. However, with the completion of the Human Genome
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Project [7], protein sequence data became more readily available than structural data. The
large amount of protein sequence data also benefits most machine learning algorithms [8].
Therefore, many researchers have proposed models and computational methods for the
identification of druggable proteins based on protein sequence information. Yu et al.
have achieved good results on both the fivefold cross-test and the external independent
dataset based on the support vector machine and random forest [9]. Chen et al. used
support vector machines for the identification and prediction of druggable proteins using
a combination of three features: sequence, structure and subcellular localization, with
an accuracy of up to 85.13% [10]. Jamali et al. innovatively utilized a neural network
classifier to predict druggable protein targets using protein physicochemical properties,
amino acids and dipeptides as the feature composition, achieving 92.1% accuracy on the
cross-validation set [11]. Lin et al. extracted protein features by dipeptide composition,
pseudo-amino acid composition and approximately simple sequences and then deployed
a genetic algorithm for feature selection. Finally, an SVM classifier improved by bagging
ensemble learning was used for prediction with an accuracy of 93.78% [12]. Later, with the
continuous development of deep learning techniques, some deep learning methods were
also used for the identification and prediction of druggable proteins. Yu et al. developed
the first deep-learning-based classifier for druggable proteins by testing a combination of
different deep learning methods and protein feature data, achieving 90% accuracy on the
test dataset [13]. Sikander et al. improved the accuracy to 94.86% using combined features
and the XGB classifier [14].

Most of the above studies use machine learning and deep learning methods such as
neural networks, SVM and RF. In addition, in the field of bioinformatics, natural language
processing (NLP) models are also attracting more and more attention from researchers [15].
NLP is a machine learning technique that enables computers to interpret, process and
understand human language. Many NLP models have performed very impressively with
text-related problems, such as LSTM-based models that use hidden layers to capture
contextual information and transformer-based models that rely on self-attention mecha-
nisms [16–18]. Pre-trained language models are also a class of NLP models, which differ
from other NLP models in that they are trained on very large datasets in a self-supervised
manner. Pre-trained language models have a very strong ability to extract features from text
information [19], which has attracted the wide attention of bioinformaticians. As a result,
some pre-trained models that treat biological sequences as sentences and use large-scale
protein data for training have been developed [20].

In this study, we propose a new method for identifying druggable proteins based on
pre-trained models and evolutionary information in the PSSM. The workflow is shown
in Figure 1. Initially, the protein sequence is fed into the pre-trained model to generate
embeddings, resulting in 1024-dimensional features for each protein. Then, the PSSM
information of the protein sequence is captured using the Blast software package [21], and
after processing the PSSM, KSB-PSSM (400 dimensions), DPC-PSSM (400 dimensions) and
S-FPSSM (400 dimensions) vectors are obtained. Next, feature selection is performed on
the three combined vectors and embedding information using a random forest algorithm.
Finally, the results are input into a machine learning classifier, and performance testing
is performed on an independent test set. This study compares three protein pre-trained
models (Prot_T5_Xl_Uniref50(T5), Prot_Bert_BFD(BFD), SeqVec), ten feature selection
lengths (from 100 to 2224 dimensions) and five classification algorithms (SVM, RF, NB,
XGB, KNN). The best model comes from the combination of T5 and the XGB classifier at
1500 dimensions, with an accuracy of 94.98%.
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Figure 1. Flowchart of our druggable protein identification model.

2. Materials and Methods
2.1. Dataset

One of the datasets used in this paper is a gold standard dataset established by Jamali
et al. [11]. It consists of 1224 positive samples (druggable proteins) and 1319 negative
samples (non-druggable proteins). The positive samples are sourced from DrugBank and
consist of druggable proteins corresponding to a variety of diseases, including leukemia,
thrombocytopenia, angina pectoris and hypertension [2]. All positive samples with highly
similar sequence content are removed to avoid their impact on the classifier. The negative
samples come from the Swiss-Prot database, where druggable proteins that have been dis-
covered and their related families are also removed. After these treatments, the probability
of druggable proteins still existing in the negative sample dataset will be very low and
have little impact on the prediction results.

To better demonstrate the model performance, we segmented about 20% of this
dataset as an independent test set, consisting of 218 positive and 260 negative samples. The
remaining 80% of the sequences were used for model training. Both the test set and the
training set are sample size balanced, which also helps to improve the model’s performance.

However, Jamali’s dataset contains a large number of target proteins corresponding
to different diseases. Therefore, using only this dataset may not adequately evaluate the
model’s performance in identifying specific disease targets. To address this issue, we have
also proposed a small test set consisting of druggable proteins associated with tumors.
This dataset comprises 64 positive samples and an equal number of negative samples.
The positive data are derived from approved target proteins of various anticancer drugs
in DrugBank, while the negative data are sourced from the Swiss-Prot database. This
additional test set also eliminates highly similar samples and excludes druggable protein
data from the negative samples.

2.2. Methods
2.2.1. Pre-Trained Models

Protein pre-trained models are generally based on NLP-related research and trained on
large protein corpus databases, including Unrief50, UniRef100, Big Fantastic Database [22,23]
and other non-redundant protein sequence databases. Models trained on different corpora
often perform differently on protein classification and prediction tasks. This paper uses
three protein pre-trained models based on different NLP models. They are T5, BFD and
SeqVec. BFD is proposed based on the Bert model and trained on the Big Fantastic Database
corpus [24]. T5 is proposed based on the T5 model and built on the Unrief50 corpus [25].
Bert and T5 are both large-scale pre-trained language models based on the transformer
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model, proposed by Google. SeqVec is proposed based on the ELMo model and trained on
the Unrief50 corpus [26,27].

We extract the embeddings of these pre-trained models as the next step in feature ex-
traction. Each embedding typically consists of an array of size L * 1024, where L represents
the length of the input sequence. To achieve a fixed-dimensional feature representation,
various methods can be considered. One alternative method is padding, where shorter
sequences are padded with zeros to match the length of the longest sequence in the
dataset. However, padding can introduce challenges such as increased memory usage
and noise in the feature representation. Another method is truncation, where longer
sequences are truncated to a specific length. However, truncation can result in the loss of
important information.

In comparison, averaging the embeddings offers advantages. It captures salient fea-
tures while discarding less relevant information, resulting in a focused representation.
Additionally, averaging enables the generation of fixed-dimensional feature vectors, ensur-
ing compatibility and consistency in subsequent analysis and modeling.

By choosing averaging as the method for achieving a fixed-dimensional feature repre-
sentation, we strike a balance between capturing essential information and maintaining a
consistent representation. It provides a practical approach for handling varying sequence
lengths in protein analysis, supporting accurate classification and prediction. Since the
embedding is usually an array of size L * 1024, we also need to average the embedding to
obtain a 1024-dimensional feature.

2.2.2. PSSM Process

The PSSM is a feature that incorporates evolutionary information from protein se-
quences [28]. This feature has been widely used in feature extraction steps for various
protein-related experiments. The PSSM calculated by Blast is usually a matrix of size
L * 20 [21], where L represents the length of the protein sequence. However, commonly
used machine learning classifiers cannot handle such size-variable data very well. To
better extract evolutionary information from protein sequences and adapt to machine
learning models, many researchers have proposed PSSM-based features and correspond-
ing calculation methods [29]. In this paper, we used three PSSM-based features to fully
obtain the evolutionary information of protein sequences and improve the performance of
the classifier.

DPC-PSSM: Dipeptide composition (DPC) is a method that can calculate the proba-
bility of consecutive amino acids in a protein sequence [30]. Unlike some other feature
extraction methods, DPC not only extracts amino acid composition information but also
contains a part of amino acid sequence information. The evolutionary information alone
cannot fully characterize the entire protein. So we try to add the DPC information into
the PSSM and generate an 800-dimensional (20 × 20) feature [31,32]. The features can be
formulated as:

DPC − PSSM = (D1,1, . . . , D1,20, D2,1, . . . , D2,20, . . . , D20,1, . . . , D20,20)
T (1)

where

Di,j =
1

L − 1

L−1

∑
k=1

Dk,i × Dk+1,j(1 ≤ i, j ≤ 20) (2)

KSB-PSSM: KSB-PSSM provides good feedback on the relationship between disjoint
amino acids in protein sequences [33]. It is an extension of DPC-PSSM. In this method, the
key parameter k indicates the amino acid distance at the time of calculation. In this paper,
KSB-PSSM is calculated by setting k = 3. In this case, the transfer probability between amino
acids split by two amino acids is calculated, and a 400-dimensional feature is generated.
The calculation is as follows:

KSB − PSSM = (K 1,1(k), . . . , K1,20(k), K2,1(k), . . . , K2,20(k), . . . , K20,1(k), . . . , K20,20(k))
T (3)
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and

Ki,j(k) =
L−k

∑
t=1

Kt,i × Kt+k,j(1 ≤ i, j ≤ 20) (4)

S-FPSSM: The S-FPSSM is a 400-dimensional feature derived from the FPSSM by row
transformation [34]. In addition, the FPSSM is a matrix filtering the negative values in the
original PSSM. The S-FPSSM is calculated as follows:

S(i)j =
L

∑
k=1

fpk,j × δk,i (5)

which {
δk,i = 1 if rk = ai
δk,i = 0 otherwise

(1 ≤ i, j ≤ 20) (6)

In the above equation, fpk,j denotes the element in the kth row and jth column of the
FPSSM, rk denotes the kth amino acid in the original protein sequence, and ai denotes the
amino acid ranked at position i in the PSSM (20 positions in total).

2.2.3. Feature Selection

Not all features extracted from protein sequences using the above methods are valid.
Especially in the case of multiple feature combinations, many features carry redundant
information. Overly long features can burden the classifier and affect the model’s per-
formance. Therefore, this paper utilizes the random forest to eliminate the redundant
features [35]. This method first obtains classification accuracy based on the original features.
Then, it randomly changes the value of a certain feature and obtains new accuracy from
the modified feature [36]. The difference in accuracy acquired from two calculations is
processed and used as a ranking indicator of importance. The larger the difference, the
more important the altered feature is considered.

2.2.4. Machine Learning Classifier

In this paper, we compare the classification performance of various machine learning
classifiers on selected features, including SVM, RF, NB, XGBoost and KNN [37–40]. After
optimizing the parameters of these models, they are trained on the same set of features. We
use the Scikit-learn library in Python to test the performance of the five algorithms [41],
and the results show that XGBoost classifier performed best on this type of problem.

2.2.5. Performance Evaluation

Choosing appropriate performance evaluation metrics is essential for model devel-
opment. True positives (TP), false negatives (FN), true negatives (TN) and false positives
(FP) are the most basic model evaluation standards. Among them, TP and TN represent
samples that are true positives or negatives and are correctly classified by the model, while
FN and FP represent positive or negative samples that are incorrectly classified by the
model. Based on these four metrics, we derived the following six commonly used metrics
to evaluate the performance of the model in this paper:

Accuracy (Acc): this metric measures the proportion of correctly classified instances
out of all the instances in the dataset.

Acc =
TP + TN

TP + FP + TN + FN
(7)

Precision (Pre): this metric measures the proportion of true positives out of all the
instances that were predicted as positive.

Pre =
TP

TP + FP
(8)
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Sensitivity (Sen): this metric, also known as recall or true positive rate (TPR), measures
the proportion of true positives out of all the instances that are actually positive.

Sen =
TP

TP + FN
(9)

Specificity (Spe): this metric measures the proportion of true negatives out of all the
instances that are actually negative.

Spe =
TN

TN + FP
(10)

F-score: this metric is a harmonic mean of precision and recall and is useful when both
high precision and high recall are important.

F − score =
2 × TP

2TP + FP + FN
(11)

Matthews Correlation Coefficient (MCC): This metric is a correlation coefficient be-
tween the observed and predicted binary classifications. It ranges from −1 to 1, where
1 represents a perfect prediction, 0 represents a random prediction, and −1 represents a
completely wrong prediction. It takes into account true positives, true negatives, false
positives and false negatives.

MCC =
(TP × TN)− (FN × FP)√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
(12)

In addition, we use receiver operating characteristic (ROC) and area under curve
(AUC) to more intuitively demonstrate the model’s ability to identify druggable proteins.

3. Results
3.1. Comparison of Pre-Trained Models

This paper uses three pre-trained models, which are T5, BFD and SeqVec. They both
generate an embedding of length 1024. We tested the performance of these models using
the SVM classifier without adding any other feature information. As shown in Table 1, in
the test without adding other features, the SeqVec model performed the best. Its accuracy
and precision were 90.17% and 87.67%, respectively, which was about 5% better than the
worst-performing PBD model. Based on these results, we also found that using pre-trained
model embeddings directly to identify and classify druggable proteins performs poorly.

Table 1. Performance comparison of different pre-trained models on independent test set.

Model Dimension Acc Pre Sen Spe F-Score MCC

T5 1024D 0.8661 0.8438 0.867 0.8858 0.8552 0.7310
T5+PSSM 2224D 0.9100 0.9070 0.8945 0.9125 0.9007 0.8185

PBD 1024D 0.8473 0.8139 0.8634 0.8785 0.8374 0.6947
PBD+PSSM 2224D 0.8536 0.8083 0.8899 0.8991 0.8472 0.7102

SeqVec 1024D 0.9017 0.8767 0.9128 0.9243 0.8944 0.8031
SeqVec+PSSM 2224D 0.8723 0.8398 0.8899 0.9028 0.8641 0.7451

Afterwards, we incorporated PSSM-based features extracted from the sequences into
the model. The added features consisted of DPC-PSSM, K-Separated-Bigrams-PSSM and
S-FPSSM, each with a length of 400. Therefore, the length of the features increased from
1024 to 2224. After the addition of the newly extracted features, the model’s performance
changed a lot, with the specific data still displayed in Table 1. In the three models, the T5
model and PBD model showed some improvement in most of the indicators, with accuracy
reaching 91% and 90.17%, respectively. However, the Acc, Pre, Sen and Spe indicators of
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the SeqVec model were lower than the results before adding new features. This may be due
to the excessive number of features, which caused the model to overfit on the training set.

3.2. Feature Selection

To enhance the generalization ability of the model and reduce the possibility of over-
fitting, we used a random forest to select features for the feature set with a length of 2224.
To obtain the optimal feature length that maximizes the model’s performance, we tested
the feature sets with lengths of 2000, 1800, 1500, 1300, 1000, 800, 500, 300 and 100 after
the feature selection. To form an effective comparison, we did not change any other pa-
rameters except for the length of the features. The results of the tests are presented in
Table 2. Compared to the model without feature selection, the new model’s accuracy has
increased by up to 6%. In all feature dimension tests, the T5 model performs best with
around 1500-dimensional feature inputs. Its accuracy reaches 92.26%. As shown in Figure 2,
we also found that the model’s accuracy reaches its peak at around 1300 to 1800 dimensions
and decreases on both sides of this range. This indicates that our feature selection is positive
and effective in optimizing the model’s performance.

Table 2. Model accuracy with different lengths of feature inputs.

Model 2000D 1800D 1500D 1300D 1000D 800D 500D 300D 100D

T5 0.9184 0.9163 0.9226 0.9079 0.9121 0.9016 0.8744 0.8682 0.8410
PBD 0.9100 0.9142 0.9142 0.9142 0.9184 0.9058 0.8723 0.8619 0.8431

SeqVec 0.9016 0.9100 0.9016 0.8924 0.8924 0.8835 0.8761 0.8647 0.8400
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Figure 2. Visual demonstration of the impact of feature length on model performance.

3.3. Machine Learning Classifier

We compared the performance of five different machine learning classifiers on an
independent test set. They are SVM, RF, NB, XGB and KNN. All the classifier calls were
implemented through a Python library called Scikit-learn. Based on the results shown in
Table 3, we found that T5+XGB performed the best, achieving an accuracy of 94.98% and
precision of 92.92%. Sensitivity and specificity both exceeded 96%. XGB also performed
very well on the results of the other two pre-trained models, achieving accuracies of 92.89%
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and 94.56%, respectively. Besides the XGB classifier, the model using SVM also achieved
an accuracy of around 92% on the independent test set. However, we also found that the
NB, RF and KNN classifiers did not perform well, with accuracies below 90%, which is
significantly lower than the results of XGB.

Table 3. Performance comparison of different classifiers on independent test set.

Model Dimension Classifier Acc Pre Sen Spe F-Score MCC

T5 1500D SVM 0.9226 0.9330 0.8945 0.9145 0.9133 0.8441
RF 0.8494 0.8042 0.8853 0.8950 0.8428 0.7018
NB 0.8493 0.8349 0.8349 0.8615 0.8349 0.6964

XGB 0.9498 0.9292 0.9633 0.9683 0.9460 0.8996
KNN 0.8765 0.8597 0.8716 0.8911 0.8656 0.7516

PBD 1500D SVM 0.9142 0.9078 0.9037 0.9195 0.9057 0.8271
RF 0.8724 0.8398 0.8899 0.9028 0.8641 0.7440
NB 0.8661 0.8598 0.8440 0.8712 0.8519 0.7298

XGB 0.9289 0.9220 0.9220 0.9346 0.9220 0.8566
KNN 0.8703 0.8482 0.8716 0.8898 0.8597 0.7394

SeqVec 1800D SVM 0.9100 0.9035 0.9122 0.9045 0.9031 0.8032
RF 0.8975 0.8658 0.9174 0.9271 0.8909 0.7956
NB 0.8410 0.8859 0.7477 0.8129 0.8109 0.6827

XGB 0.9456 0.9324 0.9495 0.9570 0.9409 0.8907
KNN 0.8494 0.8202 0.8578 0.8760 0.8386 0.6981

On the other hand, we utilized ROC to evaluate the performance of these models.
We calculated the AUC to compare the performance of the models in a more intuitive
way. From Figure 3, we can see that the AUC values corresponding to XGB are 0.99, 0.98
and 0.99 for the three models, which are much better than the other classifiers. The SVM
classifier also performs quite well, with an AUC value of 0.97.
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3.4. Model Performance on Specific Disease Target Test Set

The model performance tests in the previous chapters were conducted on the dataset
proposed by Jamali et al., which contains target proteins for multiple diseases. To better
assess the DrugFinder’s generalization ability for individual disease targets, we performed
model testing on an additional test set consisting of druggable proteins related to tumors.
The results showed that the model achieved an accuracy of 88.71%, precision of 93.72% and
sensitivity of 81.68% on this test set. These results indicate that DrugFinder can maintain
relatively high accuracy and precision in identifying druggable proteins corresponding to
specific diseases. This will contribute to drug development in various disease domains.

Figure 4 provides a radar chart for a more intuitive comparison of the model’s perfor-
mance on the two different test sets. From the test data and radar chart, it can be observed
that the model’s performance metrics on the specific disease (tumor) target test set are
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slightly lower than the metrics on Jamali’s test set, which may be attributed to some differ-
ences in the data distribution between the two test sets. The tumor-related test set contains
fewer sequences of druggable proteins, which could also introduce some randomness in
the performance testing.
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3.5. Comparison with Other Models

To better demonstrate the effectiveness and superiority of the model, we compared
it with other existing models for druggable protein identification. These models were
also trained on the dataset proposed by Jamali et al. The comparison results are shown
in Table 4, where all computational results are from the papers proposing these models.
From Table 4, we discovered that our model has an accuracy similar to the previously
best-performing method XGB-DrugPred, but the sensitivity and specificity are improved
by 2.6% and 1.1%, respectively. In addition, our F-score and MCC values are also superior
to the three existing models. This indicates that our model performs more sensitively and
accurately in identifying and predicting drug–protein interactions.

Table 4. Comparison with other druggable protein identification models.

Model Acc Sen Spe F-Score MCC

DrugMiner 0.9210 0.9280 0.9134 0.9241 0.8417
GA-Bagging-SVM 0.9378 0.9286 0.9445 0.9358 0.8781

XGB-DrugPred 0.9486 0.9375 0.9574 0.9417 0.8900
DrugFinder 0.9498 0.9633 0.9683 0.9460 0.8996

4. Discussion

Accurately identifying druggable proteins is a prerequisite for drug development. In
recent years, with the development of related sequencing technologies [42,43], an increasing
amount of protein sequence information has been obtained. Obtaining this information
is much less costly than traditional laboratory methods. The large amount of protein
sequence data makes it possible to identify druggable proteins through machine learning
methods. In this context, we propose a druggable protein identification model based on
pre-trained models and protein evolution information. We first used pre-trained models
to extract the embeddings of proteins in the dataset and compared the extraction effects
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of three pre-trained models. Subsequently, we used Blast to calculate the PSSM of the
sequence. Since the size of the PSSM is usually L * 20, which is not conducive to subsequent
classification, we further processed the PSSM to obtain a 1200-dimensional feature. This
feature was combined with the output of the pre-trained model. In order to eliminate
the influence of redundant features on the accuracy of the classifier, we also used RF to
perform feature selection on the combined features. Finally, we compared five commonly
used machine learning classifiers and obtained the best result on the XGB classifier: 94.98%
accuracy, 96.33% sensitivity and 96.83% specificity. Our model was also tested on an
additional dataset of druggable proteins related to tumors, achieving an accuracy of 88.71%
and precision of 93.72%. Although these results are slightly lower than those obtained on
Jamali’s test set, they are still sufficient to demonstrate the model’s generalization capability.
From Table 4, it can be seen that compared with other models using the same dataset, this
model has significantly improved the ability to identify druggable proteins. The proposed
design and construction method of the druggable protein identification model in this paper
also help with future drug development and related research fields.
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