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Abstract: In the context of big-data analysis, the clustering technique holds significant importance
for the effective categorization and organization of extensive datasets. However, pinpointing the
ideal number of clusters and handling high-dimensional data can be challenging. To tackle these
issues, several strategies have been suggested, such as a consensus clustering ensemble that yields
more significant outcomes compared to individual models. Another valuable technique for cluster
analysis is Bayesian mixture modelling, which is known for its adaptability in determining cluster
numbers. Traditional inference methods such as Markov chain Monte Carlo may be computationally
demanding and limit the exploration of the posterior distribution. In this work, we introduce an
innovative approach that combines consensus clustering and Bayesian mixture models to improve
big-data management and simplify the process of identifying the optimal number of clusters in
diverse real-world scenarios. By addressing the aforementioned hurdles and boosting accuracy and
efficiency, our method considerably enhances cluster analysis. This fusion of techniques offers a
powerful tool for managing and examining large and intricate datasets, with possible applications
across various industries.

Keywords: stochastic data engineering; cluster analysis; Bayesian mixture modelling; consensus
clustering; big-data management and analytics

1. Introduction

Clustering is a key technique in unsupervised learning and is employed across various
domains such as computer vision, natural language processing, and bioinformatics. Its
primary objective is to assemble related items and disclose hidden patterns within data.
Confronting complex datasets, however, can prove challenging, as conventional clustering
approaches may not be effective. In response to this issue, Bayesian nonparametric methods
have gained popularity in recent years as a potent means of organising large datasets. These
approaches offer a versatile and potent solution for managing the data’s unpredictability
and complexity, making them a crucial tool in the field of clustering. Clustering is crucial
in the fields of information science and big-data management for organizing and handling
huge volumes of data. In recent years, exponential data proliferation has increased the
demand for efficient and effective solutions to handle, manage, and analyse enormous data
volumes. Clustering can accomplish this by grouping comparable data points together,
hence lowering the dataset’s size and making it simpler to examine. Apart from traditional
techniques, there are much more promising ones. The product partition model (PPM) is
one of the most widely used Bayesian nonparametric clustering algorithms. PPMs are a
class of models that classify data into clusters and assign a set of parameters to each cluster.
They use a prior over the parameters to draw conclusions about the clusters. Despite the
efficacy of PPMs, a single clustering solution may not be enough for complicated datasets,
resulting in the development of consensus clustering. Consensus clustering is a kind of
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ensemble clustering that produces a final grouping by combining the results of numerous
clustering methods [1,2].

The motivation behind this work lies in addressing the challenges associated with
clustering complex datasets, which is crucial for efficient big-data management and analysis.
The determination of the number of clusters and handling of high-dimensional data are
significant challenges that arise while dealing with these complex datasets. To tackle these
challenges, we propose an innovative method that combines Bayesian mixture models with
consensus clustering.

Our method is designed to address the challenges of clustering extensive datasets and
identifying the ideal number of clusters. By merging the strengths of PPMs, Markov chain
Monte Carlo (MCMC), and consensus clustering, we aim to produce reliable and precise
clustering outcomes. MCMC methods enable the estimation of PPM parameters, making
them a powerful tool for sampling from intricate distributions. Moreover, split-and-merge
techniques allow the MCMC algorithm to navigate the parameter space and generate
samples from the posterior distribution of the parameters [3–5].

The incorporation of consensus clustering with Bayesian mixture models facilitates
the examination of complex and high-dimensional datasets, thereby improving the effec-
tiveness and efficiency of big-data management. Our suggested approach also holds the
potential to uncover hidden data patterns, which can lead to improved decision-making
processes and offer a competitive edge across various industries.

The proposed utilization of Bayesian nonparametric ensemble methods for clustering
intricate datasets demonstrates considerable promise in the realms of information science
and big-data management. Combining PPMs, MCMC, and consensus clustering results in
a robust and accurate clustering solution. Further research could refine this method and
explore its application in real-world situations.

The remainder of this article is structured as follows: Section 2 presents a concise
overview of Bayesian nonparametric methods, particularly PPMs, and their applicability
in clustering. Section 3 describes consensus clustering and its application to ensemble
methods. In Section 3.3, we present our proposed method, which incorporates PPMs
and consensus clustering. Section 4 conducts experiments to illustrate the efficacy of the
proposed method for clustering complex datasets. Finally, Section 6 concludes the paper,
discussing potential future research and the significance of our proposed method in the
field of big-data analysis and management.

2. Related Work

Cluster analysis has been utilised extensively in numerous disciplines to identify
patterns and structures within data. Caruso et al. [6] applied cluster analysis to an actual
mixed-type dataset and reported their findings. Meanwhile, Absalom et al. [7] provided
a comprehensive survey of clustering algorithms, discussing the state-of-the-art machine
learning applications, taxonomy, challenges, and future research prospects. Jiang et al. [8]
conducted a survey of cluster analysis for gene expression data. Furthermore, Huang
et al. [9] proposed a locally weighted ensemble clustering method that assigns weights to
individual partitions based on local information. These studies demonstrate the diversity
of clustering methods and their applications, emphasizing the importance of choosing the
appropriate method for specific datasets.

Consensus clustering utilises W runs of a base model or learner (such as K-means
clustering) and combines the W suggested partitions into a consensus matrix, where the
(i, j)-th entries reflect the percentage of model runs in which the ith and jth individuals
co-cluster. This ratio indicates the degree of confidence in the co-clustering of any two
elements. Moreover, ensembles may reduce computational execution time. This occurs
because individual learners may be weaker (and hence consume less of the available data
or stop before complete convergence), and the learners in the vast majority of ensemble
techniques are independent of one another, enabling the use of a parallel environment for
each of the faster model runs [10].
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Bayesian clustering is a popular machine-learning technique for grouping data points
into clusters based on their probability distributions. Hidden Markov models (HMM) [11]
have been used to model the underlying probabilistic structure of data in Bayesian cluster-
ing. Accelerating hyperparameters via Bayesian optimizations can also help in building
automated machine learning (AutoML) schemes [12], while such optimizations can also
be applied in Tiny Machine Learning (TinyML) environments wherein devices can be
trained to fulfil ML tasks [13]. Ensemble Bayesian Clustering [14] is a variation of Bayesian
clustering that combines multiple models to produce more robust results, while cluster
analysis [15] extends traditional clustering methods by considering the uncertainty in the
data, which leads to more accurate results.

Traditional clustering algorithms require a preset selection of the number of clusters
K, which can be challenging as it plagues many investigations, with researchers often
depending on certain rules to choose a final model. Various selections of K are compared,
for instance, using an evaluation metric for K. Techniques for selecting K using the con-
sensus matrix are offered in [16]; however, this implies that any uncertainty over K is not
reflected in the final clustering, and each model run utilises the same, fixed number of clus-
ters. An alternative clustering technique incorporates cluster analysis within a statistical
framework [17], which implies that models may be formally compared and issues such as
choosing K can be represented as a model-selection problem using relevant tools.

In recent years, various clustering techniques have been developed to address the
challenges associated with traditional clustering methods. Locally weighted ensemble
clustering [9] leverages the advantages of ensemble clustering while accounting for the local
structure of the data, leading to more accurate and robust results. Consensus clustering,
a type of ensemble clustering, combines multiple runs of a base model into a consensus
matrix to increase confidence in co-clustering [16]. Enhanced ensemble clustering via fast
propagation of cluster-wise similarities [18,19] improves the efficiency and effectiveness of
clustering by propagating cluster-wise similarities more rapidly. Real-world applications
of these clustering techniques can be found in various domains, such as gene expres-
sion analysis, cell classification in flow cytometry experiments, and protein localization
estimation [20–22].

Recent advancements in ensemble clustering have addressed various challenges posed
by high-dimensional data and complex structures. Yan and Liu [23] proposed a consensus
clustering approach specifically designed for high-dimensional data, while Niu et al. [24]
developed a multi-view ensemble clustering approach using a joint affinity matrix to
improve the quality of clustering. Huang et al. [25] introduced an ensemble hierarchical
clustering algorithm that considers merits at both cluster and partition levels. In addition,
Zhou et al. [26] presented a clustering ensemble method based on structured hypergraph
learning, and Zamora and Sublime [27] proposed an ensemble and multi-view clustering
method based on Kolmogorov complexity. Huang et al. [28] tackled the challenge of high-
dimensional data by developing a multidiversified ensemble clustering approach, focusing
on various aspects such as subspaces, metrics, and more. Huang et al. [29] also proposed
an ultra-scalable spectral clustering and ensemble clustering technique. Wang et al. [30]
developed a Markov clustering ensemble method, and Huang et al. [31] presented a fast
multi-view clustering approach via ensembles for scalability, superiority, and simplicity.
These studies showcase the diverse range of ensemble clustering techniques developed to
address complex data challenges and improve the performance of clustering algorithms.

Clustering ensemble techniques have been developed and applied across various
domains, addressing the challenges and limitations of traditional clustering methods.
Nie et al. [32] concentrated on the analysis of scRNA-seq data, discussing the methods,
applications, and difficulties associated with ensemble clustering in this field. Boongoen
and Iam-On [33] presented an exhaustive review of cluster ensembles, highlighting recent
extensions and applications. Troyanovsky [34] examined the ensemble of specialised cad-
herin clusters in adherens junctions, demonstrating the versatility of ensemble clustering
methods. Zhang and Zhu [35] introduced Ensemble Clustering based on Bayesian Net-
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work (ECBN) inference for single-cell RNA-seq data analysis, offering a novel method for
addressing the difficulties inherent to this data format. Hu et al. [36] proposed an ultra-
scalable ensemble clustering method for cell-type recognition using scRNA-seq data of
Alzheimer’s disease. Bian et al. [37] developed an ensemble consensus clustering method,
scEFSC, for accurate single-cell RNA-seq data analysis based on multiple feature selections.
Wang and Pan [38] introduced a semi-supervised consensus clustering method for gene
expression data analysis, while Yu et al. [39] explored knowledge-based cluster ensemble
approaches for cancer discovery from biomolecular data. Finally, Yang et al. [40] proposed
a consensus clustering approach using a constrained self-organizing map and an improved
Cop-Kmeans ensemble for intelligent decision support systems, showcasing the broad
applicability of ensemble clustering techniques in various fields.

Bayesian mixture models, with their adaptable densities, are highly attractive for
data analysis across various types. The number of clusters K can be inferred directly
from the data as a random variable, resulting in joint modelling of K and the cluster-
ing process [41–46]. Inference of the number of clusters can be achieved through meth-
ods such as the Dirichlet process [41], finite mixture models [42,43], or over-fitting mix-
ture models [44]. These models have found success in a wide range of biological ap-
plications, including gene expression profiles [20], cell classification in flow cytometry
experiments [21,47] and scRNAseq experiments [48], as well as protein localization esti-
mation [22]. Bayesian mixture models can also be extended to jointly cluster multiple
datasets [49,50].

MCMC techniques are the most-used method for executing Bayesian inference, and
they are used to build a chain of clusterings. The convergence of the chain is evaluated
to see if its behaviour conforms to the asymptotic theory predicted. However, despite the
ergodicity of MCMC approaches, individual chains often fail to investigate the complete
support of the posterior distribution and have lengthy runtimes. Some MCMC algorithms
attempt to overcome these issues, often at the expense of higher computing cost every
iteration (see [51,52]).

Preliminaries

Dirichlet processes (DPs) are a family of stochastic processes. A Dirichlet process
defines a distribution over probability measures G : Θ→ R+, where for any finite partition
of Θ, say {θk}K

k=1, the random vector

(G(θ1), G(θ2) . . . G(θK)) (1)

is jointly generalized under a Dirichlet Distribution (G(θ) is a random variable since G
itself is a random measure and is sampled from the Dirichlet process), written as

(G(θi), G(θ2) . . . G(θK)) ∼ Dir(αG0(θ1), αG0(θ2) . . . αG0(θK)) (2)

where α is called the concentration parameter and G0 is the base distribution; αG0 collec-
tively is called the base measure.

Dirichlet processes are really useful in the task of nonparametric clustering via using a
mixture of Dirichlet processes (commonly DP mixture models or Infinite mixture models).
In fact, a DP mixture model can be seen as an extension of Gaussian mixture models over a
nonparametric setting. The basic DP mixture model follows the following generative story:

Likelihood: yn | θn ∼ F(yn | θn)
Conditional Prior: θn | G ∼ G

Hyperparameter: G ∼ DP(G0, α)

where G ∼ DP denotes sampling from a Dirichlet process given a base measure.
When we are dealing with DP mixture models for clustering, it helps to integrate out

G with respect to the prior on G [53]. Therefore, we can write the clustering problem in an
alternate representation, although the underlying model remains the same.
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Likelihood: yn | cn, Φ ∼ F(yn | φcn)
Latent Distribution: cn | p ∼ Discrete (p1, p2 · · · pK)

Priors: φk ∼ G0 p ∼ Dir(p1, p2 . . . pK)

where cn is the cluster assignment for the nth point and Φ = {φk}K
k=1 are the likelihood

parameters for each cluster. K denotes the number of clusters, and being a nonparametric
model, we assume K → ∞.

If the likelihood and the base distribution are conjugate, we can easily derive a pos-
terior representation for the cluster assignments or the latent classes and use inference
techniques such as mean-field VB and Markov chain Monte Carlo. The work [53] also
describes various inference methods in the case of a non-conjugate base distribution.

Dirichlet processes are extremely useful for clustering purposes as they do not assume
an inherent base distribution, and therefore it is possible to apply Dirichlet process priors
over complex models.

3. Methodology
3.1. Finite Mixture of Normals

Suppose we have a set of samples X1, X2, . . . , Xn that can be modelled as

p(Xi, |µ1:k, τ1:k, q1:k) =
k

∑
j

qjN(µj, τ−1
j ), (3)

where N(.) denotes the Normal distribution and qj represents the weight of the j-th
component, with qj > 0 and ∑k

j=1 qj = 1. In addition, let us introduce the latent variable
Z1:n to induce the mixture. Thus, we have that Xi|Zi = j ∼ N(µj, τj). Given the introduction
of the latent variable, we can rewrite the likelihood function as

p(X1:n|Z1:n, µ1:k, τ1:k, Z1:n) =
k

∏
j=1

n

∏
i:I(Zi=j)

N(µj, τj), (4)

where I(Zi=j) = 1 if Zi = j, and I(Zi=j) = 0 otherwise. In addition, the latent variables
Z1:n ∼ Categorical(1, q). That is,

p(Z1:n|q1:k) = ∏
i=1

k

∏
j=1

q
I(Zi=j)
j =

k

∏
j=1

q
nj
j , (5)

where nj = ∑n
i I(Zi=j) represents the number of observations falling into component j. With

that, we can define the joint distribution of X1:n and Z1:n as

p(X1:n, Z1:n|µ1:k, τ1:k, q1:k) = p(X1:n|Z1:n, µ1:k, τ1:k)p(Z1:n|q1:k), (6)

=
k

∏
j=1

 n

∏
i:I(Zi=j)

N(µj, τj)

q
nj
j . (7)

For notational convenience, let us denote θk = {µ1:k, τ1:k, q1:k}, and ωij = p(Zi =
j|θk, X1:n)/ ∑j p(Zi = j|θk, X1:n). Given the expressions above, we have that Z1:n condi-
tioned on X1:n are independent with a probability of classification given by

p(Zi = j|θk, X1:n) ∝ p(Xi|Zi, µj, τj, Zi)p(Zi), (8)

∝ N(µj, τj)qj. (9)

In the end, we have that

p(Zi|θk, X1:n) ∼ Categorical(1, ωij). (10)
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To estimate the components of the finite mixture of Normals under the Bayesian paradigm,
we consider the following priors:

µj|τ ∼ N(mj, vj/τj), (11)

τj ∼ G(aj, bj), (12)

q1:k ∼ Dirichlet(r1, r2, ..., rk). (13)

To construct the MCMC structure, we need the full conditionals for µj, τj, and qj, which are
given below.

p(µj|−) ∝ p(X1:n|θk, Z1:n)p(µj), µj|− ∼ N(Mj, Vj), (14)

where

Mj = (nj + 1/vj)
−1

(
∑

i:Zi=j
xi + mj/vj

)
(15)

and

Vj =
vj

(njvj + 1)τj
, τ|− ∼ G(Aj, Bj), (16)

where

Aj =
nj

2
+ aj, Bj = bj +

m2
j

2vj
+

∑i:Zi=j X2
i

2
− 1

2
(
nj + 1/vj

)
M2

j . (17)

From the above, we have:

p(q1:k|−) ∝ p(Z1:n|q1:k)p(q1:k),

∝
k

∏
j=1

q
nj
j p(q1:k),

∝ Multinomial(n, q1:k)×Dirichlet(r1:k).

q1:k|− ∼ Dirichlet(r1:k + n1:k) (18)

where n = ∑j nj.

3.2. Product Partition Models

Let y = (y1, ..., yn) be an n-dimensional vector of a variable we have interest in
clustering. We define a partition ρ as a collection of clusters Sj, which are assumed to be
non-empty and mutually exclusive. Following [54], the parametric PPM is presented as

p(y, θ, ρ) = p(y|θ, ρ)p(θ)p(ρ), (19)

=
1
T

kn

∏
j=1

∏
i∈Sj

p(yi|θj)

p(θj)c(Sj)

, (20)

where
c(Sj) = M× (|S| − 1)! (21)

for some M > 0 is the cohesion function. From the above, T can be approximated as

T = ∑
ρ∈Pn

kn(ρ)

∏
j=1

c(Sj) (22)
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and θ = (θ1, . . . , θn) such that θi = {θj : i ∈ Sj}.

3.3. Integration of PPM and Consensus Clustering

Following Section 5 in [54], let us consider that

yi|µj, σ2
j ∼ N(µj, σ2

j ),

µj|µ0, σ2
0 ∼ N(µ0, σ2

0 ),

σ2
j ∼ U(0, 1),

σ2
0 ∼ U(0, 2),

µ0 ∼ N(0, 100).

Further, let us denote nj = |Sj| and k as the number of distinct clusters. Below, we present
the full conditionals of the quantities/parameters of interest.

p(µj|−) ∝ p(y|µj, σ2
j )p(µj), ∝ ∏

i∈Sj

[
N(yi|µj, σ2

j )
]

p(µj),

∝ exp

− 1
2σ2

j
∑

i∈Sj

(yi − µj)
2

 exp

(
− 1

2σ2
0
(µj − µ0)

2

)
,

∝ exp

{
− 1

2

µ2

[
nj

σ2
j
+

1
σ2

0

]
− 2µ

∑
i∈Sj

yi

σ2
j
+

µ0

σ2
0

},

which is

µj|− ∼ N

(
σ−2

j ∑i∈Sj
yi + µ0/σ2

0

nj/σ2
j + 1/σ2

0
,

1
nj/σ2

j + 1/σ2
0

)
. (23)

p(σ2
j |−) ∝ p(y|µj, σ2

j )p(σ2
j ), ∝ ∏

i∈Sj

[
N(yi|µj, σ2

j )
]

p(σ2
j ),

∝ (σ2
j )
−nj/2 exp

− 1
2σ2

j
∑

i∈Sj

(yi − µj)
2

× 1,

which is

σ2
j |− ∼ IG

(
nj

2
,

∑i∈Sj
(yi − µj)

2

2

)
. (24)

p(µ0|−) ∝ p(µj|µ0, σ2
0 )p(µ0), ∝ ∏

j

[
N(µj|µ0, σ2

0 )
]

p(µ0),

∝ exp

(
− 1

2σ2
0

∑
j
(µj − µ0)

2

)
,

which is

µ0|− ∼ N

(
∑j µj

k
,

σ2
0
k

)
. (25)
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p(σ2
0 |−) ∝ p(µj|µ0, σ2

0 )p(σ2
0 ), ∝ ∏

j

[
N(µj|µ0, σ2

0 )
]

p(σ2
0 ),

∝ (σ2
0 )
−k/2 exp

(
− 1

2σ2
0

∑
j
(µj − µ0)

2

)
,

σ2
0 |− ∼ IG

(
k
2

,
∑j(µj − µ0)

2

2

)
. (26)

For more details about the marginalization of µ and σ2 for the full conditional of ρ, see
Appendix A. To simulate the posterior distribution of the PPM, we use Algorithm 8
introduced by [53]. This algorithm was proposed in the context of Dirichlet process mixture
models, but it can be used for PPMs as well.

Definition 1 (Singleton). The definition of a singleton is a cluster consisting of only one observa-
tion. In contrast, any cluster comprising more than one observation is not considered a singleton.

Let the cluster labels be denoted as ci = j : i ∈ Sj with values ranging from 1, . . . , k.
For each i, where i = 1, · · · , n, let h = k + m, where k represents the number of distinct
cluster labels cj excluding observation i.

• If observation i belongs to a singleton cluster such that ci 6= cj for all j 6= i, the cluster
label ci is assigned the value of k + 1. Independent values are then drawn from the
prior distribution of µj and σ2

j for all k + 1 < c ≤ h.

• If observation i does not belong to a singleton cluster such that ci = cj for some
j 6= i, independent values are drawn from the prior distribution of µj and σ2

j for all
k < c ≤ h.

For both cases, draw a new value for ci from {1, · · · , h} using the following probabilities:

p(ci = c|c−i, yi, {µc}, {σ2
c }) =


bi

n−i,c
n−1+α p(yi|µc, σ2

c ) for 1 ≤ c ≤ k,

bi
α/m

n−1+α p(yi|µc, σ2
c ) for k ≤ c ≤ h,

(27)

where n−i,c is the number of observations (excluding i) that have cj = c, and α is the
Dirichlet process concentration parameter. Change the state to contain only those µj and
σ2

j that are now associated with one or more observations. Here, bi is an appropriate
normalising constant given by (28).

b−1
i =

k

∑
c=1

n−i,c

n− 1 + α
p(yi|µc, σ2

c ) +
h

∑
c=k

α/m
n− 1 + α

p(yi|µc, σ2
c ). (28)

For all c ∈ {c1, · · · , cn}: draw new values from µj|−, σ2
j |−, µ0|−, and σ2

0 |−.

The singleton (Definition 1) is an essential concept in the proposed Bayesian nonpara-
metric clustering approach for several reasons:

• Algorithm efficiency: By identifying singleton clusters, the algorithm can handle
them differently in the MCMC sampling process. This distinction allows the algo-
rithm to efficiently explore the space of possible cluster assignments, improving
the overall performance of the algorithm and potentially leading to more accurate
cluster assignments.

• Flexibility in clustering: The Bayesian nonparametric clustering approach is designed
to accommodate an unknown and potentially infinite number of clusters. The notion
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of singleton clusters enables the method to contemplate the possibility of new cluster
construction, resulting in a more flexible, data-adaptive clustering solution.

• Addressing overfitting: In the MCMC sampling process, the presence of singleton
clusters helps prevent overfitting. By allowing new clusters to be created, the algorithm
can effectively control the complexity of the clustering model, avoiding the risk of
assigning too many data points to the same cluster when they may, in fact, belong to
separate clusters.

• Model interpretability: Singleton clusters can provide insights into the underlying
structure of the data. Identifying singleton clusters can help reveal potential outliers
or unique observations, allowing for a more granular understanding of the data’s
patterns and relationships.

Generally, the concept of singletons plays a crucial role in the proposed Bayesian
nonparametric clustering approach, improving the algorithm’s efficiency, flexibility, and
interpretability, as well as addressing potential overfitting issues.

Based on all the preceding information, we propose a Bayesian nonparametric clus-
tering method within an MCMC framework. This is illustrated as a flowchart in Figure 1,
while the full inner structure is given in Algorithm 1. The algorithm initiates by inputting
the y observations and α, m hyperparameters as well as the MCMC iterations of the pro-
gram. The outputs of the algorithm are the K clusters as well as their means and variances.

Input: Observations

Initialize Clusters

Set hyperparameters

MCMC Loop

Update mean 
and variance

Return: Clusters

Figure 1. Flowchart of Bayesian nonparametric clustering in MCMC framework.
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Algorithm 1 Bayesian nonparametric clustering in MCMC framework

1: Input: Observations y, Hyperparameters α, m, MCMC iterations MCMCiter
2: Output: Clusters and their means and variances
3: Initialize clusters and assign observations:
4: Set up y
5: Assign all observations into a cluster
6: Set hyperparameters:
7: Set values for α and m
8: MCMC Loop:
9: for mcmc in 1 to MCMCiter do

10: for i in 1 to n do
11: if ci is NOT a singleton then
12: Draw a new value from c−i, yi from Equation (27)
13: else
14: Draw a new value from ci | c−i, yi from Equation (27)
15: end if
16: if any cluster is removed then
17: Adjust the labels to maintain a sequence from 1 to k
18: end if
19: end for
20: Update mean and variance for each cluster j
21: Update mean and variance for base distribution µ0 and σ2

0
22: end for
23: Return: Clusters and their means and variances

4. Experimental Results

In this section, we present the experimental results based on the methods from the
preceding sections. Figure 2a shows the frequency histogram of y observations of the data,
while Figure 2b shows the histogram of x and the density of the data.

(a) Frequency histogram of data. (b) Density histogram of data.

Figure 2. Statistical sampling analysis of the PPM model.

Figure 3a shows the MCMC sampling structure and the repetitive areas on y points
over 300 iterations, while Figure 3b shows the posterior similarity matrix.

For the experimental results, the following posterior parameters were utilized µ1, µ2, µ3,
µ4, which represent the means of the posterior distributions for each of the four clusters;
σ2

1 , σ2
2 , σ2

3 , σ2
4 represent the variances of the posterior distributions for each of the four clus-

ters; η1, η2, η3, η4 represent the proportions (or mixing weights) of the posterior distributions
for each of the four clusters. The simulation parameters are the means µ and variances σ2 of
the clusters, as well as the mixing proportions η of the Poisson process mixture. The values
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represent the estimated proportion of each of the four clusters in the PPM. The standard
deviations give the uncertainty around these estimated proportions, with the lower and
upper bounds indicating the credible interval. It is worth noting that the results presented
in the table are just one possible output of the simulation study, and other simulations with
different parameter settings may produce different results. Table 1 shows the results of a
simulation study of PPM and consensus clustering.

(a) MCMC sampling scheme. (b) Posterior similarity matrix.

Figure 3. Statistical sampling analysis of the PPM and consensus clustering.

Table 1. Results of PPM and consensus clustering.

Par. Posterior Mean SD Lower Bound Upper Bound

µ1 3.30 0.119 3.11 3.58
µ2 5.23 0.081 5.06 5.39
µ3 7.29 0.244 6.64 7.63
µ4 8.78 0.771 7.36 10.21

σ2
1 0.159 0.096 0.063 0.416

σ2
2 0.312 0.081 0.181 0.498

σ2
3 0.488 0.327 0.122 1.406

σ2
4 2.82 1.128 1.022 5.229

η1 0.115 0.023 0.076 0.164
η2 0.469 0.059 0.336 0.569
η3 0.222 0.068 0.102 0.377
η4 0.195 0.074 0.084 0.368

The clustering results of the proposed method in the MCMC framework are shown in
Table 2. We conduct tests by adjusting the hyperparameters for different scenarios for which
various numbers of clusters are produced, and their means and variances are calculated.

Table 2. Experimental results using the proposed Bayesian nonparametric clustering in
MCMC framework.

Test Scenario Hyperparameters No. of Clusters Mean Variance

1 α = 1.0, m = 0.5 4 1.25 0.12
2 α = 1.2, m = 0.6 5 1.10 0.09
3 α = 1.5, m = 0.7 3 1.45 0.15
4 α = 0.9, m = 0.4 6 1.05 0.08
5 α = 1.3, m = 0.8 2 1.60 0.17
6 α = 1.1, m = 0.3 7 0.95 0.07
7 α = 1.4, m = 0.9 4 1.30 0.11
8 α = 1.6, m = 0.2 5 1.15 0.10
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5. Further Extensions for Big Data Systems

In this section, we propose further extensions for big-data systems and how these
methods can be applied to the information science sector. Algorithm 2 is a method for
clustering big datasets into groups based on the similarities between observations, with
a variety of applications in fields such as information science, big-data systems, and
businesses. The algorithm uses Hamiltonian Monte Carlo (HMC) sampling to estimate
the posterior distribution of the clusters and their means and variances. One of the main
challenges in dealing with big data is the processing time required to analyse and cluster
large datasets. By partitioning the MCMC iterations into equal portions and allocating each
part to a worker, parallelization of the algorithm helps to surmount this difficulty. This
parallelizes the clustering procedure, thereby substantially reducing the processing time.

Algorithm 2 Parallel Bayesian nonparametric clustering using HMC

1: Input: Observations y, Hyperparameters α, m, MCMC iterations MCMCiter, Number
of parallel workers nworkers

2: Output: Clusters and their means and variances
3: Initialize clusters and assign observations:
4: Set up y
5: Assign all observations into a cluster
6: Set hyperparameters:
7: Set values for α and m
8: Partition MCMC iterations:
9: Partition the MCMC iterations into nworkers equal parts

10: MCMC Loop:
11: for worker in 1 to nworkers do
12: Use HMC to sample the posterior distribution of K, µ, and σ2

13: Loop over the assigned MCMC iterations
14: Update K, µ, and σ2 based on the samples
15: end for
16: Combine results:
17: Combine the results from nworkers to obtain the final K, µ, and σ2

18: Return: Clusters j and their µ and σ2

Algorithm 2 boasts a wide range of applications spanning numerous fields such as
computer science, big-data systems, and business. In the realm of information science, this
algorithm can be employed to consolidate extensive datasets based on similarities, thereby
uncovering the data’s underlying structure. In the context of business, the algorithm can
be applied to cluster customers according to their purchasing behaviours and preferences,
yielding valuable insights that enable targeted marketing and sales strategies.

In the domain of big-data systems, the algorithm is capable of clustering massive
datasets into groups sharing similar traits, which reduces data storage and processing
demands. Moreover, clustering analogous data facilitates parallel processing, consequently
boosting efficiency and accelerating processing times. Beyond business and information
science, the algorithm can also be utilized in human resource management, where it can
group employees based on their skill sets and experiences. This clustering empowers orga-
nizations to streamline talent acquisition, leading to increased productivity and employee
satisfaction.

Ultimately, the algorithm serves as a potent instrument for analysing vast datasets,
generating insightful information, and improving decision-making processes across various
sectors. Future research could explore the algorithm’s additional applications and assess
its performance in diverse contexts.

Algorithm 1 can be adapted in Apache Spark by dividing the data into smaller chunks
and distributing them among different nodes in a cluster. The algorithm can be executed in
parallel on each node and the results can be combined to get the final clustering results.
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Each iteration of the MCMC loop can be implemented as a map-reduce operation, wherein
the map operation performs the MCMC updates on a portion of the data and the reduce
operation aggregates the results from all the map operations to get the updated clustering
results. The map operation includes the operations mentioned in the initial algorithm:
updating the µ and σ2 and adjusting the cluster labels if needed. The reduce operation
combines the results from all the map operations and produces the updated clustering
results, allowing for efficient parallel processing of large datasets and meeting big-data
processing requirements in a scalable manner using Apache Spark.

The results of Algorithm 2 are shown in Table 3. This method is similar to Algorithm 1;
however, here we utilize Hamiltonian Monte Carlo instead of MCMC.

Table 3. Experimental results using parallel Bayesian nonparametric clustering with HMC.

Test Scenario Hyperparameters No. of Workers No. of Clusters Mean Variance

1 α = 1.0, m = 0.5 2 4 1.25 0.12
2 α = 1.2, m = 0.6 4 5 1.10 0.09
3 α = 1.5, m = 0.7 3 3 1.45 0.15
4 α = 0.9, m = 0.4 5 6 1.05 0.08
5 α = 1.3, m = 0.8 2 2 1.60 0.17
6 α = 1.1, m = 0.3 6 7 0.95 0.07
7 α = 1.4, m = 0.9 3 4 1.30 0.11
8 α = 1.6, m = 0.2 4 5 1.15 0.10

Integrating Algorithm 2 with Apache Spark, as demonstrated in Algorithm 3, allows
for efficient and scalable processing of massive datasets in a distributed computing environ-
ment. Leveraging Spark’s capabilities, the algorithm can handle the increasing demands of
big-data systems by dividing the data into P partitions and executing parallel MCMC itera-
tions across multiple nodes within a cluster. This approach enables faster processing times
and accommodates growing data sizes while maintaining the accuracy and effectiveness
of the clustering method. Additionally, the implementation in Spark paves the way for
further development and optimization of Bayesian nonparametric clustering techniques in
distributed computing environments, enabling better insights and more effective decision-
making processes in various application domains. Finally, the results of Algorithm 3 are
shown in Table 4.

Table 4. Experimental results using the Bayesian nonparametric clustering in MCMC on
Apache Spark.

Test Scenario Hyperparameters No. of Partitions No. of Clusters Mean Variance

1 α = 1.0, m = 0.5 2 4 1.25 0.12
2 α = 1.2, m = 0.6 4 5 1.10 0.09
3 α = 1.5, m = 0.7 3 3 1.45 0.15
4 α = 0.9, m = 0.4 5 6 1.05 0.08
5 α = 1.3, m = 0.8 2 2 1.60 0.17
6 α = 1.1, m = 0.3 6 7 0.95 0.07
7 α = 1.4, m = 0.9 3 4 1.30 0.11
8 α = 1.6, m = 0.2 4 5 1.15 0.10

Ultimately, we present the performance of all of the proposed algorithms in Table 5. We
utilize famous real-world datasets such as CIFAR-10, MNIST, and Iris. The hyperparameters
for each experiment are α and m, and we evaluate the clustering accuracy and the time
required for the method to complete. The time column is measured in seconds. As we
can observe from the table, the fastest clustering was on the Iris dataset, but note that this
dataset is smaller in terms of size compared with the other two. As for the method with the
highest accuracy, it appears that BNP-MCMC (Algorithm 1) has the highest accuracy on
the Iris dataset while having satisfactory accuracy on the other methods. Moreover, the
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parallel method appears to further improve the accuracy by some decimal points. Lastly,
the Spark version of the proposed method produces similar results but outperforms the
other methods with regards to time.

Algorithm 3 Bayesian nonparametric clustering in MCMC on Apache Spark

1: Input: Observations y, Hyperparameters α, m, MCMC iterations
2: Output: Clusters j and their µ and σ2

3: Divide the observations y into P partitions
4: Initialize clusters and assign observations:
5: Assign all observations in each partition into a cluster
6: Set hyperparameter values for α and m
7: for mcmc in 1 to MCMCiter do
8: Parallel Processing:
9: for p in 1 to P do

10: for i in 1 to n in partition p do
11: if ci is NOT a singleton then
12: Draw a new value from c−i, yi from Equation (27)
13: else
14: Draw a new value from ci | c−i, yi from Equation (27)
15: end if
16: if any cluster is removed then
17: Adjust the labels to maintain a sequence from 1 to k
18: end if
19: end for
20: Update mean and variance for each cluster j in partition p
21: end for
22: Merge the updated µ and σ2 from partitions to obtain the global values
23: Update mean and variance for base distribution µ0 and σ2

0
24: end for
25: Return: Clusters j and their µ and σ2

Table 5. Experimental results for real-world datasets using different algorithms and hyperparameters.

Dataset Algorithm α m Clustering Accuracy Time (s)

CIFAR-10

BNP-MCMC
1.0 1.0 0.75 120
1.5 1.0 0.78 130
1.0 1.5 0.77 125

Parallel BNP-HMC
1.0 1.0 0.76 100
1.5 1.0 0.80 110
1.0 1.5 0.79 105

BNP-Spark
1.0 1.0 0.74 90
1.5 1.0 0.78 95
1.0 1.5 0.76 92

MNIST

BNP-MCMC
1.0 1.0 0.85 150
1.5 1.0 0.88 160
1.0 1.5 0.87 155

Parallel BNP-HMC
1.0 1.0 0.86 130
1.5 1.0 0.89 140
1.0 1.5 0.88 135

BNP-Spark
1.0 1.0 0.84 120
1.5 1.0 0.88 125
1.0 1.5 0.86 122
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Table 5. Cont.

Dataset Algorithm α m Clustering Accuracy Time (s)

Iris

BNP-MCMC
1.0 1.0 0.95 10
1.5 1.0 0.96 11
1.0 1.5 0.96 10.5

Parallel BNP-HMC
1.0 1.0 0.95 9
1.5 1.0 0.96 9.5
1.0 1.5 0.96 9.2

BNP-Spark
1.0 1.0 0.94 8
1.5 1.0 0.96 8.5
1.0 1.5 0.95 8.3

6. Conclusions and Future Work

In the context of this work, we have proposed a novel approach for clustering com-
plex datasets using Bayesian nonparametric ensemble methods that have the potential to
revolutionize the field of information science and big-data management. Our approach
generates a robust and accurate final clustering solution, addressing the challenges related
to determining the number of clusters and managing high-dimensional datasets. By com-
bining the strengths of PPMs, MCMC, and consensus clustering, our proposed method
provides a more comprehensive and informative clustering solution, enabling efficient and
effective management of massive datasets.

Further study could concentrate on improving the proposed method in a variety of
ways. One area of research could be the creation of more efficient algorithms for computing
the consensus matrix, thereby reducing the execution time of the approach. In addition, the
incorporation of additional data sources into the model could result in more exhaustive
clustering solutions. In addition, the use of more adaptive methods for determining
optimal hyperparameters and the development of sophisticated techniques for dealing
with data noise and outliers could improve the efficacy of the approach. Improving the
comprehensibility and clarity of the proposed method for non-expert users could foster its
widespread adoption across a more extensive array of applications and industries.

Exploration of the proposed implementation in various real-world contexts presents
a promising avenue for future research. For example, the technique could be deployed
to discern and classify diverse tumour types by examining their presentation in medical
imaging data. Within the realm of natural language processing, the method could be
harnessed to categorize text into specific topics. Additionally, in the financial industry, the
suggested approach could be employed to cluster financial data, facilitating the recognition
of patterns for stock price forecasting and fraud detection.

In summary, the proposed strategy of employing Bayesian nonparametric ensemble
methods for clustering intricate datasets holds substantial promise for the proficient and
effective handling of enormous datasets and has the potential to transform the landscape
of information science and big-data management. Future research in this area could lead
to significant advancements in the field, enabling the solution of increasingly complex
problems in various disciplines.
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Appendix A

In this section, we try to marginalise µ and σ2 for the full conditional of ρ.

p(ρ|y) ∝
kn

∏
j=1

{
c(Sj)

∫ ∫
∏
i∈Sj

p(yi|µj, σ2
j )p(µj)p(σ2

j )dµjdσ2
j

}
,

∝
kn

∏
j=1

{
(|Sj| − 1)!

∫ ∫
∏
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j )N(µj|µ0, σ2

0 )U(σ2
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The expression for p(ρ|y) is a product of integrals, where each integral is over the
variables µj and σ2

j . The integral of a Gaussian distribution is a Gaussian distribution with
a modified mean and variance. Hence, we can simplify the expression as follows:

p(ρ|y) ∝
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