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Abstract: Well-separated pair decomposition (WSPD) is a well known geometric decomposition used
for encoding distances, introduced in a seminal paper by Paul B. Callahan and S. Rao Kosaraju in
1995. WSPD compresses O(n2) pairwise distances of n given points from Rd in O(n) space for a
fixed dimension d. However, the main problem with this remarkable decomposition is the “hidden”
dependence on the dimension d, which in practice does not allow for the computation of a WSPD
for any dimension d > 2 or d > 3 at best. In this work, I will show how to compute a WSPD for
points in Rd and for any dimension d. Instead of computing a WSPD directly in Rd, I propose to
learn nonlinear mapping and transform the data to a lower-dimensional space Rd′ , d′ = 2 or d′ = 3,
since only in such low-dimensional spaces can a WSPD be efficiently computed. Furthermore, I
estimate the quality of the computed WSPD in the original Rd space. My experiments show that for
different synthetic and real-world datasets my approach allows that a WSPD of size O(n) can still be
computed for points in Rd for dimensions d much larger than two or three in practice.

Keywords: well-separated pair decomposition; high-dimensional data; nonlinear mapping

1. Introduction

Given a set of points S ⊂ Rd, |S| = n, a well-separated pair decomposition (WSPD)
can be seen as a compressed representation for approximating (n

2) pairwise distances of n
points from S into O(n) space, where the dimension d is considered a constant. The formal
definition of a WSPD will be given in Section 2. A WSPD can also be seen as a clustering
approach, e.g., a WSPD is a partition of the (n

2) edges of the complete Euclidean graph into
O(n) subsets. This decomposition was first introduced in a seminal paper [1] by Paul B.
Callahan and S. Rao Kosaraju in 1995. It has been shown in [1] that the size of a WSPD,
when computed by their algorithm, is exponential in d. Hence, it has never been used in
practice for dimensions larger than three.

However, a WSPD has been shown to be useful in many different applications. It is
known that a WSPD can be used to efficiently solve a number of proximity problems [2],
such as the closest pair problem, the all-nearest neighbors problem, etc. It is also known that
a WSPD directly induces a t-spanner of a point set or provides a (1 + ε) —approximation
of the Euclidean minimum spanning tree. The authors in [3] used a WSPD to compute
approximate energy-efficient paths in radio networks. Their algorithm reduced the com-
plexity of computing such paths to O(1) by moving most of the computation to the pre-
processing stage by precomputing a template path for each pair of sets compressing the
pairwise distances.

Since a WSPD proved to be an essential decomposition for different important prob-
lems, in this paper, I investigate to what extent a WSPD can be helpful for situations where
the input S ⊂ Rd and the dimension d is much larger than two or three.

On the technical side, a WSPD of a set of points S ⊂ Rd is represented by a sequence
of pairs of sets (Ai, Bi), i = 1, . . . , k, called dumbbells, such that (i) for every two distinct
points a, b ∈ S there exists a unique dumbbell (Ai, Bi) such that a ∈ Ai, b ∈ Bi; (ii) the
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distances between points in Ai and Bi are approximately equal; (iii) the distances between
points in Ai or points in Bi are much smaller than the distances between points in Ai and Bi.

As stated before, the size of a WSPD, i.e., the number of dumbbells, is known to grow
exponentially with the dimension d. Hence, instead of computing a WSPD directly on
S ⊂ Rd, I first propose to transform the points in S with a nonlinear function fθ : Rd → Rd′ ,
d′ = 2 or d′ = 3, where θ denotes the set of learnable function parameters. The parameters
θ are determined such that the function fθ preserves the properties of S that are important
for a WSPD, e.g., preserves pairwise distances for points in S. If the function fθ manages
to preserve most of the important information for a WSPD, there is hope that the WSPD
computed on the mapped points fθ(S) ⊂ Rd′ , d′ = 2 or d′ = 3, where the size of the WSPD
is O(n), will output “dumbbells” that are meaningful even for the original input S. If this
is the case, the reconstructed dumbbells should continue to be “dumbbell-shaped” in the
original space. In practice, some of the reconstructed dumbbells can become “bad” because
they do not approximate the distances in any practical sense. However, I will show that the
number of “bad” dumbbells is negligible in practice. Moreover, such “bad” dumbbells can
be easily refined without significantly increasing the total number of dumbbells. One tool I
employ might be of independent interest: I implemented a WSPD following the nontrivial
algorithm of the partial fair-split tree that guarantees the construction time of O(n log n)
and a WSPD of O(n) size. To my knowledge, my implementation is the first open-source
publicly available implementation of a WSPD that carefully follows the original algorithm
in [1]. The implementation of a WSPD in the ParGeo C++ library (see [4]) uses a simple
fair-split kd-tree and as such does not ensure theoretical bounds on the size of a WSPD.

Recently, there have been attempts to improve classical clustering for high-dimensional
datasets. The authors in [5] have proposed a deep embedded clustering method that
simultaneously learns feature representations and cluster assignments using a nonlinear
mapper fθ . The work of [6,7] proposed an interesting Maximal Coding Rate Reduction
principle for determining the parameters θ of the function fθ . The work of [8] further
developed that idea in the context of manifold clustering.

Although this work was motivated by the research above, I note that their use of a
function fθ was aimed at improving clustering in the sense that a nonlinear mapper fθ was
used as an additional mechanism to “learn” a better set of features that would enable a
better clustering. In my approach, fθ , which is represented by a neural network, is primarily
used as a mapper to a very low-dimensional representation of the original dataset, since
only there can a WSPD be computed efficiently.

In the rest of this paper, I will formally define a WSPD and state two important
theorems. Furthermore, I will introduce two different functions for fθ and present steps for
computing a WSPD for high-dimensional data sets. Finally, I provide empirical evidence
for the claim that a WSPD of size O(n) can be computed efficiently for dimensions d much
larger than three.

2. Preliminaries

Let S be a set of n points in Rd. For any A ⊆ S, let R(A) denote the minimum
enclosing axis-aligned box of A. Let CA be the minimum enclosing ball of R(A), and let
r(A) denote the radius of CA. Let Cr

A be the ball with the same center as CA but with radius
r. Furthermore, for two sets A, B ⊆ S, let r = max(r(A), r(B)), and let d(A, B) denote
the minimum distance between Cr

A and Cr
B. For example, if the CA intersects CB, then

d(A, B) = 0 (Figure 1).

Definition 1. A pair of sets A and B are said to be well separated (a dumbbell) if d(A, B) > s · r,
for any given separation constant s > 0 and r = max{r(A), r(B)}.
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Figure 1. An example of a dumbbell for a pair of sets (A, B).

Definition 2 (WSPD). A well-separated pair decomposition of S ⊂ Rd, for a given s > 0, is a
sequence (A1, B1), . . . , (Ak, Bk), where Ai, Bi ⊆ S, such that the following applies:

1. Ai, Bi are well separated with respect to separation constant s, for all i = 1, . . . , k;
2. For all p 6= q ∈ S, there exists a unique pair (Ai, Bi) such that p ∈ Ai, q ∈ Bi or

q ∈ Ai, p ∈ Bi.

Note that a WSPD always exists since one could use all singleton pairs ({p}{q}), for
all pairs p, q ∈ S. However, this would yield a sequence of dumbbells of size k = Θ(n2).
The question is whether one could do better than that. The answer to that question was
given by the following theorem.

Theorem 1 ([1]). Given a set S of n points in Rd and a separation constant s > 0, a WSPD of S
with O(sddd/2n) amount of dumbbells can be computed in O(dn log n + sddd/2n) time.

While Theorem 1 states that it is possible to compute only O(n) dumbbells, for fixed
dimension d, it is still not clear how to efficiently determine the appropriate dumbbell
for a given query pair (p, q). In [3], it has been shown that retrieving the corresponding
dumbbell can be performed in O(1) time for a fixed dimension d.

Theorem 2 ([3]). Given a well-separated pair decomposition of a point set S with separation
constant s > 2 and fixed dimension d, I can construct a data structure in space O(n · s2) and
construction time O(n · s2) such that for any pair of points (p, q) in S I can determine the unique
pair of clusters (A, B) that is part of the well-separated pair decomposition with p ∈ A, q ∈ B in
constant time.

3. Deep Embedded WSPD

Instead of computing a WSPD of S ⊂ Rd, as suggested by Theorem 1, I propose to first
transform the data with a nonlinear mapping fθ : Rd → Rd′ , where d′ is chosen to be either
2 or 3, and θ is a set of learnable parameters. In this section, I introduce two approaches for
training the neural net for embedding the point sets.

3.1. Metric Multidimensional Scaling

The most natural choice for a function fθ is to use metric multidimensional scaling
(mMDS), which tries to preserve the pairwise distances between points, i.e., it solves the
optimization problem

min
θ

∑
i,j

wij(||xi − xj|| − || fθ(xi)− fθ(xj)||)2, (1)

where || · || denotes the Euclidean norm and wij ≥ 0 are some given weights. For the
implementation of a function fθ , I will use deep neural networks. The neural network
approach for computing the metric MDS mapper has already been used in [9]. Inspired
by the work of [5,10,11], I chose the following architecture with L = five fully connected
layers of the form below:

d− 500− 500− 2000− d′
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and d′ ∈ {2, 3}. Moreover, the output hx
k , k > 1 of the kth layer for each x ∈ S is defined

as follows:
hx

k = g(Wk−1hx
k−1 + bk−1) (2)

where hx
1 is just another name for any x ∈ S, g(·) denotes an activation function and

θ = {Wk, bk|k = 1, . . . , L− 1} are model parameters. For the activation function g(·), I use
the hyperbolic tangent (tanh).

3.2. Autoencoder

We will also implement the function fθ as a stacked autoencoder, a type of neural
network typically used to learn encodings of unlabeled data. It is known that such a learned
data representation maintains semantically meaningful information ([12,13]). Moreover, it
has been shown in [14], one of the seminal papers in deep learning, that an autoencoder
can be effectively used on real-world datasets as a nonlinear generalization of the widely
used principal component analysis (PCA).

The fundamental concept is to use an encoder to reduce high-dimensional data to
a low-dimensional space. However, this results in a loss of information in the data. The
decoder then works to map the data back to its original space. The better the mapping, the
less information is lost in the process. Thus, the basic idea of an autoencoder is to have an
output layer with the same dimensionality as the inputs. In contrast, the number of units
in the middle layer is typically much smaller compared to the inputs or outputs. Therefore,
it is assumed that the middle layer units contain a reduced data representation. Since the
output is supposed to approximate the input, it is hoped that the reduced representation
preserves “interesting” properties of the input (e.g., pairwise distances). It is common that
autoencoders have a symmetric architecture, i.e., for an odd number L, the number of units
in the kth layer of an L-layer autoencoder architecture is equal to the number of units in the
(L− k + 1)th layer. Moreover, the first part of the network, up to the middle layer, is called
the encoder, while the part from the middle layer to the outputs is called the decoder.

We use a very similar architecture as above, namely L = nine layers of the form below:

d− 500− 500− 2000− d′ − 2000− 500− 500− d

for d′ ∈ {2, 3}. The output hx
k , k > 1 of the kth layer for any x ∈ S is computed as above

using the tanh activation function. Training is conducted by minimizing the following least
squares loss:

min
θ

∑
x∈S
||x− hx

L||2. (3)

Once the autoencoder is trained on a given dataset S, the encoder part of the network
d− 500− 500− 2000− d′ is used as a nonlinear mapper fθ : Rd → Rd′ , and the decoder
part is discarded.

3.3. Computing WSPD in High Dimensions

Given a function fθ , the algorithm for computing a WSPD of a high-dimensional
dataset S ⊂ Rd is given by the following steps:

1. Compute a lower-dimensional representation S′ = fθ(S).
2. Compute a WSPD(S′, s), for any given s > 0, as proposed by Theorem 1. Let (A′i, B′i),

i = 1, . . . , k, denote the dumbbells.
3. Reconstruct (Ai, Bi), i = 1, . . . , k, in the original Rd space. Note that not all of them

are well separated, i.e., they are not dumbbells anymore.
4. Refine all not well-separated pairs (Ai, Bi) until they become dumbbells.

We will refer to the above steps as the NN-WSPD algorithm. Note that the reconstruc-
tion step in NN-WSPD can be performed efficiently. What requires further explanation is
the refine step, which guarantees that the set of computed dumbbells in Rd is in fact again
a well separated pair decomposition of S. Suppose (Ai, Bi) for some i is not well separated
and let r(Bi) > r(Ai). We propose the following steps in Algorithm 1 to refine (Ai, Bi).
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Algorithm 1 Refine(Ai, Bi)

if (Ai, Bi) is not a dumbbell then
Split Bi into B′i and B′′i . Assuming r(Bi) > r(Ai), otherwise split Ai
Remove (Ai, Bi) from WSPD.
Add (Ai, B′i) and (Ai, B′′i ) to WSPD
Refine(Ai, B′i) and Refine(Ai, B′′i ) . (Two recursive calls)

end if

The complexity of the refine step depends on the recursion depth. We will experimen-
tally demonstrate that the depth is relatively small for all the datasets that I tried in practice,
introducing just a moderate number of new dumbbells.

3.4. Fast Dumbbell Retrieval in High Dimensions

As Theorem 2 stated, for any pair of points a, b ∈ S I can determine the unique dumb-
bell (A, B), a ∈ A, b ∈ B, in constant time but only if dimension d is considered constant.
The hidden constant in the running time is again exponential in d (due to the packing
argument used in [3], Lemma 10). Hence, the only way for a pair of points (a, b) ∈ S
to retrieve the corresponding dumbbell (A, B) efficiently is to build and query the data
structure proposed in [3] in lower-dimensional representation Rd′ , d′ = 2, 3. Namely, let
(A′i, B′i), i = 1, . . . , k′, denote the dumbbells in Rd′ and (Ai, Bi), i = 1, . . . , k, the recon-
structed and refined dumbbells in Rd computed by NN-WSPD. Note that k ≥ k′ in general,
since the number of reconstructed and refined dumbbells might be larger. However, let
( fθ(Ai), fθ(Bi)), i = 1, . . . , k, denote the corresponding dumbbells in Rd′ of the WSPD
computed by NN-WSPD in Rd. Note that ( fθ(Ai), fθ(Bi)), i = 1, . . . , k is also a valid WSPD
of S′ = fθ(S), and let query(·, ·) denote the query call to the data structure proposed in [3]
built on that WSPD. The query algorithm for any two points (a, b) ∈ S ⊂ Rd is defined in
Algorithm 2.

Algorithm 2 RetrieveDumbbell(a, b)

Require: fθ , ( fθ(Ai), fθ(Bi)) for i = 1, . . . , k, query(·, ·)
Let a′ = fθ(a), b′ = fθ(b)
(A′, B′) = query(a′, b′) . Retrieve dumbbells by query(·, ·) from [3]
Return (A, B) such that A′ = fθ(A), B′ = fθ(B)

The run-time complexity of Algorithm 2 again depends on the number of additional
dumbbells that the refine step will add.

4. Experiments

Our implementations of the neural networks are performed in PyTorch [15], and a
WSPD is implemented in C++ following the algorithm proposed in [1]. All codes are avail-
able for testing at https://github.com/dmatijev/high_dim_wspd.git. The experiments
were conducted on Ryzen 9 3900X, with 12 cores and 64GB of DDR4 RAM with an Ubuntu
20.04 operating system.

For the training of the neural networks, I use an initial learning rate of 0.001 and
a batch size of 512. All networks are trained for a number of epochs set to 500. It is
essential to state that I did not put effort into fine-tuning these hyperparameters. Instead,
all hyperparameters are set to achieve a reasonably good WSPD reconstruction and, to
maintain fairness, are held constant across all datasets. We used Adam [16] for first-
order gradient-based optimization and the ReduceLROnPlateau callback for reducing the
learning rate (dividing it by 10) when a metric, given by (1) for mMDS NN, and (3) in the
case of autoencoder NN, has stopped improving.

https://github.com/dmatijev/high_dim_wspd.git
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4.1. Datasets

We evaluated the computation of a WSPD on artificially generated and real high-
dimensional datasets. Artificially generated datasets are drawn from the following:

• A uniform distribution over the [0, 1]d hypercube;
• A normal (Gaussian) distribution, with mean 0 and standard deviation 1;
• A Laplace or double exponential distribution, with the position of the distribution

peak at 0 and the exponential decay at 1.

For real-world datasets, I used two public scRNA-seq datasets downloaded from [17].
scRNA-seq data are used to assess which genes are turned on in a cell and in what amount.
Therefore, scRNA-data are typically used in computational biology to determine tran-
scriptional similarities and differences within a population of cells, allowing for a better
understanding of the biology of a cell. We apply the standard preprocessing to scRNA-seq
data (see [18,19]): (a) compute the natural log-transformation of gene counts after adding a
pseudo count of 1 and (b) select the top 2000 most variable genes followed by a dimension-
ality reduction to 100 principle components. We used two datasets of sizes n = 4185 and
n = 68, 575.

One possible motivation for a WSPD on scRNA-seq data can be found in the work
of [20]. Namely, the authors in [20] solve the marker gene selection problem by solving
a linear program (LP). For a large amount of data, the LP cannot be efficiently solved in
practice. Hence, the practical approach to that issue could be to solve an LP on a subset of
constraints, then define a separation oracle that iteratively introduces new constraints to
the LP, if the current solution is not feasible. Following the work of [20], the oracle could
add the currently most violated constraints, i.e., pairs of points whose distance is less than
a predefined constant value. Given the WSPD, one could speed up the oracle by using
dumbbells as a substitute for the pairwise distances.

4.2. Measuring the Quality of a WSPD

Let (Ai, Bi), i = 1, . . . , k, denote the WSPD for some set of points S ⊂ Rd. For a, a′ ∈ Ai
and b, b′ ∈ Bi for some dumbbell i, I make the following observations:

1. Points within the sets Ai and Bi can be made “arbitrarily close” as compared to points
in the opposite sets by choosing the appropriate separation s > 0, i.e.,

d(a, a′) ≤ 2r <
2
s

d(Ai, Bi) ≤
2
s

d(a, b). (4)

2. Distances between points in the opposite sets can be made “almost equal”, by choosing
the appropriate s > 0, i.e.,

d(a′, b′) ≤ d(a, a′) + d(a, b) + d(b, b′) < (1 +
4
s
)d(a, b). (5)

Since a WSPD is primarily concerned with compressing the quadratic space of pairwise
distances into a linear space (for a fixed dimension d), I will use Equation (5) repeatedly in
my plots in order to measure how much distances are indeed preserved within a dumbbell.

4.3. Results

In Figure 2 (left), synthetic datasets were used to demonstrate the dependence between
the size of a WSPD and the dimension of the input data in practice. Recall that the number
of dumbbells is bounded above by O(sddd/2n) (Theorem 1). In my experiments, I found that
the dependence on dimension d is indeed severe, making the WSPD algorithm proposed
in [1] unusable in practice for dimensions d > 2 or d > 3. However, it is unclear whether
the number of dumbbells is just an artifact of the construction of the WSPD algorithm or
whether that number of dumbbells is indeed necessary to satisfy the properties of a WSPD
given by Definition 2. Thus, Figure 2 (right) demonstrates the total number of dumbbells
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when computed with the algorithm proposed in [1] and compares it to the number of
dumbbells computed with the NN-WSPD approach.
Observation: For many practical datasets, there exists a WSPD (Ai, Bi), i = 1, . . . , k, with
k = O(n) for any dimension d, i.e., the hidden constant in O(·) notation is not exponential
in the dimension d.

I performed numerous experiments with synthetic data and my two real datasets to
support my claim.

Figure 2. In both figures, the x-coordinate stands for the dimension, while the y coordinate stands for
the number of dumbbells divided by the size of all pairwise distances, i.e., n(n− 1)/2. (left) Size of
the dataset is n = 5000. Dumbbells are computed using the WSPD algorithm proposed in [1], and the
size of a WSPD (i.e., the number of dumbbells) is reported. (right) The number of dumbbells stays
constant with the NN-WSPD approach even when the dimension grows.

4.3.1. Synthetic Datasets

In Figure 3, the experiments were performed with the synthetic datasets. Only for
d = 2 was the standard WSPD algorithm used, and for d > 2, NN-WSPD was used.
On the boxplots in the left column, NN-WSPD was applied but without the refine step
(Algorithm 1). From this one can see that many of the reconstructed dumbbells can
violate the quality given by Equation (5), which the dumbbells are supposed to guarantee.
However, most dumbbells are still well separated since a lot of valuable information
for a WSPD was preserved by the nonlinear mapper fθ . The results of the refine step
(Algorithm 1) can be seen in boxplots in the right column in Figure 3. Note that after
the refine step all dumbbells are indeed dumbbells (i.e., well separated), with the overall
number of dumbbells that rarely gets larger than the starting WSPD size multiplied by a
factor of at most three, independent of the dimension d. We noticed that the higher the
dimension d of the input set S, the fewer refined dumbbells are needed. This is not that
surprising bearing in mind the fact that when a Euclidean distance is defined using many
coordinates there is less difference in the distances between different pairs of samples (see
the curse of dimensionality phenomenon [21]).
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(a) Uniform distribution (d ∈ {2, 3, 4, 5, 6, 8, 16, 32}, n = 2000, s = 2).

(b) Normal (Gaussian) distribution (d ∈ {2, 3, 4, 5, 6, 8, 16, 32}, n = 2000, s = 2).

(c) Laplace distribution (d ∈ {2, 3, 4, 5, 6, 8, 16, 32}, n = 2000, s = 2).

(d) Uniform distribution (d ∈ {2, 3, 4, 5, 6, 8, 16, 32}, n = 1000, s = 4).

(e) Normal (Gaussian) distribution (d ∈ {2, 3, 4, 5, 6, 8, 16, 32}, n = 1000, s = 4).

(f) Laplace distribution (d ∈ {2, 3, 4, 5, 6, 8, 16, 32}, n = 1000, s = 4).

Figure 3. The boxplots show on the vertical axes the bounds given by Equation (5), i.e., 1 + 4/s, for
different datasets. Note that for dimension 2 a WSPD is computed directly on the input dataset
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(leftmost boxplot in each image). For all other dimensions greater than two, autoencoder (AE) and
mMDS neural network are used to map the input points to dimension two, and the bound 1 + 4/s is
shown for the reconstructed dumbbells in the original dimension. All boxplots on the right show the
bound on the reconstructed dumbbells after the refining step. The blue line drawn on the plots in the
right column shows the multiplicative increase in dumbbells before and after the refining stage.

4.3.2. scRNA-Seq Datasets

I had even fewer problems computing a WSPD for my two real datasets (n = 4185 and
n = 68,579) that, after being preprocessed, were given in Rd, d = 100. In Figure 4, I output
boxplots for both sets before and after the refining step. Note that the number of newly
added refined dumbbells is negligible, even compared to the original sets’ size. Moreover,
notice that computing a WSPD directly on such a high-dimensional input (d = 100) is very
inefficient and practically of no use due to the dependence on d. For example, I managed
to compute a WSPD for dataset n = 4185 in 507 s with 8,401,551 dumbbells, which is
slightly above 95% of the overall size of pairwise distances, i.e., 95% of dumbbells were just
singletone pairs ({a}, {b}). In contrast, my NN-WSPD approach always outputs a WSPD
with a very moderate increase in size compared to a WSPD of size O(n) computed in the
plane the points were projected to, as my experiments showed.

(a) WSPD computed with separation constant s = 2.

(b) WSPD computed with separation constant s = 4.

Figure 4. The boxplots show on the vertical axes the bounds given by Equation (5), i.e., 1+4/s, for
two real-world scRNA-seq datasets from the [17]. NN-WSPD was applied with autoencoder (AE)
and mMDS neural networks. Note that the integer number above the boxplots that show the quality
of refined dumbbells states the increase in the number of dumbbells after the refining step of the
NN-WSPD algorithm.

5. Conclusions

Well-separated pair decomposition is a well known decomposition in computational
geometry. However, computational geometry as a field is concerned with algorithms that
solve problems on datasets in Rd, where the dimension d is considered a constant. In
this work, I demonstrated that a WSPD of size O(n) could be computed even for high-
dimensional sets, hence removing the requirement that dimension d is a constant. In my
approach, I used an implementation of a nonlinear function fθ that was based on artificial
neural networks.
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The past decade has seen remarkable advances in deep learning approaches based
on artificial neural networks. We also witnessed a few successful applications of neural
networks in discrete problems, e.g., I would like to point the reader to the surprising
results presented in [22], which introduces a new neural network architecture (Ptr-Net)
and shows that it can be used to learn approximate solutions to well-known geometric
problems, such as planar convex hulls, Delaunay triangulations, and the planar traveling
salesperson problem.

These advances inspire us to further explore the applications of deep learning in fields
such as geometry.
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9. Canzar, S.; Do, V.H.; Jelić, S.; Laue, S.; Matijević, D.; Prusina, T. Metric Multidimensional Scaling for Large Single-Cell Data Sets

using Neural Networks. bioRxiv 2021. [CrossRef]
10. Salakhutdinov, R.; Hinton, G. Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure. In Machine

Learning Research, Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, San Juan, Puerto Rico,
21–24 March 2007; PMLR: San Juan, Puerto Rico, 2007; Volume 2, pp. 412–419.

11. van der Maaten, L. Learning a Parametric Embedding by Preserving Local Structure. In Machine Learning Research, Proceedings of
the Twelth International Conference on Artificial Intelligence and Statistics, Hilton Clearwater Beach Resort, Clearwater Beach, FL, USA,
16–18 April 2009; PMLR: Hilton Clearwater Beach Resort, Clearwater Beach, FL, USA, 2009; Volume 5, pp. 384–391.

12. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked Denoising Autoencoders: Learning Useful Representations
in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.

13. Le, Q.V. Building high-level features using large scale unsupervised learning. In Proceedings of the 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 8595–8598. [CrossRef]

14. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.
[CrossRef] [PubMed]

15. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran
Associates, Inc.: New York, NY, USA, 2019; pp. 8024–8035.

16. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
17. Hemberg Group at the Sanger Institute. scRNA Seq Datasets. Available online: https://hemberg-lab.github.io/scRNA.seq.

datasets/ (accessed on 3 April 2023).
18. Duò, A.; Robinson, M.D.; Soneson, C. A systematic performance evaluation of clustering methods for single-cell RNA-seq data.

F1000Res 2018, 7, 1141. [CrossRef] [PubMed]

https://github.com/dmatijev/high_dim_wspd.git
http://doi.org/10.1145/200836.200853
http://dx.doi.org/10.1201/9781420010749.ch53
http://dx.doi.org/10.1007/s00453-010-9414-0
http://dx.doi.org/10.1145/3503221.3508429
https://doi.org/10.48550/ARXIV.2201.10000
http://dx.doi.org/10.1101/2021.06.24.449725
http://dx.doi.org/10.1109/ICASSP.2013.6639343
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
https://hemberg-lab.github.io/scRNA.seq.datasets/
https://hemberg-lab.github.io/scRNA.seq.datasets/
http://dx.doi.org/10.12688/f1000research.15666.2
http://www.ncbi.nlm.nih.gov/pubmed/30271584


Algorithms 2023, 16, 254 11 of 11

19. Do, V.H.; Rojas Ringeling, F.; Canzar, S. Linear-time cluster ensembles of large-scale single-cell RNA-seq and multimodal data.
Genome Res. 2021, 31, 677–688. [CrossRef] [PubMed]

20. Dumitrascu, B.; Villar, S.; Mixon, D.G.; Engelhardt, B.E. Optimal marker gene selection for cell type discrimination in single cell
analyses. Nat. Commun. 2021, 12, 1186. [CrossRef] [PubMed]

21. Bellman, R. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957.
22. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer Networks. In Advances in Neural Information Processing Systems; Curran Associates,

Inc.: New York, NY, USA, 2015; Volume 28.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1101/gr.267906.120
http://www.ncbi.nlm.nih.gov/pubmed/33627473
http://dx.doi.org/10.1038/s41467-021-21453-4
http://www.ncbi.nlm.nih.gov/pubmed/33608535

	Introduction
	Preliminaries
	Deep Embedded WSPD
	Metric Multidimensional Scaling
	Autoencoder
	Computing WSPD in High Dimensions
	Fast Dumbbell Retrieval in High Dimensions

	Experiments
	Datasets
	Measuring the Quality of a WSPD
	Results
	Synthetic Datasets
	scRNA-Seq Datasets


	Conclusions
	References

