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Abstract: Massive multiple-input multiple-output (MIMO) technology, which is characterized by the
use of a large number of antennas, is a key enabler for the next-generation wireless communication
and beyond. Despite its potential for high performance, implementing a massive MIMO system
presents numerous technical challenges, including the high hardware complexity, cost, and power
consumption that result from the large number of antennas and the associated front-end circuits.
One solution to these challenges is the use of hybrid beamforming, which divides the transceiving
process into both analog and digital domains. To perform hybrid beamforming efficiently, it is
necessary to optimize the analog beamformer, referred to as the compressive measurement matrix
(CMM) here, that allows the projection of high-dimensional signals into a low-dimensional manifold.
Classical approaches to optimizing the CMM, however, are computationally intensive and time
consuming, limiting their usefulness for real-time processing. In this paper, we propose a deep
learning based approach to optimizing the CMM using long short-term memory (LSTM) networks.
This approach offers high accuracy with low complexity, making it a promising solution for the
real-time implementation of massive MIMO systems.

Keywords: massive MIMO; hybrid beamforming; compressive measurement matrix; long short-term
memory network

1. Introduction

In recent years, the massive multiple input multiple output (MIMO) technology has
emerged as a highly promising solution for modern wireless communication. With the
growing demand for high-speed data transfer and low latency, the implementation of mas-
sive MIMO has become increasingly important, especially in millimeter wave (mmWave)
communication, which is a crucial aspect for the future of 5G networks. The central idea
behind massive MIMO is to equip base stations with a large number of antennas, which
allows multiple users to be served at the same time in the same frequency band. This
results in a significant increase in both capacity and spectral efficiency compared to tradi-
tional MIMO systems. The high number of antennas in a massive MIMO system enables
it to provide much higher data rates than traditional MIMO systems [1–6]. As a result,
the system is able to better utilize the available bandwidth and effectively mitigate the
effects of fading and interference. In mmWave communication, massive MIMO systems
address the problem of severe propagation attenuation and make efficient use of the signal
bandwidth [7–9]. Additionally, massive MIMO is becoming increasingly popular in radar
sensing due to its ability to enhance target detection and tracking accuracy, reduce false
alarms, increase capacity, and improve coverage [10,11].

Despite the numerous benefits offered by massive MIMO systems, their practical
implementation is a challenging endeavor. In a typical MIMO system, each antenna is
equipped with its own radio frequency (RF) chain, composed of components, such as a
band-pass filter, a low-noise amplifier, a mixer, a low-pass filter, and a high-resolution
analog-to-digital converter (ADC). With the implementation of massive MIMO systems, the
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number of antennas and RF chains required at each base station is significantly increased,
thereby leading to an increase in cost, complexity, and power consumption. To make
the implementation of a massive MIMO system practical, one approach is to adopt the
hybrid beamforming technique. Hybrid beamforming addresses this limitation by reducing
the number of RF chains required in a massive MIMO system. It accomplishes this by
splitting the beamforming process into two parts: a digital part and an analog part. In
the analog part, the signals from multiple antennas are combined before they are passed
through a reduced number of the RF chain. To achieve this effectively, a compressive
measurement matrix (CMM), which projects the high-dimensional array received signal
onto a low-dimensional signal considering the sparsity nature of the signals.

Numerous studies have investigated the design of beamformer and precoder matrices
for MIMO systems [12–14]. The approach in [12] involves alternating optimization to opti-
mize the transmit and receive beamformers using a minimum mean square error (MMSE)
criterion between the received signal and the transmitted symbol vectors. Reference [13]
considers the optimization of the precoder matrix based on the singular vectors of the
channel matrix. In [14], a beamformer is optimized for MIMO-integrated sensing and
communication (ISAC) scenarios, where the beamforming matrix is designed to achieve
the desired radar beampattern, while maintaining a signal-to-interference-plus-noise ra-
tio constraint for communication users. However, the aforementioned method requires
knowledge of the signal directions of arrival (DOAs), which may not be available in many
scenarios and is a parameter that needs to be estimated in our problem. Several papers have
also explored compressive sampling-based DOA estimation techniques, such as [15,16].
In [15], a sparse localization framework for the MIMO radar is proposed by randomly
placing transmitting and receiving antennas, and a random measurement matrix is used
for target localization. Similarly, Ref. [16] develops a compressive sampling framework
for 2D DOA and polarization estimation in mmWave polarized massive MIMO systems
using a Gaussian measurement matrix. However, this type of random selection can lead to
information loss and performance degradation as demonstrated in [17,18].

Information theory is another widely used framework for optimizing the CMM in
massive MIMO systems. These principles of information theory provide a mathematical
framework for quantifying the amount of information that can be transmitted over a
communication channel. In [18,19], the CMM is optimized by maximizing the mutual
information between the compressed measurement and the signal DOAs. This approach
is based on considering the availability of a coarse prior distribution of the DOAs. By
reducing the dimension of the received signal, the required number of front-end circuits
is effectively reduced with minimal performance loss. Reference [20] extends this idea
by developing a general compressive measurement scheme that combines the CMM and
the sparse array. The framework can consider any arbitrary sparse array as the receive
antennas and use the CMM to compress the dimension. As a result, it can effectively reduce
both the number of physical antennas and the front-end circuits. They also optimize the
CMM by maximizing the mutual information of the compressed measurements and DOA
distribution, while considering the availability of the prior distribution of DOAs. In many
practical cases, however, the required a priori distribution may not available. To address
this issue, an iterative optimization approach is developed in [21]. Starting with no prior
information on the DOA distribution, the CMM is optimized based on mutual information
maximization and then used to estimate the DOA spectrum. The estimated normalized
DOA spectrum is subsequently used as the prior information for the next iteration, thus
iteratively improving the accuracy of the estimated DOA spectrum.

Optimizing the CMM in a sequential adaptive manner may lead to better performance
compared to non-adaptive schemes [22,23]. However, using optimization techniques,
such as projected gradient descent or simplified versions of projected coordinate descent,
to obtain the desired CMM can be computationally expensive [24]. On the other hand,
codebook-based methods, such as the hierarchical codebook developed in [23] and the
hierarchical posterior matching (hiePM) strategy developed in [5], can reduce the computa-
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tional burden. Nonetheless, the performance of codebook-based methods relies heavily on
the quality of the codebooks and may be inferior to codebook-free approaches.

Recently, deep learning methods have emerged as a popular approach for effectively
addressing complex optimization problems in various wireless communication and signal
processing applications, including massive MIMO beamforming [25,26], intelligent reflect-
ing surface [27,28], DOA estimation [29,30], and wireless channel estimation [31–33]. In
a prior study [34], we developed a deep learning method for sequentially updating the
CMM. Specifically, we trained a neural network without any prior information to obtain the
optimized CMM, which was then used to update the posterior distribution of signal DOAs
by leveraging the subsequent measurement. However, this approach faces two challenging
issues. First, for each snapshot of the impinging signal, the CMM must be updated, the
compressed measurement computed, and the posterior distribution updated. As such, it
incurs high-computational costs, especially for updating the posterior distribution at each
snapshot. Second, the posterior update relies on the accuracy of the estimated spatial spec-
trum, and any inaccuracies in this estimation can lead to performance degradation and slow
convergence. Conversely, any inaccuracy or change in the posterior estimation will affect
the spectrum estimation performance. In [35], LSTM neural networks are used in various
communication system problems, including adaptive beamformer design for mmWave
initial beam alignment applications. However, this study was limited to single-channel and
single-user scenarios.

In this paper, we propose to exploit an LSTM network for sequentially designing the
CMM matrix. LSTMs are a class of recurrent neural networks (RNNs) that are well suited
for handling time-series and other sequential data due to their inherent architecture [36–42].
The previous work used a fully connected deep neural network (FCDNN), where the
received signal in each time snapshot was treated independently. However, in real-world
scenarios, adjacent time samples of the signal have strong correlations with each other.
Therefore, we use an LSTM network to sequentially process data by retaining temporal
dependencies between the input data points. Preserving time-dependent information
enables more effective optimization of the CMM in each time snapshot, leading to faster
convergence and better DOA estimation performance.

Notations : We use bold lower-case and upper-case letters to represent vectors and
matrices, respectively. Particularly, we use IN to denote the N × N identity matrix. (·)T

and (·)H respectively represent the transpose and Hermitian operations of a matrix or

vector. The notations ÷ and (·) 2 are used to represent element-wise division and
squaring, respectively. Additionally, | · | denotes the determinant operator. The operator
E[·] represents statistical expectation, whereasR(·) and I(·) respectively extract the real
and imaginary parts of a complex entry. CM×N denotes the M× N complex space.

2. Signal Model
2.1. Array Signal Model

Consider D uncorrelated signals that impinge on a massive MIMO system equipped
with N receive antennas from directions θ = [θ1, θ2, · · · θD]

T. The analog RF array received
signal at time t is modeled as

xRF(t) =
D

∑
d=1

a(θD)sd(t)ejωct + n(t)

= A(θ)s(t)ejωct + n(t),

(1)

where A(θ) = [a(θ1), a(θ2), · · · , a(θD)] ∈ CN×D denotes the array manifold matrix whose
dth column a(θd) ∈ CN represents the steering vector of the dth user with DOA θd,
s(t) = [s1(t), s2(t), · · · , sD(t)]T ∈ CD represents the signal waveform vector, ωc denotes
the angular frequency of the carrier, and n(t) ∼ CN (0, σ2

n IN) represents the zero-mean
additive white Gaussian noise (AWGN) vector.
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Figure 1 depicts the block diagram of the receiver antenna array of a massive MIMO
system without performing compressed measurement. In this receiver array, each antenna
is assigned with a dedicated front-end circuit, which converts the received analog RF
signal to the digital base-band by performing down conversion and analog-to-digital
conversion. However, dedicating a separate front-end circuit to each antenna in a massive
MIMO system may be impractical, considering the hardware cost, power consumption,
and computational complexity.
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Figure 1. Block diagram of an antenna array without performing compression [18].

2.2. Compressive Array Signal Model

The number of antennas in a massive MIMO system is typically much higher than the
number of users or targets. Consequently, the impinging signals can be considered sparse in
the spatial (angular) domain. Such sparsity property allows us to design an optimal CMM
that projects the array receive signal to a lower-dimensional manifold with no or negligible
information loss. In this manner, the array receive signal can be compressed significantly in
the analog domain as shown in Figure 2. As a result, the number of front-end circuits in
the analog domain and the computation burden in the digital domain can be significantly
reduced.

In this compressive sampling scheme, M � N linear projections of the RF received
signal xRF(t) are taken along the measurement kernels represented as row vectors φm =
[φm,1, φm,2, · · · , φm,N ] ∈ C1×N with m = 1, · · · , M. The mth compressed measurement of
the RF received signal yRF

m (t) is the linear projection of the RF received signal xRF(t) in the
mth measurement kernel φm, i.e.,

yRF
m (t) =

〈
φm, xRF(t)

〉
=

N

∑
n=1

φm,nxRF
n (t), (2)

where xRF
n (t) is the nth element of vector xRF(t).

Stacking all M measurement kernels forms the CMM Φ = [φT
1 , φT

2 , · · · , φT
M]T. Matrix

Φ is designed to be row orthonormal, i.e., ΦΦH = IM, to keep the noise power unchanged
after applying the compression.

Denote x(t) as the baseband signal corresponding to xRF(t). Note that vector x(t) is
not observed in the underlying system and is introduced solely for notational convenience.
Then, the M compressed measurements in baseband yield y(t) = [y1(t), y2(t), · · · , yM(t)]T ∈
CM, which is given as

y(t) = Φx(t) = ΦA(θ)s(t) + Φn(t), (3)

where ΦA(θ) ∈ CM×D represents the compressed array manifold with significantly re-
duced dimension compared to A(θ).

2.3. Probabilistic Signal Model

Consider signal DOA θ as a random variable with a probability density function (PDF)
f (θ). In [18,19], it is assumed that coarse knowledge of f (θ) is available. In this case,
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according to the law of the total probability, the PDF of the compressed measurement
vector y is expressed as

f (y) = Eθ{ f (y|θ)} =
∫

θ∈Θ
f (y|θ) f (θ)dθ, (4)

where Θ is the angular region of the observations. We discretize the PDF f (θ) into K
angular bins with an equal width of ∆θ̄ so that the probability of the kth angular bin is
approximated as probability mass function pk ≈ f (θ̄k)∆θ̄ with ∑k∈K pk = 1, where θ̄k is the
nominal angle of the kth angular bin and K = {1, 2, · · · , K}. As a result, the PDF of y can
be reformulated as

f (y) ≈ ∑
k∈K

pk f (y|θ̄k). (5)

That is, the PDF of y is approximated as a Gaussian mixture distribution consisting of
K zero-mean Gaussian distributions y|θ̄k. Considering a signal s(t) impinging from the kth
angular bin with a nominal DOA θ̄k, the compressed measurement vector is given as

y|θ=θ̄k
(t) = Φ(a(θ̄k)s(t) + n(t)), (6)

and the corresponding conditional PDF is

f (y|θ̄k) =
1

πM|Cyy|θ̄k
| e
−yHC−1

yy|θ̄k
y
, (7)

where
Cyy|θ̄k

= Φ(σ2
s a(θ̄k)aH(θ̄k) + σ2

n I)ΦH (8)

is the covariance matrix of the compressed measurement vector y|θ=θ̄k
(t) and σ2

s is the
signal power. Additionally, define Cyy = ΦA(θ)SA(θ)HΦH, as the covariance matrix of
the compressed measurement with S = diag([σ2

s , σ2
S , · · · ]) is the source covariance matrix.
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Figure 2. Block diagram of a compressive sampling antenna array [18].

3. Motivation for Using LSTM Network to Design the CMM

The objective of this paper is to design the beamforming matrix in a sequential manner.
Specifically, we aim to optimize the CMM Φ at each time sample t = 1, 2, · · · , T in an
adaptive manner such that the CMM Φ at time sample t + 1 can be regarded as a function
of all prior observations, denoted by y(1 : t) and Φ(1 : t), i.e.,



Algorithms 2023, 16, 261 6 of 16

Φ(t + 1) = F (y(1 : t), Φ(1 : t)), (9)

where F is a function that is exploited to map the past observations and past CMMs to
design the next CMM.

However, the dimension of the past observations increases as the time index increases,
rendering it impractical to optimize the CMM Φ using all prior observations. Therefore,
a significant challenge of this sequential optimization process is to summarize all of the
historical observations.

In [34], instead of using all past observations, the posterior distribution of signal DOA
at time t is considered a sufficient statistic to design the CMM Φ at time t + 1. However, this
approach may be prone to robustness issues. For instance, if the posterior p(θk) for a signal
containing the angular bin θk becomes small due to an estimation error during any time
iteration, the error will propagate through the time iteration, resulting in inaccurate DOA
estimation. Furthermore, in each time instant, it involves performing analog beamforming
and spectrum estimation, which are computationally expensive, particularly for a large
number of iterations. In addition, the paper uses a fully connected neural network, which
does not well exploit the temporal correlation of the received data.

To address this issue, we propose an LSTM framework that can provide a tractable
solution. LSTM is a type of recurrent neural network that can retain information over
time in a variable known as the cell state. Moreover, to maintain the scalability of prior
observation, LSTM incorporates a gate mechanism that controls which information to be
discarded and which to be incorporated into the cell state, retaining only the relevant
information from historical observations that are necessary for the given task.

Figure 3 illustrates a unit of the proposed LSTM framework at time t. At this time
instant, the input to the deep learning unit comprises the current compressed measurement
yt and the cell and hidden states from the previous time samples, denoted as ct−1 and ht−1,
respectively. The LSTM unit has four gates, namely the forget gate ( ft), input gate (it), cell
gate (gt), and output gate (ot), which respectively perform the following operations:

• Forget gate ( ft): This gate combines the current input y(t) and the previous hidden
state h(t − 1) to decide which information to forget and which to remember from
previous cell state. The operation is given by

ft = σ

(
W f

[
yT(t) hT(t− 1)

]T
)

, (10)

where σ(·) denotes the sigmoid function, and W f is a weight matrix corresponding to
the forget gate.

• Input gate (it): This gate combines the current input y(t) and the previous hidden
state h(t− 1) to decide which information to store in the cell state. The operation is
given by

it = σ

(
W i

[
yT(t) hT(t− 1)

]T
)

, (11)

where W i is a weight matrix corresponding to the input gate.
• Cell gate (gt): This gate combines the current input y(t) and the previous hidden

state h(t− 1) to compute the actual representation that will go into the cell state. The
operation is given by

gt = tanh
(

Wg

[
yT(t) hT(t− 1)

]T
)

, (12)

where tanh(·) denotes the hyperbolic tangent function and W g is a weight matrix
corresponding to the cell gate.

• Output gate (ot): This gate combines the current input y(t) and the previous hidden
state h(t− 1) to decide how much to weight the cell state information to generate the
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output of the LSTM cell, which is also denoted as hidden state ht. The operation is
given by

ot = σ

(
W o

[
yT(t) hT(t− 1)

]T
)

, (13)

where W o is a weight matrix corresponding to the output gate.

Finally, the cell state is updated according to

ct = ftct−1 + itgt, (14)

which combines the amount of information from the previous cell state regulated by the
forget gate and the amount of updated information. The output of the LSTM cell, i.e., the
hidden state for time t, will be the filtered version of the current cell state regulated by the
output gate, i.e.,

ht = ottanh(ct) (15)

The preservation of historical observations by the cell state ct over time is evident
from Equation (14). Additionally, the cell state does not exhibit growth as the time index
increases; rather, it adaptively updates its information content. We, therefore, use the cell
state information as a mapping of historical observations. At each time sample, these
historical observations are exploited to optimize CMM Φ using another DNN. At the end of
all time iterations, the minimum variance distortionless response (MVDR) spatial spectrum
estimation method is employed to estimate the signal DOAs.

× +

𝜎 𝜎 tanh 𝜎

×

tanh

×

𝒄!"#

𝒉!"#

𝒚!

𝒇! 𝒊!
𝒐!

𝒉!

𝒄!

Figure 3. Proposed deep learning unit for time t.

4. Proposed LSTM based optimization of the CMM Φ

Figure 4 illustrates the end-to-end architecture of the proposed framework for realizing
the equation presented in Equation (9). In the following subsections, we discuss the details
of the proposed approach for the optimization of CMM Φ.
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Figure 4. End-to-end deep learning framework for optimizing CMM Φ.
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4.1. Data Pre-Processing

Using the array received signal vector at the massive MIMO x(t) ∈ CN at time t, we
form a tensor denoted by X(t) ∈ CB×N×1 by concatenating the array received signal vectors
for B different DOA scenarios. Collecting all time snapshots then produces the training
tensor X ∈ CB×N×T . At the beginning, with a randomly initialized CMM Φ, we perform
analog beamforming to obtain the compressed measurement tensor Y(t) = Φ(t− 1)X(t)
at time t = 1, where Y(t) ∈ CB×M×1. Separating the real and imaginary parts of Y(t), we
concatenate them to form the input tensor Ŷ(t) for the LSTM unit as illustrated in Figure 3.

4.2. Implementation Details of the Deep Learning Framework

The proposed deep learning framework comprises a series of LSTM units and FCDNNs.
An LSTM unit summarizes the historical observations into a fixed-dimensional cell state
vector c(t− 1), which serves as a sufficient statistic for optimizing the CMM in the subse-
quent time instance t. For a particular time snapshot t, the input tensor Ŷ(t), along with the
cell and hidden state tensors C(t− 1) and H(t− 1), serves as input to the LSTM unit. The
tensors C(t− 1) and H(t− 1) are formed by concatenating the vectors c(t− 1) and h(t− 1)
for all B scenarios and all layers of the LSTM network. Based on the gate mechanism
described in Equations (10)–(15), the cell and hidden states are updated adaptively. We
then employ an L-layer FCDNN to map the cell state information C(t) to design the CMM
Φ(t) at time instant t. The DNN output at time t is expressed as

Φ̃(t) = AL(W LAL−1(· · · A1(W1G(t− 1) + b1) · · · ) + bL), (16)

where W l , bl ,Al are the weight, bias, and nonlinear activation function corresponding to
the lth layer of the DNN, respectively. Φ̃(t) is the real valued representation of the complex
valued CMM matrix at time t, i.e., Φ̃(t) = [R(Φ(t) I(Φ(t)].

4.3. Post-Processing

We first reconstruct the complex valued Φ(t) from its real representation, where the
real and imaginary parts of Φ(t) correspond to the left and right halves of Φ̃(t), respectively.
The measurement kernels φm, m = 1, 2, · · · , M are generally implemented using a series
of phase shifters. Therefore, it is desirable for the CMM to satisfy a constant modulus
constraint. In order to achieve this constraint, we set the activation function of the final
layer as

AL(R(Φ)(t)) =

R(Φ) ÷

√
R(Φ) 2 + I(Φ) 2

,

AL(I(Φ)(t)) =

I(Φ) ÷

√
R(Φ) 2 + I(Φ) 2

.

(17)

Subsequently, the obtained Φ(t), along with the updated C(t) and H(t), will be
utilized to generate Φ(t + 1), and this process will continue until the time snapshot t = T.

4.4. Loss Function and Back Propagation

In the underlying massive MIMO context, where the CMM Φ is optimized to enhance
the accuracy of the DOA estimation, it is crucial to specify a suitable loss function that
enables a comparison between the true DOAs and those estimated using the optimized
Φ. Once the sequential updating of the CMM Φ is completed, the optimized Φ is used
to find the compressed measurements Y ∈ CB×M×T from the input tensor X as Y = ΦX.
Using these compressed measurements, we use the MVDR spectrum estimator to obtain
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the spatial spectrum. To do so, we first estimate the sample covariance matrix for the bth
compressed measurement Yb ∈ CM×T as

R̂yb =
1
T

YbYH
b (18)

for b = 1, 2, · · · , B. The MVDR spectrum is obtained as

p̂b(θ) =
aH(θ)ΦH(t)Φ(t)a(θ)

aH(θ)ΦH(t)R̂−1
yb (t)Φ(t)a(θ)

. (19)

We consider the DOA estimation problem as a multiclass classification problem, where
in each angular bin, we make a binary decision whether a signal is present in the bin or not.
To do so, we employ the binary cross entropy loss function between the estimated MVDR
spectrum (p̂b) and the true DOA location (pb) expressed as

Loss = − 1
B

B

∑
b=1

[pb log p̂b + (1− pb) log(1− p̂b)], (20)

where B is the batch size of the training data.

5. Simulation Results

We consider a massive MIMO system consisting of N = 50 receive antennas arranged
in a uniform linear fashion and separated by a half wavelength. We choose the compression
ratio to be N/M = 5, which yields the dimension of the compressed measurement M = 10.
The number of impinging sources in the massive MIMO system is considered between
1 and 9. The sources impinge from angular bins discretized by a ∆θ̄ = 0.1◦ interval and
within an angular range between −90◦ and 90◦. As a result, there are 1801 components in
the Gaussian mixture model. The number of snapshots is assumed to be T = 100.

We consider a 4-layer LSTM unit with 200 nodes in each layer, and a DNN with
3 layers and 500 nodes. The selection of the number of layers and nodes for both models is
made to achieve a good balance between the predictability and generalization capability
of the networks. A training dataset is created with 10,000 scenarios, each containing 1 to
9 sources randomly sampled from a uniform distribution ranging between −90◦ and 90◦.
The input signal-to-noise ratio (SNR) is randomly selected between 0 dB and 20 dB for each
scenario. The test dataset consists of 1000 scenarios, which are generated using a similar
approach.

We evaluate the performance of the proposed model against two related approaches as
described in [21,34]. The non-neural network approach presented in [21] optimizes CMM
Φ iteratively based on mutual information maximization, while the approach described
in [34] uses an FCDNN to update the posterior distribution of the DOAs of the impinging
signals. To compare these methods, we consider a test example with nine sources and
their corresponding signal DOAs are −55◦, −48◦, −44◦, −20◦, 8◦, 20◦, 31◦, 41◦, and 45◦.
Figure 5 shows the estimated spectra obtained from the methods where the input SNR is
5 dB. As demonstrated in this figure, the proposed method, depicted in (a), shows a cleaner
spectrum compared to [21,34], as illustrated in (b) and (c), in a low SNR scenario. Figure 6
demonstrates the reduction in the loss function as the number of epochs increases. It is
evident from the figure that the model converged well within the first 200 epochs.
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(a)

(b)

(c)

Figure 5. Comparison of the estimated spatial spectra. (a) Proposed method. (b) Method in [21].
(c) Method in [34].
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Figure 6. Loss vs. number of epochs.

In order to assess the methods’ performance under different conditions, including
varying input SNR levels, number of snapshots, and dimension of compressed measure-
ment (number of front-end circuits), we compared their performance using the root mean
squared error (RMSE), defined as

RMSE =

√√√√ 1
QD

Q

∑
q=1

D

∑
d=1

(θ̂q,d − θd)2, (21)

where Q is the number of trials and θ̂q,d is the estimated DOA for the dth source of the qth
Monte Carlo trial. In total, 1000 Monte Carlo trials are used to compute the RMSE values.
Figure 7 presents the RMSE values with respect to input SNR, number of snapshots, and
dimension of compressed measurement, and clearly shows that the proposed LSTM-based
approach outperforms the other methods. Additionally, the Cramer–Rao bound (CRB) is
included in Figure 7 for comparison.

To obtain the CRB, we first denote the unknown parameters in this problem, which in-
clude the signal DOAs and power of D sources as θ = [θ1, · · · , θD]

T and p = [σ2
1 , · · · , σ2

D]
T,

respectively. We also define the noise power as σ2
n, and ω = [ω1, · · · , ωD]

T as the spatial
frequencies, where ωd = sin(θd)/2 is the spatial frequency of the dth source. Then, the
unknown parameter vectors are grouped as ψ = [wT pT σ2

n]
T. Since we are interested

in obtaining the CRB of the signal DOAs, we partitioned the unknown parameters as
ψ = [wT|pT σ2

n]
T.

The CRB can be obtained as the inverse of the Fisher information matrix (FIM), which
is defined as

[F]u,v = −E
[

∂2 ln p(y|ψ)
∂ψuψv

]
, (22)

where ψu is the uth element of ψ, with u, v ∈ 1, 2, · · · , 2D + 1.
The FIM can also be expressed as [43]

1
T

F =

[
∆w
∆o

]H[
∆w ∆o

]
=

[
∆H

w ∆w ∆H
w ∆o

∆H
o ∆w ∆H

o ∆o

]
(23)
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where ∆w = (CT
yy ⊗ Cyy)

− 1
2

[
∂r

∂w1
, · · · , ∂r

∂wD

]
and ∆o = (CT

yy ⊗ Cyy)
− 1

2

[
∂r

∂σ2
1

, · · · , ∂r
∂σ2

D
, ∂r

∂σ2
n

]
with r = vec(Cyy). Then, the CRB of the signal spatial frequencies is obtained as [43]

CRB =
1
T
(∆H

ω Π⊥o ∆ω)
−1, (24)

where Π⊥o = I − ∆o(∆H
o ∆o)−1∆H

o .
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Figure 7. Performance comparison. (a) RMSE versus input SNR. (b) RMSE versus number of
snapshots. (c) RMSE versus compressed dimension.

Next, we considered a scenario where nine sources move with an initial position of
−20◦, −15◦, −10◦, −5◦, 0◦, 5◦, 10◦, 15◦, and 20◦ in the positive direction with the same
angular rate. They move 1 degree per 20 snapshots. The result of the proposed method
is compared with the result of the method described in [34] because both are sequential
methods, namely, Φ is sequentially updated. As shown in Figure 8, as the source positions
change, the performance of the method described in [34] degrades. This is because this
method uses the posterior from the previous time instant as a sufficient statistic of all past
observations. Therefore, as each new measurement differs from the previous ones, this
method cannot adapt well. In contrast, the proposed method, as depicted in Figure 9,
does not have this limitation, resulting in improved DOA estimation performance as the
sequential updating continues.
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(a)

(b)

(c)

Figure 8. Estimated spectra for moving sources using method in [34]. (a) Initial position. (b) Next
position from (a). (c) Next position from (b).

(a)

Figure 9. Cont.
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(b)

(c)

Figure 9. Estimated spectra for moving sources using the proposed method. (a) Initial position.
(b) Next position from (a). (c) Next position from (b).

6. Conclusions

In this paper, we developed an LSTM-based framework to optimize the CMM in a
massive MIMO setting. The inherent architecture of an LSTM network is well suited to
preserve relevant historical observation, which is useful to design the CMM in a sequential
manner. The resulting optimized CMM can then be used to compress high-dimensional
received data, which can effectively reduce the number of front-end circuits. Our proposed
method exhibits superior DOA estimation performance compared to the existing literature
as demonstrated by the simulation results.
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