
Citation: Niu, Z.; Wu, S.; Zhou, X.

Efficient Mathematical Lower

Bounds for City Logistics

Distribution Network with

Intra-Echelon Connection of

Facilities: Bridging the Gap from

Theoretical Model Formulations to

Practical Solutions. Algorithms 2023,

16, 252. https://doi.org/10.3390/

a16050252

Academic Editor: Angel A. Juan

Received: 16 March 2023

Revised: 3 May 2023

Accepted: 8 May 2023

Published: 12 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Efficient Mathematical Lower Bounds for City Logistics
Distribution Network with Intra-Echelon Connection of
Facilities: Bridging the Gap from Theoretical Model
Formulations to Practical Solutions
Zhiqiang Niu 1, Shengnan Wu 2,* and Xuesong (Simon) Zhou 3,*

1 Research Center of Logistics, Ministry of Transport Research Institute of Highways, Beijing 100088, China;
zq.niu@rioh.cn

2 Technology and Data Science Department, JD Logistics, Beijing 100176, China
3 School of Sustainable Engineering and the Built Environment, Arizona State University,

Tempe, AZ 85281, USA
* Correspondence: wushengnan1@jd.com (S.W.); xzhou74@asu.edu (X.Z.)

Abstract: Focusing on the dynamic improvement of the underlying service network configuration,
this paper aims to address a specific challenge of redesigning a multi-echelon city logistics distribution
network. By considering the intra-echelon connection of facilities within the same layer of echelon, we
propose a new distribution network design model by reformulating the classical quadratic assignment
problem (QAP). To minimize the overall transportation costs, the proposed model jointly optimizes
two types of decisions to enable agile distribution with dynamic “shortcuts”: (i) the allocation of
warehouses to supply the corresponding distribution centers (DCs), and (ii) the demand coverage
decision from distribution centers to delivery stations. Furthermore, a customized branch-and-
bound algorithm is developed, where the lower bound is obtained by adopting Gilmore and Lawler
lower Bound (GLB) for QAP. We conduct extensive computational experiments, highlighting the
significant contribution of GLB-oriented lower bound, to obtain practical solutions; this type of
efficient mathematical lower bounds offers a powerful tool for balancing theoretical research ideas
with practical and industrial applicability.

Keywords: multi-echelon distribution network; lateral-transshipment; quadratic assignment
problem; branch-and-bound; matheuristics

1. Introduction

The rise of e-commerce purchases and the growing reliance on the underlying city
logistics distribution system have led to rapid development of timely deliveries. In par-
ticular, the recent pandemic creates a wide range of challenges for the global system of
logistics, especially in mitigating the shortages of many commodities, such as masks, vac-
cine vials, and semiconductors, as e-commerce logistics providers start to shift their focus
from expanding product availability to ensure time-sensitive product accessibility. An
efficient distribution network is a building block to offer rapid fulfillment services within
budget constraints. In essence, by achieving the economy of scale, service providers aim to
continuously optimize the commodity flows (or raw materials) using the multi-echelon
distribution system. In general, the distribution network design problems can be classified
into two categories [1], i.e., (i) keep the existing distribution network and optimize the
transportation of commodity flows, (ii) improve the existing distribution network and
optimize the network configuration. Main decisions include the locations of facilities in
different echelons, the assignment between facilities, and the allocation of commodity
flows [2].

Algorithms 2023, 16, 252. https://doi.org/10.3390/a16050252 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16050252
https://doi.org/10.3390/a16050252
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a16050252
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16050252?type=check_update&version=1

Algorithms 2023, 16, 252 2 of 40

The shipping system underpinning globalization with distributed production and
consumers across different cities, states, and countries, seems to be unable to absorb highly
dynamic demand and supply disruptions, e.g., from COVID-19. More precisely, the tradi-
tional supply chain with standard layers cannot adapt to rapidly changing environments
associated with economy and customer demands. By designing lateral transshipment
policies (that is, “shortcuts”) and enabling agile supply chain networks to respond to such
issues immediately, supply chain systems can successfully operate in dynamic environ-
ments. From a long term operating perspective, the decision-makers aim to recover quickly
from other potential unexpected disruptions by enabling agile supply chain networks.
Particularly, our study is interested in lateral-transshipments and intra-echelon transfers,
which are used to improve the performance of an inventory system and supply chain [3];
this structure can potentially lead to dramatic cost reductions throughout the course of
manufacturing and shipping.

Lateral-transshipments involved in previous studies are conducted within the start
or end echelons of a distribution network, i.e., warehouses (inventory system) [4] or
retailers [5,6]. In their models, flow-based decision variables for intra-echelon links are
used to capture the transshipment feature; the impact of lateral transport mainly occurs
at the single echelon in the distribution network, as shown in Figure 1. This study will
consider a distribution network design problem following the single sourcing or single route
strategy, where lateral-transshipments in DCs are allowed. In this situation, the allocation
decisions between each entity in different echelons are tightly coupled. Rabbani [6] simply
divided the original problem into three sub-problems: plant-DCs, DCs-retailers, and
retailers-customers, and then solved them sequentially. However, this sequential solution
framework cannot be directly applied in our problem with the strongly coupled decision
variables across different layers.

Algorithms 2023, 16, x FOR PEER REVIEW 2 of 41

different echelons, the assignment between facilities, and the allocation of commodity
flows [2].

The shipping system underpinning globalization with distributed production and
consumers across different cities, states, and countries, seems to be unable to absorb
highly dynamic demand and supply disruptions, e.g., from COVID-19. More precisely,
the traditional supply chain with standard layers cannot adapt to rapidly changing envi-
ronments associated with economy and customer demands. By designing lateral trans-
shipment policies (that is, “shortcuts”) and enabling agile supply chain networks to re-
spond to such issues immediately, supply chain systems can successfully operate in dy-
namic environments. From a long term operating perspective, the decision-makers aim to
recover quickly from other potential unexpected disruptions by enabling agile supply
chain networks. Particularly, our study is interested in lateral-transshipments and intra-
echelon transfers, which are used to improve the performance of an inventory system and
supply chain [3]; this structure can potentially lead to dramatic cost reductions through-
out the course of manufacturing and shipping.

Lateral-transshipments involved in previous studies are conducted within the start
or end echelons of a distribution network, i.e., warehouses (inventory system) [4] or re-
tailers [5,6]. In their models, flow-based decision variables for intra-echelon links are used
to capture the transshipment feature; the impact of lateral transport mainly occurs at the
single echelon in the distribution network, as shown in Figure 1. This study will consider
a distribution network design problem following the single sourcing or single route strat-
egy, where lateral-transshipments in DCs are allowed. In this situation, the allocation de-
cisions between each entity in different echelons are tightly coupled. Rabbani [6] simply
divided the original problem into three sub-problems: plant-DCs, DCs-retailers, and re-
tailers-customers, and then solved them sequentially. However, this sequential solution
framework cannot be directly applied in our problem with the strongly coupled decision
variables across different layers.

Figure 1. A five-echelon supply chain network with lateral-transshipments in retailers [6].

As lateral-transshipments within DCs require that the objective function must in-
clude pairwise allocation costs, the proposed model in this paper is a special case of the
generalized quadratic assignment problem (GQAP). GQAP has been a very important
modelling framework and has been adopted widely to solve real-world problems [7,8]. A
recent and great application of GQAP is the work of [9], where they formulated an opti-
mization model for the school time selection problem (STSP) as GQAP which led to $5
million in yearly savings, maintaining service quality for students despite a 50-bus fleet
reduction. As [9] pointed out, even small instances of GQAP could be computationally
intractable and typically simple local improvement heuristics are used in practice. Re-
cently, a novel research line to overcome this challenge has been proposed by [10,11],
through reformulating QAP as the Quadratic Unconstrained Binary Optimization model-
ling framework (QUBO), which is currently widely used to bridge classical combinatory
optimization and emerging quantum computing areas. We refer the reader to the excellent

Figure 1. A five-echelon supply chain network with lateral-transshipments in retailers [6].

As lateral-transshipments within DCs require that the objective function must include
pairwise allocation costs, the proposed model in this paper is a special case of the general-
ized quadratic assignment problem (GQAP). GQAP has been a very important modelling
framework and has been adopted widely to solve real-world problems [7,8]. A recent
and great application of GQAP is the work of [9], where they formulated an optimization
model for the school time selection problem (STSP) as GQAP which led to $5 million in
yearly savings, maintaining service quality for students despite a 50-bus fleet reduction.
As [9] pointed out, even small instances of GQAP could be computationally intractable and
typically simple local improvement heuristics are used in practice. Recently, a novel re-
search line to overcome this challenge has been proposed by [10,11], through reformulating
QAP as the Quadratic Unconstrained Binary Optimization modelling framework (QUBO),
which is currently widely used to bridge classical combinatory optimization and emerging
quantum computing areas. We refer the reader to the excellent tutorials for QUBO by [11]
and optimization problems that QUBO can handle [12]. As QUBO models lie at the heart of
experimentation carried out with quantum computers developed by D-Wave Systems and

Algorithms 2023, 16, 252 3 of 40

neuromorphic computers developed by IBM, we mainly highlight this important research
direction for future research to further reformulate the proposed model to the QUBO with
efficient quantum computing implementation.

This paper hopes to offer the following potential contributions: First, we study and
develop a new type of multi-echelon distribution network design models, where lateral-
transshipments are allowed within DCs. Second, we further reformulate a nonlinear
0–1 integer programming model from the classical quadratic assignment modeling per-
spective by enhancing the network relationships between facility entities, to fully utilize
the effective approximate bounding rules such as GLB. Third, both exact and heuristic
algorithms combined with effective heuristic lower bound estimates are systematically
developed and tested to demonstrate the effectiveness of proposed algorithms.

We would like to clarify that our paper presents a mathheuristic approach, which are
problem agnostic optimization algorithms that make use of mathematical programming
(MP) techniques in order to obtain heuristic solutions. Problem-dependent elements
such as GLB bound are included within the lower-level mathematic programming-based
components. The current research frontiers for solving QAP are still mainly heuristic
algorithms such as Tabu search [13], artificial bee colony algorithm [14,15], or hybrid
heuristic algorithm [16]. Although heuristic or metaheuristic algorithms can find feasible
solutions in an acceptable computation time, they cannot guarantee to find the best solution
and they may become stuck in a cycle or fail to escape a suboptimal solution. In addition, the
behavior of a heuristic algorithm can be highly dependent on the values of its parameters
and choosing optimal parameter settings can be a time-consuming and difficult task. The
main advantages of our method are related to the ability to decompose a complex problem
into smaller subproblems, and to use both exact mathematical methods and heuristic
techniques to solve them, which can balance feasibility and optimality. The proposed
algorithm with decomposition schemes has at least the following specific advantages:

(1) Increased efficiency: By breaking down the original problem into smaller subproblems,
the algorithm can reduce the overall computational complexity of the optimization
problem. This can lead to faster solution times and increased efficiency compared to
traditional optimization algorithms.

(2) Improved scalability: The algorithm can handle large-scale optimization problems that
would be intractable using other methods. Large problems can be decomposed into
smaller subproblems that can be solved independently, which makes it easier to solve
the overall problem.

(3) Better quality solutions: Since the algorithms combine both exact and heuristic meth-
ods, they are able to find high-quality solutions that balance feasibility and optimality.
Some subproblems may be solved exactly while others may use heuristic methods to
find good approximate solutions.

(4) Robustness: Since the algorithms are designed to handle complex real-world problems,
they are often more robust than traditional optimization algorithms. This means that
they can handle uncertain or variable inputs and can adapt to changing conditions or
constraints during the optimization process.

The remainder of this paper is arranged as follows: The next section provides a litera-
ture review on the multi-echelon distribution network design problem. Section 3 provides
the problem description and formulation. A customized heuristic solution approach based
on the branch-and-bound algorithm is developed in Section 4. Computational results and
analysis of different instances are presented in Section 5. Lastly, Section 6 delivers the
conclusions and future research directions.

2. Literature Review
2.1. Basic Types of City Logistics Distribution Networks

A simple distribution network usually consists of three types of facilities/nodes, i.e.,
warehouses/plants, DCs, and delivery stations/customers [1]. City logistics, as warehouses
and DCs occupy relatively large areas, are usually located in suburban areas. Meanwhile,

Algorithms 2023, 16, 252 4 of 40

delivery stations are widely distributed across the city to guarantee the fast delivery
of orders.

According to the volumes of goods, fulfillment services, and types of goods, different
distribution network structures should be designed and continuously improved. Generally,
there are three basic types of network structures, as shown in Figure 2. For the distribution
network with regional DCs in Figure 2a [17,18], warehouses and DCs are fully connected
and each delivery station can only be served by one DC. In the case of the distribution
network shown in Figure 2b with fully covered DCs, warehouses are allowed to connect
specific DCs, while each DC can connect to all delivery stations. The last type of structure
shown in Figure 2c implements the idea of the consolidation of goods to the maximum
extent. In this situation, warehouses and DCs do not need to supply all their downstream
facilities, but they are required to ensure that demand can always be met by transfer
transportation between DCs. It should be noted that there are no extra connections (in
comparison to the basic skeleton model) in most analytical studies, while multiple coverages
are allowed in practice [19–21].

Algorithms 2023, 16, x FOR PEER REVIEW 4 of 41

2. Literature Review
2.1. Basic Types of City Logistics Distribution Networks

A simple distribution network usually consists of three types of facilities/nodes, i.e.,
warehouses/plants, DCs, and delivery stations/customers [1]. City logistics, as ware-
houses and DCs occupy relatively large areas, are usually located in suburban areas.
Meanwhile, delivery stations are widely distributed across the city to guarantee the fast
delivery of orders.

According to the volumes of goods, fulfillment services, and types of goods, different
distribution network structures should be designed and continuously improved. Gener-
ally, there are three basic types of network structures, as shown in Figure 2. For the distri-
bution network with regional DCs in Figure 2a [17,18], warehouses and DCs are fully
connected and each delivery station can only be served by one DC. In the case of the dis-
tribution network shown in Figure 2b with fully covered DCs, warehouses are allowed to
connect specific DCs, while each DC can connect to all delivery stations. The last type of
structure shown in Figure 2c implements the idea of the consolidation of goods to the
maximum extent. In this situation, warehouses and DCs do not need to supply all their
downstream facilities, but they are required to ensure that demand can always be met by
transfer transportation between DCs. It should be noted that there are no extra connec-
tions (in comparison to the basic skeleton model) in most analytical studies, while multi-
ple coverages are allowed in practice [19–21].

Warehouse 1

DC 1

DC 2

Station 1

Station 2

Station 3

Warehouse 2

Warehouse 3

Warehouse 1

DC 1

DC 2

Station 1

Station 2

Station 3

Warehouse 2

Warehouse 3

Warehouse 1

DC 1

DC 2

Station 1

Station 2

Station 3

Warehouse 2

Warehouse 3

(a) Distribution network with regional DCs (b) Distribution network with fully-covered DCs

(c) Distribution network with Lateral-Transshipments in DCs
Figure 2. Different types of distribution networks.
Figure 2. Different types of distribution networks.

2.2. Distribution Network Design Problem and Related Models

The distribution network design (DND) problem is concerned with the decisions
regarding the number of facilities and their optimal locations and facility capacity alloca-
tion [22–27]. It can also be viewed as a variation of the facility location-allocation or the
production-distribution problem, which are reviewed in this subsection.

The coordination of distribution network design and planning has been addressed
by some studies, which aim to integrate a number of different layers of supply chain (SC).

Algorithms 2023, 16, 252 5 of 40

For example, [28] designed an integrated model considering production and distribution
functions in a two-echelon system on a just-in-time (JIT) basis. Focusing on the production
process in supply chain, [29] constructed a continuous flexible process network model to
maximize the operating profit. Ref. [30] set up a bi-objective model to minimize costs and
the delay for the JIT delivery in a three-echelon supply chain. To provide a system-level
optimized supply network, [19] attempted to solve the problems jointly in the entire supply
network, including network design, production quota assignment, production planning,
capacity planning for various facilities, and distribution planning. Ref. [31] investigated the
effectiveness of production and distribution integration by a computational study under
different logistic environments. In [32], the configuration of a production and distribution
network needs to be optimized; there are two types of constraints (namely operational and
financial constraints) in the model. Considering process uncertainty and robustness, [33]
studied the design and planning of supply chain networks involving multi-echelon, multi-
product, and multi-period situations. Ref. [17] presented mathematical models to optimize
inventory control and facility locations for a four-echelon supply chain network. With
environmental considerations, some studies designed more realistic production-inventory
models [34,35]. Ref. [21] developed a nonlinear mixed-integer programming model to
optimize multi-echelon sustainable production-distribution supply networks under carbon
emission policies. Aiming to increase the total value of a company by configuring and
controlling all parts of a supply chain, [36] proposed a three-echelon, multi-commodity, and
multi-period model for tactical and strategic decision-making. To ensure a responsive and
resilient supply chain network, [37] addresses a multi-period supply chain (SC) network
design problem where customer demands depend on the delivery lead-times of the facilities
serving them. Interested readers are further referred to a number of excellent review papers
on integrating production and distribution in supply chain management [23,38–42].

2.3. Solution Algorithms

In multi-echelon distribution network design and planning problems, the combined
multi-layer decisions could dramatically increase the size of the search space, especially
when additional real-world factors (the capacity, costs, uncertainty, etc.) are included. As
a result, the design of algorithms for real-life instances has been challenging for practical
applications and theoretical research. Given its inherent multi-layer structure, it is beneficial
to adopt decomposition methods that can simplify the original problems and solve them
efficiently. The Lagrangian relaxation-based method [43] is one of the most frequently used
decomposition techniques. For instance, [44] used Lagrangian relaxation to decompose a
location-inventory problem and provide a lower bound rule, then the branch-and-bound
algorithm was used to obtain feasible solutions. To solve a distribution planning prob-
lem, [45] presented a Lagrangian substitution-based solution approach to transform the
original nonlinear model into a mixed-integer linear programming model with univari-
ate (solvable) concave models. Ref. [46] also developed a Lagrangian relaxation solution
framework to decompose the network design problem into closely related knapsack and
time-dependent least cost path problems. Although there are other decomposition-oriented
applications in the field of supply chain management [18,19,28,47], theoretically rigorous
and computationally reliable decomposition techniques are much needed for different
complex scenarios [21]. Comparatively, commonly used heuristic methods aim to find
a close-to-optimal solution rapidly in integrated production-distribution problems. To
name a few: adapted imperialist competitive algorithm (AICA), variable neighborhood
search (VNS) algorithm [22], genetic algorithm (GA) [28,30], and ant colony (AC) algo-
rithm [24]. Ref. [35] utilized the VNS, Tabu Search (TS), Keshtel Algorithm (KA), Water
Wave Optimization (WWO), and Particle Swarm Optimization (PSO) to solve a tri-level
location-allocation model for forwarding/reverse supply chain systems. Furthermore, dif-
ferent commercial software packages are also developed to solve production-distribution
planning problems [2,17,32,48].

Algorithms 2023, 16, 252 6 of 40

Table 1 compares key modeling components in some closely related literature. Most
multi-echelon DND models in the existing literature follow a linear structure in which
lateral-transshipments within the same echelon is not considered [22,33] or there is no
single sourcing strategy [6]. In the work of [17], they used a general linearization technique
in quadratic assignment problems to address the quadratic term in the objective function.
Our proposed approach is developed from the perspective of quadratic assignment prob-
lems, with more emphasis on the problem decomposition scheme and branch-and-bound
algorithms with domain-specific lower bound rules. Table 2 describes the key differences
between this study and two highly related papers [6,17] in terms of model structure and
solution methods.

Table 1. Comparison of key modeling components in some closely related literature.

Publication Number of
Echelons Model Problem Decomposition Schemes Solution

Algorithms

[28] 2 MIP, linear Lagrangian relaxation LR
[19] 7 MIP, linear Sequential; Lagrangian relaxation LR; GA
[31] 2 MIP, linear Two-phase heuristic LS
[30] 3 MIP, linear - GA
[32] 3 MIP, linear - CPLEX solver
[18] 3 0–1 IP, linear Lagrangian relaxation LR
[17] 4 CQMIP, nonlinear - CPLEX solver
[22] 9 MIP, linear - AICA; VNS
[33] 3 MIP, linear - CPLEX solver; Simulation
[35] 4 MIP, nonlinear Nested approach VNS; TS; PSO; KA; WWO
[20] 3 MIP, nonlinear Sequential Heuristic
[6] 4 MIP, linear Sequential Heuristic; GAMS

This paper 3 0–1 IP, nonlinear Two-stage decomposition via cost
estimation BB; ALNS

Model: CQMIP—conic quadratic mixed-integer programming; IP—integer programming; MIP—mixed-integer
programming. Solution algorithms: LR—lagrangian relaxation; GA—genetic algorithm; AICA—adapted imperial-
ist competitive algorithm; VNS—variable neighborhood search; LS—local search; TS—tabu search; PSO—particle
swarm optimization; KA—keshtel algorithm; WWO—water wave optimization; BB—branch-and-bound.

Table 2. Comparison of solution methods in some highly related papers.

Publication Network Planning
Strategy

Decomposition/Linearization
Method Cost Propagation Illustration of Key Decision Variables

[17]

single sourcing,
lateral-transshipments

and direct shipment are
prohibited

by introducing a new
binary variable Mikhj to

linearize the binary
quadratic terms Wik Xkhj in

the objective function,
then solve it using the

CPLEX 12 solver

-

1

Publication
Network Planning

Strategy
Decomposition/Linea

rization Method
Cost

Propagation Illustration of Key Decision Variables

[17]

single sourcing,
lateral-

transshipments
and direct

shipment are
prohibited

by introducing a new
binary variable 𝑀௜௞௛௝
to linearize the binary

quadratic terms 𝑊௜௞𝑋௞௛௝ in the
objective function,

then solve it using the
CPLEX 12 solver

-

[6]

multiple sourcing,
lateral-

transshipments
and direct

shipment are
allowed

convert the supply
chain network to a
bipartite graph and
divide the problem
into three main sub-
problems: plant-DCs
(𝑋௜௝), DCs-retailers
(𝑌௝௞), and retailers-

customers (𝑍௞௦)

solve three
sub-problems
sequentially
(𝑋௜௝ → 𝑌௝௞ →𝑍௞௦), the cost
of each edge
is calculated
with respect
to the two

different end
of it and it
propagates

forward

This paper

single sourcing,
lateral-

transshipments are
allowed and direct

shipments are
prohibited

reconstruct the
network relationships
within DC echelons

from the classical
quadratic assignment
modeling and divide
the problem into two
stage sub-problems:

warehouses-DCs (𝑋௞௟)
and DCs-retailers (𝑌௟௝)

for each fixed 𝑋௞௟, solve sub-
problems of

DCs-retailers
(𝑋௞௟ → 𝑌௟௝);
solve sub-

problems of
warehouses-

DCs based the
solution of

DCs-retailers
(𝑌௟௝ → 𝑋௞௟)
It has both

forward
calculation

and cost
backward

propagation

Step Formula Illustration

[6]

multiple sourcing,
lateral-transshipments

and direct shipment are
allowed

convert the supply chain
network to a bipartite
graph and divide the

problem into three main
sub-problems: plant-DCs
(Xij), DCs-retailers (Yjk),
and retailers-customers

(Zks)

solve three sub-problems
sequentially

(Xij → Yjk → Zks), the
cost of each edge is

calculated with respect
to the two different end of

it and it propagates
forward

1

Publication
Network Planning

Strategy
Decomposition/Linea

rization Method
Cost

Propagation Illustration of Key Decision Variables

[17]

single sourcing,
lateral-

transshipments
and direct

shipment are
prohibited

by introducing a new
binary variable 𝑀௜௞௛௝
to linearize the binary

quadratic terms 𝑊௜௞𝑋௞௛௝ in the
objective function,

then solve it using the
CPLEX 12 solver

-

[6]

multiple sourcing,
lateral-

transshipments
and direct

shipment are
allowed

convert the supply
chain network to a
bipartite graph and
divide the problem
into three main sub-
problems: plant-DCs
(𝑋௜௝), DCs-retailers
(𝑌௝௞), and retailers-

customers (𝑍௞௦)

solve three
sub-problems
sequentially
(𝑋௜௝ → 𝑌௝௞ →𝑍௞௦), the cost
of each edge
is calculated
with respect
to the two

different end
of it and it
propagates

forward

This paper

single sourcing,
lateral-

transshipments are
allowed and direct

shipments are
prohibited

reconstruct the
network relationships
within DC echelons

from the classical
quadratic assignment
modeling and divide
the problem into two
stage sub-problems:

warehouses-DCs (𝑋௞௟)
and DCs-retailers (𝑌௟௝)

for each fixed 𝑋௞௟, solve sub-
problems of

DCs-retailers
(𝑋௞௟ → 𝑌௟௝);
solve sub-

problems of
warehouses-

DCs based the
solution of

DCs-retailers
(𝑌௟௝ → 𝑋௞௟)
It has both

forward
calculation

and cost
backward

propagation

Step Formula Illustration

This paper

single sourcing,
lateral-transshipments are

allowed and direct
shipments are prohibited

reconstruct the network
relationships within DC

echelons from the classical
quadratic assignment

modeling and divide the
problem into two stage

sub-problems:
warehouses-DCs (Xkl) and

DCs-retailers (Yl j)

for each fixed Xkl , solve
sub-problems of

DCs-retailers (Xkl → Yl j);
solve sub-problems of

warehouses-DCs based
the solution of
DCs-retailers
(Yl j → Xkl)

It has both forward
calculation and cost

backward propagation

1

Publication
Network Planning

Strategy
Decomposition/Linea

rization Method
Cost

Propagation Illustration of Key Decision Variables

[17]

single sourcing,
lateral-

transshipments
and direct

shipment are
prohibited

by introducing a new
binary variable 𝑀௜௞௛௝
to linearize the binary

quadratic terms 𝑊௜௞𝑋௞௛௝ in the
objective function,

then solve it using the
CPLEX 12 solver

-

[6]

multiple sourcing,
lateral-

transshipments
and direct

shipment are
allowed

convert the supply
chain network to a
bipartite graph and
divide the problem
into three main sub-
problems: plant-DCs
(𝑋௜௝), DCs-retailers
(𝑌௝௞), and retailers-

customers (𝑍௞௦)

solve three
sub-problems
sequentially
(𝑋௜௝ → 𝑌௝௞ →𝑍௞௦), the cost
of each edge
is calculated
with respect
to the two

different end
of it and it
propagates

forward

This paper

single sourcing,
lateral-

transshipments are
allowed and direct

shipments are
prohibited

reconstruct the
network relationships
within DC echelons

from the classical
quadratic assignment
modeling and divide
the problem into two
stage sub-problems:

warehouses-DCs (𝑋௞௟)
and DCs-retailers (𝑌௟௝)

for each fixed 𝑋௞௟, solve sub-
problems of

DCs-retailers
(𝑋௞௟ → 𝑌௟௝);
solve sub-

problems of
warehouses-

DCs based the
solution of

DCs-retailers
(𝑌௟௝ → 𝑋௞௟)
It has both

forward
calculation

and cost
backward

propagation

Step Formula Illustration

Algorithms 2023, 16, 252 7 of 40

3. Problem Description and Formulation
3.1. Problem Description

This paper aims to design a three-echelon distribution network with “transfer short-
cuts” by making allocation decisions between different facilities. For the standard form
of multi-echelon SCND, interested readers can refer to the studies by [20,34,47]. In their
research, materials or commodities are processed through a range of echelons and only one
node in each echelon can be chosen for a process chain (as shown in Figure 3a); the deci-
sions typically are associated with the facility locations and the allocation between different
echelons. In this paper, we consider a three-echelon city logistic distribution network, as
shown in Figure 3b, with facilities at fixed locations, i.e., warehouses, DCs, and delivery
terminals/stations. Commodities are stored in warehouses (origins) and transported to
stations (destinations) via DCs. We need to decide on two pairs of assignment relationship
(i.e., warehouses-to-DCs and DCs-to-delivery stations) in the city logistics distribution
network, which will greatly affect the overall transportation costs, since we further consider
transferring options in the same echelon (DCs) in our problem, which could lead to very
difficult assignment relationship (warehouses-to-DCs and DCs-to-delivery stations), and is
not covered in the standard multi-echelon SCND reformulation.

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 41

E(1) E(2) E(3) Warehouses DCs Stations

(a) A traditional multi-echelon network (b) A city logistic distribution network with
transfer shortcuts

Figure 3. Different types of distribution networks.

Without loss of generality, the following assumptions are adopted in the underlining
mathematical model:
(1) A single sourcing/single path strategy [17] assumes that each warehouse can only be

assigned to a single DC and one station can only be covered by one DC.
(2) Each delivery station has deterministic demand following a known pattern [6,17,49].
(3) Transportation cost is expressed as a piecewise linear function of material flow [50]

and it is proportional to the volume of freight flows (i.e., transportation costs equal
to the product of distance and freight flows in our problem).
Then, we can state the overall problem as follows: The major input data include the

number of warehouses, DCs, stations, locations of facilities, and the connections between
DCs. Moreover, other additional given parameters include distances between different
facilities, the capacities of DCs, and the demand. The decision variables are related to the
assignment of warehouses to DCs and the assignment of DCs to stations. The goal is to
minimize the total costs subject to the demand satisfactory constraints under available
resources. Table 3 lists the notations used throughout this paper, and the definitions of
the decision variables are provided in Table 4.

Table 3. Sets, indices, and parameters used in models.

Symbol Definition
Sets 𝑁 Set of nodes in the physical network
E Set of transportation links in the physical network 𝐸஻ Set of transportation links to be built in the physical network, 𝐸஻ ∈ 𝐸 𝐸ா Set of transportation links existing in the physical network, 𝐸ா ∈ 𝐸 𝐾 Set of warehouses, 𝐾 ∈ 𝑁 𝐿, 𝐿ᇱ Set of DCs, 𝐿 ∈ 𝑁, 𝐿ᇱ ∈ 𝑁 𝐽 Set of stations, 𝐽 ∈ 𝑁
Indices 𝑘 Index of set 𝐾, 𝑘 ∈ 𝐾 𝑙 Index of set 𝐿, 𝑙 ∈ 𝐿 𝑙ᇱ Index of the set 𝐿ᇱ, 𝑙ᇱ ∈ 𝐿ᇱ 𝑗 Index of set 𝐽, 𝑗 ∈ 𝐽

Figure 3. Different types of distribution networks.

Without loss of generality, the following assumptions are adopted in the underlining
mathematical model:

(1) A single sourcing/single path strategy [17] assumes that each warehouse can only be
assigned to a single DC and one station can only be covered by one DC.

(2) Each delivery station has deterministic demand following a known pattern [6,17,49].
(3) Transportation cost is expressed as a piecewise linear function of material flow [50]

and it is proportional to the volume of freight flows (i.e., transportation costs equal to
the product of distance and freight flows in our problem).

Then, we can state the overall problem as follows: The major input data include the
number of warehouses, DCs, stations, locations of facilities, and the connections between
DCs. Moreover, other additional given parameters include distances between different
facilities, the capacities of DCs, and the demand. The decision variables are related to the
assignment of warehouses to DCs and the assignment of DCs to stations. The goal is to
minimize the total costs subject to the demand satisfactory constraints under available
resources. Table 3 lists the notations used throughout this paper, and the definitions of the
decision variables are provided in Table 4.

Algorithms 2023, 16, 252 8 of 40

Table 3. Sets, indices, and parameters used in models.

Symbol Definition

Sets
N Set of nodes in the physical network
E Set of transportation links in the physical network

EB Set of transportation links to be built in the physical network,
EB ∈ E

EE Set of transportation links existing in the physical network,
EE ∈ E

K Set of warehouses, K ∈ N
L, L′ Set of DCs, L ∈ N, L′ ∈ N
J Set of stations, J ∈ N
Indices
k Index of set K, k ∈ K
l Index of set L, l ∈ L
l′ Index of the set L′, l′ ∈ L′

j Index of set J,j ∈ J
Parameters
dkl Distance from warehouse k to DC l
ckl Estimated cost from warehouse k to DC l
dll′ Distance from DC l to DC l′

dl′ j Distance from DC l′ to station j
fkj Demand for station j at warehouse k
cap(l,l′) Capacity of the DC l

Table 4. Decision variables used in models.

xkl =1 if assign warehouse k to distribution center l, = 0 otherwise
yl′ j =1 if assign station j to the distribution center l′, = 0 otherwise

3.2. Network Model Construction for Logistics Network with Shortcuts

Consider a city logistics distribution network, which includes a set of warehouses
denoted by K, a set of DCs denoted by L, a set of delivery stations denoted by J, a set of
existing transportation links (inter DC links) denoted by EE, and a set of transportation
links to be built denoted by EB. Let a physical network G = (N, L) be a collection of
possible physical network elements, where N = K ∪ L ∪ J, and all available and existing
links are denoted by the set E = EB ∪ EE. For the logistics distribution service, the physical
network also consists of many origin and destination pairs. An origin is a warehouse with
an index of k ∈ K where commodities originate from, and a destination is a station with an
index of j ∈ J where commodities terminate.

Figure 4 shows an illustrative network in our problem. To address the challenge
of cross-layer connections within the same echelon, we apply a network decomposition
strategy, i.e., splitting the original echelon L into two new echelons, namely L and L′, as
shown in Figure 4b. Each pair of nodes in the sets (L, L′) with the same index represents
a physical location node in the set L. Specifically, the combination of

(
l1, l′1

)
indicates the

actual node l1. Table 5 provides detailed information about the mapping between the
original network and the extended network.

Algorithms 2023, 16, 252 9 of 40

Algorithms 2023, 16, x FOR PEER REVIEW 9 of 41

Parameters 𝑑௞௟ Distance from warehouse 𝑘 to DC 𝑙 𝑐௞௟ Estimated cost from warehouse 𝑘 to DC 𝑙 𝑑௟௟ᇲ Distance from DC 𝑙 to DC 𝑙ᇱ 𝑑௟ᇲ௝ Distance from DC 𝑙ᇱ to station 𝑗 𝑓௞௝ Demand for station 𝑗 at warehouse 𝑘 𝑐𝑎𝑝(௟,௟ᇲ) Capacity of the DC 𝑙
Table 4. Decision variables used in models. 𝑥௞௟ =1 if assign warehouse k to distribution center 𝑙, = 0 otherwise 𝑦௟ᇲ௝ =1 if assign station 𝑗 to the distribution center 𝑙ᇱ, = 0 otherwise

3.2. Network Model Construction for Logistics Network with Shortcuts
Consider a city logistics distribution network, which includes a set of warehouses

denoted by K, a set of DCs denoted by L, a set of delivery stations denoted by J, a set of
existing transportation links (inter DC links) denoted by 𝐸ா, and a set of transportation
links to be built denoted by 𝐸஻. Let a physical network 𝐺 = (𝑁, 𝐿) be a collection of pos-
sible physical network elements, where 𝑁 = 𝐾 ∪ 𝐿 ∪ 𝐽, and all available and existing links
are denoted by the set 𝐸 = 𝐸஻ ∪ 𝐸ா. For the logistics distribution service, the physical net-
work also consists of many origin and destination pairs. An origin is a warehouse with an
index of 𝑘 ∈ 𝐾 where commodities originate from, and a destination is a station with an
index of 𝑗 ∈ 𝐽 where commodities terminate.

Figure 4 shows an illustrative network in our problem. To address the challenge of
cross-layer connections within the same echelon, we apply a network decomposition strat-
egy, i.e., splitting the original echelon 𝐿 into two new echelons, namely 𝐿 and 𝐿ᇱ , as
shown in Figure 4b. Each pair of nodes in the sets (𝐿, 𝐿ᇱ) with the same index represents a
physical location node in the set 𝐿. Specifically, the combination of (𝑙ଵ, 𝑙ଵᇱ) indicates the
actual node 𝑙ଵ. Table 5 provides detailed information about the mapping between the
original network and the extended network.

(a) original network (b) reconstructed network

1k

2k

3k

4k

1l

2l

3l

1j

2j

3j

4j

5j

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

Warehouses DCs Stations Warehouses DCs StationsVirtual DCs

Figure 4. Network reconstruction.

Table 5. Decision variables used in models.

Elements Original Network Extended Network Distance
node 𝑙ଵ 𝑙ଵ and 𝑙ଵᇱ 𝑑௟భ௟భᇲ = 0
node 𝑙ଶ 𝑙ଶ and 𝑙ଶᇱ 𝑑௟మ௟మᇲ = 0
link (𝑙ଵ, 𝑙ଶ) (𝑙ଵ, 𝑙ଶᇱ) 𝑑௟భ௟మ = 𝑑௟భ௟మᇲ
link (𝑙ଶ, 𝑙ଵ) (𝑙ଶ, 𝑙ଵᇱ) 𝑑௟మ௟భ = 𝑑௟మ௟భᇲ

Figure 4. Network reconstruction.

Table 5. Decision variables used in models.

Elements Original Network Extended Network Distance

node l1 l1 and l′1 dl1 l′1
= 0

node l2 l2 and l′2 dl2 l′2 = 0
link (l1, l2)

(
l1, l′2

)
dl1 l2 = dl1 l′2

link (l2, l1)
(
l2, l′1

)
dl2 l1 = dl2 l′1

path k1 − l1 − j1 k1 − l1 − l′1 − j1 dk1 l1 + dl1 j1 = dk1 l1 + dl1 l′1
+ dl′1 j1

path k1 − l1 − l2 − j1 k1 − l1 − l′2 − j1 dk1 l1 + dl1 l2 + dl2 j1 = dk1 l1 + dl1 l′2 + dl′2 j1

3.3. Quadratic Semi-Assignment Model M1 with Capacity Constraints

Based on the above expanded network, our problem can be formulated as the following
quadratic semi-assignment model with capacity constraints (QSAP-C, M1):

Min ∑
k∈K

∑
l∈L

∑
j∈J

fkjdklxkl + ∑
l∈L

∑
l’∈L’

∑
k∈K

∑
j∈J

fkjdll’xklyl’j+ ∑
l’∈L’

∑
j∈J

∑
k∈K

fkjdl’jyl’j (1)

∑
l∈L

xkl = 1 ∀ k ∈ K (2)

∑
l’∈L

yl’j = 1 ∀ j ∈ J (3)

∑
k∈K

∑
j∈J

xklfkj + ∑
k∈K

∑
j∈J

yl’jfkj − ∑
k∈K

∑
j∈J

xklyl’jfkj ≤Cap(l,l’) ∀
(

l, l’
)
∈
(

L, L’
)

(4)

xkl ∈ {0,1} ∀ k ∈ K, l ∈ L (5)

yl’j ∈ {0,1} ∀ l’ ∈ L’, ∀ j ∈ J (6)

The objective function in Equation (1) aims to minimize the sum of transportation
costs across multiple layers (i.e., from warehouses to DCs and from DCs to delivery
stations) and the transfer transportation costs between DCs. As indicated in Assumption
(6), transportation costs in this problem are considered as the product of distance and
flow volume. Essentially, the flow volume of transfer activities is jointly determined by
the two types of allocation decisions xkl and yl′ j, which clearly leads to a quadratic term
∑l∈L ∑l′∈L′ ∑k∈K ∑j∈J fkjdll′xklyl′ j in the objective function. Constraint (2) then ensures that

Algorithms 2023, 16, 252 10 of 40

one warehouse can only be covered by a single DC. Constraint (3) requires that one station
is assigned to exactly one DC. Constraint (4) specifies that the capacity of DCs cannot be
exceeded. Constraints (5) and (6) describe two sets of binary variables.

The left-hand-side of constraint (4) is interpreted as the incoming (or outgoing) flow
summation for the combination of (l, l′), corresponding to the actual DC l. To be specific,
Figure 5 shows a potential feasible solution for the illustrative example shown in Figure 4,
which can be further checked to know whether the capacity is sufficient. For DC l1 (combi-
nation of (l1, l′1)), the incoming bottleneck should consider the flow on link (k1, l1), (l2, l′1),
and (l3, l′1), as shown in Figure 6a. Figure 6b shows the outgoing bottleneck links, i.e.,
link (l1, l′2), (l1, l′3), and (l′1, j3). As the flow balance for each node in layer L (Figure 7a)
and L′ (Figure 7b), bottleneck links are links (l1, l′1), (l1, l′2), (l1, l′3), (l2, l′1), and (l3, l′1)
(Figure 8). The term of ∑k∈K ∑j∈J xkl fkj + ∑k∈K ∑j∈J yl′ j fkj in Equation (4) covers all flow
on bottleneck links but calculates the internal transfer link (link (l1, l′1)) twice, where the
recalculated flow can be expressed as ∑

k∈K
∑j∈J xklyl′ j fkj and we finally obtain constraint (4)

by removing this part.

Algorithms 2023, 16, x FOR PEER REVIEW 11 of 41

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

'LK L J
Figure 5. A potential feasible solution for QSAP-C.

(a) incoming bottleneck for

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

'LK L J

(b) outgoing bottleneck for

'LK L J
'

1 1(,)l l'
1 1(,)l l

Figure 6. DC 𝑙ଵ can be a bottleneck as all incoming flow (direct transport + transfers) could exceed
outgoing handling capacity.

(a) flow balance for

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

'LK L J 'LK L J

1l (b) flow balance for '
1l

Figure 7. Flow balance for a pair of DC nodes 𝑙ଵ and 𝑙ଵᇱ .

Figure 5. A potential feasible solution for QSAP-C.

Algorithms 2023, 16, x FOR PEER REVIEW 11 of 41

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

'LK L J
Figure 5. A potential feasible solution for QSAP-C.

(a) incoming bottleneck for

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

'LK L J

(b) outgoing bottleneck for

'LK L J
'

1 1(,)l l'
1 1(,)l l

Figure 6. DC 𝑙ଵ can be a bottleneck as all incoming flow (direct transport + transfers) could exceed
outgoing handling capacity.

(a) flow balance for

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

'LK L J 'LK L J

1l (b) flow balance for '
1l

Figure 7. Flow balance for a pair of DC nodes 𝑙ଵ and 𝑙ଵᇱ .

Figure 6. DC l1 can be a bottleneck as all incoming flow (direct transport + transfers) could exceed
outgoing handling capacity.

Algorithms 2023, 16, 252 11 of 40

Algorithms 2023, 16, x FOR PEER REVIEW 11 of 41

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

'LK L J
Figure 5. A potential feasible solution for QSAP-C.

(a) incoming bottleneck for

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

'LK L J

(b) outgoing bottleneck for

'LK L J
'

1 1(,)l l'
1 1(,)l l

Figure 6. DC 𝑙ଵ can be a bottleneck as all incoming flow (direct transport + transfers) could exceed
outgoing handling capacity.

(a) flow balance for

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

'LK L J 'LK L J

1l (b) flow balance for '
1l

Figure 7. Flow balance for a pair of DC nodes 𝑙ଵ and 𝑙ଵᇱ . Figure 7. Flow balance for a pair of DC nodes l1 and l′1.

Algorithms 2023, 16, x FOR PEER REVIEW 12 of 41

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

'LK L J
Figure 8. Checking flow balance constraints for incoming/outgoing links for DC 𝑙ଵ.

The proposed formulation differs from the standard quadratic assignment problem
(QAP) (e.g., [51]), in terms of its sets of constraints. In the QAP, facilities need to be allo-
cated to the locations such that each facility is allocated to exactly one location, and every
location can only be assigned to one facility to minimize the total transportation costs,
which are equal to the sum of the products of flows and distances. The connection be-
tween standard QAP and QSAP-C formulation is given in Appendix A.1.

4. Solution Algorithms
Many methods have been developed for solving standard QAP, including a wide

range of exact, heuristic, and metaheuristic approaches, and interested readers are re-
ferred to the review paper by [52]. Since the standard QAP is NP-hard, high-quality lower
bounds are of great importance and typically obtained through implicit enumeration pro-
cedures such as branch-and-bound. The Gilmore and Lawler lower bound (GLB) is one of
the best-known standard QAP lower bounding rules, due to its simplicity and low com-
putational cost. Aiming to introduce or adapt this classical approach from the standard
QAP to the specific problem under consideration, we design a matheuristic approach to
obtain “approximate” lower bound estimates through a decomposition scheme with built-
in GLB rules. Accordingly, a solution-finding method is developed to convert the obtained
lower bound solution to feasible ones as tighter upper bounds. To improve the quality of
solutions, we next propose both exact and heuristic algorithms with the embedded GLB
lower bound estimator.

4.1. Stage-Wide Problem Decomposition Schemes of GLB
A good lower bound for a combinatorial optimization problem should be tight and

easy to compute compared with solving the problem itself [53]. The GLB can easily pro-
vide relatively tight lower bounds. The request for decomposition for QAP or other prob-
lems such as coupling decisions has the following stated objectives: (1) decouple the deci-
sions and the original problem can be divided into simple subproblems; (2) provide the
basis for aggregation techniques and form the backbone of the procedures; (3) the problem
can be solved finally by coordinating the solution of linear subprograms. These objectives
need to be achieved in absolute terms of course, but also in a pragmatic way if the results
of decomposition are expected to have a significant impact on real-world planning and
decision-making. This means that the tools and methodology developed must be suffi-
ciently accurate, reliable, and consistent to meet decision making needs.

In this section, we first briefly introduce the solution principle of GLB, of which de-
tails can be found in [54]. Figure 9 considers an illustrative example with |𝑁| = 4 (where 𝑁 is defined as set of facilities, index 𝑖, 𝑗 ∈ 𝑁, and 𝑀 are defined as the set of locations,
and index 𝑘, 𝑙 ∈ 𝑀, |𝑀| = |𝑁|), which is adapted from the classical QAP instance of the

Figure 8. Checking flow balance constraints for incoming/outgoing links for DC l1.

The proposed formulation differs from the standard quadratic assignment problem
(QAP) (e.g., [51]), in terms of its sets of constraints. In the QAP, facilities need to be allocated
to the locations such that each facility is allocated to exactly one location, and every location
can only be assigned to one facility to minimize the total transportation costs, which are
equal to the sum of the products of flows and distances. The connection between standard
QAP and QSAP-C formulation is given in Appendix A.1.

4. Solution Algorithms

Many methods have been developed for solving standard QAP, including a wide
range of exact, heuristic, and metaheuristic approaches, and interested readers are referred
to the review paper by [52]. Since the standard QAP is NP-hard, high-quality lower bounds
are of great importance and typically obtained through implicit enumeration procedures
such as branch-and-bound. The Gilmore and Lawler lower bound (GLB) is one of the best-
known standard QAP lower bounding rules, due to its simplicity and low computational
cost. Aiming to introduce or adapt this classical approach from the standard QAP to
the specific problem under consideration, we design a matheuristic approach to obtain
“approximate” lower bound estimates through a decomposition scheme with built-in GLB
rules. Accordingly, a solution-finding method is developed to convert the obtained lower
bound solution to feasible ones as tighter upper bounds. To improve the quality of solutions,
we next propose both exact and heuristic algorithms with the embedded GLB lower
bound estimator.

Algorithms 2023, 16, 252 12 of 40

4.1. Stage-Wide Problem Decomposition Schemes of GLB

A good lower bound for a combinatorial optimization problem should be tight and
easy to compute compared with solving the problem itself [53]. The GLB can easily
provide relatively tight lower bounds. The request for decomposition for QAP or other
problems such as coupling decisions has the following stated objectives: (1) decouple the
decisions and the original problem can be divided into simple subproblems; (2) provide
the basis for aggregation techniques and form the backbone of the procedures; (3) the
problem can be solved finally by coordinating the solution of linear subprograms. These
objectives need to be achieved in absolute terms of course, but also in a pragmatic way
if the results of decomposition are expected to have a significant impact on real-world
planning and decision-making. This means that the tools and methodology developed
must be sufficiently accurate, reliable, and consistent to meet decision making needs.

In this section, we first briefly introduce the solution principle of GLB, of which details
can be found in [54]. Figure 9 considers an illustrative example with |N| = 4 (where N
is defined as set of facilities, index i, j ∈ N, and M are defined as the set of locations,
and index k, l ∈ M, |M| = |N|), which is adapted from the classical QAP instance of
the NEOS (https://neos-guide.org/case-studies/sc/la/qap/qap-of-size-4/, accessed on
7 May 2023). For this example, there are four facilities (Figure 9a) that need to be allocated
to four locations (Figure 9b) following the one-to-one assignment constraints. Figure 9c
provides a feasible solution, i.e., permutation (A-2, B-1, C-3, D-4). In Figure 10, we would
like to highlight the symmetrical two-stage decision feature of this instance, where the first
stage aims to determine the locations of the flow-sending facilities and where the second
stage is concerned about the locations of flow-receiving facilities.

Algorithms 2023, 16, x FOR PEER REVIEW 13 of 41

NEOS (https://neos-guide.org/case-studies/sc/la/qap/qap-of-size-4/, accessed on 7 May
2023). For this example, there are four facilities (Figure 9a) that need to be allocated to four
locations (Figure 9b) following the one-to-one assignment constraints. Figure 9c provides
a feasible solution, i.e., permutation (A-2, B-1, C-3, D-4). In Figure 10, we would like to
highlight the symmetrical two-stage decision feature of this instance, where the first stage
aims to determine the locations of the flow-sending facilities and where the second stage
is concerned about the locations of flow-receiving facilities.

A B

C D

1 2

3 4

1 2

3 4

B A

C D

ABf

CDf

ACf
BDf

ADf
BCf

12d

34d

13d
24d14d

23d

12ABf d×

34CDf d×

13BCf d×
14

BD
f

d×

23

ACf
d×

Flow link Physical link Service link

(a) Facilities (b) Locations (c) A feasible solution

Figure 9. An instance of standard QAP.

A

B

C

D

1

2

3

4

1

2

3

4

A

B

C

D

First-stage
decision Existing link Second-stage

decision
Figure 10. The two-stage decision form of the instance.

From a dynamic programming-oriented perspective, we describe the process of ob-
taining GLB as three steps: (1) the decisions at the second stage are decomposed into a
collection of simpler linear assignment problems (LAPs); (2) sequential solving of each
LAP; (3) their solutions are used as the backward cost estimate (BCE) when making first-
stage decisions. This three-step process is further illustrated in Table 6.

Figure 9. An instance of standard QAP.

Algorithms 2023, 16, x FOR PEER REVIEW 13 of 41

NEOS (https://neos-guide.org/case-studies/sc/la/qap/qap-of-size-4/, accessed on 7 May
2023). For this example, there are four facilities (Figure 9a) that need to be allocated to four
locations (Figure 9b) following the one-to-one assignment constraints. Figure 9c provides
a feasible solution, i.e., permutation (A-2, B-1, C-3, D-4). In Figure 10, we would like to
highlight the symmetrical two-stage decision feature of this instance, where the first stage
aims to determine the locations of the flow-sending facilities and where the second stage
is concerned about the locations of flow-receiving facilities.

A B

C D

1 2

3 4

1 2

3 4

B A

C D

ABf

CDf

ACf
BDf

ADf
BCf

12d

34d

13d
24d14d

23d

12ABf d×

34CDf d×

13BCf d×
14

BD
f

d×

23

ACf
d×

Flow link Physical link Service link

(a) Facilities (b) Locations (c) A feasible solution

Figure 9. An instance of standard QAP.

A

B

C

D

1

2

3

4

1

2

3

4

A

B

C

D

First-stage
decision Existing link Second-stage

decision
Figure 10. The two-stage decision form of the instance.

From a dynamic programming-oriented perspective, we describe the process of ob-
taining GLB as three steps: (1) the decisions at the second stage are decomposed into a
collection of simpler linear assignment problems (LAPs); (2) sequential solving of each
LAP; (3) their solutions are used as the backward cost estimate (BCE) when making first-
stage decisions. This three-step process is further illustrated in Table 6.

Figure 10. The two-stage decision form of the instance.

https://neos-guide.org/case-studies/sc/la/qap/qap-of-size-4/

Algorithms 2023, 16, 252 13 of 40

From a dynamic programming-oriented perspective, we describe the process of ob-
taining GLB as three steps: (1) the decisions at the second stage are decomposed into a
collection of simpler linear assignment problems (LAPs); (2) sequential solving of each LAP;
(3) their solutions are used as the backward cost estimate (BCE) when making first-stage
decisions. This three-step process is further illustrated in Table 6.

Table 6. The three-step process of obtaining GLB.

Step Formula Illustration

Estimate the second-stage cost by
fixing the decision variable xik in

the first stage

Let xik = 1, the optimal solution of
following linear assignment problem is

defined as π*
ik for each (i, k)

π*
ik = Min

N
∑

l=1

N
∑

j=1
fijdkl xl j

N
∑

j=1
xl j = 1 ∀ l = 1, 2, . . . N

N
∑

l=1
xl j = 1 ∀ j = 1, 2, . . . N

2

Estimate the second-stage
cost by fixing the decision

variable 𝑥௜௞ in the first
stage

Let 𝑥௜௞ = 1, the optimal solution of
following linear assignment problem is

defined as 𝜋௜௞∗ for each (𝑖, 𝑘) 𝜋௜௞∗ = Min ෍෍𝑓௜௝𝑑௞௟𝑥௟௝ே
௝ୀଵ

ே
௟ୀଵ

෍𝑥௟௝ே
௝ୀଵ = 1 ∀ 𝑙 = 1,2, …𝑁

෍𝑥௟௝ே
௟ୀଵ = 1 ∀ 𝑗 = 1,2, …𝑁

A

B

C

D

1

2

3

4

1

2

3

4

A

B

C

D

i k l j
Calculate the total cost 𝑐௜௞ for each (𝑖, 𝑘) as BCE

𝑐௜௞ = 𝑏௜௞ + 𝜋௜௞∗ -

Solve the first-stage
problem based on BCE of 𝑐௜௞

GLB = Min ෍෍(𝑐௜௞ + 𝜋௜௞∗)𝑥௜௞ே
௞ୀଵ

ே
௜ୀଵ

෍𝑥௜௞ே
௜ୀଵ = 1 ∀ 𝑘 = 1,2, …𝑁

෍𝑥௜௞ே
௞ୀଵ = 1 ∀ 𝑖 = 1,2, …𝑁

A

B

C

D

1

2

3

4

1

2

3

4

A

B

C

D

i k l j

*
1 1A Ab π+

*
4 4B Bb π+

*
2 2C Cb π+

*
3 3D Db π+

Calculate the total cost
cik for each (i, k) as BCE cik = bik + π*

ik -

Solve the first-stage problem
based on BCE of cik

GLB = Min
N
∑

i=1

N
∑

k=1

(
cik + π*

ik
)

xik

N
∑

i=1
xik = 1 ∀ k = 1, 2, . . . N

N
∑

k=1
xik = 1 ∀ i = 1, 2, . . . N

2

Estimate the second-stage
cost by fixing the decision

variable 𝑥௜௞ in the first
stage

Let 𝑥௜௞ = 1, the optimal solution of
following linear assignment problem is

defined as 𝜋௜௞∗ for each (𝑖, 𝑘) 𝜋௜௞∗ = Min ෍෍𝑓௜௝𝑑௞௟𝑥௟௝ே
௝ୀଵ

ே
௟ୀଵ

෍𝑥௟௝ே
௝ୀଵ = 1 ∀ 𝑙 = 1,2, …𝑁

෍𝑥௟௝ே
௟ୀଵ = 1 ∀ 𝑗 = 1,2, …𝑁

A

B

C

D

1

2

3

4

1

2

3

4

A

B

C

D

i k l j
Calculate the total cost 𝑐௜௞ for each (𝑖, 𝑘) as BCE

𝑐௜௞ = 𝑏௜௞ + 𝜋௜௞∗ -

Solve the first-stage
problem based on BCE of 𝑐௜௞

GLB = Min ෍෍(𝑐௜௞ + 𝜋௜௞∗)𝑥௜௞ே
௞ୀଵ

ே
௜ୀଵ

෍𝑥௜௞ே
௜ୀଵ = 1 ∀ 𝑘 = 1,2, …𝑁

෍𝑥௜௞ே
௞ୀଵ = 1 ∀ 𝑖 = 1,2, …𝑁

A

B

C

D

1

2

3

4

1

2

3

4

A

B

C

D

i k l j

*
1 1A Ab π+

*
4 4B Bb π+

*
2 2C Cb π+

*
3 3D Db π+

As presented in Tables 7 and 8, for the given input data (distance matrix and flows),
we detail the calculation steps as shown below.

Table 7. Distance matrix of locations.

1 2 3 4

1 0 22 53 53
2 22 0 40 62
3 53 40 0 55
4 53 62 55 0

Table 8. Flows of different source-sink pairs.

A B C D

A 0 3 0 2
B 3 0 0 1
C 0 0 0 4
D 2 1 4 0

Algorithms 2023, 16, 252 14 of 40

Step 1: Calculate the π*
ik for each (i, k) pair.

For example, let xA1 = 1 then we need to assign three flows (fAB, fAC, fAD) to three
distances (d12, d13, d14), as shown in Figure 11. The objective is to find the minimum value
of the sum of products of flows and distances. The LAP can be simply solved using sorting
algorithms [55] to match the minimum flows with the maximum distances. Accordingly,
the optimal solution of the LAP for xA1 = 1 is π*

kl = fABd12 + fACd14 + fADd13 = 22× 3 +
53× 2 + 53× 0 = 172.

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 41

the optimal solution of the LAP for 𝑥஺ଵ = 1 is 𝜋௞௟∗ = 𝑓஺஻𝑑ଵଶ + 𝑓஺஼𝑑ଵସ + 𝑓஺஽𝑑ଵଷ = 22 × 3 +53 × 2 + 53 × 0 = 172.

A

B

C

D

1

2

3

4

1

2

3

4

A

B

C

D

i k l j

𝑓𝐴𝐵 = 3 𝑓𝐴𝐶 = 0 𝑓𝐴𝐷 = 2

𝑑12 = 22

𝑑13 = 53

𝑑14 = 53

Figure 11. Subproblem of LAP for node pair (A, 1).

Step 2: For each (𝑖, 𝑘) pair, we calculate the total cost 𝑐௜௞ for each (𝑖, 𝑘).
By using Table 9 with BCE 𝜋௜௞∗ , we calculate 𝑐௜௞ = 𝑏௜௞ + 𝜋௜௞∗ , where 𝑏௜௞ = 0 in this

instance and 𝑐௜௞ = 𝜋௜௞∗ .

Table 9. Values of backward cost estimate 𝜋௜௞∗ for the first stage.

 1 2 3 4
A 𝜋஺ଵ∗ = 172 𝜋஺ଶ∗ = 22 𝜋஺ଷ∗ = 88 𝜋஺ସ∗ = 0
B 𝜋஻ଵ∗ = 146 𝜋஻ଶ∗ = 22 𝜋஻ଷ∗ = 88 𝜋஻ସ∗ = 0
C 𝜋஼ଵ∗ =226 𝜋஼ଶ∗ = 40 𝜋஼ଷ∗ = 160 𝜋஼ସ∗ = 0
D 𝜋஽ଵ∗ = 269 𝜋஽ଶ∗ = 53 𝜋஽ଷ∗ =212 𝜋஽ସ∗ =0

Step 3: Solve the first-stage problem based on 𝑐௜௞
Solve the LAP with cost 𝑐௜௞ = 𝜋௜௞∗ , we then obtain the permutation (A-3, B-1, C-2, D-

4) with optimum value GLB = 274 and the corresponding objective function value 𝑧 =
570, as shown in Figure 12. For this instance, the optimal solution is (A-3, B-4, C-1, D-2)
with value 𝑧∗ = 395.

3 4

1 2

A B

C D

3 4

1 2

A D

B C

(a) Facilities (b) Locations

Figure 12. Illustration of solutions.

4.2. Model Decomposition Scheme for Utilizing Efficient Lower Bound Rules for QSAP-C

Figure 11. Subproblem of LAP for node pair (A, 1)..

Step 2: For each (i, k) pair, we calculate the total cost cik for each (i, k).
By using Table 9 with BCE π*

ik, we calculate cik = bik + π*
ik, where bik = 0 in this

instance and cik = π*
ik.

Table 9. Values of backward cost estimate π*
ik for the first stage.

1 2 3 4

A π*
A1 = 172 π*

A2 = 22 π*
A3 = 88 π*

A4 = 0
B π*

B1 = 146 π*
B2 = 22 π*

B3 = 88 π*
B4 = 0

C π*
C1 = 226 π*

C2 = 40 π*
C3 = 160 π*

C4 = 0
D π*

D1 = 269 π*
D2 = 53 π*

D3 = 212 π*
D4 = 0

Step 3: Solve the first-stage problem based on cik Solve the LAP with cost cik = π*
ik, we

then obtain the permutation (A-3, B-1, C-2, D-4) with optimum value GLB = 274 and the
corresponding objective function value z = 570, as shown in Figure 12. For this instance,
the optimal solution is (A-3, B-4, C-1, D-2) with value z* = 395.

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 41

the optimal solution of the LAP for 𝑥஺ଵ = 1 is 𝜋௞௟∗ = 𝑓஺஻𝑑ଵଶ + 𝑓஺஼𝑑ଵସ + 𝑓஺஽𝑑ଵଷ = 22 × 3 +53 × 2 + 53 × 0 = 172.

A

B

C

D

1

2

3

4

1

2

3

4

A

B

C

D

i k l j

𝑓𝐴𝐵 = 3 𝑓𝐴𝐶 = 0 𝑓𝐴𝐷 = 2

𝑑12 = 22

𝑑13 = 53

𝑑14 = 53

Figure 11. Subproblem of LAP for node pair (A, 1).

Step 2: For each (𝑖, 𝑘) pair, we calculate the total cost 𝑐௜௞ for each (𝑖, 𝑘).
By using Table 9 with BCE 𝜋௜௞∗ , we calculate 𝑐௜௞ = 𝑏௜௞ + 𝜋௜௞∗ , where 𝑏௜௞ = 0 in this

instance and 𝑐௜௞ = 𝜋௜௞∗ .

Table 9. Values of backward cost estimate 𝜋௜௞∗ for the first stage.

 1 2 3 4
A 𝜋஺ଵ∗ = 172 𝜋஺ଶ∗ = 22 𝜋஺ଷ∗ = 88 𝜋஺ସ∗ = 0
B 𝜋஻ଵ∗ = 146 𝜋஻ଶ∗ = 22 𝜋஻ଷ∗ = 88 𝜋஻ସ∗ = 0
C 𝜋஼ଵ∗ =226 𝜋஼ଶ∗ = 40 𝜋஼ଷ∗ = 160 𝜋஼ସ∗ = 0
D 𝜋஽ଵ∗ = 269 𝜋஽ଶ∗ = 53 𝜋஽ଷ∗ =212 𝜋஽ସ∗ =0

Step 3: Solve the first-stage problem based on 𝑐௜௞
Solve the LAP with cost 𝑐௜௞ = 𝜋௜௞∗ , we then obtain the permutation (A-3, B-1, C-2, D-

4) with optimum value GLB = 274 and the corresponding objective function value 𝑧 =
570, as shown in Figure 12. For this instance, the optimal solution is (A-3, B-4, C-1, D-2)
with value 𝑧∗ = 395.

3 4

1 2

A B

C D

3 4

1 2

A D

B C

(a) Facilities (b) Locations

Figure 12. Illustration of solutions.

4.2. Model Decomposition Scheme for Utilizing Efficient Lower Bound Rules for QSAP-C

Figure 12. Illustration of solutions.

Algorithms 2023, 16, 252 15 of 40

4.2. Model Decomposition Scheme for Utilizing Efficient Lower Bound Rules for QSAP-C

We reformulate the primal problem as a number of subproblems of LAP with compu-
tationally efficient algorithms by relaxing the capacity constraints of DCs (constraint (4)).
The corresponding relaxed model (M2) of the original problem can be stated, as seen below,
with its optimal solution defined as ZR.

M2:
ZR = Min Z (7)

subject to Equations (2) and (3) and Equations (5) and (6)
Similar to the problem decomposition scheme used in GLB, model M2 can be further

decomposed into a sequence of generalized linear assignment problem (GLAP) with an
optimal solution π*

kl for each (k, l) ∈ EB. The main idea of the decomposition is to fix the
variable xkl (assume that xkl = 1) and then solve the problem related to yl′ j to obtain the
second-stage cost. Thus, we can establish the following equations for each (k, l) ∈ EB.

M3:

π*
kl = Min ∑

l′∈L′
∑
j∈J

fkjdll′yl′ j + ∑
l′∈L′

∑
j∈J

fkjdl′ jyl′ j = Min ∑
l′∈L′

∑
j∈J

fkj

(
dll′ + dl′ j

)
yl′ j (8)

subject to Equations (3) and (6)
These equations constitute a generalized assignment model M3, where the cost for

each (l′, j) ∈ EB is fkj

(
dll′ + dl′ j

)
. Figure 13 illustrates a feasible solution with xk1l1 = 1 in

the network as in Figure 4. When k = k1 and l = l1, a subnetwork can be obtained and the
links (k1, l1), (l1, l′1), (l1, l′2), (l1, l′3) are the existing links, the delivery stations J need to be
assigned to exactly one distribution center. By solving these GLAPs (M3), the second-stage
cost π*

kl for each (k, l) ∈ EB is now obtained.

Algorithms 2023, 16, x FOR PEER REVIEW 16 of 41

We reformulate the primal problem as a number of subproblems of LAP with com-
putationally efficient algorithms by relaxing the capacity constraints of DCs (constraint
(4)). The corresponding relaxed model (M2) of the original problem can be stated, as seen
below, with its optimal solution defined as 𝑍ோ.

M2: 𝑍ோ = 𝑀𝑖𝑛 𝑍 (7)

subject to Equations (2) and (3) and Equations (5) and (6)
Similar to the problem decomposition scheme used in GLB, model M2 can be further

decomposed into a sequence of generalized linear assignment problem (GLAP) with an
optimal solution 𝜋௞௟∗ for each (𝑘, 𝑙) ∈ 𝐸஻. The main idea of the decomposition is to fix the
variable 𝑥௞௟ (assume that 𝑥௞௟ = 1) and then solve the problem related to 𝑦௟ᇲ௝ to obtain
the second-stage cost. Thus, we can establish the following equations for each (𝑘, 𝑙) ∈ 𝐸஻.

M3: 𝜋௞௟∗ = Min ෍ ෍ 𝑓௞௝𝑑௟௟ᇲ𝑦௟ᇲ௝௝∈௃௟ᇲ∈௅ᇲ + ෍ ෍ 𝑓௞௝𝑑௟ᇲ௝𝑦௟ᇲ௝௝∈௃௟ᇲ∈௅ᇲ = Min ෍ ෍ 𝑓௞௝(𝑑௟௟ᇲ + 𝑑௟ᇲ௝)𝑦௟ᇲ௝௝∈௃௟ᇲ∈௅ᇲ (8)

subject to Equations (3) and (6)
These equations constitute a generalized assignment model M3, where the cost for

each (𝑙ᇱ, 𝑗) ∈ 𝐸஻ is 𝑓௞௝(𝑑௟௟ᇲ + 𝑑௟ᇲ௝). Figure 13 illustrates a feasible solution with 𝑥௞ଵ௟ଵ = 1
in the network as in Figure 4. When k = k1 and l = l1, a subnetwork can be obtained and
the links (k1, l1), (l1, l’1), (l1, l’2), (l1, l’3) are the existing links, the delivery stations 𝐽 need
to be assigned to exactly one distribution center. By solving these GLAPs (M3), the second-
stage cost 𝜋௞௟∗ for each (𝑘, 𝑙) ∈ 𝐸஻ is now obtained.

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

'LK L J
Figure 13. A feasible solution for 𝑥௞ଵ௟ଵ = 1.

Based on the transportation cost ∑ 𝑓௞௝𝑑௞௟௝∈௃ on the link (𝑘, 𝑙) (the first-stage cost)
and second-stage cost 𝜋௞௟∗ , the estimated cost for links (𝑘, 𝑙) becomes 𝑐௞௟ = ∑ 𝑓௞௝𝑑௞௟௝∈௃ +𝜋௞௟∗ . Then, we can solve the following generalized assignment model (M4) (Figure 14) to
retrieve a lower bound of the relaxed model M2. The overall solution algorithm for ob-
taining this lower bound estimate is described in Algorithm 1.

M4: 𝑍௅஻ = Min ෍ ෍(෍ 𝑓௞௝𝑑௞௟ + 𝜋௞௟∗)𝑥௞௟௝∈௃௟∈௅௞∈௄ = Min ෍ ෍ 𝑐௞௟𝑥௞௟௟∈௅௞∈௄ (9)

subject to Equations (2) and (5)

Figure 13. A feasible solution for xk1l1 = 1.

Based on the transportation cost ∑j∈J fkjdkl on the link (k, l) (the first-stage cost) and
second-stage cost π*

kl , the estimated cost for links (k, l) becomes ckl = ∑j∈J fkjdkl + π*
kl .

Then, we can solve the following generalized assignment model (M4) (Figure 14) to retrieve
a lower bound of the relaxed model M2. The overall solution algorithm for obtaining this
lower bound estimate is described in Algorithm 1.

Algorithms 2023, 16, 252 16 of 40Algorithms 2023, 16, x FOR PEER REVIEW 17 of 41

1k

2k

3k

4k

1l

2l

3l

'
1l

'
2l

'
3l

1j

2j

3j

4j

5j

𝜋𝑘𝑙∗ 𝑐𝑘𝑙

Figure 14. Illustration for the generalized assignment model (M4).

Algorithm 1. GLB-based algorithm for obtaining the lower bound of the simplified problem(M2)
without enforcing the capacity constraints of DCs.
Step 1: Initialization
Read the input data, including nodes, links, and agents (flow)
Step 2: Calculate the subsequent cost given the decision of 𝑥௞௟
 For each link(𝑘, 𝑙) ∈ 𝐸஻

solve the generalized assignment problem(M3) by calling the Gurobi solver
and obtain the value of 𝜋௞௟∗

Step 3: Calculate the estimated cost 𝑐௞௟ on the link (𝑘, 𝑙) ∈ 𝐸஻
For each link(𝑘, 𝑙) ∈ 𝐸஻ 𝑐௞௟ = ෍ 𝑓௞௝𝑑௞௟௝∈௃ + 𝜋௞௟∗

Step 4: Solving the generalized assignment problem by optimizing 𝑥௞௟
 According to the estimated cost 𝑐௞௟, solve the generalized assignment problem

(M4) by calling the Gurobi solver and retrieve the lower bound estimate

4.3. Connection between Traditional GLB for Standard QAP and Proposed Lower Bound
Estimation Process for QSAP-C

Compared with the GLB for standard QAP, we use the same cost-estimating frame-
work to obtain the lower bound for QSAP-C. In the QAP, problems at two stages are LAPs
and the cost is fixed as constant. In the QSAP-C, we need to solve GLAPs at two different
stages and the flow-dependent cost is the product of distances and commodity flows. For
the cost backward propagation or cost estimating process, optimal solutions of second
stage subproblems (LAPs or GLAPs) are used to guide the decision at the first stage. We
further use Table 10 to list the mapping between GLB for standard QAP and the proposed
lower bound estimates for QSAP-C.

Table 10. A comparison of obtaining lower bounds in QAP and QSAP-C.

 GLB for Standard QAP
Lower Bound Estimation in

QSAP-C

First stage
decision

problem type LAPs GLAPs

cost fixed cost independent of
flows

the product of distances and
flows

problem type LAPs GLAPs

Figure 14. Illustration for the generalized assignment model (M4).

M4:
ZLB = Min ∑

k∈K
∑
l∈L

(∑
j∈J

fkjdkl + π*
kl

)
xkl = Min ∑

k∈K
∑
l∈L

ckl xkl (9)

subject to Equations (2) and (5)

Algorithm 1. GLB-based algorithm for obtaining the lower bound of the simplified problem(M2)
without enforcing the capacity constraints of DCs.

Step 1: Initialization
Read the input data, including nodes, links, and agents (flow)
Step 2: Calculate the subsequent cost given the decision of xkl

For each link(k, l) ∈ EB

solve the generalized assignment problem(M3) by calling the Gurobi solver and obtain
the value of π*

kl
Step 3: Calculate the estimated cost ckl on the link (k, l) ∈ EB

For each link(k, l) ∈ EB

ckl = ∑
j∈J

fkjdkl + π*
kl

Step 4: Solving the generalized assignment problem by optimizing xkl
According to the estimated cost ckl , solve the generalized assignment problem (M4) by

calling the Gurobi solver and retrieve the lower bound estimate

4.3. Connection between Traditional GLB for Standard QAP and Proposed Lower Bound
Estimation Process for QSAP-C

Compared with the GLB for standard QAP, we use the same cost-estimating framework
to obtain the lower bound for QSAP-C. In the QAP, problems at two stages are LAPs and
the cost is fixed as constant. In the QSAP-C, we need to solve GLAPs at two different stages
and the flow-dependent cost is the product of distances and commodity flows. For the
cost backward propagation or cost estimating process, optimal solutions of second stage
subproblems (LAPs or GLAPs) are used to guide the decision at the first stage. We further
use Table 10 to list the mapping between GLB for standard QAP and the proposed lower
bound estimates for QSAP-C.

Algorithms 2023, 16, 252 17 of 40

Table 10. A comparison of obtaining lower bounds in QAP and QSAP-C.

GLB for Standard QAP Lower Bound Estimation in
QSAP-C

First stage decision
problem type LAPs GLAPs

cost fixed cost independent of flows the product of distances and flows

Second stage decision
problem type LAPs GLAPs

cost fixed cost independent of flows the product of distances and flows

Cost backward propagation Optimal solutions of the LAPs in
second stage decision

Optimal solutions of the GLAPs
in second stage decision

4.4. Computation of Upper Bound Solutions

By solving the relaxation problem (M2) using Algorithm 1, we can obtain the lower
bound which gives the values of the decision variables xkl , denoted as x*

kl . To obtain the
upper bound of the original problem (M1), let xkl = x*

kl for each (k, l) ∈ EB and we can
convert the original problem to the following GLAPs (M5) with capacity constraints. By
solving the model M5, one can fetch a feasible solution to the original problem.

M5:

∑
k∈K

∑
l∈L

∑
j∈J

fkjdkl x*
kl + ∑

l∈L
∑

l′∈L′
∑
k∈K

∑
j∈J

fkjdll′x
*
klyl′ j+ ∑

l′∈L′
∑
j∈J

∑
k∈K

fkjdl′ jyl′ j (10)

subject to Equations (3) and (6)

∑
k∈K

∑
j∈J

x*
kl fkj + ∑

k∈K
∑
j∈J

yl′ j fkj − ∑
k∈K

∑
j∈J

x*
klyl′ j fkj ≤Cap(l,l′) ∀

(
l, l′
)
∈
(

L, L′
)

(11)

4.5. A Branch-and-Bound Algorithm Combined with Enhanced Lower Bound Rules

In this subsection, we present a customized branch-and-bound algorithm for the
model M1; the flowchart of the algorithm is shown in Figure 15.

The algorithm first generates the initial temporary lower bound lb by calling Algorithm
1 and obtains the initial upper bound ub using the rule described in Section 3.2, then the
initial solution can be marked as the one in the root node. A best-lower-bound-first search
strategy is adopted in the algorithm, that is, when executing the branching process on
the pending node of the enumeration tree, we always choose the node with the smallest
lower bound value. To implement this strategy, we use a priority queue to store the search
nodes and they will be sorted by the lower bound value. In the initialization stage of the
algorithm, the root node is placed in an empty priority queue. For large-scale instances,
it is difficult to enumerate all nodes in a limited computational time. Therefore, we also
define the solution gap tolerance η and the maximum number of enumerating iterations n
as the terminal conditions.

The algorithm starts selecting nodes from the priority queue and executes the branch-
and-bound procedure until the queue becomes empty. We choose the top one in the priority
queue each iteration, update the best global lower bound LB, and calculate the gap between
LB and UB. Then, the algorithm checks if the termination conditions are met, i.e., whether
the gap is less than or equal to η or the number of iterations exceeds n. In the branching
process, we assign the active station j of the current node to the DC and accordingly
create child nodes for every feasible assignment of station j to each DC. In this process,
the proposed Algorithm 1 is called to calculate the temporary lower bound lb and the
temporary upper bound ub for each child node. For children nodes, if their temporary
lower bounds are greater than UB they will be pruned, otherwise, they will be pushed into
the priority queue. The detailed algorithm execution process is summarized in Algorithm
2, and Figure 15 provides the flow chart of the customized branch-and-bound algorithm.

Algorithms 2023, 16, 252 18 of 40Algorithms 2023, 16, x FOR PEER REVIEW 20 of 41

Start

Initialization:
• Call the algorithm1 generate initial lower bound lb

and initial upper bound ub
• Create the root node and put it in the priority queue
• Set LB=lb and UB=ub
• Set the number of iteriation i=0

Is the priority queue
empty?

Select the node at the
top in the priority queue

Is there a DC not be covered
by current active station on the

selected node?

Branch:
branch a children node,that is,
assign the station to a DC

Calculate new lb and ub:
Calculate the lower bound and upper
bound of this children node by calling
the algorithm1

If lb<UB

Put the children node in
the priority queue

Update LB :
If (lb ≥LB)
 LB=lb

Update Gap :
 Gap = 𝑈𝐵 − 𝐿𝐵𝑈𝐵

Is the Gap≤ƞ or i≥n?

Update UB :
If (ub ≤UB)
 UB =ub

Yes

No

Solution is optimal

Satisfactory solution is found
Yes

No

Yes

No

Prune by bound

Yes

No

i=i+1

Stop

Output:
• The objective=UB
• Output the two assignment matrices

according to the upper bound solution
Figure 15. Flowchart of the customized branch-and-bound algorithm.

4.6. An Adaptive Large Neighborhood Search Algorithm with Efficient Initial Solution
It is well known that exact methods are often able to find good solutions at early

stages of the search (in this paper, initial solutions’ average GAP obtained by branch-and-
bound algorithm is less than 10% and the acquisition time is shorter than 2 s) but employ

Figure 15. Flowchart of the customized branch-and-bound algorithm.

Algorithms 2023, 16, 252 19 of 40

Algorithm 2. A branch-and-bound algorithm combined with heuristic lower bound.

Step 1: Initialization
Step 1.1: Obtain the initial solution

Call Algorithm 1 to obtain the initial lower bound lb and initial upper bound ub
Set the LB = lb, UB = ub, i = 0

Step 1.2: Initialization for the root node and priority queue
Create an empty priority queue pq, initialize a root node according to the lower bound,

push the root node into the priority queue pq
Step 2: Branch-and-bound process
While the pq is not empty:

Step 2.1 Select the top node from the priority queue pq and update the lower bound
Pull the top node from the priority queue pq, defined as active_node
If active_node.nodelb>LB: # update the best global lower bound and the Gap

LB = active_node.nodelb
Gap = UB−LB

UB
If Gap ≤ η or i ≤ n: # check the termination conditions

Break
If active_node.nodeactive_station + 1 < |J| : # update the active station

active_node.nodeactive_station = active_node.nodeactive_station + 1
Else: # all delivery stations have been assigned

Continue
Step 2.2 Branch on the live node
Set temporary matrices

temp_nodeassign_matrix = active_node.nodeassign_matrix
temp_nodebudget_matrix = active_node.nodebudget_matrix

try to assign the active_station to all possible DCs
For each DC l ∈ L:

Create the children node and inherit the properties of the live node
Step 2.3 Calculate the lower bound and upper bound of the children node

Call Algorithm 1 to obtain the lower bound lb and upper bound ub
update the best global upper bound
If children_node.nodeub<UB:

UB = children_node.nodelb
If children_node.nodelb < UB:

Push the children node into the priority queue
otherwise this children node will be pruned

4.6. An Adaptive Large Neighborhood Search Algorithm with Efficient Initial Solution

It is well known that exact methods are often able to find good solutions at early stages
of the search (in this paper, initial solutions’ average GAP obtained by branch-and-bound
algorithm is less than 10% and the acquisition time is shorter than 2 s) but employ a lot of
time to marginally improve that solution or prove its optimality. This behavior suggests
a classical way to design a heuristic algorithm: adopt the initial good solution generated
by the branch-and-bound algorithm; then, explore the neighbors to improve the solution
quickly. [55] pointed out that even using local search to obtain a feasible solution of classical
quadratic assignment problems is difficult, and the time complexity is exponential for
simple neighborhood structures. Since the adaptive large neighborhood search (ALNS)
algorithm can explore larger searching space [56], this heuristic algorithm is integrated to
improve the initial solution.

The large neighborhood search algorithm includes two types of operators: destroy
operator and repair operator. The solution is destructed and reconstructed using these
operators, which are selected by a roulette-wheel method according to their previous
performance in each iteration of ALNS algorithm. For QSAP-C model, some warehouses
or stations are removed from its current assigned DC in the destruction step, leading to a
partial solution. This partial solution is repaired in the reconstruction step, which focuses on
the unassigned warehouses or stations. After the reconstruction phase, a feasible solution

Algorithms 2023, 16, 252 20 of 40

is obtained. The roulette statistics are updated and iteration continues until the termination
condition is met. The pseudocode is displayed in Algorithm 3.

Algorithm 3. An adaptive large neighborhood search algorithm with efficient initial solution.

Step 1: Initialization
Step 1.1: Obtain the initial solution

Call Algorithm 2 to obtain the initial feasible solution in the time limit T
Step 1.2: Initialization for ALNS

Given the total iteration num Q, initial weight of operators w(h), reaction factor ρ

Step 2: ALNS
For i = 1 . . . Q do
(1) select a destroy operator d by the roulette-wheel procedure, destroy current solution and
obtain the set of removed nodes
(2) select a repair operator r by the roulette-wheel procedure, repair and obtain the new_solution
(3) update the number of times the operator has been used, u(d)+ = 1, u(r)+ = 1
(4) calculate the objective function of new_solution, if it is infeasible a large constant value will be
given.
If new_solution_obj <= current_solution_obj

update current solution, current_solution_obj = new_solution_obj
If current_solution_obj <= best_solution_obj

update the best solution, best_solution = current_solution
update the success of operators, s(d)+ = δ1, u(r)+ = δ1

Else
update the success of operators, s(d)+ = δ2, u(r)+ = δ2
update the weight of selected operators,

w(d) = (1− ρ)w(d) + ρ
s(d)
u(d) , w(r) = (1− ρ)w(r) + ρ

s(r)
u(r)

If current solution keeps the same for M consecutive iterations
break

Return the best solution

4.6.1. Initial Solution

We prefer to adopt the GLB-based initial solution in the proposed customized branch-
and-bound algorithm. Although, in some instances, it is hard to obtain a feasible initial
solution or the problem is infeasible because of the unreasonable parameters of DCs’
capacity. We also set a time limit for obtaining the initial feasible solution; if the running
time is exceeded, a random assignment will be generated.

4.6.2. Solution Destruction

In the destruction phase, we put forward four different removal methods to maintain
the diversity during the searching process. Each removal method aims to remove a prede-
fined number of warehouses or stations from current assignment. We denote the removed
nodes as unassigned nodes.

(a) Random-remove

This operator is very simple but important for exploring larger search space [57], the
main idea is to randomly choose warehouses or stations as target nodes, then remove them.
In this paper, we remove N/2 target nodes, where N means the total number of warehouses
and stations.

(b) Worst-remove

This worst-remove is adapted from the worst-remove proposed by [56]. The main
idea is to remove the nodes that have a larger impact on the solution quality. Specifically,
the Equation (1) is calculated before and after removal, the larger difference it is, the higher
probability that considered nodes (denoted as worst nodes) are removed.

(c) Break-remove

Algorithms 2023, 16, 252 21 of 40

Inspired by the work of [58], where they design break-remove operator in the ALNS
to solve the gate assignment problem. This operator is carried out in two steps, firstly, we
sort all the DCs by the average cost cl , l ∈ L in descending order. cl is calculated as the sum
of transportation cost related to DC l. Secondly, we select the DC with maximum average
cost and all the nodes (warehouses or stations) assigned to the selected DC are removed.

(d) Exchange

This operator can be regarded as a special type of destroy operator, the solution can be
updated without using repair operator. In this paper, we adopt the two exchange and can
be further divided into three situations: exchange for warehouses, exchange for stations,
and both. In the algorithm, they are three types of separate destroy operators. Take the
exchange for warehouses as an example, two warehouses are selected, if they have different
DCs then exchange them. Otherwise, reassign them to other DCs.

4.6.3. Solution Reconstruction

In the reconstruction phase, we propose three reconstruction operators to insert the
unassigned nodes.

(a) Random-insert

Similar to the random-remove, this operator means inserting the unassigned nodes to
DCs randomly to generate new solution.

(b) Greedy-insert

This greedy-insert operator is adopted from the greedy heuristic proposed by [56].
The idea is to calculate the lowest insertion cost ckl/cl′ j for all removed nodes, and then
insert the one with smallest ckl/cl′ j. This process continues until all unassigned nodes have
been repaired or none of them can be inserted.

(c) Regret-insert

Based on basic greedy insertion, this operator incorporates look-ahead information by
considering not only the unassigned node with lowest insertion cost, but also some other
promising nodes. To illustrate this strategy, let l = 3 (there are three DCs) and the insertion
cost of warehouse k to three DCs in ascending order as ck1, ck2, ck3. Then, the regret cost
of (k, 1) is calculated as ∑

l=1,2,3
ckl−ck1. In each iteration, we calculate the regret cost for all

remaining nodes and insert the nodes with the highest regret cost. This process repeats
until all unassigned nodes have been repaired or none of them can be inserted.

4.6.4. Weight Adjustment

The selection of operators in each iteration is based on their weights then a roulette-
wheel procedure is applied to select the operator to generate the neighborhood. Let
D = {di|i = 1, . . . , m} be the set of m destroy operators and let R =

{
rj
∣∣j = 1, . . . , n

}
be

the set of n repair operators. The initially equal weights of the heuristics are denoted by
w(di) and w

(
rj
)
, so that the probabilities to select the operator are p(di) =

w(di)
∑m

i=1 w(di)
and

p
(
rj
)
=

w(rj)
∑n

j=1 w(rj)
.

For the weight adjustment, we adopt the strategy in [57]. Where w(h) denotes the
weight of a heuristic operator h, u(h) denotes the number of times the heuristic h has been
used, and s(h) denotes the success of h. The success s(h) of h is initialized with zero and is
increased by δi if the resulting solution is of the corresponding quality: δ1- the new solution
is the best one found thus far; δ2- the new solution improves the current solution. We need
to ensure the inequality δ1 > δ2 and use a reaction factor 0 ≤ ρ ≤ 1 controls the influence
of the recent success of a heuristic on its weight. Finally, we calculate the weights in each
iteration by w(h) = (1− ρ)w(h) + ρ

s(h)
u(h) when u(h) > 0.

Algorithms 2023, 16, 252 22 of 40

5. Numerical Experiments

To examine the behavior of our proposed models and algorithms, numerical ex-
periments of the QSAP-C model are reported in this section. In Section 5.1, small- and
medium-sized instances are generated according to benchmarks for the 2E-CVRP in the
literature [59]. Section 5.2 aims to present the computational results on a wide set of test
instances and analysis of the results to identify the instance characteristics. Section 5.3
shows the converge process and sensitive analysis. Then, Section 5.4 provides main insights
on algorithm analysis for the classical dataset. Section 5.5 tests a large-scale case using the
real-world city logistics distribution network of JD logistics and we evaluate the effective-
ness of the proposed algorithm. Finally, Section 5.6 provides the managerial implications
for dynamical evaluation of cross-layer service synchronization. The algorithms have been
implemented in Python and run on an Intel (R) Core (TM) i7-8550U, 1.8 GHz, and 8 GB
of RAM. The github site for this paper can be found at https://github.com/zqNiu/qap,
accessed on 7 May 2023.

5.1. Base Instance Sets Generation and Description

In this section, we introduce different instance sets for the QSAP-C model. There are
93 instances in total and are grouped in three sets. Although [59] developed four sets of
instances for the 2E-CVRP, coordinates of nodes in the first set are not provided (given
distances matrices) and they are not allowed to generate corresponding instances for our
problem because of the lateral transshipment. Therefore, following three dataset names
notation in [59], the three instance sets are Set 2, Set 3, and Set 4. In the original dataset,
Set 2 comprises 12 small-sized instances with 21 or 32 customers and nine medium-sized
instances with 50 customers, small-sized instances have two satellites and medium-sized
instances have four satellites. Set 3 is similar to Set 2 but with more realistic distributed
satellites [59]. There are 54 instances in Set 4 with 50 customers and five satellites are
generated from [60], which can represent different scenarios in city logistics. Next, we
create the corresponding instance of QSAP-C for each instance of 2E-CVRP.

5.1.1. Locations of Warehouses, DCs, and Delivery Stations

The locations of DCs keep the same with satellites in original instances and we ran-
domly select nodes from customer nodes as warehouses. For Set 2 and Set 3, we locate four
warehouses, randomly in all instances, and regard unselected customer nodes as delivery
stations. Therefore, there are four warehouses, two DCs and 17 or 28 delivery stations in
small-size instances, and four DCs and 46 delivery stations in medium-size instances; Set
4 has 50 customer nodes and we randomly place six warehouses instead of two. Figure 16
shows some instance configurations in different sets and the name of instance keeps the
same with [59].

https://github.com/zqNiu/qap

Algorithms 2023, 16, 252 23 of 40

Algorithms 2023, 16, x FOR PEER REVIEW 24 of 41

5.1.1. Locations of Warehouses, DCs, and Delivery Stations
The locations of DCs keep the same with satellites in original instances and we ran-

domly select nodes from customer nodes as warehouses. For Set 2 and Set 3, we locate
four warehouses, randomly in all instances, and regard unselected customer nodes as de-
livery stations. Therefore, there are four warehouses, two DCs and 17 or 28 delivery sta-
tions in small-size instances, and four DCs and 46 delivery stations in medium-size in-
stances; Set 4 has 50 customer nodes and we randomly place six warehouses instead of
two. Figure 16 shows some instance configurations in different sets and the name of in-
stance keeps the same with [59].

(a) Instance E-n22-k4-s8-14 in Set 2 (b) Instance E-n33-k4-s14-22 in Set 2

(c) Instance E-n33-k4-s24-28 in Set 3 (d) Instance Instance50-9 in Set 4

(e) Instance Instance50-3 in Set 4 (f) Instance Instance50-47 in Set 4

Figure 16. Some instance configurations. Figure 16. Some instance configurations.

Algorithms 2023, 16, 252 24 of 40

5.1.2. Demand between Warehouses and Delivery Stations

Demands of the customer nodes are given in the 2E-CVRP, which are combined in
origin (warehouses)–destination (delivery stations) pairs for our problem. In this subsec-
tion, three rules corresponding to different scenarios are provided to generate demand
between warehouses and delivery stations. Random Nodes rule (RN), the demand of each
delivery station is fully supplied by only one warehouse and the warehouse is chosen
randomly. Equal Proportion rule (EP), the demand of each delivery station is supplied by
all warehouses with equal proportions. Random Proportion rule (RP), the demand of each
delivery station is supplied by all warehouses with random proportions.

5.1.3. Capacity of DC

The total capacity of all DCs can be calculated as CapDCs = m2K2 according to pa-
rameters in the 2E-CVRP [59], where m2 indicates number of the 2nd-level vehicles and K2
indicates capacity of the vehicles for the 2nd level. For baseline cases, the capacity of each
DC is CapDCs

Numbero f DCs .
We summarize the main features of the different sets for baseline cases in Table 11. The

first column shows the instance set and the number of instances is reported in Column 2.
Column 3, Column 4, and Column 5 specify the number of warehouses, DCs, and delivery
stations, respectively. Column 6 provides the capacity of each DC. Demand for all baseline
instances is generated by adopting the EP rule.

Table 11. A summary of the main features of the different sets for baseline cases.

Set Number of Instances Number of Warehouses Number of DCs Number of Stations Capacity of Each DC

2 6 4 2 15 12,000
2 6 4 2 26 16,000
2 3 4 4 42 500
2 6 4 2 44 1000
3 6 4 2 15 12,000
3 6 4 2 26 16,000
3 6 4 2 44 1000
4 18 6 2 44 15,000
4 18 6 3 44 20,000
4 18 6 5 44 24,000

5.2. Overall Computational Results

In this section, we present the results of the tests in Set 2, Set 3, and Set 4. The results
of the model on each set are summarized in Tables 12–14. Each table contains the instance
name and the four selected warehouses in columns 1 and 2. For Set 2 and Set 3, the optimal
solution OPT by Gurobi is reported in the third column and Column 4 contains the time in
seconds needed to solve the instances, while Columns 5, 6, and 7 present the final solution
BEST_SOL1 by BB, the gap between BEST_SOL1 and OPT, and the running time of obtained
BEST_SOL1. We also provide the initial solution INIT_SOL by BB, the corresponding gap
and running time in Columns 8, 9, and 10. Finally, Columns 11, 12, and 13 present the final
solution BEST_SOL2 by ALNS, the corresponding gap and running time. Moreover, “-”
indicates the instance is infeasible and cannot report related information, “*” means the
result is showed by keeping two decimal places.

Algorithms 2023, 16, 252 25 of 40

Table 12. Results of dataset Set 2.

Gurobi BB ALNS

Instance Warehouses
ID OPT T_G

(s) BEST_SOL1 GAP1 T_B
(s) INIT_SOL GAP2 T_B_I

(s) BEST_SOL2 GAP3 T_A
(s)

Set 2

E-n22-k4-s10-14 3, 11, 13, 20 - 0.44 - - 142.24 - - 1.07 - - 1.95
E-n22-k4-s11-12 2, 8, 15, 17 - 0.27 - - 141.90 - - 0.02 - - 1.91
E-n22-k4-s12-16 2, 4, 9, 17 1,034,673.25 0.17 1,034,673.25 0 97.48 1,073,847.25 0.04 0.36 1,034,673.25 0 1.14
E-n22-k4-s6-17 7, 16, 19, 21 1,015,276.50 0.31 1,015,276.5 0 168.92 1,248,893.50 0.23 33.21 1,015,276.50 0 2.06
E-n22-k4-s8-14 1, 3, 11, 12 - 0.28 - - 144.06 - - 0.02 - - 1.92
E-n22-k4-s9-19 2, 8, 13, 15 - 0.28 - - 139.90 - - 0.02 - - 1.97
E-n33-k4-s1-9 3, 5, 18, 19 - 0.30 - - 281.21 - - 0.02 - - 2.5

E-n33-k4-s14-22 5, 17, 23, 32 - 0.34 - - 261.08 - - 0.03 - - 2.52
E-n33-k4-s2-13 8, 12, 19, 21 - 0.41 - - 260.54 - - 0.03 - - 2.48
E-n33-k4-s3-17 14, 20, 25, 27 - 0.42 - - 318.96 - - 0.05 - - 2.66
E-n33-k4-s4-5 13, 15, 27, 31 - 0.42 - - 304.99 - - 0.03 - - 2.5
E-n33-k4-s7-25 5, 11, 12, 20 - 0.27 - - 260.56 - - 0.03 - - 2.41

E-n51-k5-s11-19-27-47 20, 26, 35, 49 31,225.74 8.86 33,026.46 0.06 2772.59 36,200.85 0.16 0.17 35,362.62 0.13 9.86
E-n51-k5-s11-19 2, 13, 23, 46 38,424.49 0.16 38,424.49 0 374.50 41,906.84 0.09 0.11 39,643.09 0.03 3.26
E-n51-k5-s2-17 5, 12, 15, 42 38,123.45 0.16 38,123.45 0 3.71 40,924.43 0.07 0.06 38,158.67 0 3.16

E-n51-k5-s2-4-17-46 3, 5, 32, 33 32,179.54 2.00 34,922.4 0.09 2481.72 35,839.62 0.11 0.13 35,278.47 0.1 13.88
E-n51-k5-s27-47 5, 31, 42, 48 29,960.37 0.14 29,960.37 0 3.46 33,184.19 0.11 0.09 30,060.14 0 3.1
E-n51-k5-s32-37 15, 16, 18, 30 55,265.48 0.14 55,265.48 0 4.04 59,857.78 0.08 0.05 55,571.24 0.01 3.94
E-n51-k5-s4-46 17, 23, 34, 47 45,900.66 0.16 49,731.34 0.08 425.31 50,887.61 0.11 0.04 46,930.39 0.02 2.52

E-n51-k5-s6-12-32-37 9, 20, 27, 35 35,067.50 1.78 36,834.41 0.05 2771.15 37,583.28 0.07 0.16 36,850.91 0.05 8.93
E-n51-k5-s6-12 3, 15, 21, 48 29,194.02 0.19 29,744.63 0.02 425.92 29,962.32 0.03 0.11 29,918.82 0.02 2.41

Average 0.83 0.02 561.15 0.1 1.71/0.55 0.03 3.67

Table 13. Results of dataset Set 3.

Gurobi BB ALNS

Instance Warehouses
ID OPT T_G

(s) BEST_SOL1 GAP1 T_B
(s) INIT_SOL GAP2 T_B_I

(s) BEST_SOL2 GAP3 T_A
(s)

Set 3

E-n22-k4-s13-14 2, 7, 12, 19 1,094,569 0.38 1,107,942 0.01 150.92 1,107,942 0.01 0.09 1,094,569 0 2.2
E-n22-k4-s13-16 6, 7, 10, 17 - 0.28 - - 147.93 - - 0.02 - - 1.84
E-n22-k4-s13-17 9, 10, 15, 18 - 0.26 - - 151.17 - - 0.02 - - 1.88
E-n22-k4-s14-19 2, 10, 18, 21 - 0.33 - - 143.38 - - 0.02 - - 1.96
E-n22-k4-s17-19 7, 9, 10, 13 1,430,406.5 0.53 - - 144.55 - - 0.02 - - 1.94
E-n22-k4-s19-21 14, 16, 18, 20 1,145,212 0.2 1,145,212 0 173.45 1,145,212 0 0.03 1,145,212 0 1.02

Algorithms 2023, 16, 252 26 of 40

Table 13. Cont.

Gurobi BB ALNS

Instance Warehouses
ID OPT T_G

(s) BEST_SOL1 GAP1 T_B
(s) INIT_SOL GAP2 T_B_I

(s) BEST_SOL2 GAP3 T_A
(s)

Set 3

E-n33-k4-s16-22 4, 11, 20, 28 - 0.35 - - 265.54 - - 0.03 - - 2.55
E-n33-k4-s16-24 5, 14, 19, 25 - 0.42 - - 263.49 - - 0.03 - - 2.64
E-n33-k4-s19-26 11, 17, 22, 28 1,268,675.12 0.62 1,268,675.12 0 294.66 1,268,675.12 0 0.04 1,268,675.12 0 1.7
E-n33-k4-s22-26 2, 16, 18, 20 - 0.38 - - 281.88 - - 0.02 - - 2.5
E-n33-k4-s24-28 15, 27, 29, 30 - 0.33 - - 230.3 - - 0.03 - - 2.77
E-n33-k4-s25-28 6, 13, 27, 29 - 0.38 - - 257.84 - - 0.03 - - 2.59
E-n51-k5-13-19 12, 16, 25, 26 29,506.77 0.29 29,508.19 0 * 461.45 29,578.3 0 * 0.06 29,536.02 0 4.21
E-n51-k5-13-42 10, 15, 20, 29 34,614.3 0.18 34,614.3 0 29.75 35,484.11 0.03 0.07 34,614.3 0 2.78
E-n51-k5-13-44 11, 31, 43, 49 33,231.61 0.18 33,231.61 0 2.55 42,098.91 0.27 0.05 33,231.61 0 2.78
E-n51-k5-40-42 17, 19, 33, 35 45,554.18 0.2 49,147.94 0.08 461.9 50,786.8 0.11 0.04 45,554.18 0 3.14
E-n51-k5-41-42 14, 24, 44, 47 48,968.88 0.15 48,968.88 0 0.11 48,968.88 0 0.07 48,968.88 0 2.97
E-n51-k5-41-44 20, 21, 23, 46 63,776.34 0.19 69,598.45 0.09 460.5 69,653.59 0.09 0.04 64,706.92 0.01 3.2

Average 0.31 0.02 217.85 0.06 0.04 0 * 2.48

OPT—optimal solution obtained by Gurobi; T_G—solving time of Gurobi; BEST_SOL1—final solution obtained by BB; GAP1—GAP between BEST_SOL1 and OPT; T_B—solving
time of obtaining final solution by BB; INIT_SOL—initial solution obtained by BB; GAP2—GAP between INIT_SOL and OPT; T_B_I—solving time of obtaining initial solution by BB;
BEST_SOL2—final solution obtained by ALNS; GAP3—GAP between BEST_SOL2 and OPT; T_A—solving time of obtaining final solution by ALNS.”*” means the solution is optimal.

Table 14. Results of dataset Set 4.

Gurobi BB ALNS

Instance Warehouses
ID OPT T_G

(s) BEST_SOL1 GAP1 T_B
(s) INIT_SOL GAP2 T_B_I

(s) BEST_SOL2 GAP3 T_A
(s)

Set 4

Instance50-1 8, 11, 23, 28, 32, 40 - 0.69 - - 441.68 - - 0.09 - - 45.39
Instance50-2 4, 13, 22, 27, 29, 34 2,353,038.69 1.17 2,354,456.53 0 600.14 2,354,456.53 0 0.07 2,354,456.03 0 41.89
Instance50-3 10, 11, 29, 36, 45, 50 - 0.72 - - 438.56 - - 0.06 - - 45.58
Instance50-4 5, 12, 34, 37, 41, 46 2,052,019.54 2.21 2,065,752.61 0.01 600.09 2,073,126.27 0.01 0.06 2,066,013.86 0.01 43.32
Instance50-5 10, 17, 24, 26, 46, 52 - 0.81 - - 487.83 - - 0.06 - - 46.22
Instance50-6 10, 18, 23, 24, 37, 42 2,531,530.61 3.04 2,558,792.49 0.01 600.06 2,558,792.49 0.01 0.08 2,558,077.13 0.01 39.77
Instance50-7 8, 21, 24, 26, 42, 49 - 0.69 - - 518.98 - - 0.07 - - 45.75
Instance50-8 4, 9, 28, 34, 41, 47 2,334,898.41 4.61 2,334,918.51 0 600.1 2,334,918.51 0 0.07 2,334,898.41 0 28.87
Instance50-9 3, 26, 36, 49, 50, 51 - 0.91 - - 448.86 - - 0.06 - - 47.08

Instance50-10 8, 15, 17, 25, 38, 44 2,414,882.45 13.5 2,414,976.65 0 469.67 2,414,976.65 0 0.06 2,414,882.45 0 47.57
Instance50-11 12, 23, 24, 33, 41, 43 - 0.52 - - 411.43 - - 0.06 - - 44.67
Instance50-12 7, 18, 19, 20, 31, 35 2,352,275.41 1.33 2,432,949.17 0.03 600.1 2,432,949.17 0.03 0.06 2,403,460.87 0.02 34.59

Algorithms 2023, 16, 252 27 of 40

Table 14. Cont.

Gurobi BB ALNS

Instance Warehouses
ID OPT T_G

(s) BEST_SOL1 GAP1 T_B
(s) INIT_SOL GAP2 T_B_I

(s) BEST_SOL2 GAP3 T_A
(s)

Set 4

Instance50-13 9, 28, 31, 35, 43, 44 - 0.66 - - 553.71 - - 0.05 - - 46.38
Instance50-14 23, 24, 27, 28, 38, 45 2,660,451.97 1.22 2,660,451.97 0 533.23 2,664,045.12 0 0.07 2,664,045.12 0 28.48
Instance50-15 13, 27, 31, 32, 43, 50 - 1.12 - - 501.76 - - 0.05 - - 45.65
Instance50-16 3, 5, 19, 27, 41, 45 2,671,580.82 3.02 2,671,580.82 0 600.09 2,671,580.82 0 0.07 2,671,580.82 0 32.57
Instance50-17 8, 20, 22, 30, 34, 48 - 1.13 - - 594.8 - - 0.05 - - 44.77
Instance50-18 12, 26, 34, 35, 40, 52 2,185,894.49 1.83 2,271,866.64 0.04 600.05 2,350,154.92 0.08 0.08 2,350,154.92 0.08 26.28
Instance50-19 4, 21, 34, 35, 37, 38 3,095,738.16 33.97 3,833,050.17 0.24 600.03 - - 0.15 3,160,491.46 0.02 120.5
Instance50-20 19, 21, 22, 23, 24, 46 2,006,202.56 12.03 2,362,593.33 0.18 600.19 2,449,572.61 0.22 0.12 2,449,572.61 0.22 40.61
Instance50-21 4, 24, 25, 32, 41, 47 - 596.02 - - 600.19 - - 0.09 - - 59.56
Instance50-22 10, 12, 19, 40, 42, 45 2,193,589.3 16.38 2,375,657.27 0.08 600.23 2,387,727.99 0.09 0.12 2,386,309.46 0.09 88.34
Instance50-23 6, 16, 29, 30, 34, 41 3,010,242.22 38.41 3,016,038.26 0 600.04 3,027,444.15 0.01 0.15 3,022,099.76 0 56.93
Instance50-24 10, 25, 34, 38, 45, 52 2,042,939.28 4.14 2,500,959.97 0.22 600.07 2,502,531.35 0.22 0.13 2,087,650.13 0.02 113.4
Instance50-25 4, 26, 34, 42, 47, 50 - 26.98 - - 600.22 - - 0.12 - - 57.86
Instance50-26 15, 30, 37, 39, 41, 42 2,503,005.74 600.06 - - 600.3 - - 0.12 2,517,170.74 0.01 123.27
Instance50-27 11, 12, 13, 31, 39, 44 3,578,475.15 600.16 - - 600.14 - - 0.1 3,968,476.71 0.11 95.59
Instance50-28 9, 16, 34, 42, 46, 49 2,279,228.62 600.07 2,458,660.18 0.08 600.21 2,458,660.18 0.08 0.13 2,458,660.18 0.08 37.22
Instance50-30 5, 16, 17, 21, 49, 52 2,202,457.04 14.19 2,564,826.69 0.16 600.17 2,772,129.95 0.26 0.15 2,244,602.5 0.02 117.82
Instance50-31 10, 25, 30, 33, 34, 36 3,538,293.13 600.17 - - 600.09 - - 0.12 - - 60.54
Instance50-32 21, 25, 32, 33, 44, 46 1,878,546.46 30.07 2,029,022.3 0.08 600.08 2,191,026.53 0.17 0.12 2,191,026.53 0.17 43.87
Instance50-33 8, 9, 30, 31, 39, 51 3,291,317.32 43.08 - - 600.29 - - 0.11 3,398,041.71 0.03 95.7
Instance50-34 5, 17, 18, 21, 38, 48 2,333,071.7 600.09 2,724,473.28 0.17 600.37 2,724,473.28 0.17 0.13 2,724,473.28 0.17 38.86
Instance50-35 5, 16, 27, 35, 38, 40 3,036,353.76 41.89 3,456,148.13 0.14 600.38 - - 0.11 3,241,485.67 0.07 84.8
Instance50-36 14, 22, 26, 41, 48, 52 2,440,068.72 600.1 2,805,978.48 0.15 600.41 3,086,533.95 0.26 0.13 2,490,056.29 0.02 113.62
Instance50-37 7, 14, 24, 29, 39, 51 3,360,291.88 29.09 - - 600.03 - - 0.28 - - 107.01
Instance50-38 30, 34, 39, 44, 47, 48 2,207,816.8 79.89 - - 600.91 - - 0.29 2,458,399.73 0.11 223.98
Instance50-39 16, 23, 26, 27, 39, 47 3,780,946.1 102.42 - - 600.51 - - 0.3 - - 108.85
Instance50-40 13, 31, 39, 42, 43, 49 2,044,887.42 117.12 - - 601.65 - - 0.31 2,108,119.16 0.03 212.68
Instance50-41 21, 25, 26, 28, 40, 55 3,350,595.12 64.1 3,769,016.92 0.12 601.75 3,769,016.92 0.12 2.26 3,769,016.92 0.12 92.32
Instance50-42 20, 30, 38, 51, 52, 55 2,124,265.87 112.77 2,262,700.15 0.07 600.87 2,262,700.15 0.07 0.33 2,259,353.63 0.06 149.69
Instance50-43 8, 9, 24, 36, 39, 54 3,367,863.47 186.06 - - 600.72 - - 0.29 - - 106.19
Instance50-44 6, 12, 13, 31, 36, 41 2,492,396.07 230.35 - - 600.31 - - 0.31 2,598,240.84 0.04 244
Instance50-45 10, 15, 24, 26, 36, 50 3,194,804.7 55.74 - - 600.95 - - 0.33 - - 105.42
Instance50-46 28, 38, 42, 46, 48, 51 2,017,974.23 53.99 - - 601.43 - - 0.28 2,232,209.02 0.11 159.64

Algorithms 2023, 16, 252 28 of 40

Table 14. Cont.

Gurobi BB ALNS

Instance Warehouses
ID OPT T_G

(s) BEST_SOL1 GAP1 T_B
(s) INIT_SOL GAP2 T_B_I

(s) BEST_SOL2 GAP3 T_A
(s)

Set 4

Instance50-47 10, 16, 31, 39, 47, 50 3,165,681.32 71.95 - - 600.76 - - 0.31 - - 108.09
Instance50-48 6, 24, 32, 37, 45, 47 1,937,052.99 62.7 2,207,363.15 0.14 600.32 2,240,577.27 0.16 0.58 2,192,519.1 0.13 183.77
Instance50-49 7, 24, 43, 44, 45, 54 3,317,037.06 36.24 - - 600.87 - - 0.3 - - 106.45
Instance50-50 8, 9, 23, 25, 43, 50 1,990,073.91 93.06 2,006,195.21 0.01 600.35 2,016,004.83 0.01 0.34 2,016,004.83 0.01 79.03
Instance50-51 8, 18, 22, 26, 46, 55 2,852,775.41 144.84 - - 600.67 - - 0.33 - - 108
Instance50-52 6, 16, 17, 31, 36, 44 2,201,921.31 31.97 - - 601.44 - - 0.34 2,466,307.6 0.12 197.75
Instance50-53 13, 24, 25, 27, 39, 43 3,528,043.81 42.56 - - 600.25 - - 0.48 - - 103.91
Instance50-54 24, 31, 35, 40, 41, 43 1,968,231.5 22.17 - - 600.58 - - 0.28 2,308,093.02 0.17 168.76

Average 112.12 0.08 578.13 0.09 0.06 87.21

Algorithms 2023, 16, 252 29 of 40

According to the results of Set 2 and Set 3, branch-and-bound algorithm can obtain
optimal solutions for most instances, the gap is less than 9% for some hard instances, and
the mean gap is 2%. In the computational time, Gurobi solver (561.15 s for Set 2 and 217.85 s
for Set 3) is much more efficient than the branch-and-bound (0.83 s for Set 2 and 0.31 s for
Set 3). However, we noticed that the initial solution of branch-and-bound is tight, the mean
gaps are 10% and 6%, and average running times are 0.55 s and 0.04 s. For some instances,
even initial solutions are optimal (E-n22-k4-s19-21, E-n33-k4-s19-26, E-n51-k5-13-19, and
E-n51-k5-41-42). Results indicate the heuristic lower bound is relative loose, even though
the initial solution has good quality, branch-and-bound algorithm needs more branches to
converge. Based on this behavior, we design the ALNS with the efficient initial solution
and results also show the benefits of heuristics from the computational point of view,
presenting mean values of 3.67 s and 2.48 s, and average gap of 3% and 0%. For instances
E-n51-k5-s11-19-27-47, E-n51-k5-s2-4-17-46, and E-n51-k5-s6-12-32-37 in Set 2, both the
solver and branch-and-bound need spend more time than other instances, which indicates
the locations of warehouses and DCs can affect the complexity of the model. Moreover,
some cases cannot obtain a feasible solution because of unreasonable supply and demand
relationship; we explore the influence of demand in the section of sensitive analysis.

Table 14 presents results of larger instances of Set 4 with six warehouses and 44 stations,
where the meaning of the columns is the same as in Table 13, these results show different
realistic distribution of both warehouses and stations. As it is difficult to obtain exact
solutions for some instances and the global time limit (the solver and branch-and-bound) is
set to 600 s. Without losing generality, we also set a limit of 4000 iterations for ALNS. From
the results, we can see that Gurobi solver is strong enough to explore exact solutions for
most instances and algorithms’ mean gaps are larger but still limited to 8% (branch-and-
bound) and 6% (ALNS). In terms of computational time, the branch-and-bound algorithm
shows time deterioration but ALNS only spends 80% of the solver. Comparatively, the
quality of the initial solution obtained by adopting the heuristic lower bound is quite
satisfactory (the average gap is equal to 9% and the computational time of all instances
is less than 1 s). Moreover, for instances 50-43, 50-45, and 50-47, both branch-and-bound
and ALNS cannot even obtain feasible solutions, which confirms points in [54] that even
using local search to obtain a feasible solution of classical quadratic assignment problems
is difficult, and the heuristic lower bound is critical for problem solving.

5.3. Convergence and Sensitivity Analysis

Although a good upper bound can be obtained by adopting the proposed heuristic
lower bound in branch-and-bound algorithm, the convergence needs to be judged by
the GAP between the upper bound and lower bound. In this section, we analyze the
performance of the heuristic lower bound according to the results of Set 2 solved by branch-
and-bound algorithm. Figure 17 shows the convergence of some representative cases
where the blue solid line represents the lower bound, the yellow solid line represents the
upper bound, and the green dotted line represents the optimal solution. For instances
E-n22-k4-s6-17 and E-n22-k4-s12-16, the upper bound converges to optimal solution after
nearly 1000 iterations, and the lower bound seems relatively loose and converges slowly.
The lower bound is tight in instances E-n51-k5-s27-47 and E-n51-k5-s32-37, which equates
to optimal solution at the beginning of iterations. For other instances, the lower bound
convergence is close to the upper bound. In conclusion, we cannot simply say whether
the lower bound is loose or tight, it is loose from the lower bound construction point
of view because the capacity constraint is relaxed, but it has different performances in
different instances.

Algorithms 2023, 16, 252 30 of 40

Algorithms 2023, 16, x FOR PEER REVIEW 31 of 41

generated by RN are all feasible, and there are some infeasible cases when using EP and
RP rules. Figure 18 compares the results of the feasible instances using three generating
rules where we focus on the total transportation cost (the histogram) and the proportion
of lateral-transshipments volume (the line chart). According to Figure 18, we can see that
the lateral-transshipments volume is equal to zero for all instances except for instance 50-
50 in RN, which indicates there is no need for lateral-transshipments when the demands
of a station all originate from one warehouse. In the real-world scenario, if the station has
massive demand for a warehouse, the decision maker will arrange a direct “warehouse-
station” route, that is, to directly transport from the warehouse to the station without go-
ing through DCs. Figure 15 also shows that lateral-transshipments volume will make total
transportation costs higher, and that the transportation costs under the RN rule are always
the lowest, followed by RP, and the cost of EP is the highest for most instances. Moreover,
lateral-transshipments are effective strategies to reduce transportation costs in certain de-
mand pattern. For instances 50-46, proportions of lateral-transshipments volume under
the EP and RP rules are more than 70%, and the value under EP even exceeds 80%.

(a) Instance E-n22-k4-s6-17 (b) Instance E-n22-k4-s12-16

(c) Instance E-n51-k5-s11-19-27-47 (d) Instance E-n51-k5-s11-19

(e) Instance E-n51-k5-s27-47 (f) E-n51-k5-s32-37

Algorithms 2023, 16, x FOR PEER REVIEW 32 of 41

(g) E-n51-k5-s6-12

Figure 17. Convergence process of branch-and-bound algorithm.

Figure 18. Convergence process of branch-and-bound algorithm.

5.4. Managerial Insights on Analysis of Algorithms
Based on the results of the classical dataset and relevant analysis, the main insights

can be summarized as follows:
(1) By adopting the GLB-oriented lower bound, the initial solution with high quality

can be obtained efficiently. The average GAP between the initial solution and the
optimal solution is within 10%, and the computational time is less than 1 s. The GLB-
oriented lower bound estimation process comprehensively considers the cost of the
previous decision and the subsequent decision, and the computational time is short-
ened by decomposing the original problem with quadratic terms in both constraints
and objective functions into a series of linear generalized assignment problems.
Moreover, this method is sensitive to the locations of different types of nodes, and it
is difficult to obtain the initial feasible solution for some instances.

(2) The GLB-oriented lower bound is relatively loose for the original problem. Alt-
hough the GAP between the initial solution and the optimal solution is usually
small, the convergence of branch- and-bound algorithm is slow due to the poor
lower bound. For Set 3, the initial solution of several instances has been the optimal
solution, and the branch-and-bound process is mainly to improve the lower bound.
However, the convergence process analysis shows that the lower bound is not always
loose and needs a case-by-case evaluation.

(3) The branch-and-bound algorithm combined with the GLB-oriented lower bound
is suitable for solving small-scale examples, while the adaptive large neighbor-
hood search algorithm with efficient initial solution can almost achieve the same

Figure 17. Convergence process of branch-and-bound algorithm.

Algorithms 2023, 16, 252 31 of 40

To analyze the influence of demand pattern, we solve the 54 instances in Set 4 with
different demand input. As mentioned in Section 5.1.2, we design three demand generating
rules corresponding to different scenarios, which are the Random Nodes rule (RN), The
Equal Proportion rule (EP), and the Random Proportion rule (RP). The instances generated
by RN are all feasible, and there are some infeasible cases when using EP and RP rules.
Figure 18 compares the results of the feasible instances using three generating rules where
we focus on the total transportation cost (the histogram) and the proportion of lateral-
transshipments volume (the line chart). According to Figure 18, we can see that the
lateral-transshipments volume is equal to zero for all instances except for instance 50-50 in
RN, which indicates there is no need for lateral-transshipments when the demands of a
station all originate from one warehouse. In the real-world scenario, if the station has
massive demand for a warehouse, the decision maker will arrange a direct “warehouse-
station” route, that is, to directly transport from the warehouse to the station without
going through DCs. Figure 15 also shows that lateral-transshipments volume will make
total transportation costs higher, and that the transportation costs under the RN rule are
always the lowest, followed by RP, and the cost of EP is the highest for most instances.
Moreover, lateral-transshipments are effective strategies to reduce transportation costs in
certain demand pattern. For instances 50-46, proportions of lateral-transshipments volume
under the EP and RP rules are more than 70%, and the value under EP even exceeds 80%.

Algorithms 2023, 16, x FOR PEER REVIEW 32 of 41

(g) E-n51-k5-s6-12

Figure 17. Convergence process of branch-and-bound algorithm.

Figure 18. Convergence process of branch-and-bound algorithm.

5.4. Managerial Insights on Analysis of Algorithms
Based on the results of the classical dataset and relevant analysis, the main insights

can be summarized as follows:
(1) By adopting the GLB-oriented lower bound, the initial solution with high quality

can be obtained efficiently. The average GAP between the initial solution and the
optimal solution is within 10%, and the computational time is less than 1 s. The GLB-
oriented lower bound estimation process comprehensively considers the cost of the
previous decision and the subsequent decision, and the computational time is short-
ened by decomposing the original problem with quadratic terms in both constraints
and objective functions into a series of linear generalized assignment problems.
Moreover, this method is sensitive to the locations of different types of nodes, and it
is difficult to obtain the initial feasible solution for some instances.

(2) The GLB-oriented lower bound is relatively loose for the original problem. Alt-
hough the GAP between the initial solution and the optimal solution is usually
small, the convergence of branch- and-bound algorithm is slow due to the poor
lower bound. For Set 3, the initial solution of several instances has been the optimal
solution, and the branch-and-bound process is mainly to improve the lower bound.
However, the convergence process analysis shows that the lower bound is not always
loose and needs a case-by-case evaluation.

(3) The branch-and-bound algorithm combined with the GLB-oriented lower bound
is suitable for solving small-scale examples, while the adaptive large neighbor-
hood search algorithm with efficient initial solution can almost achieve the same

Figure 18. Convergence process of branch-and-bound algorithm.

5.4. Managerial Insights on Analysis of Algorithms

Based on the results of the classical dataset and relevant analysis, the main insights
can be summarized as follows:

(1) By adopting the GLB-oriented lower bound, the initial solution with high quality
can be obtained efficiently. The average GAP between the initial solution and the
optimal solution is within 10%, and the computational time is less than 1 s. The
GLB-oriented lower bound estimation process comprehensively considers the cost
of the previous decision and the subsequent decision, and the computational time
is shortened by decomposing the original problem with quadratic terms in both
constraints and objective functions into a series of linear generalized assignment
problems. Moreover, this method is sensitive to the locations of different types of
nodes, and it is difficult to obtain the initial feasible solution for some instances.

(2) The GLB-oriented lower bound is relatively loose for the original problem. Al-
though the GAP between the initial solution and the optimal solution is usually
small, the convergence of branch- and-bound algorithm is slow due to the poor
lower bound. For Set 3, the initial solution of several instances has been the optimal
solution, and the branch-and-bound process is mainly to improve the lower bound.
However, the convergence process analysis shows that the lower bound is not always
loose and needs a case-by-case evaluation.

Algorithms 2023, 16, 252 32 of 40

(3) The branch-and-bound algorithm combined with the GLB-oriented lower bound
is suitable for solving small-scale examples, while the adaptive large neighbor-
hood search algorithm with efficient initial solution can almost achieve the same
effect as the solver. For Set 3, the heuristic algorithm obtains optimal solutions in
a relatively short time, and for Set 4, the solution with an average gap of 6% can be
obtained within 80% of computational time of the solver. The GLB-oriented lower
bound is the main reason to ensure an efficient solution. In some instances, even large
neighborhood operations cannot improve the initial solution.

(4) Although lateral-transshipments will make transportation costs higher, it is still
the reasonable choice under specific demand pattern. In the sensitive analysis of
demand, the proportion of lateral-transshipments volume for some instances up to
70%, and the overall proportion of EP and RP strategies is 40%~50%, which indicates
the necessity of lateral-transshipments.

5.5. Real-World Instances

We also carry out the real-world case study based on the JD Logistics’ distribution
network in Beijing. As shown in Figure 19, we choose a subset of facilities from the real-
world network as the input data, where 40 warehouses store commodities and 10 DCs
provide urban distribution services for 100 delivery stations. The demand of stations is
1000 times of the volume of goods in the original dataset. The demand between warehouses
and stations is generated according to the EP principle. The capacity of each DC is evenly
configured according to the total demand. The distances of links are specified using to the
real-world road network.

Algorithms 2023, 16, x FOR PEER REVIEW 33 of 41

effect as the solver. For Set 3, the heuristic algorithm obtains optimal solutions in a
relatively short time, and for Set 4, the solution with an average gap of 6% can be
obtained within 80% of computational time of the solver. The GLB-oriented lower
bound is the main reason to ensure an efficient solution. In some instances, even large
neighborhood operations cannot improve the initial solution.

(4) Although lateral-transshipments will make transportation costs higher, it is still
the reasonable choice under specific demand pattern. In the sensitive analysis of
demand, the proportion of lateral-transshipments volume for some instances up to
70%, and the overall proportion of EP and RP strategies is 40%~50%, which indicates
the necessity of lateral-transshipments.

5.5. Real-World Instances
We also carry out the real-world case study based on the JD Logistics’ distribution

network in Beijing. As shown in Figure 19, we choose a subset of facilities from the real-
world network as the input data, where 40 warehouses store commodities and 10 DCs
provide urban distribution services for 100 delivery stations. The demand of stations is
1000 times of the volume of goods in the original dataset. The demand between ware-
houses and stations is generated according to the EP principle. The capacity of each DC is
evenly configured according to the total demand. The distances of links are specified us-
ing to the real-world road network.

Warehouses DCs Stations

Figure 19. Warehouses, DCs, and delivery stations in the network.

For this real-world case, the Gruobi solver could not obtain a feasible solution within
a time limit of 5 h. ALNS with an efficient initial solution finally converged in 18 min.
Figure 20 shows the convergence curve of the solution. As the initial solution of the algo-
rithm is obtained by adopting the GLB-oriented lower bound, the heuristic algorithm pro-
posed in this paper can roughly estimate the quality of the solution. In this case, the GLB-
oriented lower bound is 11,120.16, the initial upper bound is 142,226.97, and the initial
GAP is 21%. The final solution obtained when the algorithm terminates is 13,402.43. If still

Figure 19. Warehouses, DCs, and delivery stations in the network.

For this real-world case, the Gruobi solver could not obtain a feasible solution within
a time limit of 5 h. ALNS with an efficient initial solution finally converged in 18 min.
Figure 20 shows the convergence curve of the solution. As the initial solution of the
algorithm is obtained by adopting the GLB-oriented lower bound, the heuristic algorithm
proposed in this paper can roughly estimate the quality of the solution. In this case, the
GLB-oriented lower bound is 11,120.16, the initial upper bound is 142,226.97, and the initial
GAP is 21%. The final solution obtained when the algorithm terminates is 13,402.43. If

Algorithms 2023, 16, 252 33 of 40

still compared with the initial lower bound, the GAP of the final solution should be less
than 17%.

Algorithms 2023, 16, x FOR PEER REVIEW 34 of 41

compared with the initial lower bound, the GAP of the final solution should be less than
17%.

13300

13400

13500

13600

13700

13800

13900

14000

14100

0 100 200 300 400 500 600 700 800 900

O
bj

ec
tiv

e f
un

ct
io

n

Number of iterations

Initial lower bound= 11120.16
initial Gap=21%

Figure 20. Convergence curve of the lower bound and upper bound of the real-world case.

Table 15 presents the details of the final solution, that is, the allocation of warehouses
to supply the corresponding DCs and the demand coverage decision from DCs to stations.
Figure 21 shows the spatial visualization of the optimization results. According to the final
solution, DCs 145 and 146 assume the main distribution function, covering 40% of the total
number of warehouses and 59% of the total number of stations. Affected by the spatial
distribution of nodes, DC 143 only receives the goods transferred from other DCs and
sends them to the station, while DC 148 is only responsible for handling the goods from
warehouses and transferring them to other DCs. The flow in the logistics network is
shown in Figure 22. In the figure, the red line represents lateral-transshipments flow be-
tween DCs, the blue line represents the non-transfer flow, and the width of the line reflects
the size of the flow. In this real-world case, the total demand is 35,610 and the lateral-
transshipments volume is 6126.

Table 15. Details of the final solution.

DC Warehouses Assigned to DC Stations Covered by DC
141 101; 102; 107; 108; 115; 129 4; 8; 37; 43; 57; 92; 94
142 110; 117; 121; 128; 132; 138 5; 34; 55; 68; 69; 87
143 - 12; 39; 51; 77
144 124; 73

145 105; 119; 127; 134; 136; 137 2; 6; 7; 9; 10; 11; 17; 18; 25; 27; 28; 29; 30; 32; 33;
36; 40; 41; 45; 46; 54; 58; 64; 81; 82; 85; 93; 97; 98

146
106; 109; 111; 112; 116; 118;
122; 130; 139; 140

1; 3; 13; 14; 16; 19; 20; 21; 22; 31; 35; 48; 49; 50; 52;
56; 60; 61; 62; 67; 70; 72; 75; 76; 83; 89; 90; 96; 99; 100

147 104; 133 26; 65
148 114; 125 -
149 120; 135 15; 24; 38; 79; 80; 84; 95
150 103; 113; 123; 126; 131 23; 42; 44; 47; 53; 59; 63; 66; 71; 74; 78; 86; 88; 91

Figure 20. Convergence curve of the lower bound and upper bound of the real-world case.

Table 15 presents the details of the final solution, that is, the allocation of warehouses
to supply the corresponding DCs and the demand coverage decision from DCs to stations.
Figure 21 shows the spatial visualization of the optimization results. According to the final
solution, DCs 145 and 146 assume the main distribution function, covering 40% of the total
number of warehouses and 59% of the total number of stations. Affected by the spatial
distribution of nodes, DC 143 only receives the goods transferred from other DCs and
sends them to the station, while DC 148 is only responsible for handling the goods from
warehouses and transferring them to other DCs. The flow in the logistics network is shown
in Figure 22. In the figure, the red line represents lateral-transshipments flow between DCs,
the blue line represents the non-transfer flow, and the width of the line reflects the size of
the flow. In this real-world case, the total demand is 35,610 and the lateral-transshipments
volume is 6126.

Table 15. Details of the final solution.

DC Warehouses Assigned to DC Stations Covered by DC

141 101; 102; 107; 108; 115; 129 4; 8; 37; 43; 57; 92; 94
142 110; 117; 121; 128; 132; 138 5; 34; 55; 68; 69; 87
143 - 12; 39; 51; 77
144 124; 73

145 105; 119; 127; 134; 136; 137 2; 6; 7; 9; 10; 11; 17; 18; 25; 27; 28; 29; 30; 32; 33;
36; 40; 41; 45; 46; 54; 58; 64; 81; 82; 85; 93; 97; 98

146 106; 109; 111; 112; 116; 118;
122; 130; 139; 140

1; 3; 13; 14; 16; 19; 20; 21; 22; 31; 35; 48; 49; 50; 52;
56; 60; 61; 62; 67; 70; 72; 75; 76; 83; 89; 90; 96; 99; 100

147 104; 133 26; 65
148 114; 125 -
149 120; 135 15; 24; 38; 79; 80; 84; 95
150 103; 113; 123; 126; 131 23; 42; 44; 47; 53; 59; 63; 66; 71; 74; 78; 86; 88; 91

Algorithms 2023, 16, 252 34 of 40
Algorithms 2023, 16, x FOR PEER REVIEW 35 of 41

Warehouses StationsDCs

Figure 21. Optimized multi-echelon distribution network in the best upper bound solution.

Warehouses DCs Stations Lateral-transshipments Non-transfer

Figure 22. The flow in the optimized multi-echelon distribution network.

5.6. Managerial Implications for Dynamical Evaluation of Cross-Layer Service Synchronization
One of the core purposes to conduct cross-layer service synchronization evaluation

is to increase operation efficiency and controllability of the urban logistics system at dif-
ferent levels of OD demand distribution. From the perspective of the economies of scale
and long-term operation, single sourcing strategy should be adopted due to its less ad-
ministrative effort and easier coordination. Single sourcing is necessary for time-

Figure 21. Optimized multi-echelon distribution network in the best upper bound solution.

Algorithms 2023, 16, x FOR PEER REVIEW 35 of 41

Warehouses StationsDCs

Figure 21. Optimized multi-echelon distribution network in the best upper bound solution.

Warehouses DCs Stations Lateral-transshipments Non-transfer

Figure 22. The flow in the optimized multi-echelon distribution network.

5.6. Managerial Implications for Dynamical Evaluation of Cross-Layer Service Synchronization
One of the core purposes to conduct cross-layer service synchronization evaluation

is to increase operation efficiency and controllability of the urban logistics system at dif-
ferent levels of OD demand distribution. From the perspective of the economies of scale
and long-term operation, single sourcing strategy should be adopted due to its less ad-
ministrative effort and easier coordination. Single sourcing is necessary for time-

Figure 22. The flow in the optimized multi-echelon distribution network.

5.6. Managerial Implications for Dynamical Evaluation of Cross-Layer Service Synchronization

One of the core purposes to conduct cross-layer service synchronization evaluation is
to increase operation efficiency and controllability of the urban logistics system at different
levels of OD demand distribution. From the perspective of the economies of scale and
long-term operation, single sourcing strategy should be adopted due to its less admin-
istrative effort and easier coordination. Single sourcing is necessary for time-dependent
transportation services provided by third-party logistics companies, and suppliers need to
choose appropriate delivery times at warehouses so that customers can pick up the goods
at their booked time [59]. The existence of lateral-transshipment enables agile distribution

Algorithms 2023, 16, 252 35 of 40

but leads to a more complex planning structure. To provide effective delivery services
for muti-echelon logistics networks with lateral-transshipment, decision-makers need to
know: (1) how lateral-transshipment improves the performance of the distribution net-
work, and (2) to what extent we can proactively adjust the matching relationship within
warehouse-DCs and DCs-delivery stations at different levels of OD demand distribution
as part of controllability quantification tasks. The proposed two-stage cost-estimating
framework can quickly obtain a solution by estimating the cost across different layers.
Specifically, the application scenarios of the control measures for highly dynamic demand
and supply impacts can be categorized as follows: (1) excessive quantity of goods need by
customers at a delivery station (i.e., on some shopping days); (2) extensive delays in deliv-
ery services and planner need to quickly synchronize suppliers’ fulfillment and customers’
pick-up time.

5.7. QUBO Formulation of the QSAP-C

In this section, we present the QUBO formulation of the proposed model inspired
by [11,60] and show the potential for acceleration through quantum computing. QUBO
problems are unconstrained, quadratic, and of binary form generally defined as follows:

E(x) = xTQx + q (12)

where Q represents a m × m matrix, q is a constant term, a solution x = (x1, . . . , xm),
xi ∈ {0, 1} is an m-dimensional binary vector, and E(x) is the energy (or fitness) of x.

The QSAP-C can be formulated as QUBO using Equation (14) where the cost function
c(x) and the constraint function g(x) are presented in Equations (15) and (A1), respectively.
The penalty weight is denoted by α and set according to the method described in [61,62].

E(x) = c(x) + αg(x) (13)

c(x) = ∑
k∈K

∑
l∈L

∑
j∈J

fkjdkl xkl + ∑
l∈L

∑
l′∈L′

∑
k∈K

∑
j∈J

fkjdll′xklyl′ j+ ∑
l′∈L′

∑
j∈J

∑
k∈K

fkjdl′ jyl′ j (14)

g(x) = ∑
k∈K

(
1− ∑

l∈L
xkl

)2
+ ∑

j∈J

(
1− ∑

l′∈L
yl′ j

)2
+ ∑

(l,l′)∈(L,L′)
(Cap(l,l′)−

∑
k∈K

∑
j∈J

xkl fkj − ∑
k∈K

∑
j∈J

yl′ j fkj + ∑
k∈K

∑
j∈J

xklyl′ j fkj−
n
∑

i=0
2ixi

ll′)
2

(15)

According to the preceding procedure, Transformation # 1 proposed by [11] that
transforms the general problem into an equivalent QUBO model, which requires all con-
straints to be equations rather than inequalities, we convert constraints (4) to equations by
including slack variables s4 via a binary expansion. To accomplish this, we first estimate
upper bounds on the constraints, that is 0 ≤ s4 ≤ ∑k∈K ∑j∈J fkj, which can be regarded
as a basis for determining how many binary variables will be required to represent the
slack variables in the binary expansions. Assume that we need n binary variables and
n = max

n

{
2n < ∑k∈K ∑j∈J fkj

}
, then s4 can be expressed as s4 = ∑n

i=0 2ixi
ll′ .

6. Conclusions and Future Research

Focusing on real-world e-commerce logistics applications, this paper is motivated by
the need to solve multi-echelon distribution network design problems with intra-echelon
connections, where it is possible to select paths containing “shortcuts” for minimizing the
overall generalized cost of travel. To capture the additional complexity of multi-echelon
network configuration with intra-echelon connections, we propose a QSAP-C model with
two types of binary variables for deciding the allocation of warehouses to DCs and the
allocation of DCs to delivery stations. Furthermore, this paper designs a matheuristic

Algorithms 2023, 16, 252 36 of 40

approximation method to efficiently obtain the GLB-oriented lower bound estimate. The
lower bound estimation procedure is an extension and adaptation to the general assignment
case of GLB for solving the standard QAP. The proposed solution approach reformulates
the original problem as two-stage decisions and solves them sequentially to obtain the
estimated cost. To improve the quality of solutions, both exact and heuristic algorithms
with the embedded GLB-oriented lower bound estimator are proposed.

By using the parametric sensitivity analysis and OD distribution information, the pro-
posed model can effectively evaluate different types of distribution network configuration.
The solution framework is also tested using real-world distribution networks of JD logistics
in Beijing. The experimental results indicate that OD demand patterns can significantly
influence the underlying city logistics distribution and transfer transportation, which fur-
ther possibly reduces the overall transportation cost to a certain degree. The results also
suggest that both the proposed branch-and-bound framework combined approximation
schemes and ALNS algorithm can provide high-quality solutions in all instances and work
effectively in the real-world case.

In terms of future works, we will consider more realistic factors to further address the
limitations associated with simplistic assumptions in this paper: (1) the transportation cost
should also reflect economies of scale, e.g., the unit transportation cost is a nonincreasing
function of the rate of flow [50]; (2) reactive transshipment should occur after observing
demand [3]; and (3) we will further integrate our proposed optimization model and the
time-dependent travel time model in rich arc routing problem developed by [63] to provide
more reasonable solutions, where the time-dependent travel time and traffic congestion
will be included in a more comprehensive manner.

Author Contributions: Conceptualization, S.W. and X.Z.; methodology, X.Z.; software, Z.N.; valida-
tion, Z.N., S.W., and X.Z.; formal analysis, Z.N.; investigation, Z.N. and X.Z.; writing—original draft
preparation, Z.N., S.W., and X.Z.; writing—review and editing, S.W. and X.Z.; visualization, Z.N.;
supervision, X.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1 The Relationship between Standard QAP and QSAP-C

Given three n× n input matrices with real elements F =
(

fij
)
, D = (dkl), and B = (bik),

where fij is the flow between the facility i and facility j, dkl is the distance between the
location k and location l, and bik is the cost of placing facility i at location k. The Koopmans-
Beckmann version of the QAP can be formulated as follows:

Min
N

∑
i=1

N

∑
k=1

N

∑
l=1

N

∑
j=1

fijdkl xikxl j +
N

∑
i=1

N

∑
k=1

bikxik (A1)

N

∑
i=1

xik = 1 ∀ k = 1, 2, . . . N (A2)

N

∑
k=1

xik = 1 ∀ i = 1, 2, . . . N (A3)

Ref. [59] generalize traditional QAP as the network-based QAP (NET-QAP). Their
generic QAP network depicts a QAP model with N origins defined as NS, N candidate
locations for origins defined as NL, M candidate locations for destinations defined as MS,

Algorithms 2023, 16, 252 37 of 40

and M destinations defined as ML. Using the same indices, let i ∈ NS, k ∈ NL, l ∈ ML,
j ∈ Ms, and the NET-QAP model can be presented as follows:

Min
NS

∑
i=1

NL

∑
k=1

MS

∑
l=1

ML

∑
j=1

fijdkl xikxl j +
NS

∑
i=1

NL

∑
k=1

bikxik +
MS

∑
l=1

ML

∑
j=1

bl jxl j (A4)

NS

∑
i=1

xik = 1 ∀ k = 1, 2, . . . N (A5)

NL

∑
k=1

xik = 1 ∀ i = 1, 2, . . . N (A6)

MS

∑
l=1

xl j = 1 ∀ j = 1, 2, . . . M (A7)

ML

∑
j=1

xl j = 1 ∀ l = 1, 2, . . . M (A8)

In this paper, we further generalize the NET-QAP model: (1) the number of nodes is
different in four echelons (that is |NS| 6= |NL|, |ML| 6= |Ms|); (2) the assignment between
NS(Ms) and NL(ML) is general assignment; (3) capacities of NL(ML) are considered;
(4) the cost on links (i, k) and (l, j) is not fixed and it is also the product of distance and
freight flow. It is immediate that we can write QSAP-C as the NET-QAP of the form.

Min
NS

∑
i=1

NL

∑
k=1

MS

∑
l=1

ML

∑
j=1

fijdkl xikxl j +
NS

∑
i=1

NL

∑
k=1

ML

∑
j=1

fijdikxik +
MS

∑
l=1

ML

∑
j=1

NS

∑
i=1

fijdl jxl j (A9)

NL

∑
k=1

xik = 1 ∀ i = 1, 2, . . . NS (A10)

ML

∑
l=1

xl j = 1 ∀ j = 1, 2, . . . MS (A11)

∑
i∈I

∑
j∈J

xik fij + ∑
i∈I

∑
j∈J

xl j fij −∑
i∈I

∑
j∈J

xikxl j fkj ≤Cap(k,l) ∀ (k, l) ∈ (NL, ML) (A12)

Appendix A.2 The Quality of Different Lower Bounds

Table A1. Comparison of lower bounds for standard QAP.

Instance GLB62 RRD95 HG98 KCCEB99 AB01 RRRP02 RS03 R04 BV04 HH01

Had16 9.7% - 4.4% 4.5% 3.4% - 0.6% 0 1.3% 0
Had18 10.9% - 5.1% 5.2% 4.0% - 0.8% 0.04% 1.1% 0
Had20 10.9% - 5.1% 5.1% 3.5% - 0.5% 0.03% 1.6% 0
Kra30a 23.1% 14.5% 14.7% 15.0% 22.9% - 12.7% - 2.5% 3.0%
Kra30b 24.5% 16.0% 16.3% 16.6% 24.5% - 11.2% - 4.1% 4.7%
Nug12 14.7% 9.5% 9.5% 9.9% 13.8% 0 3.6% 1.9% 1.7% 0
Nug15 16.3% 9.5% 9.7% 10.2% 13.0% - 2.4% 1.0% 0.8% 0
Nug18 - - - - - - - - - -
Nug20 20.0% 15.1% 15.2% 15.4% 10.9% - 4.6% 3.0% 2.5% 2.4%
Nug22 - - - - - - - - - 2.4%
Nug30 25.9% 21.5% 21.7% 21.9% 12.4% - 5.2% - 3.1% 5.8%
Rou15 15.7% 8.3% 8.5% 8.6% 14.2% - 5.9% 1.5% 1.1% 0

Algorithms 2023, 16, 252 38 of 40

Table A1. Cont.

Instance GLB62 RRD95 HG98 KCCEB99 AB01 RRRP02 RS03 R04 BV04 HH01

Rou20 22.8% 11.3% 11.5% 11.6% 16.2% - 8.5% 4.7% 4.2% 3.6%
Tai20a 17.5% - 12.3% 12.3% 16.8% - 9.4% - 4.5% 3.9%
Tai25a 17.5% - 13.8% 13.8% 15.7% - 10.8% - 4.7% 6.5%
Tai30a 17.2% - 13.9% 13.9% 16.5% - 9.1% - 6.1% 7.3%
Tho30 39.6% 32.8% 33.3% 33.4% 16.8% - 9.3% - 4.8% 8.8%

Lower bounds: GLB62—Gilmore-Lawler bound from [64]; RRD95—interior-point bound from [65]; HG98—dual
ascent bound from [66]; KCCEB99—dual-based bound from [67]; AB01—quadratic programming bound from [68];
RRRP02—interior point bound from [69]; RS03—semi-definite programming bound from [70]; R04—semi-definite
programming (SDP) bound [71]; BV04—lift-and-project SDP bound from [72]; HH01—Hahn-Hightower dual
ascent bound from [73].

References
1. Ambrosino, D.; Scutella, M.G. Distribution network design: New problems and related models. Eur. J. Oper. Res. 2005, 165,

610–624. [CrossRef]
2. Puga, M.S.; Minner, S.; Tancrez, J.S. Two-stage supply chain design with safety stock placement decisions. Int. J. Prod. Econ. 2019,

209, 183–193. [CrossRef]
3. Dehghani, M.; Abbasi, B. An age-based lateral-transshipment policy for perishable items. Int. J. Prod. Econ. 2018, 198, 93–103.

[CrossRef]
4. Paterson, C.; GKiesmüller Teunter, R.; Glazebrook, K. Inventory models with lateral transshipments: A review. Eur. J. Oper. Res.

2011, 210, 125–136. [CrossRef]
5. Jovan, G. Amiya Chakravarty. Sharing and Lateral Transshipment of Inventory in a Supply Chain with Expensive Low-Demand

Items. Manag. Sci. 2001, 47, 579–594.
6. Rabbani, M.; Sabbaghnia, A.; Mobini, M.; Razmi, J. A graph theory-based algorithm for a multi-echelon multi-period responsive

supply chain network design with lateral-transshipments. Oper. Res. 2020, 20, 2497–2517. [CrossRef]
7. Domschke, W. Schedule synchronization for public transit networks. Oper.-Res.-Spektrum 1989, 11, 17–24. [CrossRef]
8. Hahn, P.M.; Kim, B.J.; Guignard, M.; Smith, J.M.; Zhu, Y.R. An algorithm for the generalized quadratic assignment problem.

Comput. Optim. Appl. 2008, 40, 351–372. [CrossRef]
9. Bertsimas, D.; Delarue, A.; Martin, S. Optimizing schools’ start time and bus routes. Proc. Natl. Acad. Sci. USA 2019, 116,

5943–5948. [CrossRef]
10. Glover, F.; Lewis, M.; Kochenberger, G. Logical and inequality implications for reducing the size and difficulty of quadratic

unconstrained binary optimization problems. Eur. J. Oper. Res. 2018, 265, 829–842. [CrossRef]
11. Glover, F.; Kochenberger, G.; Hennig, R.; Du, Y. Quantum Bridge Analytics I: A tutorial on formulating and using QUBO models.

Ann. Oper. Res. 2022, 314, 141–183. [CrossRef]
12. Kochenberger, G.A.; Glover, F. A unified framework for modeling and solving combinatorial optimization problems: A tutorial.

In Multiscale Optimization Methods and Applications; Springer: Boston, MA, USA, 2006; pp. 101–124.
13. Zhang, H.; Liu, F.; Zhou, Y.; Zhang, Z. A hybrid method integrating an elite genetic algorithm with tabu search for the quadratic

assignment problem. Inf. Sci. 2020, 539, 347–374. [CrossRef]
14. Dokeroglu, T.; Sevinc, E.; Cosar, A. Artificial bee colony optimization for the quadratic assignment problem. Appl. Soft Comput.

2019, 76, 595–606. [CrossRef]
15. Peng, Z.Y.; Huang, Y.J.; Zhong, Y.B. A discrete artificial bee colony algorithm for quadratic assignment problem. J. High Speed

Netw. 2022, 28, 131–141. [CrossRef]
16. Wang, H.; Alidaee, B. A New Hybrid-heuristic for Large-scale Combinatorial Optimization: A Case of Quadratic Assignment

Problem. Comput. Ind. Eng. 2023, 179, 109220. [CrossRef]
17. Shahabi, M.; Akbarinasaji, S.; Unnikrishnan, A.; James, R. Integrated inventory control and facility location decisions in a

multi-echelon supply chain network with hubs. Netw. Spat. Econ. 2013, 13, 497–514. [CrossRef]
18. Shi, J.; Zhang, G.; Sha, J. A Lagrangian based solution algorithm for a build-to-order supply chain network design problem. Adv.

Eng. Softw. 2012, 49, 21–28. [CrossRef]
19. Jang, Y.J.; Jang, S.Y.; Chang, B.M.; Park, J. A combined model of network design and production/distribution planning for a

supply network. Comput. Ind. Eng. 2002, 43, 263–281. [CrossRef]
20. Manupati, V.K.; Jedidah, S.J.; Gupta, S.; Bhandari, A.; Ramkumar, M. Optimization of a multi-echelon sustainable production-

distribution supply chain system with lead time consideration under carbon emission policies. Comput. Ind. Eng. 2019, 135,
1312–1323. [CrossRef]

21. Melo, M.T.; Nickel, S.; Saldanha-Da-Gama, F. Facility location and supply chain management–A review. Eur. J. Oper. Res. 2009,
196, 401–412. [CrossRef]

22. Devika, K.; Jafarian, A.; Nourbakhsh, V. Designing a sustainable closed-loop supply chain network based on triple bottom line
approach: A comparison of metaheuristics hybridization techniques. Eur. J. Oper. Res. 2014, 235, 594–615. [CrossRef]

https://doi.org/10.1016/j.ejor.2003.04.009
https://doi.org/10.1016/j.ijpe.2018.05.018
https://doi.org/10.1016/j.ijpe.2018.01.028
https://doi.org/10.1016/j.ejor.2010.05.048
https://doi.org/10.1007/s12351-018-0425-y
https://doi.org/10.1007/BF01721163
https://doi.org/10.1007/s10589-007-9093-1
https://doi.org/10.1073/pnas.1811462116
https://doi.org/10.1016/j.ejor.2017.08.025
https://doi.org/10.1007/s10479-022-04634-2
https://doi.org/10.1016/j.ins.2020.06.036
https://doi.org/10.1016/j.asoc.2019.01.001
https://doi.org/10.3233/JHS-220684
https://doi.org/10.1016/j.cie.2023.109220
https://doi.org/10.1007/s11067-013-9196-4
https://doi.org/10.1016/j.advengsoft.2012.03.003
https://doi.org/10.1016/S0360-8352(02)00074-8
https://doi.org/10.1016/j.cie.2018.10.010
https://doi.org/10.1016/j.ejor.2008.05.007
https://doi.org/10.1016/j.ejor.2013.12.032

Algorithms 2023, 16, 252 39 of 40

23. Eskandarpour, M.; Dejax, P.; Miemczyk, J.; Péton, O. Sustainable supply chain network design: An optimization-oriented review.
Omega 2015, 54, 11–32. [CrossRef]

24. Wang, H.S. A two-phase ant colony algorithm for multi-echelon defective supply chain network design. Eur. J. Oper. Res. 2009,
192, 243–252. [CrossRef]

25. Wang, K.J.; Makond, B.; Liu, S.Y. Location and allocation decisions in a two-echelon supply chain with stochastic demand–A
genetic-algorithm based solution. Expert Syst. Appl. 2011, 38, 6125–6131. [CrossRef]

26. Park, S.; Lee, T.E.; Sung, C.S. A three-level supply chain network design model with risk-pooling and lead times. Transp. Res. Part
E Logist. Transp. Rev. 2010, 46, 563–581. [CrossRef]

27. Mogale, D.G.; Kumar, M.; Kumar, S.K.; Tiwari, M.K. Grain silo location-allocation problem with dwell time for optimization of
food grain supply chain network. Transp. Res. Part E Logist. Transp. Rev. 2018, 111, 40–69. [CrossRef]

28. Barbarosoğlu, G.; Özgür, D. Hierarchical design of an integrated production and 2-echelon distribution system. Eur. J. Oper. Res.
1999, 118, 464–484. [CrossRef]

29. Chen, P.; Pinto, J.M. Lagrangean-based techniques for the supply chain management of flexible process networks. Comput. Chem.
Eng. 2008, 32, 2505–2528. [CrossRef]

30. Farahani, R.Z.; Elahipanah, M. A genetic algorithm to optimize the total cost and service level for just-in-time distribution in a
supply chain. Int. J. Prod. Econ. 2008, 111, 229–243. [CrossRef]

31. Park, Y.B. An integrated approach for production and distribution planning in supply chain management. Int. J. Prod. Res. 2005,
43, 1205–1224. [CrossRef]

32. Tsiakis, P.; Papageorgiou, L.G. Optimal production allocation and distribution supply chain networks. Int. J. Prod. Econ. 2008, 111,
468–483. [CrossRef]

33. Akbari, A.A.; Karimi, B. A new robust optimization approach for integrated multi-echelon, multi-product, multi-period supply
chain network design under process uncertainty. Int. J. Adv. Manuf. Technol. 2015, 79, 229–244. [CrossRef]

34. Fard AM, F.; Hajiaghaei-Keshteli, M. A bi-objective partial interdiction problem considering different defensive systems with
capacity expansion of facilities under imminent attacks. Appl. Soft Comput. 2018, 68, 343–359. [CrossRef]

35. Fard AM, F.; Hajaghaei-Keshteli, M. A tri-level location-allocation model for forward/reverse supply chain. Appl. Soft Comput.
2018, 62, 328–346. [CrossRef]

36. Badri, H.; Ghomi, S.F.; Hejazi, T.H. A two-stage stochastic programming approach for value-based closed-loop supply chain
network design. Transp. Res. Part E Logist. Transp. Rev. 2017, 105, 1–17. [CrossRef]

37. Fattahi, M.; Govindan, K.; Keyvanshokooh, E. Responsive and resilient supply chain network design under operational and
disruption risks with delivery lead-time sensitive customers. Transp. Res. Part E Logist. Transp. Rev. 2017, 101, 176–200. [CrossRef]

38. Aikens, C.H. Facility location models for distribution planning. Eur. J. Oper. Res. 1985, 22, 263–279. [CrossRef]
39. Vidal, C.J.; Goetschalckx, M. Strategic production-distribution models: A critical review with emphasis on global supply chain

models. Eur. J. Oper. Res. 1997, 98, 1–18. [CrossRef]
40. Fahimnia, B.; Farahani, R.Z.; Marian, R.; Luong, L. A review and critique on integrated production–distribution planning models

and techniques. J. Manuf. Syst. 2013, 32, 1–19. [CrossRef]
41. Goetschalckx, M.; Vidal, C.J.; Dogan, K. Modeling and design of global logistics systems: A review of integrated strategic and

tactical models and design algorithms. Eur. J. Oper. Res. 2002, 143, 1–18. [CrossRef]
42. Chen, Z.L. Integrated production and outbound distribution scheduling: Review and extensions. Oper. Res. 2010, 58, 130–148.

[CrossRef]
43. Fisher, M.L.; Jörnsten, K.O.; Madsen, O.B. Vehicle routing with time windows: Two optimization algorithms. Oper. Res. 1997, 45,

488–492. [CrossRef]
44. Shen ZJ, M.; Coullard, C.; Daskin, M.S. A joint location-inventory model. Transp. Sci. 2003, 37, 40–55. [CrossRef]
45. Pan, F.; Nagi, R. Multi-echelon supply chain network design in agile manufacturing. Omega 2013, 41, 969–983. [CrossRef]
46. Ben Abid, T.; Ayadi, O.; Masmoudi, F. An integrated production-distribution planning problem under demand and production

capacity uncertainties: New formulation and case study. Math. Probl. Eng. 2020, 2020, 1520764. [CrossRef]
47. Larimi, N.G.; Yaghoubi, S.; Hosseini-Motlagh, S.M. Itemized platelet supply chain with lateral transshipment under uncertainty

evaluating inappropriate output in laboratories. Socio-Econ. Plan. Sci. 2019, 68, 100697. [CrossRef]
48. Tsiakis, P.; Shah, N.; Pantelides, C.C. Design of multi-echelon supply chain networks under demand uncertainty. Ind. Eng. Chem.

Res. 2001, 40, 3585–3604. [CrossRef]
49. Finke, G.; Burkard, R.E.; Rendl, F. Quadratic assignment problems. North-Holl. Math. Stud. 1987, 132, 61–82.
50. Abdel-Basset, M.; Manogaran, G.; Rashad, H.; Zaied, A.N.H. A comprehensive review of quadratic assignment problem: Variants,

hybrids and applications. J. Ambient. Intell. Humaniz. Comput. 2018, 1–24. [CrossRef]
51. Burkard, R.E.; Cela, E.; Pardalos, P.M.; Pitsoulis, L.S. The quadratic assignment problem. In Handbook of Combinatorial Optimization;

Springer: Boston, MA, USA, 1998; pp. 1713–1809.
52. Burkard, R.; Dell’Amico, M.; Martello, S. Assignment Problems: Revised Reprint; Society for Industrial and Applied Mathematics:

Philadelphia, PA, USA, 2012.
53. Li, Y.; Pardalos, P.M.; Ramakrishnan, K.G.; Resende, M.G. Lower bounds for the quadratic assignment problem. Ann. Oper. Res.

1994, 50, 387–410. [CrossRef]
54. Pisinger, D.; Ropke, S. A general heuristic for vehicle routing problems. Comput. Oper. Res. 2007, 34, 2403–2435. [CrossRef]

https://doi.org/10.1016/j.omega.2015.01.006
https://doi.org/10.1016/j.ejor.2007.08.037
https://doi.org/10.1016/j.eswa.2010.11.008
https://doi.org/10.1016/j.tre.2009.12.004
https://doi.org/10.1016/j.tre.2018.01.004
https://doi.org/10.1016/S0377-2217(98)00317-8
https://doi.org/10.1016/j.compchemeng.2007.12.006
https://doi.org/10.1016/j.ijpe.2006.11.028
https://doi.org/10.1080/00207540412331327718
https://doi.org/10.1016/j.ijpe.2007.02.035
https://doi.org/10.1007/s00170-015-6796-9
https://doi.org/10.1016/j.asoc.2018.04.011
https://doi.org/10.1016/j.asoc.2017.11.004
https://doi.org/10.1016/j.tre.2017.06.012
https://doi.org/10.1016/j.tre.2017.02.004
https://doi.org/10.1016/0377-2217(85)90246-2
https://doi.org/10.1016/S0377-2217(97)80080-X
https://doi.org/10.1016/j.jmsy.2012.07.005
https://doi.org/10.1016/S0377-2217(02)00142-X
https://doi.org/10.1287/opre.1080.0688
https://doi.org/10.1287/opre.45.3.488
https://doi.org/10.1287/trsc.37.1.40.12823
https://doi.org/10.1016/j.omega.2012.12.004
https://doi.org/10.1155/2020/1520764
https://doi.org/10.1016/j.seps.2019.03.003
https://doi.org/10.1021/ie0100030
https://doi.org/10.1007/s12652-018-0917-x
https://doi.org/10.1007/BF02085649
https://doi.org/10.1016/j.cor.2005.09.012

Algorithms 2023, 16, 252 40 of 40

55. Lutz, R. Adaptive Large Neighborhood Search. Bachelor’s Thesis, Ulm University, Ulm, Germany, 2015.
56. Yu, C.; Zhang, D.; Lau, H.Y. An adaptive large neighborhood search heuristic for solving a robust gate assignment problem.

Expert Syst. Appl. 2017, 84, 143–154. [CrossRef]
57. Perboli, G.; Tadei, R.; Vigo, D. The two-echelon capacitated vehicle routing problem: Models and math-based heuristics. Transp.

Sci. 2011, 45, 364–380. [CrossRef]
58. Crainic, T.G.; Perboli, G.; Mancini, S.; Tadei, R. Two-echelon vehicle routing problem: A satellite location analysis. Procedia-Soc.

Behav. Sci. 2010, 2, 5944–5955. [CrossRef]
59. Wu, X.B.; Lu, J.; Wu, S.; Zhou, X.S. Synchronizing time-dependent transportation services: Reformulation and solution algorithm

using quadratic assignment problem. Transp. Res. Part B Methodol. 2021, 152, 140–179. [CrossRef]
60. Ayodele, M.; Allmendinger, R.; López-Ibáñez, M.; Parizy, M. Multi-objective QUBO solver: Bi-objective quadratic assignment

problem. In Proceedings of the Genetic and Evolutionary Computation Conference, Boston, MA, USA, 9–13 June 2022.
61. Verma, A.; Lewis, M. Penalty and partitioning techniques to improve performance of QUBO solvers. Discret. Optim. 2020,

44, 100594. [CrossRef]
62. Mayowa, A. Penalty Weights in QUBO Formulations: Permutation Problems. In Proceedings of the EvoCOP 2022–22nd European

Conference on Evolutionary Computation in Combinatorial Optimization, Madrid, Spain, 20–22 April 2022; Leslie, P.C., Sébastien,
V., Eds.; Springer: Cham, Switzerland, 2022; pp. 159–174.

63. Lu, J.; Nie, Q.; Mahmoudi, M.; Ou, J.; Li, C.; Zhou, X.S. Rich arc routing problem in city logistics: Models and solution algorithms
using a fluid queue-based time-dependent travel time representation. Transp. Res. Part B Methodol. 2022, 166, 143–182. [CrossRef]

64. Gilmore, P.C. Optimal and suboptimal algorithms for the quadratic assignment problem. J. Soc. Ind. Appl. Math. 1962, 10, 305–313.
[CrossRef]

65. Resende, M.G.; Ramakrishnan, K.G.; Drezner, Z. Computing lower bounds for the quadratic assignment problem with an interior
point algorithm for linear programming. Oper. Res. 1995, 43, 781–791. [CrossRef]

66. Hahn, P.; Grant, T. Lower bounds for the quadratic assignment problem based upon a dual formulation. Oper. Res. 1998, 46,
912–922. [CrossRef]

67. Karisch, S.E.; Cela, E.; Clausen, J.; Espersen, T. A dual framework for lower bounds of the quadratic assignment problem based
on linearization. Computing 1999, 63, 351–403. [CrossRef]

68. Anstreicher, K.M.; Brixius, N.W. A new bound for the quadratic assignment problem based on convex quadratic programming.
Math. Program. 2001, 89, 341–357. [CrossRef]

69. Ramakrishnan, K.G.; Resende MG, C.; Ramachandran, B.; Pekny, J.F. Tight QAP bounds via linear programming. In Combinatorial
and Global Optimization; World Scientific: Singapore, 2002; pp. 297–303.

70. Sotirov, R.; Rendl, F. Bounds for the quadratic assignment problem using the bundle method. In Discrete Optimization: Methods
and Applications; University of Klagenfurt: Klagenfurt, Austria, 2003; pp. 287–305.

71. Roupin, F. From linear to semidefinite programming: An algorithm to obtain semidefinite relaxations for bivalent quadratic
problems. J. Comb. Optim. 2004, 8, 469–493. [CrossRef]

72. Burer, S.; Vandenbussche, D. Solving lift-and-project relaxations of binary integer programs. SIAM J. Optim. 2006, 16, 726–750.
[CrossRef]

73. Adams, W.P.; Guignard, M.; Hahn, P.M.; Hightower, W.L. A level-2 reformulation–linearization technique bound for the quadratic
assignment problem. Eur. J. Oper. Res. 2007, 180, 983–996. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2017.04.050
https://doi.org/10.1287/trsc.1110.0368
https://doi.org/10.1016/j.sbspro.2010.04.009
https://doi.org/10.1016/j.trb.2021.08.008
https://doi.org/10.1016/j.disopt.2020.100594
https://doi.org/10.1016/j.trb.2022.10.011
https://doi.org/10.1137/0110022
https://doi.org/10.1287/opre.43.5.781
https://doi.org/10.1287/opre.46.6.912
https://doi.org/10.1007/s006070050040
https://doi.org/10.1007/PL00011402
https://doi.org/10.1007/s10878-004-4838-6
https://doi.org/10.1137/040609574
https://doi.org/10.1016/j.ejor.2006.03.051

	Introduction
	Literature Review
	Basic Types of City Logistics Distribution Networks
	Distribution Network Design Problem and Related Models
	Solution Algorithms

	Problem Description and Formulation
	Problem Description
	Network Model Construction for Logistics Network with Shortcuts
	Quadratic Semi-Assignment Model M1 with Capacity Constraints

	Solution Algorithms
	Stage-Wide Problem Decomposition Schemes of GLB
	Model Decomposition Scheme for Utilizing Efficient Lower Bound Rules for QSAP-C
	Connection between Traditional GLB for Standard QAP and Proposed Lower Bound Estimation Process for QSAP-C
	Computation of Upper Bound Solutions
	A Branch-and-Bound Algorithm Combined with Enhanced Lower Bound Rules
	An Adaptive Large Neighborhood Search Algorithm with Efficient Initial Solution
	Initial Solution
	Solution Destruction
	Solution Reconstruction
	Weight Adjustment

	Numerical Experiments
	Base Instance Sets Generation and Description
	Locations of Warehouses, DCs, and Delivery Stations
	Demand between Warehouses and Delivery Stations
	Capacity of DC

	Overall Computational Results
	Convergence and Sensitivity Analysis
	Managerial Insights on Analysis of Algorithms
	Real-World Instances
	Managerial Implications for Dynamical Evaluation of Cross-Layer Service Synchronization
	QUBO Formulation of the QSAP-C

	Conclusions and Future Research
	Appendix A
	The Relationship between Standard QAP and QSAP-C
	The Quality of Different Lower Bounds

	References

