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Abstract: Residential and industrial buildings are significant consumers of energy, which can be
reduced by controlling their respective Heating, Ventilation, and Air Conditioning (HVAC) systems.
Demand-based Ventilation (DCV) determines the operational times of ventilation systems that de-
pend on indoor air quality (IAQ) conditions, including CO2 concentration changes, and the occupants’
comfort requirements. The prediction of CO2 concentration changes can act as a proxy estimator
of occupancy changes and provide feedback about the utility of current ventilation controls. This
paper proposes a Hierarchical Model for CO2 Variation Predictions (HMCOVP) to accurately predict
these variations. The proposed framework addresses two concerns in state-of-the-art implementa-
tions. First, the hierarchical structure enables fine-tuning of the produced models, facilitating their
transferability to different spatial settings. Second, the formulation incorporates time dependencies,
defining the relationship between different IAQ factors. Toward that goal, the HMCOVP decouples
the variation prediction into two complementary steps. The first step transforms lagged versions of
environmental features into image representations to predict the variations’ direction. The second
step combines the first step’s result with environment-specific historical data to predict CO2 varia-
tions. Through the HMCOVP, these predictions, which outperformed state-of-the-art approaches,
help the ventilation systems in their decision-making processes, reducing energy consumption and
carbon-based emissions.

Keywords: energy consumption reduction; HVAC systems; CO2 variations prediction; convolutional
neural networks; transfer learning; ensemble learning

1. Introduction

The amount of energy consumed by buildings and industrial facilities accounts for
around 70% of the total energy consumption in the US [1], and it constitutes a primary
source of energy consumption in the majority of European countries [2]. Heating, Venti-
lation, and Air Conditioning (HVAC) systems represent a controllable energy consumer
that fluctuates based on the thermal needs and occupants’ comfort requirements [3]. Main-
taining indoor air quality (IAQ) is an essential requirement for occupants due to the
downstream effect of poor ventilation on the occupants’ health [4]. An array of health-
related problems arises with poor ventilation, such as decreased productivity [4,5] and
increased risks of COVID-19 infections [6,7] which can reduce a human’s quality of life [8].
Examples of these potential health-related hazards are encountered on a daily basis. Vehicle-
based indoor contaminant levels increase in houses and buildings with indoor garages,
increasing the risk of developing cancer and inducing fires [9,10]. Moreover, households
within industrial cities suffer from elevated levels of heavy metal contamination, which
contributes to health-related problems [11]. In a similar context, Liao et al. [12] uncovered
a direct association between extended exposure to cooking oil fumes and deterioration in
sleep quality. These dire consequences can be tackled with proper ventilation systems that
provision fresh outdoor air to facilitate indoor air circulation [13].
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The increased buildings’ energy bills due to increased oil prices coupled with strict
legislation to stifle Greenhouse Emissions (GHG) and the comfort needs of occupants are
pushing the HVAC system operators to a critical juncture [14]. As a result, there is a need
to match the occupants’ comfort requirements while reducing the energy consumption of
the HVAC systems by properly activating them. The demand-controlled ventilation (DCV)
methods alter the ventilation systems based on the ventilation demands of the indoor
environment. Since these demands are centred around the occupants’ requirements, the
prediction of the occupant’s number changes is essential for controlling the ventilation
loads. The regulatory bodies for efficient building development in North America and
Europe [15] did not reach a consensus on concrete strategies or methods to utilize for
measuring occupancy. In that regard, the literature and practical implementations suggest
two main strategies [16]. The first method involves inferring the number of occupants by
video surveillance cameras or the collection of occupants’ identities, which raises some
privacy concerns. The second method depends on proxy estimators of changes in occupancy
using either motion and thermal energy sensors [17], Wi-Fi signals [18], or CO2 levels [19],
or a combination of sensors.

The collection of ground truth data to reflect the number of occupants is infeasible in
real time; thus, resorting to proxy estimators is a more practical approach with the already
existing sensor infrastructure. In regard to proxy estimators, changes in occupancy can
be estimated using Wi-Fi signals, CO2 concentration level changes, and PassiveInfrared
(PIR) sensors. However, employing Wi-Fi signals or activity levels to that end hinges
on very loose assumptions. The Wi-Fi signals pre-suppose that occupants are connected
to access points or hold a single device [20] while the PIR sensors are oblivious to static
occupants and can potentially overestimate the number of occupants [21]. These factors
favour CO2 concentration changes that vary with the occupancy changes, which either
stem from changes in their number or their activity, both with similar effects to the ven-
tilation demands [22].The occupant’s respiratory activity directly affects the indoor CO2
concentrations, which highlights the distinctive property of CO2 concentrations as a more
accurate representation of occupancy changes.

The predictions of CO2 concentration changes reveal two things about the environ-
ment, both signalling changes in the ventilation demands of the indoor environment. The
lagged effect of the current collective occupants’ respiration can be reflected in the predic-
tion of CO2 concentration changes. Similarly, due to its hysteresis property, the prediction
of CO2 concentration changes shows the lagged effect of the current ventilation controls
on indoor CO2 concentrations [20]. Therefore, these predictions serve to piece together
different parts of the indoor environment that can aid DCV in producing an informed
decision about its activity. As a result, the optimization of HVAC system energy consump-
tion while maintaining the indoor occupants’ comfort is a downstream effect of accurate
predictions of the variation in CO2 concentrations [23]. The reduction in HVAC system
energy consumption aligns with the overall sustainability goals of reducing the buildings’
carbon footprint.

The abundance of computing resources and the miniaturization of sensors have pro-
moted the implementation of Machine Learning (ML) and Deep Learning (DL) applications
in estimating indoor environmental conditions using different sensors [24]. The state-of-
the-art approaches to predicting occupancy lack the incorporation of time dependencies or
suffer from transferability issues. Therefore, to address these issues, this paper proposes a
Hierarchical Model for CO2 Variation Predictions (HMCOVP), which divides the problem
of predicting CO2 variations into two complementary sub-problems, each solved using su-
pervised Machine Learning (ML) techniques. The first sub-problem uses lagged versions of
time-series environmental features transformed into images to predict the variations’ future
direction, which can be increasing, decreasing, or constant. The second sub-problem com-
bines the predictions of the first step with the historical difference between the minimum
and maximum value (e2s) of the feature to predict the variations in CO2 concentrations in
a pre-defined time window. The proposed framework serves to achieve two main goals.
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The first goal is to accurately predict the CO2 variations. The second goal is to facilitate the
transferability of the model to other buildings or rooms, which is a missing component in
state-of-the-art implementations. The second goal is achieved by the framework’s hierar-
chical structure that enables the fine-tuning of specific blocks of the proposed architecture.
The HMCOVP is applied to a publicly available dataset [25], encompassing CO2 levels,
humidity, pressure, temperature, and Passive Infrared (PIR) Count, and its transferability
is evaluated in different spatial settings.

The main contributions of this paper are as follows:

• Propose a hierarchical framework, including Convolutional Neural Networks (CNNs),
transfer learning, and supervised learning that accurately predicts CO2 variations to
serve as proxy estimators of occupancy and provide feedback about the utility of the
current ventilation system controls;

• Utilize a novel time-series-to-image data transformation strategy that reflects the
time-correlation aspect of time-series data in general and environmental sensory data
in particular;

• Evaluate and compare the proposed approaches with state-of-the-art approaches
applied to the same dataset in terms of prediction accuracy using different history and
future time windows;

• Evaluate the proposed approach to different office spaces using transfer learning and
re-tuning techniques.

The rest of the paper is organized as follows. Section 2 discusses the related work to
shed light on the novelty of this manuscript. Section 3 explains some preliminaries per-
taining to the dataset. Section 4 describes the different steps of the proposed methodology.
Section 5 details the experimental procedure. Section 6 investigates the results of applying
the proposed methodology, and Section 7 concludes the paper.

2. Related Work

The field of occupancy estimation through environmental data has incorporated
ML and DL techniques. However, the research works differ regarding the features used
for estimating the occupancy and the utility of the developed models in connection to
HVAC systems.

The work of Dong et al. [26] is flagship research evaluating the usefulness of envi-
ronmental sensors in capturing occupancy. A feature engineering module is employed
to output the most relevant features out of lagged versions of CO2 concentrations and
acoustic levels. The authors report a 73% accuracy in occupancy estimation using Ar-
tificial Neural Networks, a Support Vector Machine, and Hidden Markov Models. The
authors of [27,28] employ low-complexity ML methods [29] such as Classification And
Regression Trees (CART), and Random Forest (RF) for the approach in [27] and an Extreme
Learning Machine Classifier for the approach in [28] to estimate occupancy. Candanedo
et al. [27] uniquely incorporate the time aspect in their feature engineering steps, whereas
the methodology in [28] designs wrapper and filter methods to address the noisiness of
the raw sensory data. Similarly, Kallio et al. [30] explored different combinations of lagged
indoor environment data to predict CO2 concentrations and made available the dataset
used throughout their paper. To predict CO2 in different future time horizons, the resul-
tant features are fed to Ridge Regression (RR), Decision Trees (DT), RF, and Multi-Layer
Perceptron (MLP) algorithms.

Different types of Deep Neural Networks (DNNs) such as CNNs and Long Short-Term
Memory (LSTM) were utilized for occupancy predictions. The work by Chen et al. [24]
combines CNNs and bi-directional LSTM to predict different classes of occupancy. The
data in [31] incorporate HVAC sensory data with indoor climate sensory data to infer the
number of occupants using particle filtering and neural networks. In a similar manner, Li
et al. [23] tackle DCV by proactively predicting CO2 concentrations. The authors of [32]
uniquely tackle the transferability of occupancy estimation models using a transfer learning
approach. To that end, the authors build their models using data collected in a small
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conference room. Later, the developed models are evaluated by transferring them to a large
room. This process is achieved because of the layer-wise architecture of their developed
CNN and LSTM models.

Some of the literature identified the use of Wi-Fi signals to estimate occupancy. The
authors of [18] collect the Channel State Information (CSI) from commercial Internet of
Things (IoT) devices. A pipeline of DL models, encompassing Autoencoders and LSTM, is
proposed to predict occupancy. Similarly, Wang et al. [33] utilize Wi-Fi usage to predict
occupancy trends using RF, DNNs, and LSTMs.

Despite advancing the state-of-the-art in terms of occupancy estimation, there are some
limitations to the current literature. A general limitation concerns the absence of publicly
available datasets, hindering the comparison or replication of different approaches. The
authors of [23,30] broke this trend by relying on the same dataset that is used throughout
the paper. In terms of the methodology, time dependencies are not incorporated in most
previous works, which constitute a critical aspect in occupancy estimation and HVAC-
related operations [34]. We compare our methodology with the applied methodology
in [30], which is referred to as Feature Engineering for CO2 Predictions (FECOP). The
limitations of this work cover four main aspects:

• Utility: Their work predicts CO2 concentrations, such that a value of concentration can
drastically vary from one spatial setting to another. For example, a specific prediction
value can be interpreted differently in a room with two or 12 people. Mapping CO2
concentrations to occupancy represents a physical modelling exercise, which varies
depending on the studied space. Both these aspects are addressed when predicting
the future variations of CO2 concentrations.

• Feature Engineering: When linked to occupancy, the pressure feature is indicative
of invasive airflow introduced by the occupants entering or leaving a specific space.
This detail is overlooked by excluding this feature from the feature engineering step.
Their methodology involves a tedious feature engineering step, resulting in many
extracted features;

• Results: Their reported results are not categorized based on the capacities of each
room. This factor is instrumental because of the drastic changes in the relationship
between environmental features in different spatio-temporal modalities.

• Transferability: This aspect is missing among most of the state-of-the-art methods. The
developed models lack the structural disposition for fine-tuning, which jeopardises
their utility in multi-zonal spaces of different capacities or different buildings. This
characteristic is instrumental when encountering an environment with a limited
amount of data.

This paper addresses these limitations using a framework that decomposes the prob-
lem into two complementary sub-problems and encompasses data transformation, transfer
learning, hierarchical modelling, and ensemble learning. The data transformation method
adheres to the time-dependent nature of the environmental data. Applying transfer learn-
ing facilitates the training and testing processes and the transferability of the proposed
approach to different spatial resolutions. The ensemble models improve the predictions’
accuracy by practically implementing the concept of the crowd’s wisdom.

3. Data Preliminaries

This section explores the dataset used for training and testing the developed mod-
els and the exploratory data analysis essential for finding the historical and prediction
time horizons.

3.1. Dataset Description

The dataset used includes IAQ data collected over a period of one year in 2019
in the Nordic climate. As a result, the dataset includes 22.6 million samples collected
from 62 nodes mounted in 13 rooms [25]. The IAQ features include temperature (°C),
relative humidity (%), pressure (hecto Pascals), CO2 concentration (ppm), and activity



Algorithms 2023, 16, 256 5 of 21

levels ranging from 0 to 12. Each sample was captured with one-minute granularity. The
activity level was calculated using PIR sensors that aggregate movement levels within a
five-second interval. The collected data covered 13 rooms, including 11 cubicles that can
fit 2–3 people and 2 meeting rooms that can fit 12 people. The code made available by the
authors produces continuous chunks of data in separate datasets, which reduced the total
number of samples to 6.1 million datapoints distributed over all the rooms [30]. The steps
to obtain these datasets are as follows [30]:

1. Data from different sensors in each room are aggregated;
2. Gaps of less than two minutes are interpolated;
3. Continuous data samples of high variability in CO2 levels are extracted as testing set

to evaluate the developed methodology.

3.2. Exploratory Data Analysis

The exploratory data analysis is fundamental to estimating the prediction and history
time windows predicated on the studied space. These time frames best reflect the existing
relationship between the CO2 concentration levels, and the lagged versions of activity levels,
humidity, pressure, temperature, and CO2 levels. This analysis is important to validate the
existence and the extent of time correlations between IAQ features; a characteristic that
rationalises any modelling-related decision.

Many methods can be applied to quantify the relationship between lagged versions
of IAQ features and the CO2 concentration. The original work’s feature engineering step
extracted lagged versions of features to predict future CO2 using ML techniques such as
RR. Good results with a low Mean Absolute Error (MAE) were obtained using RR, which
assumes a linear relationship between the features and the response variable. Therefore,
a linear function can successfully quantify the relationship between lagged versions of
the environment features and the CO2 concentrations. These assumptions align with
the guiding principles of the Pearson Correlation Coefficient (PCC), which measures the
strength of the linear relationship between two continuous variables.

The environmental features and their lagged versions are denoted by Xi and the CO2
level by C. Given an environmental feature Xi and C, the PCC represented by ρ is as follows:

ρXi ,C =
E[(Xi − µXi )(C− µC)]

σXi σC
(1)

such that:

– E is the expectation
– µXi is the mean of Xi
– µC is the mean of C
– σXi is the standard deviation of Xi
– σC is the standard deviation of C

The analysis that follows is conducted on a single room denoted by room00, which
fits 12 people. The lag time distribution with respect to each dataset when the correlation
between CO2 and other features is below a certain threshold is displayed in Figure 1.
This calculation allows inferring the time window whereby a lagged feature can explain
the changes in CO2 concentrations. The correlation thresholds involved are {0.2 −→ 1}
with a 0.1 increment. If the threshold is not found, meaning the dataset has a higher
correlation than the threshold, a value of −10 is returned to emphasize the distinction in
the distribution figure.

Figure 1 shows the lag time distribution with respect to each parameter using corre-
lation thresholds. The displayed thresholds are determined based on a comprehensive
evaluation of the obtained correlations for each feature. Both activity levels and CO2
displayed high correlation values of above 0.5 in the majority of the datasets. These results
justify the results in [30], whereby the lowest MAE is the result of combining these two
features. This observation can be inferred by small peaks for both parameters for lag time 0.
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Moreover, the figure shows that in the majority of the datasets, a high positive correlation
exists (≥0.5) at a lag time above 20 min, which also includes the lag time of −10. On the
other hand, the distribution results demonstrate a weaker positive relationship (≤0.2) with
the CO2 concentrations. The datasets with no occupancy changes have contributed to the
dilution of the results with no or low correlation results.
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Figure 1. Distribution of Correlations.

These correlation results do not prove that there is no complementarity between
the environmental features, rather it determines the reasonable prediction time windows.
Therefore, in the applied methodology, all the parameters were used with a variable lag
time of 5, 10, 15, and 20 min. These lag times incorporate all the levels of the existing corre-
lations between environmental features. The choice of prediction horizons is also connected
to HVAC systems. The prediction horizons of 5–20 min are equivalent to a HVAC control
loop that varies within these ranges [23,35,36], dictated by the studied space. As a result,
predictions within the pre-defined time horizons serve as indicators of the environment’s
future state, in terms of CO2 concentration changes, if the HVAC systems keep their cur-
rently defined ventilation and heating/cooling setpoints. The control system can leverage
this piece of information to calibrate its subsequent decisions, especially in use cases that
depend on data-driven control achieved through Reinforcement Learning techniques.

4. Method: Hierarchical Model for CO2 Variation Predictions (HMCOVP)

This section describes the steps applied to obtain accurate predictions of the variations
in CO2 concentrations over a future time window. Figure 2 depicts the methodology
referred to as the HMCOVP, such that each practical step is detailed based on the input to
this step, the operation taking place, and its output. The following subsections explain each
step of predicting CO2 variation direction and predicting CO2 variations. Time-series to
Image Transformation and CNN Individual Learners are the building blocks to predict the
CO2 future direction. Outputs of decreasing CO2 variation direction and ensemble learners
are the foundations for CO2 variation predictions.
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Figure 2. Methodology Steps.

4.1. Time-Series to Image Transformation

The input represents time-series data of environmental features defined by X =
{X1, X2, ..., Xk}, such that each Xi where i ∈ [1, k] describes the time-series data of a single
environmental feature. The discussion about the extracted environmental features is
provided in the experimental setup. Accordingly, Xi = {xi1, xi2, ..., xin}, such that n is the
number of observations. To simplify the subsequent equations, xj ∈ Xi would represent
values of a feature i at timestamp j.

The exploratory data analysis showed that a lag time of up to 20 min for each envi-
ronmental feature can be used to predict the CO2 concentration changes for a conference
room that fits 12 people. As such, there is a need to reflect the existing time correlation
in the feature engineering step. Python packages can be used for extracting time-based
features such as the Time Series Feature Extraction Library [37] and Time Series FeatuRe
Extraction on the basis of the Scalable Hypothesis test [38] (tsfresh). The extraction of hand-
crafted features resulting from these two packages requires incorporating domain-specific
insights, which are not available for the case under study. Additionally, the large feature
space necessitates integrating feature selection or transformation steps. To address the
limitations of the hand-crafted extraction of features, DNNs create their own features by
the composition of multiple non-linear functions, each representing combinations of the
input dataset features. One concern with DNNs, in their crude form, is their inability to
model the time aspect, despite the manual process of including lagged versions of the
features. Therefore, a feature engineering stage is incorporated to reflect the underlying
time correlation between lagged versions of the available variables.

Wang and Oates [39] have devised the Gramian Angular Field (GAF) method for
the transformation of time series data into a symmetrical 2D matrix. As opposed to
other time series-to-image transformations, the resulting GAF image exposes the temporal
dependencies between data points in a time series. Towards obtaining GAF images, two
steps are followed. In the first step of the transformation, the time series data are normalized
between [0, 1]. The normalization process is conducted in the following equation, whereby
x̃j is the normalized value:

x̃j =
xj −min(Xi)

max(Xi)−min(Xi)
(2)
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In the second step, the normalized data is transformed into the polar coordinate system
that is calculated as follows:

φj = arccos(x̃j), 0 ≤ x̃j ≤ 1

r =
tj

N
, tj ∈ N (3)

After obtaining the transformation to polar coordinates for each data point, the next
step is to generate a matrix that reflects the data dependencies between the new form
of observations. The GAF technique exploits the angular representation by calculating
the pairwise trigonometric sum between the points to reflect the temporal correlations.
Considering a time frame of k seconds, such that θj,j+1 = cos(φj + φj+1), the k× k GAF
matrix is defined as follows: 

θ0,0 θ0,1 . . . θ0,k−1
θ1,0 θ1,1 . . . θ1,k−1

...
. . . . . . . . .

θk−1,0 θk−1,1 . . . θk−1,k−1

 (4)

The GAF matrix fits the requirements of the use case under study. First, it exposes the
temporal dependencies present in the original time series as the time increases progressively
from top-left to bottom-right. Second, the polar coordinates expose the relative correlations
between data points with the help of superposition. Lastly, the time-series information is
retained in the GAF matrix, which is beneficial when there is a need to integrate original
data in any envisioned process. These original values can be extracted from the diagonal
values. Each value in the GAF matrix is in the range of [−1, 1], which can be easily
transformed into an image.

4.2. Individual Learners

The GAF images resulting from the time-series transformation process reflect the
correlation by colour intensities. In their turn, these intensities translate the time corre-
lation aspect of environmental sensory data through spatial resolution. CNNs, one of
the variations of DNNs, are a strong candidate to find patterns in the produced grid-like
structures and the output variable of concern. This selection stems from a CNN’s capability
to infer spatial dependencies in a gird-structured input via its filters that extract specific
features. Moreover, a CNN’s architecture is characterized by its sparse connections and
weight sharing, which enables any developed model to be swiftly retrained and tested [40]
compared to other resource-intensive and data-intensive DNN models such as LSTM.
These properties are desirable for CNN models’ deployment in a resource-constrained and
dynamically changing environment.

Predicting the variations in CO2 values is split into two steps. The first step is achieved
using the individual learners considering the future direction of CO2 variations as its output
variable. The direction is divided into three groups, decreasing equivalent to 0, increasing
equivalent to 2, and constant equivalent to 1. The new definition of the output variables
transforms the task at hand from regression to a classification task, which allows exploiting
the wealth of literature for CNN-related classification tasks. The second step is achieved
using the ensemble learner explained in the following sections.

A large body of research was conducted in the field of image recognition that ex-
perimented with different CNN architectures to obtain good accuracy results for their
respective tasks. Therefore, a Transfer Learning (TL) approach is adopted to extract spatial
features in the GAF representations to exploit these accumulated contributions. TL is a
methodology to transfer the knowledge gained from an extensive source dataset to improve
the learning process in the target dataset [41]. In DL, this methodology is implemented
by transferring the weights learned from the source model to the target model. The dif-
ferences between the source task, trained on the ImageNet dataset [42], and target tasks,
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trained on GAF representations, necessitate re-tuning the model’s weights using the target
dataset or augmenting the initial model with extra layers so that the resulting model can
accrue some of the characteristics of the target dataset. The employment of a TL approach
has several benefits. The available pre-trained CNN models have proven their merit in
a similar domain, saving the time needed to train and tune CNN models from scratch.
The addition of more layers and consequently the exponential growth in the number of
parameters are required to extract more abstract features from the input images. This step
is integral for pattern recognition, which pre-conditions the existence of a large amount of
data. The limitations of the deployment environment in terms of the constrained resources
and gathered data drive the adoption of the TL approach.

The newly developed CNN model is built on each of the environmental features,
such that the predictor of each variable is the feature’s GAF image for the history time
window and the response variable is the direction of the variation of CO2 concentration
levels for the future time window. The past and future time windows are denoted by h and
f. Assuming that the CNN model is denoted by a function Φi built on the data from the
environmental feature Xi, the predictor input GAF image by GAF(Xi ,h), and the prediction
is d f , the created CNN model on the feature Xi is as follows:

Φi(GAF(Xi ,h), d f ) (5)

The following example is given to clarify the notation, the notions of history and
future time windows, and the expression in general. If the current time is t = 10 with a
one-minute granularity, and the history and future time windows are 5 min for a feature
X1, the GAF image represents X1 values from t = 5 to t = 10. The future time frame
encompasses the values at t = 11 and t = 16. Assuming that CO2 at t = 11 is equal to 545
and CO2 and at t = 16 is equal to 547, which means that d f = 1.

4.3. Ensemble Learner

The dataset is split into training, validation, and testing sets. Models of each individual
feature are developed using the training set. Since each individual learner outputs a
probability prediction of each class, the probability of predicting decreasing change on
the validation set is retained. This method is adopted to avoid overfitting the individual
learners on the validation set. The individual learner’s classification task predicts the
direction of future CO2 variations, instead of the variation itself. Therefore, the learner’s
output probability values are combined with other features, describing the historical e2s
values of each environmental feature, as inputs to an ensemble model to predict CO2
variations. This method is referred to as a Stacked Generalization ensemble. These features
are obtained from the validation set. The set of outputs of all the individual features is
denoted by Ot such that oit ∈ O represents the output of environmental feature i at the
current time t. The set of historical features is defined as Ft such that fit represents the
historical environmental e2s values. The ensemble learner is denoted by Ψ. The predictors
of the ensemble learner are represented by L = O ∪ F and the output is p f , such that p
represents the variation of CO2 concentrations in f = t + w, whereby w represents the
future time window. The notation of the ensemble learner is as follows:

Ψ(L, p f ) (6)

The exploratory data analysis has shown a varying correlation between CO2 values
and the other environmental sensors. Because correlation values do not fully reflect the
relationship between different environmental features, all the features were included in
the Individual Learner step. This step yielded learners that are skillful in modelling
the relationship between each environmental feature and the CO2 variation direction.
However, since all of the features contribute to some extent to this variation, there is a
need to reflect the relative importance of each model. Assigning weights based on the
classification results is a method to convey the contribution of each model to the regression
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task. The environmental features’ predictions can be replaced by averaging the outcomes
of each feature. However, this method does not explore the potential interactions existing
between the input variables and undermines the classification of weak individual learners.
Therefore, in this paper, different ensemble methods, representing supervised ML models,
are explored and evaluated.

5. Experimental Setup

This section discusses the experimental procedure, which explains the different steps
undertaken to solve the issue under study. After that, details of the implementation
procedure are outlined and the evaluation criteria are investigated.

5.1. Experimental Parameters

The analysis of HMCOVP commences by applying it to a large conference room,
referred to as room00 and then later the models are evaluated on a smaller conference
room, referred to as room01. Room00 can fit 12 people, with an area comprising 28.0 m2

and a volume of 89.6 m3 while room01 is of area 14.2 m2 and a volume of 38.3 m3 [25]. This
process is followed to evaluate the transferability of the developed models to a room of
different capacities. The hierarchical structure of HMCOVP promotes its transferability,
which addresses a common concern in the IAQ-related literature. The following paragraphs
explain the parameters involved in the experimental procedure summarized in Figure 3.

Figure 3. Summary of Experimental Parameters.

History and Future Time Windows: The EDA highlighted the relationship between
lagged environmental features and the CO2 concentrations to infer a reasonable prediction
time window. This EDA showed that a prediction horizon of 20 min is viable for the
available dataset. The analysis includes the results of applying HMCOVP with the same
time window for history and future time horizons. These parameters are subsets of the
ones evaluated in FECOP. The remainder of the possible combinations will be considered
in future work, given that the current formulation is not concerned with the memory
constraints of the deployment environment. The history and the future time horizon will
be referred to as “h-{w}_f-{w}”, whereby w represents the time window. Time windows of
5, 10, 15, and 20 min were considered. The combinations of the history and future time
windows experimented with are h-5_f-5, h-10_f-10, h-15_f-15, and h-20_f-20.

The time series to image transformation step yielded several datasets that vary depend-
ing on the historical and future time windows. A 1-minute sliding window is implemented
to produce larger datasets. For example, for h-5_f-5, a single row is formed by predictors
representing GAF images from t = 0 to t = 5 and the CO2 variations from t = 5 to t = 10.
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The next row would represent the GAF images from t = 1 to t = 6 and the CO2 variations
from t = 6 to t = 11. The resulting process yields datasets of different sizes that range
between 328,647 to 334,677 data points for training data and 74,085 to 74,730 data points for
testing data for different history and future time horizons. The training and testing data
points for different history and future time windows are summarized in Table 1.

Table 1. Dataset Sizes.

History (Minutes) Future (Minutes)
Training Data
Testing Data

h-5 f-5
334,677
74,730

h-10 f-10
332,667
74,514

h-15 f-15
330,657
74,300

h-20 f-20
328,647
74,085

Experimental Features: The original dataset consists of five environmental features:
pressure, temperature, humidity, CO2 concentration, and activity levels. The activity
level or PIR is a categorical variable formed of 0.5 increments from 0 to 12, amounting to
25 variables. The PIR feature space is first reduced to four categories, each representing
eight contiguous activity levels, except 0, which is a category on its own. The one-hot
encoding schema would create many 0–1 variables, which cannot be transformed into an
image representation. Therefore, the PIR feature is transformed into two features, denoted
by temperature_PIR and CO2_PIR. These two features are chosen because they exhibit the
highest correlation with the PIR feature. The quantities are obtained by calculating the
ratio of CO2 and temperature to the PIR feature. Six environmental features are obtained
following this feature engineering step that includes CO2, temperature, pressure, humidity,
CO2_PIR, and temperature_PIR.

GAF Representation: Normalization is a fundamental step in the time series to image
transformation. Two main methods can branch out from this step, referred to as “local”
and “holistic” approaches. Each of these methods targets a specific angle of the studied
phenomenon. On the one hand, the “local” method calculates the minimum and the
maximum in a defined w. This representation accentuates the small differences in such
windows, reflected by the colour intensities of the GAF representation. On the other
hand, the “holistic” approach calculates the minimum and the maximum over the whole
datasets of a single environmental feature. The resulting GAF images are in concert with the
dynamics in the whole dataset, which means that the images’ colour intensities mirror the
differences in values in a w compared to value differences over the whole dataset. Both of
these approaches are investigated in the experimental procedure. The existence of outliers is
fundamental in the GAF representation, affecting the accuracy of CO2 variation predictions.

The EDA provided interesting insights into each environmental feature. Features
such as CO2, CO2_PIR, and humidity displayed highly skewed distributions with large
differences between the minimum and maximum values, to the detriment of the “holistic”
approach. If these features are normalized based on these extremes, the majority of the
data will fall within a small margin, and the resulting differences in GAF images will
be minuscule. As a result, the CNNs will fail to infer any meaningful relationship from
the GAF representation. A log transformation is applied to these features to mitigate the
effect of outliers and to shrink the values’ ranges. Other features, such as pressure and
temperature features displayed little variations. The exponential function is applied to each
of these features to amplify these small differences. These concerns are not shared with the
“local” approach, since its GAF representation depends on the minimum and maximum
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calculated in a time window. Therefore, the differences in feature values will be mirrored
in the GAF representation despite their value ranges resulting from any transformation.

Individual CNN Models: The research community provides ample image recognition
models for individual learners that can be applied to the generated datasets. These pre-
trained CNN models include VGG16 and VGG19 [43], ResNets [44], ResNet_inception [45],
Inception [46], and Xception [47] with different respective architectures. The experimental
procedure evaluated all these CNN models. Keen readers can find the details of their
respective architectures in the papers listed with every CNN model. Each of their architec-
tures includes many convolutional and Fully Connected Layers (FCL). In the experimental
procedure, the last layer that outputs the classification result is removed, given that a
different dataset with different outputs is used in this study. Therefore, the remainder of the
layers is augmented with a global average pooling layer and Fully Connected Layers (FCL).
The obtained CNN models include either no FCLs, one FCL, or two FCLs. The number of
neurons of these FCLs ranges from 64 to 4096 neurons.

Ensemble Learner Algorithms: Different algorithms were evaluated for the ensemble
learning step. In particular, the same algorithms used in FECOP were evaluated following
HMCOVP. These ML algorithms include RF, DT, RR, and DNNs. This step is followed
to emphasize the distinction between the two methodologies in terms of the validity of
feature engineering techniques.

Transferability Parameters: The transferability of the developed models is evaluated
by applying them to a small room, denoted by room01, that fits two people. When the
results were unsatisfactory, part of the training data of the target room is used to tune
the parameters of the source room’s model. The fraction of the used training data is
{0.1, 0.25, 0.33}. Moreover, this experimental analysis included re-tuning or re-training the
ensemble learners. Future works will include a more profound evaluation of the HCOMVP
transferability.

5.2. Experimental Procedure

In the training phase of the methodology, the dataset is split into training, validation,
and testing datasets. The training dataset is used to train the individual learners. The
validation dataset is used to obtain the outputs of each of the individual learners that
are used with the historical e2s values of environmental features in the validation set as
inputs to train the ensemble learners. Such a split is followed to avoid overfitting the
ensemble learner if fed with the outputs of the individual learners applied to the training
set. After obtaining the trained individual learners and the ensemble learner, these learners
are evaluated on the testing set.

5.3. Evaluation Metrics

The HMCOVP is evaluated against FECOP [30] and 1D CNNs, a popular method for
time-series prediction. Since the problem of predicting CO2 variation prediction is a regres-
sion task, multiple evaluation metrics such as Mean Square Error (MSE) or Mean Absolute
Error (MAE) can be used. Choosing one of these metrics depends on the experiments’
main goals.

The MSE metric emphasises the large errors while minimizing the effect of the smaller
ones. On the other hand, the MAE equalises the effect of all individual errors. No anomaly
detection method was applied to sanitize the gathered data, which suggests the existence
of data corrupted with noise. This noise originates either from the environment itself or
from the inaccuracies of the sensing technologies. Such circumstances call for a robust
evaluation metric that can offset the noise’s effect. On a different note, the small prediction
errors that are continually produced by models can result in long-term consequences to the
HVAC systems. The predictions of CO2 variations affect the ventilation systems that need
to maintain the indoor CO2 concentrations within acceptable levels and the estimation of
current occupancy changes dictating the HVAC system’s operation. Consequently, small
deviations, while insignificant in the short term, can accumulate unnecessary activation
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of HVAC systems, increasing the building’s Carbon footprint and energy expenditure.
Large deviations of predictions originate either from models’ under-fitting data, which
can be identified if it is a shared trend among different input values or from the existence
of anomalous data that the model fails to fit. The anomalous data can be manifested by
wrong sensor readings, corrupting the data with noise, or the occurrence of rare events
that have little implications on long-term energy expenditure. As such, the robustness
requirement and the equal importance of small and large deviations favour the use of MAE
as an evaluation metric.

The MAE evaluation metric is used to find the best set of hyper-parameters on the
validation set and to compare the performance of the HMCOVP, FECOP, and 1D CNNs on
the testing set. The methods are evaluated on a set of CO2 variations exceeding pre-defined
thresholds, including {5, 10, 20, 40, 50, 75, 100}. These thresholds unveil different methods’
capability to predict big variations in CO2 concentration, which can potentially activate
the HVAC systems and determine the instantaneous energy expenditure. The average
MAE combining all these thresholds is employed to highlight the performance differences
between the proposed methodology and the other approaches, providing a comprehen-
sive overview of the proposed methods’ performance under different circumstances. The
training and instance-wise testing times are incorporated into the evaluation to gauge the
methods’ ability to learn in resource-constrained environments. Different CO2 variation
thresholds and execution times are important factors of the deployment of proper solu-
tions for building operators. The accurate predictions of CO2 changes are envisioned to
facilitate the ventilation system’s decision-making processes. Therefore, the reduction in
the superfluous activation of these systems translates into limiting energy expenditure.
In the grand scheme of things, this methodology contributes to the mitigation of Carbon
emissions, which can be quantified depending on the ore used for electricity production.

5.4. Implementation

The different algorithms used throughout this paper were built using sklearn [48]
and Keras [49] python libraries. The developed models were evaluated on Windows
10 PC with a 3.00 GHz 24-Core AMD Threadripper processor, 128 GB of RAM, and 8 GB
Nvidia GeForce RTX 3060 Ti GPU. The code is made available on the GitHub repository
(https://github.com/Western-OC2-Lab/hierarchical-CO2, accessed on 14 May 2023).

6. Results and Discussion

This section analyses and discusses the results obtained from applying the HMCOVP.
Firstly, it compares the performance of the HMCOVP using different parameters over
different combinations of history and future time windows. After that, the best parameters
are evaluated against competing methodologies. Lastly, the transferability of the models is
investigated when applied to a smaller conference room.

6.1. Parameter Selection

Under different history and future time windows, this subsection explains the effect
of parameters, including the GAF representation method, CNN models and their hyper-
parameters, and ensemble learners. To that end, a subset of 10,000 data points for each
history and future window combination (h&f) are used for parameter selection. A trial-
and-error approach is conducted to find a subset that can balance training and evaluation
times and underfitting avoidance. All the combinations of features were evaluated using
a Grid Search method. More profound and less time-demanding approaches [50] will
be investigated in future work. The sample of 10,000 data points is split into training,
validation, and testing sets following the explained experimental procedure. Since many
parameters are involved in the parameter selection procedure, this section explains a subset
of these experiments. Keen readers and practitioners can refer to the code available through
the GitHub repository for a comprehensive overview of the obtained results and the effect
of all parameters. As such, the analysis in this section is restricted to the effect of different

https://github.com/Western-OC2-Lab/hierarchical-CO2
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ensemble learners, the h&f combinations, and CO2 variation thresholds on the performance
of the HMCOVP.

Table 2 summarises the findings of the parameter selection grouped by h&f. The
best-performing combination of parameters and hyper-parameters with respect to each
h&f are highlighted in bold. To highlight the significance of these differences in the MAE, it
is important to map the obtained MAE values to their physical representations. The CO2
variation predictions help the ventilation systems in their decision-making process. There-
fore, as previously mentioned, small MAEs can accumulate to falsely trigger the ventilation
system. Moreover, less accurate CO2 variation predictions imply inaccurate prediction of
the current effect of occupants and ventilation systems on CO2 concentration variations.
Both of these factors contribute to reflecting an imprecise image of the environment in the
HVAC decision-making systems. Accordingly, HVAC systems can be activated either early
or late, contributing to potential violations of indoor environmental requirements and an
increase in energy expenditure. As such, the MAE reflects a fundamental aspect of the
HVAC system operation.

Table 2. Parameter Selection on the Training Dataset.

History and Future
Time Window (in Minutes) Ensemble Algorithm CNN Model CNN FCL Method MAE

h-5_f-5

RR VGG_16 [64] holistic 1.61

DT Resnet_152 [256] local 0.65

RF VGG_16 [512] holistic 0.4

NN Resenet_152 [512, 256] holistic 1.3

h-10_f-10

RR VGG_19 [4096] local 3.25

DT VGG_19 [512] local 0.84

RF Resnet_152 [128, 64] local 0.765

NN Resnet_101 [256, 128] local 2.63

h-15_f-15

RR VGG_16 None local 5.54

DT Resnet_152 [256, 128] local 0.98

RF Xception None local 1.22

NN Resnet_101 [256] local 4.48

h-20_f-20

RR Resnet_50 [128] holistic 6.07

DT Resnet_101 [128, 64] local 1.18

RF VGG_19 [4096] holistic 0.84

NN Resnet_50 [128, 64] local 4.91

The variants of decision trees are the best-performing algorithms, represented by DT
and RF. This shows that the non-linearity defines the relationship between the individual
learners’ predictions and the historical e2s environmental features manifested through the
superior MAE of non-linear algorithms (NN, RF, and DT) compared to the RR algorithm.
The expansion of the prediction window contributed to a systematic increase in the MAE
for all algorithms. This consensus is broken by the RF algorithm such that its MAE value de-
creases when the prediction horizon increases from 15 to 20 min. However, with more runs
to execute, this exception will be reversed to conform to the trend. This increase in MAE is
expected with the expansion of the future time window, given the increased probability of
uncertainties affecting the environment, including the CO2 concentrations. In terms of the
GAF representation, the best-performing models for each h&f combination do not highlight
a preferable method. However, most ensemble learners display a better performance with
the local method. Therefore, the CNN models extract representative information of CO2
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variation direction with better accuracy when fed with GAF representations that accentuate
local differences within a time window.

The summarized results in Table 2 have shown some parameter combinations that
clearly outperform others. However, a clear limitation of the MAE parameter in this
application is that it is skewed toward the values that constitute the majority of the response
variable. In order to clarify this caveat, Figure 4 shows the percentage distributions of
different absolute values of thresholds defined in the evaluation criteria. These results
suggest that more than 60% of the variations are under 5 ppm. Therefore, a model with a
low MAE is not fully representative of its performance on drastic changes in data. These
radical changes are of higher importance for HVAC systems and building operators, but
they are less common in the studied dataset. As a result, the crude MAE is replaced by
a metric that averages the MAEs over each of the defined thresholds. This new metric is
referred to as Thresh_MAE.
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Figure 4. Thresholds’ Data Percentages.

Figure 5 shows the differences in MAE for each of the defined thresholds for the two
best-performing models in Table 2 that use DT or RF for ensemble learning. Figure 5a
shows that RF combined with the other parameters included in Table 2 outperforms its DT
counterpart when no thresholds are imposed. However, the performances start to diverge
with increasing thresholds until a huge gap in performance is prominent. This trend
shows that the RF model performs well on small variations in CO2 while DT outperforms
RF when more drastic changes are involved. A similar observation can be applied to
Figure 5b, whereby DT outperforms RF when thresholds are considered. However, a
notable separation exists between the results of the RF for higher thresholds with the
expansion of the prediction time horizon. This discrepancy is attributed to the abundance
of more extreme variations with the expansion of future time windows. This fact enables
the models to better map the relationships between these extreme values and the input
variables, manifested by the lower MAE for higher thresholds.
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(b) DT vs. RF for h-20_f-20

Figure 5. MAE for Different Thresholds.

Following the newly defined metric, Thresh_MAE, the best-performing parameters
are shown in Table 3. As opposed to pure MAE, DT clearly outperformed all other en-
semble learners and showed superior performance in predicting drastic variations. This
observation is demonstrated by the decrease in Thresh_MAE value compared to MAE
value, when DT is involved, for all h&f combinations. All the CNN models included
FCLs, which emphasize the existing distinction between the source and target datasets in
terms of the interactions between the extracted CNN features. Lastly, the local method of
GAF representation dominates the better-performing combinations. This result shows that
CNNs produce more informative features for CO2 direction prediction when the effect of
small differences in values are magnified, resulting in more accurate classifications. The
parameters included in Table 3 qualify for the next stage in the evaluation pipeline by
training them on the whole training data and evaluating their performance on the testing
test. The small Thresh_MAEs obtained in Table 3 unveil that the models overwhelm-
ingly captured the factors affecting the environment. However, these small differences
show that some environmental conditions are not considered, potentially playing a role
in deciding the future variations in CO2 concentrations. These conditions may include
the uncertainty of the environment that can be challenging to incorporate. Another factor
can be connected to the interpolation strategy that is not reflective of the environmental
dynamics. Lastly, the effect of the ventilation systems’ activation is excluded from the
gathered data. This condition can affect the dynamics of the CO2 variation in connection
with other environmental features.

Table 3. Best-Performing Combinations.

h&f Ensemble CNN Model CNN FCL Method Thresh_MAE

h-5_f-5 DT Xception [512] local 0.11

h-10_f-10 DT Resnet_50 [128, 64] local 0.6

h-15_f-15 DT Resnet_152 [256, 128] local 1.0

h-20_f-20 DT Resnet_101 [128, 64] local 1.49

6.2. HMCOVP vs. FECOP vs. 1D CNN

Table 4 summarises the performance of the three methods, our proposed method-
ology HMCOVP, FECOP, and 1D CNN, which are evaluated using Thresh_MAE and
their training times. The best-performing combination configurations of hyper-parameters
for the FECOP and 1D CNN are applied to the testing set. Similarly, the HMCOVP was
implemented using the configurations outlined in Table 3. The HMCOVP significantly
outperforms the other two methods in the prediction of the future CO2 variations in all
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the h&f combinations. The results prove the GAF images are better representatives of
the time correlation aspects than the local features extracted by the 1D CNN to reflect
these correlations. Additionally, the combination of image representations and numerical
features present in the HMCOVP outperforms the rigorous feature engineering process
of FECOP. While the HMCOVP incorporates some of the FECOP features, the distinctive
quality of the features obtained from CNN models contributed to its superior performance.
In some way, the HMCOVP combines the numeric features extracted in the FECOP and the
time correlation found in the 1D CNN approach. These results prove the significance of
hierarchical modelling.

Table 4. HMCOVP vs. FECOP vs. 1D-CNN.

Parameter Thresh_MAE Training Time (min)

Methodologies HMCOVP FECOP 1D-CNN HMCOVP FECOP 1D-CNN

h-5_f-5 10.14 40.89 2331.11 229.69 2.1 36.5

h-10_f-10 14.48 52.52 8969.98 360.34 2.275 22.62

h-15_f-15 19.37 66.83 9201.81 716.54 2.83 19.16

h-20_f-20 27.74 77.21 10,128.83 381.78 3.62 17.84

The training times highlight salient differences between the methods. The 1D CNN
method training time decreases with the expansion of the time window. This trend is
expected given that fewer data are available for training when this happens. On the other
hand, this trend is reversed for the FECOP. This phenomenon can be attributed to the
feature engineering step, which extracts lagged versions of each environmental feature.
As such, more features are extracted with the expansion of the time window, contributing
to an increase in training time. Lastly, the HMCOVP does not exhibit any trend with the
changes in the time window. Different configurations with varying model complexities
contribute to the non-uniformity of training times. Compared to the FECOP and 1D CNN,
the HMCOVP takes significantly more time to train given that it requires training six DL
models and one ensemble model. The training of individual models can be executed in
parallel, which significantly reduces the total training time. Therefore, a tradeoff exists
between training times and the accuracy of the developed models.

6.3. Transferability Assessment

After proving its superior performance in predicting CO2 variations in room00, the
next stage assesses the transferability of the developed models by applying them to a
smaller room, referred to as room01, which only fits two people. The FECOP models’ re-
sults are obtained by training the models on the training set of room01. Both the HMCOVP
and FECOP approaches are evaluated on the testing set of room01 using the Thresh_MAE
metric. The evaluation criteria include the testing time per instance to infer the compu-
tational footprint of these methods. As for the HMCOVP, the models developed using
room00’s training data are applied to the testing data of room01 without fine-tuning any of
its individual learners or ensemble learner. As such, the transferability of the developed
models is assessed in different spatial settings.

Table 5 summarises the results of the outlined process. In terms of predictive perfor-
mance, the untuned HMCOVP outperforms its counterpart in every h&f combination. The
HMCOVP models performed best with the h-15_f-15 and h-20_f-20 compared to other com-
binations. The h-15_f-15 combination performed best in terms of its Thresh_MAE, breaking
the established trend of increasing Thresh_MAE with the increase in the prediction horizon.
The h-20_f-20 experienced the least performance percentage gap in Thresh_MAE from
room00 to room01. This observation means that the larger room’s environment dynamics
acquired through hierarchical modelling closely resemble those of the smaller room in the
bespoke combinations. As for smaller prediction horizons, it is expected that smaller rooms
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would exhibit different variations. In fact, changes in the small room’s environment, such
as the existence of occupants, can momentarily affect the CO2 concentrations as opposed
to the more spacious rooms. Lastly, the differences in the capacities of both rooms result
in changes in the ranges of activity level-related features; thus, affecting the HMCOVP
models’ accuracy. Consistent with the previous analysis, the FECOP approach is a less time
and resource-intensive approach, manifested by its lower per-instance testing time. A 6–7×
speedup is obtained by the FECOP approach; however, at the expense of its underwhelm-
ing prediction performance. The speedup benefit is blurred when the individual learners’
are parallelised.

Table 5. Room01 Result Comparisons.

Parameters Thresh_MAE Time/Instance (ms)

Methodologies HMCOVP FECOP HMCOVP FECOP

h-5_f-5 41.11 49.35 6.24 0.67

h-10_f-10 43.14 52.4 6.48 1.14

h-15_f-15 39.90 55.9 14.64 2.16

h-20_f-20 49.93 54.2 10.44 1.44

The differences in feature scales between the two rooms require incorporating some of
these missing characteristics into the developed HMCOVP model. Thanks to the hierar-
chical structure of the HMCOVP, the induction of this novel information can be realized
on the level of individual and ensemble learners. As a result, the next step can include
one of these scenarios. The first scenario re-tunes the individual CNN models by freezing
some layers and training others. The second scenario replaces the old ensemble trained on
room00 training data with a newer one trained using room01’s training data. While both
scenarios are viable, choosing one of them depends on the obtained results and the nature
of the data. The results have shown that the greatest performance divergence occurs in
the ensemble learning phase as the individual learners almost produce the same accuracy
results in both rooms. This gap can be surmised by the differences in e2s values and their
effect on the future CO2 variations. Therefore, the ensemble learners are retrained using a
subset of room01’s training data and evaluated using its testing data.

Figure 6 shows the effect of retraining the ensemble learner with different training
sizes. The HMCOVP’s retrained ensemble model regressed in performance when applied
to the h-5_f-5 combinations, regardless of the integrated training set’s size. This observa-
tion essentially suggests that the tuning process for this combination should incorporate
individual models. On the other hand, a significant performance improvement is noted
for all the other combinations. The greatest improvement is observed for the h-20_f-20
combinations, whereby its performance is the closest to the model applied to room00. For
all the improved combinations, retraining the ensemble model with a quarter of the training
set yields the best results. The results of these combinations show that incorporating the his-
torical numerical values with the individual learners’ outputs contributes to performance
enhancement. However, this alteration does not fully capture the dynamics of the target set,
representing the small conference room. To mitigate the performance gap in CO2 variation
predictions, the individual learners should be tuned the same as the ensemble learner. This
aspect will be addressed in future work.
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Figure 6. Effect of Tuning.

7. Conclusions

Buildings are one of the main contributors to energy consumption, whereby HVAC
systems represent a controllable energy consumer. Specifically, ventilation systems are
activated based on the requirements and existence of occupants. Therefore, the prediction
of occupants and the utility of current ventilation control can be achieved through accurate
predictions of proxy indicators, CO2 concentration changes, in particular, are key to the
optimization of HVAC systems. This work proposes a hierarchical modelling approach,
termed the HMCOVP, with the goal of accurately predicting CO2 concentration changes.
The HMCOVP incorporates the time aspect by creating image-based lagged environment
features and a hierarchical structure that enables the transferability of the developed
models. These two features are missing in the state-of-the-art approaches. The HMCOVP
was evaluated using a host of history and future time windows in a large office room
and outperformed the state-of-the-art approaches by 400% using the mean absolute error
metric. The transferability of the HMCOVP is investigated by applying and re-tuning
the developed models in a smaller room and promising results are obtained. Overall, the
HMCOVP successfully predicted future CO2 concentration changes in different spatial
settings, facilitating the decision-making process of ventilation systems. Future work will
experiment with ways to shorten the training time of the HMCOVP using feature selection
techniques and enhance the transferability performance.
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