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Abstract: Since the COVID-19 pandemic, the demand for respiratory rehabilitation has significantly
increased. This makes developing home (remote) rehabilitation methods using modern technology es-
sential. New techniques and tools, including wireless sensors and motion capture systems, have been
developed to implement remote respiratory rehabilitation. Significant attention during respiratory
rehabilitation is paid to the type of human breathing. Remote rehabilitation requires the development
of automated methods of breath analysis. Most currently developed methods for analyzing breathing
do not work with different types of breathing. These methods are either designed for one type (for
example, diaphragmatic) or simply analyze the lungs’ condition. Developing methods of determining
the types of human breathing is necessary for conducting remote respiratory rehabilitation efficiently.
We propose a method of determining the type of breathing using wireless sensors with the motion
capture system. To develop that method, spectral analysis and machine learning methods were used
to detect the prevailing spectrum, the marker coordinates, and the prevailing frequency for different
types of breathing. An algorithm for determining the type of human breathing is described. It is based
on approximating the shape of graphs of distances between markers using sinusoidal waves. Based
on the features of the resulting waves, we trained machine learning models to determine the types of
breathing. After the first stage of training, we found that the maximum accuracy of machine learning
models was below 0.63, which was too low to be reliably used in respiratory rehabilitation. Based
on the analysis of the obtained accuracy, the training and running time of the models, and the error
function, we choose the strategy of achieving higher accuracy by increasing the training and running
time of the model and using a two-stage method, composed of two machine learning models, trained
separately. The first model determines whether the breath is of the mixed type; if it does not predict
the mixed type of breathing, the second model determines whether breathing is thoracic or abdominal.
The highest accuracy achieved by the composite model was 0.81, which surpasses single models and
is high enough for use in respiratory rehabilitation. Therefore, using three wireless sensors placed
on the patient’s body and a two-stage algorithm using machine learning models, it was possible to
determine the type of human breathing with high enough precision to conduct remote respiratory
rehabilitation. The developed algorithm can be used in building rehabilitation applications.

Keywords: spectral analysis; machine learning; type of breathing

1. Introduction

The COVID-19 epidemic provoked a large amount of research, not only on the virus
itself but also on the effects of the virus on humans. One of the essential kinds of rehabilita-
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tion after COVID-19 is respiratory rehabilitation. It helps to develop the intercostal muscles
and diaphragm to increase respiratory potential. This increase in respiratory potential
occurs when the patient has a mixed type of breathing, which can be obtained by repeating
a set of special exercises during the rehabilitation process. If the patient has the wrong type
of breathing, they can be given instructions to correct it, so determining the exact type of
breathing is a relevant problem in modern rehabilitology. According to the interviewed
rehabilitologists, as part of the training, it is necessary to correctly determine at least 3/4
respiratory cycles.

The rehabilitation process is very labor-intensive, but it can be automatized using
gaming practices, for example, by introducing score points, which makes it more accessible
and attractive. This will help to lower the workload of doctors and rehabilitologists [1,2].

The importance of breathing and its impact on the state of the human body is widely
recognized by modern doctors and scientists [3,4], so the target user group for respiratory
rehabilitation is not limited to post-COVID-19 patients.

In modern information technology, wireless sensors, wireless sensor networks (WSN),
motion capture systems, crowdsensing, virtual reality technologies, etc. are often used
to improve productivity, efficiency, and security [5–7] when solving various problems
in different areas: e.g., in ecology [7], the early detection of fires and landslides became
possible with the help of WSNs; they also help monitor air quality. In military applications,
WSNs track the enemy actions and help make decisions about the further movement of
armed forces [8]. Medicine is no exception. Sensors and WSNs are used to improve patient
care in rehabilitation and diagnostic processes, including respiratory rehabilitation [9,10].

This article is devoted to breathing analysis to provide biofeedback through interaction
with the interactive gamified environment. Many research teams in the scientific community
are engaged in studying issues of breath analysis [10–14].

For example, Brown et al. [10] study the possibilities of using human respiratory
sounds as diagnostic markers of COVID-19 in uncontrolled crowdsourced data. Machine
learning and shallow classifiers, such as logistic regression (LR), gradient boosting trees,
and support vector machines (SVMs), were used for data analysis in that work. The results
show that performance for all tasks exhibited above an 80% area under curve (AUC) score.

Avuthu et al. [15] present a noncontact method of studying the respiratory health of
patients with COVID-19 using RGB infrared sensors to analyze their breathing patterns.
The authors were able to determine the state of health of the respiratory organs (i.e., whether
the respiratory organs were healthy or not) with an accuracy of 70.83% by processing the
obtained data using neural networks such as LSTM, GRU, and BiG RU.

Yanbin Gong et al. studied chronic lung disease and presented a diaphragmatic
breathing monitoring system with a high accuracy (95.5%) and stable operation in various
environments. However, the system tracks only one type of breathing and is poorly suited
for respiratory failure recovery [16].

Han An Tran presents a mobile application for measuring lung functions [17]. That
system differs from the others in its cheapness because it only requires an Android mobile
phone. However, the sample used in the study was relatively small, and it focused on
determining only one type of breathing.

Breath analysis for the diagnosis of various diseases was a popular topic even before
the COVID-19 epidemic. Schoun et al. [18] present a noncontact method of real-time
breath analysis implemented in Python which was quite accurate. The model was able to
determine 9.57 out of 10 breaths taken per minute. Respiration parameters were extracted
from thermal data in real time.

The Table 1 presents a comparative analysis of the presented methods. These works
show that the analysis of the respiratory organs and the breath itself is a popular way
to diagnose various diseases, including COVID-19. This method can provide significant
assistance to doctors in diagnosing diseases in the near future. However, the problem of the
classification of respiration remains unsolved, even though it is essential for automatizing
respiratory rehabilitation.
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Table 1. Comparative analysis of breath analysis methods.

Study Pros Cons

Brown et al. [10]

+ High accuracy (>80% AUC)
+ The convenience of data
collection—Web and Android
applications for collecting
data using a microphone.

- Did not determine the type
of breathing.

Schoun et al. [18]

+ No additional equipment is
attached to the patient. It can
be used to analyze breathing
during sleep, and it is not
constrained by the
patient’s age.
+ High accuracy (>70%).

- Analysis of general
respiratory metrics, whose
values can be collected using
already established devices
with higher accuracy—
spirometry, etc.
- The need to assemble the
installation around
the patient.

Yanbin Gong et al. [16]

+ Higher accuracy compared
to state-of-the-art models
(approximately 95% accuracy).
+ The system consists of only
one speaker.

- It determines only one type
of breathing—diaphragmatic.

Han An Tran et al. [17]

+ Cheapness of operation—
only an Android-based phone
is required.
+ An average error in
determining the type of
breathing is 8%.

- Determines only one type
of breathing.
- A small sample
size—17 students aged
23–24 years.

In this study, we aimed to answer the following research questions:

• RQ1 . Can kinematic data taken from key points of the torso be used to determine
the person’s characteristic type of breathing with satisfactory accuracy for respiratory
rehabilitation?

• RQ2. What is the difference in frequency responses of the person’s torso’s marker
movement for different types of breathing?

The rest of the article is organized as follows. In Section 2, we discuss the equipment
and methods we used to capture the breathing data, preprocess it, and describe the results
of preliminary spectrum analysis of the data on different types of breathing. In Section 3,
we show the results of training different machine learning models on this data and discuss
their accuracy. In Section 4, we propose a two-stage algorithm for the detection of the kind
of human breath, compare it to the previous models, and discuss our findings. Section 5
provides brief conclusions of our work.

2. Equipment and Methods of Capturing and Preparing Data
2.1. Motion Capture System

We chose the method of studying the dynamics of changes in the breathing pattern
based on the motion capture system with subsequent signal processing as a part of the
classification task [19–21].

The choice of motion capture system is important because one of our chief goals
was wide accessibility of the products based on our results. There are various types
and classes of motion capture systems, which differ in price, environment configuration,
and complexity of use [22]. Based on a comparative analysis, the VIVE Tracker 3.0 hybrid
inertial-optical motion capture system was chosen due to its price, accuracy, and low space
requirements, which makes it possible to use it in small apartments. The configuration
consists of the following elements:
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• Three VIVE Tracker markers (3.0) (the minimum number required to track the move-
ments of the chest and abdomen);

• Three waist elastic belts with fasteners for markers;
• Two SteamVR Base Stations 2.0.

The system gives each marker six output values. Three of the six indicators reflect
their positioning in three-dimensional space (x, y, z) relative to the internal local space; the
remaining three are the rotation angles relative to the same axes. Access to these markers is
implemented through the API for Unity and Unreal Engine.

2.2. Study Design

The study involved 86 volunteers; the data were collected anonymously. The dataset
contains information about the breathing of 67 men and 19 women. Of all the volunteers,
38 had COVID-19 (4 of them had lung damage), while 48 did not. The volunteers were of
different ages, as shown in Figure 1.

Figure 1. The age distribution of experiment participants.

Each participant provided the following questions:

• date of birth;
• biological sex;
• the last time interval of having COVID-19 (if any);
• percentage of lung damage;
• the presence of respiratory diseases at the time of data collection.

Three belts with fasteners for markers were attached to the participant. The fasteners
were located on the xiphoid process of the sternum, between the 9th and 11th thoracic
vertebrae, and above the navel. The belts were tightened moderately to allow comfortable
breathing of the participant, but not too loosely so that the markers remained in place.

The scheme of attaching markers to the participant’s body is shown in Figure 2 [19].

Figure 2. Marker mounting scheme.

The special software was developed to record the results from the motion capture
system, marked timestamps, and the data about the volunteer.

Each of the markers tracks its own position in space and transmits the received
information to the program for data collection. Thus, the data from one marker represent the
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change of its three spatial coordinates with time. The output of the data collection program
is two files in the tsv format. The first file contains information about the participant,
and the second file contains records of changes in the position of the marker and changes
in the electrical activity of the muscles relative to time.

The participants were asked to breathe for a minute without any special requirements
after attaching the sensor and markers. This test is needed to record the type of breathing
common to the participant. After that, the participant was asked to breathe at his usual
rate three times (a minute each) with different types of breathing—thoracic, abdominal,
and mixed [23,24]. Before each session, a specially trained laboratory assistant explained to
the participant how to breathe correctly for each type of breathing and visually verified
that the volunteer had exactly the right type of breathing. For convenience and control,
the volunteer could control the movement of the body with his palm so that the markers
were not blocked.

Figure 3 shows how data collection happened. In relation to the participant, the axes
were arranged as follows: the Y axis was directed upward, the Z axis was directed towards
the person, and the X axis was directed to their left. These results were recorded for
further processing.

Figure 3. During data collection.

2.3. Data Preprocessing

The original data were preprocessed before being passed to the model. First, it was
necessary to ensure that each participant had four files with measurements of various types
of breathing (standard, thoracic, abdominal, and mixed). For six participants, we found
that the same type of breathing was recorded more than once. Duplicate files were deleted.
After that, it was essential to confirm that the measurement lasted no less than a minute
in each file. Eight measurements lasting significantly less than a minute were found; they
were removed as statistical outliers. It was also noticed that in some files, the fractional
part of the numbers was separated by a comma instead of a dot. Such data were converted
to a single format: the separation of the integer and fractional parts of the number by the
dot symbol.

The remaining statistical outliers were searched using the interquartile range method.
The interquartile range is the difference between the third (Q3) and the first (Q1) quartiles
of the sample. This value helps estimate the spread of 50% of the sample elements without
taking into account outliers [25–27]. Statistical outliers were records for which the fre-
quency or amplitude values were 1.5 times greater or 1.5 times lower than the interquartile
range (IQR), i.e., all the records that had a frequency or amplitude value less than the
corresponding lower limit or upper limit according to (1).
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IQR = Q3−Q1

Lowerlimit = Q1− 1.5 · IQR

Upperlimit = Q3 + 1.5 · IQR
(1)

In addition, all numerical characteristics were scaled using the StandardScaler from
the scikit learn (sklearn) Python library before being passed to the model for training; all
categorical characteristics were represented appropriately using the get_dummies method
from the Python Pandas library. The dataset was divided into training (60% of records)
and test (40% of records) samples, using the train_test_split method from the Python scikit
learn (sklearn) library.

We chose the ratio of training and test samples based on [28], which supposed using
60% of the original data for the training sample, 20% for the validation sample, and 20% for
the test sample; those recommendations are suitable for the data volume we had. The vali-
dation sample is used when the model independently selects optimal hyperparameters,
which was not done in our study. Therefore, 60% of the data was allocated for the training
sample. The training and test samples data do not intersect: the separation was performed
before the training. The data were balanced in the test and training samples because the
“stratify” parameter was used in the train_test_split method. That method performs a
random split: it shuffles the sequence of all the data to eliminate the factor of models’
selection of false (“biased”) features associated with the training data sequence.

2.4. Signal Spectrum Analysis

The accuracy of the classical ML models, when trained on kinematic data, was not
good. This can be explained by the lack of training data. Since experimentation is a
lengthy process, the researchers tried to approach this problem from the side of classical
signal processing problems and began to analyze the spectral characteristics obtained from
existing data [29,30].

We conducted the study using the software preprocessor for forming and solving the
nonlinear dynamics equations from the FRUND package [31], which was developed at
Volgograd State Technical University. The example of transforming the coordinates of the
autospectrum power for one complete breathing cycle is presented in Figure 4.

Figure 4. An example of transforming the coordinates of one marker in one respiratory cycle.
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The analysis of the autospectrum power signal revealed the patterns shown in Figure 5.

Figure 5. Distribution of characteristic spectra during thoracic breathing by coordinates and markers.

As the diagrams show, most of the participants demonstrated a significant predominance
of changes in the Y coordinate of the first (thoracic) marker during thoracic breathing; also,
changes in the Z coordinates of different markers were also predominant.

For thoracic breathing, the frequency ranges of the predominant spectra were divided
according to Figure 6. Most of the spectral peaks were in either the 0.15–0.17 Hz or 0.19–0.21 Hz
ranges.

Figure 6. Frequency distribution of spectral peaks during thoracic breathing.

The spectral analysis of abdominal breathing revealed the following patterns: patterns
for the predominant spectra are presented in Figure 7; changes in the X coordinates of the
third (abdominal) and the first markers were predominant for most of the participants.

For abdominal breathing, the frequency ranges of the predominant spectra were
divided as shown in Figure 8. All values fall within the range of values presented in the
figure with an accuracy of 0.05 Hz. According to this diagram, there is an intersection of
groups of frequencies of abdominal breathing with groups of thoracic breathing. Therefore,
it is impossible to reliably discern the type of breathing by the frequency group.
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Figure 7. Distribution of characteristic spectra during abdominal breathing by coordinates and markers.

Figure 8. Frequency distribution of spectral peaks during abdominal breathing.

For mixed (diaphragmatic-costal) breathing, only changes in the coordinates of the
first (thoracic) marker were predominant, mostly the Y coordinate. The correlation of the
predominant spectra is presented in Figure 9.

Figure 9. Distribution of characteristic spectra during chest-abdominal breathing by coordinates
and markers.
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When analyzing frequencies, there is also an intersection with other types of breathing
in frequency groups. This indicates the impossibility of using frequency groups as the
only criterion for determining the type of breathing. The correlation of the predominant
frequencies in chest-abdominal breathing is presented in Figure 10.

Figure 10. Frequency distribution of spectral peaks during chest-abdominal breathing.

Figure 11 shows an example of the intersection of the predominant spectra for different
types of breathing. This example is relatively good for determining the breathing type
because all three types of breathing can be distinguished on this graph. Even though the
common predominant spectra can be determined by the type of marker coordinate change,
one can distinguish types of breathing by frequency groups. However, as mentioned earlier,
the frequency groups intersect as do the groups of changes in the predominant coordinates
of the markers. Therefore, it is impossible to take the combination of the predominant
frequency and the predominant spectrum as an unambiguous criterion for determining the
type of breathing.

Figure 11. Overlay of spectral peaks for different types of breathing.
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The following patterns were revealed during the primary visual analysis of the respi-
ration spectra, which are presented in Figure 12. In the decision tree diagram for choosing
the type of breathing depending on the predominant spectrum, not all choices lead to
unambiguous answers. It can be concluded that the construction of an algorithm based on
the spectra does not allow the type of breathing to be reliably determined.

Figure 12. Patterns revealed during the primary visual analysis of the spectra.

We conducted a mutual spectral analysis of the breathing types to solve these problems.
The cinegrams of mutual spectral analysis for several volunteers for all three types of
breathing are shown in Figures 13 and 14. In these figures, the model of the first (thoracic)
marker is shown in green, the second (dorsal) marker in blue, and the third (abdominal)
marker in magenta.

Figure 13 presents mutual spectral analysis cinemagraphs for thoracic breathing.
Figure 14 presents similar cinegrams for abdominal breathing, and Figure 15 shows

them for the mixed type of breathing.
Therefore, the mutual spectral analysis helped identify the key characteristics of

different types of breathing. The value of these characteristics determines the result of
prediction, making it possible to create more accurate models.
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Figure 13. Participant 1’s cinegrams of the markers’ movements recorded during thoracic breathing
at a predominant frequency of 0.19 Hz with different coherence values. The reference point for
constructing mutual spectra is the Y coordinate of the first marker.

Figure 14. Participant 15’s cinegrams of the markers’ movements were recorded during abdominal
breathing at a predominant frequency of 0.273 Hz with different coherence values. The reference
point for constructing mutual spectra is the X coordinate of the third marker.
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Figure 15. Participant 1’s cinegrams of the markers’ movements recorded during chest-abdominal
breathing at a frequency of 0.156 Hz with different coherence values. The reference point for con-
structing mutual spectra is the Y coordinate of the first marker.

3. Coordinate-Based Machine Learning Models

Several mathematical models, including neural networks, were trained on the database
of marker kinematics, which were obtained after postprocessing.

We started by calculating more characteristics to increase the classification accuracy.
The first characteristics we used were the vector breathing rates in projections on

the coordinate axes. We selected the velocity of the thoracic marker relative to the dorsal
marker and the velocity of the abdominal marker relative to the dorsal marker because
they conveyed meaningful information. The velocity of the thoracic marker relative to the
abdominal marker or vice versa can be ignored because they move in the same direction
during breathing. According to the obtained vector velocities, the corresponding scalar
velocities were calculated for each unit of measurement time between the above markers.

We also calculated pairwise distances between all three markers. The distances be-
tween the markers were calculated as the length of the vector according to the markers’
coordinates. Graphs of changes in the distances between markers during the measurement
process for various types of breathing are presented in Figure 16.

Another important characteristic is the average respiratory rate. It was calculated as
the number of inhalation/exhalation cycles’ per time interval divided by that time interval.
The distance between two adjacent maxima was considered for the inhalation/exhalation
cycle. The seasonality function of the time series was used to calculate it. We also calculated
the mean breathing amplitude as the arithmetic average of the distances between the
maxima and the minima closest to them [32].

The next step was selecting the machine learning models and parameters for them.
The parameters were selected by applying the cross-validation method [33] and manually
adjusting them. It required splitting the original sample into N subsamples. The model was
trained N times on N − 1 subsamples and tested on the remaining subsample, which was
different each time. Machine learning was performed for each combination of parameters,
and the results were compared to find the best-performing parameters. We performed
cross-validation using the GridSearchCV class from the scikit learn (sklearn) Python library.
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Figure 16. Graphs of changes in the distances between markers during the measurement.

3.1. Decision Tree Model

A decision tree consists of nodes called “leaves” and “branches”. “Leaves” contain
the values of the target variable, while “branches” contain the characteristics (attributes)
on which the target variable depends [34–36]. The following characteristics were used
as the input of this model: the sex of the participant; whether they were infected with
COVID-19; the presence of lung damage; the percentage of lung damage; the average
respiratory rate; the average amplitude of respiration. The model gave a string containing
the name of the type of breathing at output. The parameters presented in Table 2 were set
as hyperparameters. This model gave an accuracy score of 0.510.
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Table 2. Hyperparameters for decision tree classifier.

Hyperparameter Short Description Value

criterion A function that evaluates the quality of division
at each node of the decision tree. “gini”

splitter

The strategy used to select a specific division
from the set at each node, taking into account the
estimates obtained from the function specified in
the criterion parameter.

“best”

max_depth Maximum depth of the decision tree. 5

min_samples_split The minimum number of samples required to
split a node of the decision tree. 2

min_samples_leaf The minimum number of samples required to
form a “leaf”. 1

max_features The number of functions to consider when
searching for the best partition. 3

random_state Setting the fixed state of the random component. 12

3.2. Random Forest Model

This model consists of a set of decision trees, where each tree is built either on the
basis of the entire input sample or on its random part. The best partition is selected either
from all the data or from its subset when selecting nodes in a tree [37]. The following
characteristics were used as the input of this model: the sex of the participant; whether
they were infected with COVID-19; the presence of lung damage; the percentage of lung
damage; the average respiratory rate; the average amplitude of respiration. The output was
the type of breathing. The parameters presented in Table 3 were set as hyperparameters.
Using this model resulted in an accuracy score of 0.531.

Table 3. Hyperparameters for random forest classifier.

Hyperparameter Short Description Value

criterion A function that evaluates the quality of division
execution at each node of the decision tree. “gini”

n_estimators The number of decision trees in a random forest. 10
max_depth Maximum depth of decision trees. 5

min_samples_split The minimum number of samples required to
split a node of the decision tree. 2

max_features
The number of functions to consider when
searching for the best partition; when “sqrt”:
max_ f eatures =

√
n_ f eatures.

“sqrt”

bootstrap
Indicates whether it is necessary to split the
initial sample into several random subsamples
when training trees.

True

random_state Setting the fixed state of the random component. 12

3.3. K-Neighbors Model

This model determines the class for the data by comparing the classes of other nearest
neighbors. The essence of choosing the final class is to choose the one that prevails among k
neighbors [38]. The following characteristics were used as the input of this model: the sex of
the participant; whether they were infected with COVID-19; the presence of lung damage;
the percentage of lung damage; the average respiratory rate; the average amplitude of
respiration. The model gave a string containing the name of the type of breathing at output.
The parameters presented in Table 4 were set as hyperparameters. This model gave an
accuracy score of 0.408.
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Table 4. Hyperparameters for K-neighbors classifier.

Hyperparameter Short Description Value

n_neighbors Number of neighbors. 4
weights The weight function used in prediction. ‘distance’

metric A metric used to calculate the distance to
neighbors. ‘minkowski’

3.4. Catch 22 Classifier Model

This model captures a diverse and interpretable time series signature in terms of
their properties, including linear and nonlinear autocorrelation, sequential differences,
value distributions and outliers, oscillation scaling properties, etc. It builds the estimate
using transformed data [39]. The following characteristics were used as the input of this
model: the time series containing marker coordinates, the calculated vector and scalar
velocities, and the distances between markers. The model gave a string containing the
name of the type of breathing at output. The parameters presented in Table 5 were set as
hyperparameters. This model gave an accuracy score of 0.630.

Table 5. Hyperparameters for Catch 22 classifier.

Hyperparameter Short Description Value

outlier_norm Normalization of each sequence during two
additional Catch 22 functions. True

n_jobs Parallelization of calculations into multiple
threads. −1

random_state Setting the fixed state of the random component. 12

3.5. Rocket Classifier Model

The rocket classifier is a time series classification model directly based on the random
transformation of the convolutional kernel [40,41]. This model uses the methodology of
transforming data from time series using convolutional kernels. The rocket model computes
two aggregate objects from each kernel and convolutions of the objects. The following
characteristics were used as the input of this model: the time series containing marker
coordinates, the calculated vector and scalar velocities, and the distances between markers.
The parameters presented in Table 6 were set as hyperparameters. That model gave an
accuracy score of 0.459.

Table 6. Hyperparameters for rocket classifier.

Hyperparameter Short Description Value

num_kernels Number of kernels. 500

n_jobs Parallelization of calculations across multiple
threads. −1

3.6. Hist Gradient Boosting Classifier

This is a model that uses gradient boosting and decision trees. The main idea of the
algorithm is the sequential application of the predictor in such a way that each subsequent
model minimizes the error of the previous one [42]. The following characteristics were used
as the input of this model: the time series containing marker coordinates, the calculated
vector and scalar velocities, and the distances between markers. Table 7 presents the
hyperparameters of the trained models. That model gave an accuracy score of 0.418.
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Table 7. Model hyperparameters.

Hyperparameter Short Description Value

random_state Setting the fixed state of the random component. 15
learning_rate Learning rate. 1
max_depth Maximum depth of the decision trees. 15

loss The loss function that the model minimizes
during the boosting process. ‘log_loss’

To achieve the goal of this study, it is essential to consider individuals’ physiological
characteristics. For some people, these characteristics can be mistaken for outliers when
training the model. We chose logistic loss (see (2) below) as the loss function for training our
models. It is often used in machine learning practice because of its resistance to outliers [28].

3.7. Other Models

We also attempted to train the CNN classifier, FCN classifier, and MLP classifier [43,44]
using the following characteristics as the input: the time series containing marker coordi-
nates, the calculated vector and scalar velocities, and the distances between markers. Their
accuracy scores were in the range of 0.33–0.35, which is comparable to random guessing.

4. Two-Stage Method for Determining the Type of Human Breathing
4.1. Algorithm

When charting distances between two markers, it was noticed that they resembled
sine waves.The main idea of the proposed approach was to select sine waves that model
the shape of the original graphs.

Figure 17 shows graphs of the change in distance between the thoracic and abdominal
markers and the assumed sine wave. It can be seen from this figure that the graph of the
modeling sine wave adheres to the shape of the graph of the change in distance between
the markers quite well.

Figure 17. Graphs of the change in the distance between the markers and the modeling sine wave.

Because the results described above demonstrated that discerning between the three
types of breathing is difficult, we decided to divide the process into two stages of binary
classification: the first was discerning mixed breathing from two other kinds of breathing;
the second step was discerning thoracic and abdominal breathing patterns if necessary.
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This improved the process of determining the mixed type of breathing by using a model
especially dedicated to this problem.

The input data for our algorithm consist of multiple lines representing different time
steps. Each line contains the spatial coordinates of three sensors at a certain point in time,
namely, the chest sensor denoted as (X1, Y1, Z1), the back sensor denoted as (X2, Y2, Z2),
and the abdominal sensor denoted as (X3, Y3, Z3).

We used the function savgolFilter(data, windowSize, polynomialOrder) (implemented
using the savgol_filter function from the scipy library) to perform Savitzky–Golay filtering
on the data; windowSize is the size of the window used for filtering, and polynomialOrder
is the order of the polynomial used in the filtering process. The function returns the filtered
data as an array of the same length as the input data. The function f f t f req( f (t)) (imple-
mented using the fft and fftfreq functions from the numpy library) is used to perform the
Fourier Transform on a given function f (t) and returns an array of frequencies. The func-
tion curveFit( f (t), data) (implemented using the curve_fit() function from the scipy library)
is used to fit a function f to a given dataset using nonlinear least squares. The function f
can be provided with initial guesses for each of its parameters. The output of the curveFit
function is a tuple of the best-fit parameters for the function f .

Algorithm 1 uses the following notation: dij—distance between markers i and j; d’ij—
distance between markers i and j with Savitzky–Golay filtering applied; sinwij—the sine
wave in the form (2), which was fitted to d’ij(t); Aij and A’ij—the amplitude of sinwij
(initial guess and the best-fit value, respectively); wij and w’ij—the angular frequency of
sinwij (initial guess and the best-fit value, respectively); ϕij and ϕ’ij—the phase of sinwij
(initial guess and the best-fit value, respectively); cij and c’ij—the offset of sinwij (initial
guess and the best-fit value, respectively); X ← Y is the operator appending a new value
(set of values) Y to a list X.

y = Asin(ωt + ϕ) + c, (2)

Algorithm 1 Algorithm of determining the type of human breath.

1: function TYPEOFBREATH(MarkersFile)
2: for all i, j ∈ {1, 2, 3}, i < j do :
3: for all t in MarkersFile do
4: dt

ij =
√
(Xt

j − Xt
i )

2 + (Yt
j −Yt

i )
2 + (Zt

j − Zt
i )

2

5: dij ← dt
ij

6: d’ij = savgolFilter(dij, 15, 5)
7: Aij =

√
2std(d’ij)

8: cij = d’ij
9: fij = f f t f req(d’ij)[1]

10: ωij = 2π f
11: ϕij = 0
12: sinwij(t) = Aijsin(ωijt + ϕij) + cij
13: < A’ij, c’ij, f ’ij, ω’ij, ϕ’ij >= curveFit(sinwij(t), d’ij)

14: for all i, j ∈ {1, 2, 3}, i < j do :
15: params←< A’ij, c’ij, 1

f ’ij
, ω’ij, ϕ’ij >

16: params← A’12
A’23

, A’12
A’13

, A’23
A’13

, c’12
c’23

, c’12
c’13

, c’23
c’13

, f ’12
f ’23

, f ’12
f ’13

, f ’23
f ’13

17: params‘ = stdScale(params)
18: predictedType = model1.predict(params‘)
19: if predictedType == mixed_type then
20: return model2.predict(params‘)
21: else
22: return predictedType
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One of the important hyperparameters for training a machine learning algorithm for
determining the type of human breathing is the time window (the amount of data supplied
to the algorithm for one run). We analyzed the overlay of the sine wave sinwij on the
graph of the distance function between the two sensors d’ij (i.e., the breathing type graph).
The graphs shown in Figure 18 present the results of the transformation of the function d’ij
using the least squares method [45] for time windows of 5, 10, 30, and 50 s. You can see that
the smaller the window, the better the sinwij function describes the dataset. Based on the
graphs, the most appropriate window sizes are 5 and 10 s (when the sinwij graph almost
entirely coincides with the d’ij graph).

To find the optimal time window size, we conducted an experiment to determine how
the time window affects the accuracy of the trained model. We fixed the other hyperpa-
rameters and varied the time window from 5 to 60 s: for the values in the interval 5–15 s,
the measures were taken each second; for the interval 16–60 s, the measures were taken
each 5 s. As the accuracy of the trained model is a random value, we performed 100 mea-
surements for each time window size and calculated the mean value. Figures 19 and 20
present the dependencies of the mean accuracy and standard deviation on the window size.

The graph in Figure 19 shows the highest accuracy achieved in 5–12 s. We hypothesize
that the small time window sizes produced better accuracy because they contained fewer
cycles of breathing and so lower the chance of a person performing different types of
breathing in one data sample.

Figure 20 shows the standard deviation of the model accuracy. While it grows from 5
to 12 s, that increase is far lower than the increase of the mean accuracy, so we decided that
10 s was the best time window to train machine learning models for determining the type
of human breathing.

Figure 18. The function of the distance between two sensors d’ij and the corresponding sine wave
sinwij obtained by the nonlinear least squares method with time windows of 5 (a), 10 (b), 30 (c),
and 50 (d) seconds.
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Figure 19. The mean model accuracy depending on the window size (sample size of 100 measure-
ments per point).

Figure 20. The standard deviation of model accuracy depending on the window size (sample size of
100 measurements per point).

We trained the selected classifiers using a two-step algorithm. We used the following
metrics to assess the quality of the trained models: accuracy, precision, recall, and F1-
measure [46–48], training and running time, and the value of log_loss loss function.

The measurements were made on the Acer Aspire 5 A515-45G-R92Q computer with
the following hardware:

• AMD Ryzen 7 5700U 8x 1.80 GHz;
• AMD Radeon™ RX 640;
• 16 Gb RAM 3200 MHz.

The results are presented in Table 8. The best accuracy was achieved by hist gradient
boosting classifier.
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Table 8. Model quality evaluation results.

Model Kind Number of
Models Accuracy Precision Recall F1-Measure Training

time, s
Working
Time, s

log_Loss
(Logistic

Loss)

Random Forest
Classifier 1 0.53 0.5 0.54 0.47 0.018 0.002 8.67
Decision Tree
Classifier 1 0.51 0.46 0.51 0.46 0.004 0.001 13.24
Catch 22 Classifier 1 0.63 0.65 0.63 0.64 8.926 8.665 0.94
Rocket Classifier 1 0.46 0.45 0.46 0.46 11.507 5.437 18.68
K-Neighbors
Classifier 1 0.41 0.38 0.41 0.36 0.006 0.001 10.8

Hist Gradient
Boosting Classifier 1 0.42 0.51 0.42 0.37 0.324 0.009 4.22

Random Forest
Classifier 2 0.46 0.46 0.46 0.46 0.047 0.485 6.78
Decision Tree
Classifier 2 0.52 0.52 0.52 0.52 0.004 0.11 13.21
Catch 22 Classifier 2 0.57 0.57 0.57 0.57 19.02 34.609 0.96
Rocket Classifier 2 0.48 0.48 0.48 0.48 35.318 64.687 17.83
K-Neighbors
Classifier 2 0.4 0.4 0.4 0.4 0.005 0.407 7.89

Hist Gradient
Boosting Classifier 2 0.81 0.83 0.82 0.82 0.875 0.75 1.98

The log_loss metric was used to estimate the probabilistic results of model prediction
(predict_proba, a probabilistic estimate of each classifier class); i.e., we minimized the
logarithmic difference between the predicted probabilities and the actual labels. The model
strives to minimize that metric, so the smaller it is, the better the accuracy of the model
prediction. The metric was calculated using the formula (3):

log_loss = − 1
N

N−1

∑
i=0

K−1

∑
k=0

yi,klogpi,k, (3)

where N is the test sample size, K is the number of classes, Y is the test sample, yi,k is the
actual value of the considered class, P is the matrix of probability estimates of each class,
and pi,k is the probability estimate of the considered class [49].

Figure 21 shows the loss function depending on the training epoch for two hist gradient
boosting classification models. There is no model overfitting as the graphs show because
both functions tend to zero, albeit slowly.

Figure 21. Graphs of the loss function depending on the number of epochs for the composite
model: (a) the model, determining abdominal breathing; (b) the model discerning thoracic and
mixed breathing.
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The main quality evaluation metrics were accuracy and recall. We chose them as the
primary metrics because accuracy allows us to assess how correctly our model predicts all
the types of breathing, and recall allows us to monitor the wrong results for mixed breathing,
which is of particular interest to us. Table 8 clearly shows that the proposed two-model
algorithm with hist gradient boosting classifier produced the best results, significantly
outperforming other machine learning methods; these results are good enough to be used
in practical applications.

4.2. Discussion

Research concerning determining the type of human breath has a relatively wide range
of aims: from diagnosing diseases via human breathing to the measurement of respiratory
rate and counting the number of inhalations per minute.

The model developed by Yanbin Gong et al. [16] can detect the thoracic type of
breathing with a 95% accuracy using breathing belts. This exceeds the accuracy of our
model, but this model only recognizes one type of breathing: thoracic (diaphragmatic).
This severely limits its use, while the model we proposed in this study attempts to classify
three types of breathing at once: thoracic, abdominal, and mixed.

It must also be noted that, according to [50], the model we developed uses sensors that
cost significantly less than the competitive models. Another advantage of the proposed
method is the required minimum free space: the proposed system requires only 3 square
meters, while other motion capture systems require at least 10-20 square meters. While this
limits the amount of data we analyze and so the accuracy of the model, it can be used in
home environments, which is important for rehabilitation.

RQ1. Can kinematic data taken from key points of the torso be used to determine
the person’s characteristic type of breathing with satisfactory accuracy for respiratory
rehabilitation?

One of the goals of this study was to determine the viability of developing a software
system to determine the human breathing type based on the placement of three sensors
fixed on the key points of the torso: the xiphoid process, the point on the back between
the 9th and 11th thoracic vertebrae, and the point located above the navel. According
to interviewed rehabilitation experts, at least three breathing cycles out of four must be
correctly determined for effective rehabilitation. The best model trained in this study—a
composite model of two hist gradient boosting classifiers—had an accuracy score of 0.81
for determining the breathing type, which meets the requirements (Table 8). We plan to
research further possibilities of improving the quality of predictions using various machine
learning models and expanding the dataset using additional EDA sensors, heart rate
sensors, SpO2, a gyroscope, and an accelerometer. It is also planned to increase the dataset
by gathering data from more people of various ages and genders.

RQ2. What is the difference of frequency responses of the person’s torso’s marker
movement for different types of breathing?

According to the above diagrams in Figures 5–10, most volunteers breathed in the fre-
quency range of 0.15–0.30 breaths per second during thoracic breathing. The most characteris-
tic frequency was 0.2. The frequency range for abdominal breathing was 0.156–0.312 breaths
per second. The frequency of breaths increased, but not significantly. The most characteris-
tic frequency was 0.273. When using the mixed breathing type, most frequency values were
0.11–0.24 breaths per second. The predominant frequency became 0.156 breaths per second.
We encountered many frequency groups common to all the breathing types, which made
it difficult to determine the correct breathing type using spectral analysis. Therefore, we
do not deem it viable to rely only on frequency characteristics in determining the type of
human breathing. We plan to use frequency characteristics as additional model parameters
in further work. We hypothesize that it can improve the accuracy of the model and make it
easier to detect outliers.
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5. Conclusions

We describe a study aimed at creating a method of determining the type of human
breathing, which can be used in small rooms. It can serve as the basis of software products
aimed at training lung functions. We described the method of measurement and analysis
of the experimental data. We proposed an algorithm for determining of type of breathing
with a decent accuracy (0.81).

We performed 344 measurements with 86 volunteer participants, simulating different
types of breathing under the supervision of a trained professional. We captured the
change in the positions of three markers fixed on the participant’s chest, back, and belly.
Spectral analysis and mutual spectral analysis were performed and described to understand
and reveal patterns of the movement of markers during different types of breathing.
During spectral analysis, characteristic frequencies for the movement of each marker along
a particular axis were identified. During mutual spectral analysis, basic markers were
identified, and motion cinegrams were constructed for different correlation coefficients.
That allowed us to gather a dataset for training machine learning models.

A number of machine learning models were trained for the classification using coor-
dinate data, which did not show a high accuracy. To improve the accuracy, we proposed
an algorithm with data preparation using two models for detecting the type of human
breathing: the first model discerns mixed breathing from other types, and the second model
discerns between chest and abdominal breathing.

The study found that it is possible to determine a person’s breathing type with an
accuracy of up to 0.81 using the kinematic data taken from key points of the torso (the
xiphoid process of the sternum, between the 9th and 11th thoracic vertebrae, and above the
navel). That satisfies the needs of respiratory rehabilitation when the model must correctly
determine three out of four cycles of breathing.

The frequency analysis revealed overlapping frequency ranges (0.15–0.30 ; 0.156–0.312;
0.11–0.24) and close characteristic frequencies (0.2; 0.273; 0.156) for thoracic, abdominal,
and mixed types of breathing, respectively. It was also clear that all breathing types have
common frequency groups, potentially making it difficult to determine the type of breathing
using spectral analysis. Therefore, frequency characteristics of marker movements are poor
primary features for determining the type of breathing.

In the future, we plan to expand the dataset for the study using EDA, heart rate, SpO2
sensors, and gyroscope and accelerometer data. Our plans also include increasing the
dataset (increasing the range of ages) and combining models into ensembles to improve
detection accuracy, and implementing the developed software in the system “Devirta
anticovid” developed by the “Academy of Virtual Reality Therapy Devirta Anticovid”.
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Abbreviations
The following abbreviations are used in this manuscript:

API Application programming interface
AUC Area Under Curve
EDA Electrodermal activity
FCN Fully Convolutional Network
GRU Gated recurrent unit
IQR interquartile range
LR Logistic Regression
LSTM Long short-term memory
MLP Multilayer Perceptron
RGB red, green, and blue
SpO2 Peripheral oxygen saturation
SVM Support Vector Machines
WSN Wireless sensor Network
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