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Abstract: Finding the optimal speed profile of an autonomous electric vehicle (AEV) for a given route
(eco-driving) can lead to a reduction in energy consumption. This energy reduction is even more
noticeable when the regenerative braking (RB) capability of AEVs is carefully considered in obtaining
the speed profile. In this paper, a new approach for calculating the optimum eco-driving profile of an
AEV is formulated using mixed-integer linear programming (MILP) while carefully integrating the
RB capability and its limitations in the process of obtaining a driving profile with minimum energy
consumption. One of the most important limitations of RB which has been neglected in previous
studies is operation below the low-speed boundary (LSB) of electric motors, which impairs the energy
extraction capability of RB. The novelty of this work is finding the optimal speed profile given this
limitation, leading to a much more realistic eco-driving profile. Python is used to code the MILP
problem, and CPLEX is employed as the solver. To verify the results, the eco-driving problem is
applied to two scenarios to show the significance of considering a dynamic LSB. It is shown that for
the route under study, up to 27% more energy can be harvested by employing the proposed approach.

Keywords: autonomous electric vehicle; eco-driving; regenerative braking; low-speed boundary;
mixed-integer linear programming

1. Introduction

Limited fossil fuel resources and the emissions associated with them have forced
different sectors, including the transportation sector, to move toward a more sustainable
energy source with a reduced carbon footprint [1]. The transportation sector accounts for
roughly 20% of the global energy consumption and is responsible for 25% of worldwide
CO2 emissions, 75% of which are attributed to road transportation [2]. Any attempt
to increase vehicle efficiency can have a notable effect in reducing energy consumption
and pollution on a large scale and is regarded as a step toward achieving sustainable
transportation.

In recent decades, transportation electrification, which is considered one of the key
factors in the move toward sustainability, has made significant headway in substituting
electric energy for fossil-based fuel for transportation purposes [3]. Additionally, the
combination of autonomous driving technology and vehicle electrification has led to the
emergence of autonomous electric vehicles (AEVs) [4]. The synergy between electric
vehicles (EVs) and autonomous driving has facilitated the development of advanced
concepts improving the way we utilize EVs, such as enhancing the driving safety of
these vehicles by eliminating human intervention, equipping EVs with an automated
charging capability, and optimizing their energy consumption [5]. With respect to energy
optimization, trip-level energy management has a dramatic role in an AEV’s energy usage.
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Hence, it is imperative to benefit from and improve upon eco-driving methods that are
capable of precisely predicting vehicle energy use.

Different eco-driving methods have been proposed and evaluated for conventional
internal combustion engine (ICE) vehicles that are operated autonomously [6–8]. Dynamic
programming (DP) is a global optimization method that has been frequently used in the
literature for optimizing the fuel consumption of ICE vehicles. This technique has also been
utilized for reducing the energy use of vehicles with different electric drive powertrain
configurations [9–13]. In [9], a parallel framework using DP is presented for an eco-driving
problem on a predefined route in which the battery state of charge (SOC) and vehicle
speed are key decision factors, leading to an optimized speed. In [10], a spatial domain of
DP is introduced for a plug-in hybrid electric vehicle (PHEV) powertrain with the aim of
finding the optimal power split between the ICE and the electric motor. In this study, initial
speed, route length, acceleration, road grade, wind, and payload are considered critical
elements affecting eco-driving. In [11], DP is used to identify the optimum charging and
discharging pattern of a hybrid electric vehicle (HEV) based on a predefined route. The
route is split into different segments with predefined properties, and it is assumed that
in each segment, the total consumed energy of the vehicle is dependent upon the SOC.
The authors of [12] use safety control and speed planning to form a two-level receding
horizon control architecture for calculating the energy consumption of a PHEV. In this
architecture, the outer layer controls the vehicle speed while the inner layer is responsible
for making decisions to ensure compliance with traffic restrictions. In [13], model predictive
control (MPC) is used to find optimum fuel economy for an HEV by taking advantage of a
two-level MPC approach to further simplify the problem.

In the majority of previous studies, regenerative braking (RB) and its practical lim-
itations were either overlooked or oversimplified. Energy harvesting capability is an
important part of eco-driving in EVs which should accurately be considered during the RB
process. Since the decision-making process in AEVs is achieved without driver interference,
more flexibility is attained in terms of the duration and extent of applying RB while calcu-
lating the desired speed profile. This paper contributes to obtaining the optimum speed
profile for AEVs with the aim of minimizing trip-level energy needs and sets forth a frame-
work for integrating realistic limitations of RB into the calculation of the optimum speed
trajectory for the eco-driving problem. The mixed-integer linear programming (MILP)
method is selected for calculating the objective function due to the fact that DP-based
methods are computationally expensive, especially as the size of the problem increases. In
the authors’ previous work [14], the effect of low-speed operation as a static constraint on
the RB process was investigated. In this study, a dynamic constraint which provides a much
more realistic representation of RB operation at low speeds is examined and integrated
into the decision-making process to realistically capture the real-life behavior of an electric
motor during RB at low speeds and to further maximize energy harvesting capability of
AEVs during the route-planning stage.

The remainder of this study is organized as follows. In Section 2, practical RB lim-
itations are presented, and the significance of including these limitations in the process
of identifying an optimal speed profile is outlined. The eco-driving formulation as MILP
is discussed in Section 3. In Section 4, verification steps for the proposed approach are
detailed and in Section 5, two case studies are simulated based on the physical limitations
of RB, followed by a discussion of the results for each scenario. Finally, conclusions are
presented in Section 6.

2. Practical Limitations of Regenerative Braking

Most EVs are equipped with both mechanical and regenerative braking systems. The
mechanical brakes generally utilize a rotating rotor and frictional disks triggered by a
hydraulic pump. On the contrary, a regenerative braking system relies on the resistive
torque of the electric motor and can harvest mechanical energy from the vehicle during
deceleration. This is achieved by applying the resistive torque from the electric motor to the
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driven wheels and converting the kinetic energy of the vehicle into electric energy. During
RB, the back electromotive force (EMF) of the electric motor is manipulated in such a way
that the current generated by the electric motor is used to charge the battery pack [15].

Despite the fact that the procedure of harvesting braking energy and converting it
into electric energy can be beneficial to the overall energy portfolio of the vehicle, there
are some practical limitations of RB which can adversely affect this process. If these
limitations are ignored, the energy harvesting capability could be limited, or it could
even lead to an inefficient harvesting process. Therefore, to take full advantage of RB
for the purpose of finding optimal speed trajectories, these constraints and limitations
should be accurately identified and included in the decision-making process. Regarding the
limitations associated with an electric motor, two major constraints should be considered.
The first constraint is the maximum RB capability, which is determined by the maximum
torque capability of the electric motor [16]. The other limitation is the inability of the
controller and the electric motor to efficiently recuperate braking energy during RB at low
speeds [17]. At low-speed braking, the induced EMF, which is directly proportional to the
electric motor rotational speed, is insufficient, and although the electric motor can still be
operated as a generator, harvesting energy is not feasible. This leads to current being drawn
from the battery, which results in the discharge of the battery as opposed to charging it [18],
which can negatively affect energy recuperation during RB. The focus of this study is to
provide a framework to consider and integrate this low-speed limitation of electric motors
during RB into the process of finding optimal speed trajectories.

It is worth mentioning that other constraints that should be taken into account, which
are related to RB, are the brake power distribution between RB and friction brakes and the
effect of load shifting from the rear axle to the front axle during braking. These constraints
potentially limit the availability of brake energy for harvesting during RB. Furthermore, the
displacement of the electric motor (rear axle, front axle, or both axles) plays an important
role in the energy harvesting process since only the driven axle is capable of applying
RB. All these constraints have been considered in the simulation and validation stages of
this study.

In some studies [19,20], a fixed low-speed boundary (LSB) during RB is proposed
to address the problem of low-speed energy harvesting; however, this is not an accurate
representation of an RB limitation since the LSB also varies based on the electric motor’s
operating point during RB [21]. This observation is detailed in the authors’ previous
work [21], in which a practical experiment was conducted to obtain an RB performance
map of an electric motor and it was shown that the boundary defining this threshold
changes as the resistive torque and operating speed of the motor change. In this study, the
operation of a three-phase permanent magnet synchronous motor (PMSM) at low speeds
was analyzed during RB, and its performance map was extracted, as shown in Figure 1.
This graph shows a 3D plot of current variation when the motor is operated in the range of
0 to 1000 rpm under different resistive torque values of (−200) N.m. to 0 N.m. The results
indicate a change in current value and direction as the motor speed and torque are varied.
In other words, the energy that can be harvested during RB is dependent on the speed
and torque.

It should be mentioned that if the motor operating point falls below this dynamic
boundary, it will draw current during RB from the battery instead of charging it. Therefore,
during these instances, it is not efficient to apply RB, and braking should be achieved
solely via friction-based brakes to conserve energy [21]. This dynamic boundary of the
electric motor at low speeds is the foundation of the present study and is integrated into
our algorithm while solving the eco-driving problem to provide a realistic and accurate
representation of the energy harvested during RB.
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3. Problem Formulation

This section is dedicated to fully explaining the procedure of formulating the eco-
driving problem to find the desired speed profile. The objective of the optimization problem
is to obtain an optimal speed profile that minimizes energy over a predefined travel route
while considering RB and its limitations. To fulfill this, the problem is analyzed by taking
advantage of spatial domain equations instead of conventional time domain equations
based on (1) [3]:

dv
dt

=
dv
ds

ds
dt

= v
dv
ds

(1)

where ds represents the traveled distance in m, v is the vehicle speed in m/s, and dt is time
in seconds. Moreover, the basic form of the objective function is given by:

E =
1

3600

(∫
s ∈ acc/cru

1
ηacc/cru

Fds +
∫

s ∈ dec
ηdecFds

)
(2)

where E is the total energy in Wh comprised of the acceleration/cruising energy and the
RB energy during deceleration, and ηacc/cru and ηdec represent the powertrain efficiency
during acceleration/cruising and during deceleration, respectively. F denotes the vehicle
tractive force in N and can be written as:

F = FR + ma (3)

where m is the mass of vehicle in kg, a is the acceleration/deceleration of the vehicle in
m/s2 and FR is the total resistive force acting on the vehicle in N. The total resistive force
can be broken down to the different components below:

FR = Fw + Fg + Fr =
1
2

ρaCd A f (v− vw)
2 + mg sin(α) + mg fr cos(α) (4)

Where Fw is the aerodynamic drag, Fg is the grading resistance, and Fr is the rolling
resistance, all in N. Moreover, ρa is the mass air density of the air in kg/m3, fr is the rolling
resistance coefficient of the tires, Cd is the aerodynamic drag coefficient that characterizes
the shape of the vehicle’s body, α is the road slope angle, Af is the frontal area of the vehicle
in m2, v is the vehicle’s speed in m/s, and vw is component of the wind speed on the same
direction as the vehicle movement, measured in m/s. While accelerating or cruising on
a flat road with no wind, F becomes positive, indicating that the energy flows from the
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battery pack to the electric motor. During deceleration, however, F can have a negative
value, meaning that energy can be extracted and stored in the battery.

Traffic-based constraints for this eco-driving problem are expressed by (5)–(7)

vl ≤ v ≤ vu (5)

where vu and vl are upper and lower speed bounds along the route, meaning that high and
low limitations on the vehicle speed are imposed.

t =
∫ tN

t0

dt =
∫ S

0

1
v

ds ≤ tmax (6)

where S is the total distance of the route to be travelled. This constraint enforces the AEV
to complete the entire route no later than tmax.

amax,dec ≤ a = v
dv
ds
≤ amax,acc (7)

where amax,acc and amax,dec are the maximum possible acceleration and deceleration rates
that the vehicle can achieve, respectively. This constraint guarantees that the calculated
vehicle acceleration/deceleration rates stay below the vehicle’s capability. It also determines
the feasible region of possible speed states at each step.

For each step, acceleration is assumed to be constant and is calculated from the speed
of current and next step:

a =
v2

k − v2
i

2∆s
(8)

where vi and vk denote the speed at the current step and next step, respectively, and ∆s is
the length of each step. Given these assumptions, for each step, the average speed v and
time ∆t can be written as:

v =
vi + vk

2
(9)

∆t =
∆s
v

(10)

Figure 2 illustrates a representation of possible vehicle speeds along the traveled route.
The route is split into N equal steps, and at each step, excluding the first and last step,
there are M feasible states associated with the vehicle’s speed. Therefore, (1) there are M
different speed trajectories to select from when traveling from step 1 to step 2 and from step
N − 1 to step N, and (2) there are M2 feasible speed trajectories traveling from current step
j to next step j + 1 for ∀j ∈ {2, 3, . . . , N − 2}. With this classification, the speed trajectory
can be defined as transitioning from speed i in step j to speed k in step j + 1.

The objective function for the eco-driving control of an AEV is to minimize the total
energy consumed over a given distance that starts from step j = 1 and ends at the last step,
i.e., j = N. This objective function is mathematically formulated as:

E =
M

∑
i=1

b1,ie1,i +
N−2

∑
j=2

M

∑
i=1

M

∑
k=1

bj,i,kej,i,k +
M

∑
i=1

bN−1,ieN−1,i (11)

where e1,i is the energy consumed to travel from the initial speed at step 1 to the ith speed at
step 2, and eN−1,i represents the energy consumed to travel from the ith speed at step N − 1
to reach a full stop at step N. The variables b1,i and bN−1,i denote the corresponding binary
variables for step 1 and N − 1, respectively. Similarly, ej,i,k is the energy consumed to travel
from the ith speed at step j to the kth speed at step j + 1, and bj,i,k is the corresponding binary
variable. The energy values e1,i, ej,i,k, and eN−1,i are from (2)–(4). These energy values are
positive during acceleration and negative during deceleration or braking as long as the RB



Algorithms 2023, 16, 262 6 of 13

limitations are not violated, otherwise, they are set to zero. The RB limitations included in
the objective function are the ones discussed in Section 2.
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The speed trajectories are determined by binary variables, specifically b1,i, bj,i,k and
bN−1,i. These variables allow us to select the optimal speed trajectory between each step j
and step j + 1, with the goal of minimizing the energy consumption during each transition.
To select the optimal trajectory for each step, we use the corresponding binary variable
to indicate that the specific trajectory has been chosen, while all other binary variables
representing alternative feasible states are set to zero. As a result, for each step, this
constraint is implemented using (12) and (13):

M

∑
i=1

bj,i = 1 ∀j ∈ {1 , N − 1} (12)

Similarly, in other steps, i.e., ∀j ∈ {2, 3, . . . , N − 2}, out of M2 possible speed trajec-
tories, only one of them is chosen; as a result, the associated binary value is one, and the
rest are zero. In other words:

M

∑
i=1

M

∑
k=1

bj,i,k = 1 ∀j ∈ {2, 3, . . . , N − 2} (13)

To ensure that the trajectory begins from its current state at each step, the following
constraints should be imposed:[

bj+1,i,1 bj+1,i,2 · · · bj+1,i,M
]
≤ bj,i

j = 1, ∀i ∈ {1, 2, . . . , M} (14)

[
bj,i,1 bj,i,2 · · · bj,i,M

]
≤ b(j−1),1,i + b(j−1),2,i + · · ·+ b(j−1),M,i

∀j ∈ {3, 4, . . . , N − 2}, ∀i ∈ {1, 2, . . . , M} (15)

[
bj,i,1 bj,i,2 · · · bj,i,M

]
=

M
∑

k=1
bj−1,k,i

j = N − 1, ∀i ∈ {1, 2, . . . , M}
(16)

Constraints (14)–(16) are used to ensure that if the ith speed is selected at step j, then
all the binary variables that do not start from the ith speed at step j are forced to zero.

t =
M

∑
i=1

b1,it1,i +
N−2

∑
j=2

M

∑
i=1

M

∑
k=1

bj,i,ktj,i,k +
M

∑
i=1

bN−1,itN−1,i ≤ tmax (17)
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where t1,i, tj,i,k, tN−1,i, and tmax are time spent to transition from step 1 to the ith speed at
step 2, time spent to travel from the ith speed at step j to kth speed at step j + 1, the time
spent to travel from the ith speed at step N − 1 to step N, and the total time to travel over
the whole route, respectively.

In summary, the overall objective function, i.e., the optimization problem, can be
rewritten as:

min
{b1,i , bj,i,k , bN−1,i}

M
∑

i=1
b1,ie1,i +

N−2
∑

j=2

M
∑

i=1

M
∑

k=1
bj,i,kej,i,k +

M
∑

i=1
bN−1,ieN−1,i

Subject to Equations (12)–(17).
(18)

4. Verification Framework

A predefined route is designed to test and validate the proposed approach. This route
is shown in Figure 3 and has a total distance of 1000 m and consists of three STOP signs
and a 100 m school zone in which the maximum speed is 15 mph.
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all the binary variables that do not start from the 𝑖௧௛ speed at step 𝑗 are forced to zero. 

𝑡 = ෍ 𝑏ଵ,௜𝑡ଵ,௜ெ
௜ୀଵ + ෍ ෍ ෍ 𝑏௝,௜,௞𝑡௝,௜,௞ெ

௞ୀଵ
ெ

௜ୀଵ
ேିଶ
௝ୀଶ + ෍ 𝑏ேିଵ,௜𝑡ேିଵ,௜ெ

௜ୀଵ   ≤   𝑡௠௔௫ (17) 

where 𝑡ଵ,௜, 𝑡௝,௜,௞,𝑡ேିଵ,௜, and 𝑡௠௔௫ are time spent to transition from step 1 to the 𝑖௧௛ speed 
at step 2, time spent to travel from the 𝑖௧௛speed at step 𝑗 to 𝑘௧௛ speed at step 𝑗 + 1, the 
time spent to travel from the 𝑖௧௛speed at step 𝑁 − 1 to step 𝑁, and the total time to travel 
over the whole route, respectively. 

In summary, the overall objective function, i.e., the optimization problem, can be re-
written as: 

𝑚𝑖𝑛൛௕భ,೔, ௕ೕ,೔,ೖ, ௕ಿషభ,೔ൟ    ෍ 𝑏ଵ,௜𝑒ଵ,௜ெ
௜ୀଵ + ෍ ෍ ෍ 𝑏௝,௜,௞𝑒௝,௜,௞ெ

௞ୀଵ
ெ

௜ୀଵ
ேିଶ
௝ୀଶ + ෍ 𝑏ேିଵ,௜𝑒ேିଵ,௜ெ

௜ୀଵ       𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (12) − (17). (18) 

4. Verification Framework 
A predefined route is designed to test and validate the proposed approach. This route 

is shown in Figure 3 and has a total distance of 1000 m and consists of three STOP signs 
and a 100 m school zone in which the maximum speed is 15 mph. 

 
Figure 3. Location of stop signs and school zone throughout the travel path. 

To investigate the impact of the speed profile calculated by MILP on the energy usage 
of an AEV, a simulation model is designed and employed in MATLAB/SIMULINK. The 
model is shown in Figure 4 and consists of an electric motor model, a controller block, and 
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Figure 3. Location of stop signs and school zone throughout the travel path.

To investigate the impact of the speed profile calculated by MILP on the energy usage
of an AEV, a simulation model is designed and employed in MATLAB/SIMULINK. The
model is shown in Figure 4 and consists of an electric motor model, a controller block, and
a Li-ion battery model. The electric motor used in this model is a PMSM with the same
parameters as the electric motor used in Section 2 which was used to experimentally obtain
the dynamic LSB. The controller block in this model is responsible for calculating all the
forces described in Section 3.
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Based on the result of the eco-driving problem solved by MILP, a reference speed
profile is provided to the simulation model to follow while the controller calculates the
imposed force on the EV at every step according to (3) and (4), which is then used as the
load to the motor for obtaining the energy consumption of the reference speed profile
trajectory.



Algorithms 2023, 16, 262 8 of 13

5. Case Studies and Simulation Results

To show the significance of including the RB limitation as it relates to a dynamic LSB
in the decision-making process, two case studies are examined. In the first case study
(scenario 1), it is assumed that the vehicle can achieve RB even at very low speeds; however,
dynamic LSB is not considered in the objective function when calculating the optimum
speed trajectory. In this scenario, although RB capability exists in the vehicle braking
system and is considered when calculating the overall consumed energy, the low-speed
RB limitation does not have any role in the decision-making process. All other limitations
related to the RB capability discussed earlier are considered for this scenario. In the
second case study (scenario 2), the dynamic LSB obtained in Section 2 is considered in
the objective function based on the proposed approach. A schematic representation of
the data processing stages for this scenario is given in Figure 5. In both scenarios, the
MILP method is used to form the objective function and RB constraints in Python, while
CPLEX is utilized as a solver to generate the final speed profile. IBM CPLEX is one of the
most well-known solvers for MILP optimization problems and is guaranteed to solve the
problem to optimality [22].
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Subsequently, the MATLAB/SIMULINK model is used to calculate the final energy
consumption of the vehicle for the generated speed profile.

The same route shown in Figure 3 is used for both scenarios with a maximum speed
limit restriction of 35 mph. Furthermore, the parameters of Table 1 are used to obtain the
desired speed profile using MILP. The imposed travel time mentioned in Table 1 includes
the time spent at each stop sign, which is three seconds, and the total time spent for all
steps. Furthermore, both simulations are performed with 0% grade and zero wind velocity.
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Table 1. Parameters related to the route in MILP model.

Description Value (Unit)

Route length 1000 m
Distance resolution 10 m

Speed resolution 0.5 mph
Imposed travel time 140

A rear-wheel drive AEV with a single electric motor and a weight of 1000 kg is
considered in both scenarios. The vehicle will start from standstill and come to a stop at
the end of the route in less than 140 s while adhering to route speed restrictions.

The parameters of the AEV under study are summarized in Table 2. The maximum
rate of acceleration/deceleration for this study is set to 4 m/s2.

Table 2. EV parameters.

Symbol Description Value (Unit)

m Vehicle mass 1000 kg
ρa Air density 1.22 kg/m3

r Overall gear ratio 2.6
fr Rolling resistance coefficient 0.01

Cd Aerodynamic drag coefficient 0.3
A f Frontal area 1.6 m2

rd Wheel radius 0.28 m
vl(s) Lower speed limit 0 mph
vu(s) Upper speed limit 35 mph

amax,acc Maximum acceleration 4 m/s2

amax,dec Maximum deceleration −4 m/s2

vw Wind speed 0 mph
α Grade 0◦

The results of the optimum speed profiles obtained from the MILP model for both
scenarios are shown in Figures 6 and 7. The results demonstrate that the optimal speed
profiles have differences during the cruising, deceleration, and braking periods between
the two scenarios. This is a direct influence of considering the RB LSB in the decision-
making process. The results of simulating the obtained speed profiles for both cases using
the MATLAB/SIMULINK model are depicted in Figure 8. This simulation is carried
out to accurately calculate the energy consumption and capture variations in the electric
motor and battery while driving with the optimum speed reference generated by MILP.
A breakdown of energy consumption and recuperation is presented in Table 3. In this
table, total energy is defined as the difference between the energy consumption during
acceleration/cruising and the energy recovered through RB.
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Table 3. Energy extraction and consumption for each scenario.

Scenario 1 Scenario 2

Total energy (Wh) 57.57 56.25

Energy consumption during acceleration/cruising (Wh) 63.68 64.03

Energy recovered through RB (Wh) 6.11 7.78

Energy recovery improvement (scenario 2 vs. scenario 1) 27%

Figure 8 illustrates the battery voltage and recaptured energy during acceleration/cruising
and deceleration obtained from MATLAB/SIMULINK using the generated speed profile
obtained from MILP. It can be observed that during deceleration, the battery voltage
increases as energy is pushed back to the battery in both scenarios. Moreover, as can be
seen in the second scenario, more energy is recuperated during low speeds, as more current
is pushed back to the battery compared to the first scenario within the same interval.

According to Table 3, the total energy required for the AEV to complete the route
under study is 57.57 Wh for scenario 1 and 56.35 Wh for scenario 2. Although the energy
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consumption during acceleration/cruising is slightly higher for scenario 2 (proposed
method) compared to scenario 1 (base case), the energy recovered through RB is noticeably
higher for scenario 2 compared to scenario 1. This increase in recovered energy is almost
27%, and this results in a lower total energy consumption in scenario 2 compared to
scenario 1. The reason for this is that by considering the RB dynamic LSB and integrating it
into the calculation during the optimization stage, the proposed approach avoids operating
the electric motor as a generator when the operating points fall below the dynamic LSB.
This ensures that the optimum speed profile generated by MILP achieves the maximum
amount of energy harvested during RB.

This is also evident when comparing the results of the speed profiles generated for
the two scenarios. It can be observed that when the vehicle approaches a stop sign, in the
first scenario, the speed decreases almost linearly with a high deceleration rate, while in
contrast, in the second scenario, deceleration is achieved with a comparatively lower rate,
resulting in an extension of the overall RB region and a lower braking torque. In turn, these
factors result in operation above the dynamic LSB, which allows more RB opportunities for
the proposed approach.

6. Conclusions

In this paper, an optimization model based on MILP was introduced with the aim of
finding the optimum speed profile for an AEV while considering an important limitation
of RB that makes it challenging for the electric motor to extract energy at low speeds. This
limitation was further elucidated by analyzing the results of an experimental test on a test
motor. The importance of considering this physical RB limitation in finding the optimal
speed trajectory was demonstrated by examining two scenarios, of which in only one
scenario this constraint was considered in the decision-making process. For each scenario,
the results of the MILP-generated profiles were simulated using a MATLAB/SIMULINK
simulation model which enabled accurate energy consumption calculations. It was con-
cluded that in the scenario utilizing the proposed approach, 27% more energy could be
harvested through RB.

This study highlights the decisive effect of considering the RB low-speed limitation in
the decision-making process when finding optimum speed profiles for AEVs and concludes
that if this limitation is not taken into account during the optimization process, noticeably
less energy will be recaptured during RB.
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