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Abstract: This paper presents a novel approach to designing a CMOS inverter using the Mayfly
Optimization Algorithm (MA). The MA is utilized in this paper to obtain symmetrical switching of
the inverter, which is crucial in many digital electronic circuits. The MA method is found to have a
fast convergence rate compared to other optimization methods, such as the Symbiotic Organisms
Search (SOS), Particle Swarm Optimization (PSO), and Differential Evolution (DE). A total of eight
different sets of design parameters and criteria were analyzed in Case I, and the results confirmed
compatibility between the MA and Spice techniques. The maximum discrepancy in fall time across all
design sets was found to be 2.075711 ns. In Case II, the objective was to create a symmetrical inverter
with identical fall and rise times. The difference in fall and rise times was minimized based on Spice
simulations, with the maximum difference measuring 0.9784731 ns. In Case III, the CMOS inverter
was designed to achieve symmetrical fall and rise times as well as propagation delays. The Spice
simulation results demonstrated that symmetry had been successfully achieved, with the minimum
difference measuring 0.312893 ns and the maximum difference measuring 1.076540 ns. These Spice
simulation results are consistent with the MA results. The results conclude that the MA is a reliable
and simple optimization technique and can be used in similar electronic topologies.

Keywords: Mayfly Optimization Algorithm (MA); CMOS inverter; cost function; rise time; fall time; Spice

1. Introduction

The inverter is known as the basic logic gate of any digital Integrated Circuit (IC)
technology, and it is an integral part of all digital systems. With the emergence of new
technologies, designers are focusing on building the basic blocks, such as inverters [1,2].
Much work has been conducted to overcome the performance bottleneck in CMOS in-
verters [3]. The inverters’ performance has been investigated in order to come up with
robust circuits [4]. As technology has been sized down, circuit design has become more
challenging, and the need for designing accurate and fast circuits with low time delay
has become an important issue [5,6]. The switching characteristics of the inverter are the
fundamental parameters used to describe the inverter’s performance. Thus, the switching
speed of the inverter’s circuit should be optimized before the design steps to achieve
symmetrical switching. Switching time from high to low or from low to high depends on
the channel width, length of the transistors, and load capacitance CL.

The physical structure of the transistors in the CMOS inverter causes parasitic capac-
itances, because of the segregation of mobile charges across different regions within the
device. The value of parasitic capacitances in a transistor depends on its width (W) and
the length (L) of its channel. The currents charging and discharging these capacitances are
ICh and IDis, respectively. ICh is responsible for the rise time and IDis is responsible for the
fall time. The flow of ICh is through the pull-up section and the flow of IDis flow is through
the pull-down section [7]. The significance of output rise and fall time has been discussed
on numerous occasions [8–12]. To ensure symmetrical sequence many techniques have
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been developed. In Ref. [7] two additional transistors were added to regulate the same
amount of current from Vdd to match ICh with IDis. The problem with this method is that
the addition of new transistors will lead to larger size circuits and can introduce more noise
to the circuit. Others have used time-delay elements to correct the mismatch in the time
delay on a chip [13,14]. Nevertheless, creating delay elements can be a challenging task
due to their extensive design specifications and various trade-offs involved. In this work,
instead of adding any new transistors, we focus on matching the rise time and the fall time
by finding the optimum values of W and L using the Mayfly Algorithm.

Optimization algorithms use mathematical techniques to iteratively refine the solution
until the optimal value is achieved. There are various optimization algorithms available
in the literature. Gradient descent [15,16], genetic algorithms [17–19], RMSProp [20], and
many other optimization algorithms have been used to improve the efficiency and accuracy
of solving complex problems. In the published literature, different evolutionary optimiza-
tion methods have been used to design inverters with optimal switching characteristics.
For instance, the PSO technique was used to design the CMOS inverter and its transient
performance [21,22]. The authors investigated the overall performance of the PSO tech-
nique. In [23,24], the PSO algorithm was used to design a nano-scale CMOS inverter to
improve its symmetrical switching. The results of the PSO method were compared to Spice
simulation results.

In [25–29], De, Bishnu Prasad, et al., implemented different optimization techniques
to obtain the symmetrical switching characteristic of CMOS inverters. In [25], the PSO with
constriction factor and inertia weight approach PSO-CFIWA was used to get the optimal
symmetrical switching properties of the CMOS inverter. The performance of the PSO-
CFIWA method was compared to that of the real coded genetic algorithm (RGA) and the
results showed an improved performance of the PSO-CFIWA. Two different evolutionary
optimization methods (DE and RGA) were used in [26] to obtain an optimal global design.
The DE and RGA methods were applied to three different studies with different design
parameter ranges and the comparison between them was presented. The DE method
was found to be the least cost-effective function compared to other design methods. The
Craziness-based Particle Swarm Optimization (CRPSO), presented in [27], was used to
design the CMOS inverter with the optimal switching speed characteristics. The results of
the CRPSO method were compared to the RGA method results and the CRPSO method
gave better symmetrical switching for the CMOS inverter. In [28], a hybrid meta-heuristic
search method was suggested with a harmony search algorithm (HS) and DE algorithm.
This method was called HS—DE and it was used in CMOS inverter design with symmetri-
cal switching properties to find an improved global solution. The results of HS–DE were
compared with PSPICE results. In [29], the PSO with an aging leader and challenger (AL-
CPSO) method was employed to design the CMOS inverter with the optimal symmetrical
switching characteristics. The simulation results of the ALCPSO method were compared
with the simulation results of the RGA. In [30], a Cuckoo Search Algorithm (CSA), inspired
by the parasitic nature brood of a few cuckoo types, was used to optimize the CMOS
inverter and to achieve equal values of both the fall time (tf) and rise time (tr). The CSA
algorithm was also used to achieve equal propagation delay time when switching from low
to high and from high to low. The results of the CSA were compared with different methods
such as the PSO, the RGA, and the PSO-CFIWA methods. The authors in [31] used different
optimization methods to derive the accuracy equation for the propagation delay time of
a ring oscillator. In [32], the SOS was presented to determine the best values of the chan-
nel width (W), length (L), and the output-load’s capacitance (CL) to achieve symmetrical
switching characteristics for the CMOS inverter. The modified approach for Multi-Objective
Optimization of Heat Transfer Search (MOMHTS) was presented in [33]. The MOMHTS
method was applied to five problem sets. The modified optimizer method was compared
to Multi-Objective Symbiotic Organism Search (MOSOS), Multi-Objective Synchronous
Heat Transfer (MOHTS), Multi-Objective Ant System (MOAS), and Multi-Objective Ant
Colony System (MOACS).
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A novel MA was presented in [34]. The MA is an optimization algorithm used to find
the best solution to a problem in terms of the convergence position and convergence speed.
The authors in [34] compared the results of the MA with the PSO and Firefly Algorithm
(FA) algorithms. The MA was improved in [35]. The equations of the velocity were updated
to achieve better results. In [36], the authors conducted research to examine the key role
of the oppositional mayfly optimization for the use in tasks scheduling technique (OMO-
TST) related to the cloud computing environment (CC). The OMO–TST was implemented,
and the cloud computing environment performance was optimized and controlled. The
results showed that implementing the OMO–TST technique for CC can contribute to a
significant reduction in the level of complexity related to the computations required for
processing data in a cloud system. In addition, the results of their analysis revealed that
utilizing the OMO technique for CC can achieve practical usage of resources and enhance
the performance of CC at the level of individuals and companies. In [37], the performance
of the negative mayfly optimization method is presented to get the best positions and
velocities of the mayflies.

The MA was utilized by researchers to solve various problems and obtain optimal
solutions. In a study conducted by Bhattacharyya, et al., the role of MA in machine learning
was evaluated for reducing the dataset dimension by eliminating redundant and excessive
characteristics [38]. A novel feature collection method, MA–HS, was developed to achieve
this goal [38]. The MA–HS was employed to enhance feature selection performance by
improving the search space and fitness function. The experimental results showed that
it outperformed other algorithms such as the genetic algorithm (GA), binary dragonfly
algorithm (BDA), binary salp swarm algorithm (BSSA), and whale optimization algorithm
(WOA) [38]. Work was conducted to employ the initial center frequency-guided filter
(ICFGF) approach to detect bearing faults through a two-phase process [39]. In the first
phase, energy spectrum distributions were assessed using a variation analysis scale. In the
second phase, a modified Mayfly optimization method (MMA) was used to determine the
optimal resonance demodulation frequency. Employing the MMA in the ICFGF was found
to be effective in detecting faults with high accuracy, as evidenced by results from [39]. The
study also compared ICFGF to other techniques such as conditional variation selection
and fast kurtogram, demonstrating its superior performance. The Mayfly method was also
used to optimize the model of combined cooling heat and power (CCHP) systems [40]. The
authors in [40] were able to obtain the optimal size of the components and minimum fuel
consumption in the system. It was noted that the Mayfly Algorithm was more effective
in providing the required solution in a shorter time. Researchers carried out a study
assessing the major contribution of implementing the MA to conduct optimization of the
performance of solar photovoltaic thermal collectors PVTC that are integrated with an
electric hydrogen generation system [41]. To achieve the study goal, a solar (PVTC) with a
hydrogen generation system has been modeled for predicting several factors related to the
performance of the system using artificial intelligence and the Mayfly Algorithm. The MA
has been used to improve the forecasting accuracy in the model.

The aim of this research is to utilize the Mayfly Algorithm to determine the ideal
circuit parameters that result in minimal rise time in Case I. In Case II, the goal is to use
the same algorithm to find the optimal circuit parameters that produce symmetrical fall
and rise times for the inverter. In Case III, the focus will be on finding the optimal circuit
parameters that lead to an output waveform with symmetrical rise and fall times, as well
as a symmetrical propagation delay time. The rest of this paper is organized as follows: the
MA is briefly described in Section 2; the switching characteristics of the CMOS inverter are
presented in Section 3; Section 4 explains the formulation of the problem; results and Spice
simulations are provided in Section 5; finally, Section 6 concludes the paper.

2. Mayfly Optimization Algorithm

Optimization problem-solving techniques can be classified into two categories. The
first category is heuristic methods, such as kinetic gas molecules, evolutionary program-
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ming, particle swarm optimization, simulated annealing, genetic algorithm, and Mayfly
Algorithm [38]. The second category is mathematical methods, such as linear programming,
nonlinear programming, and mixed-integer linear programming [42].

The main goal of an optimization algorithm is to determine the optimal solution
to an optimization problem. The MA is a recently proposed algorithm by Zervoudakis
and Tsafarakis in 2020 [34]. The MA is based on the mayfly’s mating procedure and
the flight behavior that combines the evolutionary algorithms and the best features of
the swarm intelligence optimization algorithms [34]. In MA, two population sets are
randomly generated to represent the female and male sets of the mayflies. The position
of each mayfly in the problem space represents a candidate solution to the optimization
problem. The mayfly’s position is given by an n-dimensional vector x = (x1, x2, . . . , xn),
where the objective function is computed to evaluate each mayfly’s performance. Each
mayfly’s position is updated using its velocity, given by the vector v = (v1, v2, . . . , vn), and
flying direction. The mayfly’s flying direction is determined by the best individual flying
experiences of each mayfly’s pbest and the best swarm’s social flying experiences gbest [34].

The individuals in the MA update their location in the problem space based on their
current positions pi

t and their velocity vi
t for each iteration using Equation (1) [34].

Pt+1
i = Pt

i + Vt+1
i (1)

In the Mayfly Algorithm, a mayfly’s velocity can be explained as the alteration in its
location. The flight path of a mayfly is influenced by a complex interplay of its own and
the group’s flying encounters. Every mayfly modifies its flight path to get closer to its
optimal position (“pbest”) and the most favorable position acquired by any mayfly in the
swarm (“gbest”).

The working mechanism of the MA is presented in the following discussion.

2.1. Movement of Male Mayflies

In each iteration, the male mayflies continue the exploring process in swarms. The
position of a male mayfly is updated using Equation (2) [34].

xt+1
i = xt

i + vt+1
i (2)

where xi
t is the current position of the male mayfly at time step t, and vi

t+1 is the mayfly’s
velocity. The male mayflies fly a few meters above the water’s surface and evolve at high
speeds. The velocity of a male mayfly is calculated as in Equation (3) [34].

vt+1
ij = vt

ij + a1e−βr2
p
(

pbestij
− xt

ij

)
+ a2e−βr2

g
(

gbestij
− xt

ij

)
(3)

where a1 and a2 are the personal and global positive coefficients, respectively, rp and rg are
the Cartesian distance for personal and global positions, respectively, β represents visibility
coefficient, pbest is the best position of a mayfly and gbest is the best global position of
a mayfly.

The velocity of the best male mayflies in the current iteration is updated using
Equation (4) [34].

Vt+1
ij = vt

ij + d × r (4)

where d is the nuptial dance parameter and r is a random number in the range [−1, 1].

2.2. Movement of Female Mayflies

The female mayflies’ velocity depends on the distance between the females and the
males. The female mayflies fly to the male mayflies for mating. The position of a female
Mayfly is updated using Equation (5) [34].

Yi
t+1 = yi

t + vi
t+1 (5)
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where yi
t is the current position of the female mayfly at time step t. In the MA, the best

female. The velocity of the female is calculated using Equation (6) [34].

vt+1
ij =

{
vt

ij + a2e−βr2
mf

(
xt

ij − yt
ij

)
if f(yi) ≥ f(xi)

vt
ij + fl ∗ r if f(yi) ≤ f(xi)

(6)

where vt
ij is a female mayfly’s velocity in dimension j at time t, yt

ij is the position of
female mayfly in the dimension j at time t, xt

ij is the position of male mayfly in j at time
t, β and a2 represent visibility coefficient, and a positive constant, respectively, rmf is the
Cartesian distance between female and male mayflies, while f1 and r represent a random
walk coefficient and a random number in the range [−1, 1], respectively.

2.3. Mating of Mayflies

In MA, each couple of mayflies produces two offspring. One is added to the female
population arbitrarily and the other is added to the male population. Two offspring are
generated after mating as shown in Equations (7) and (8) [34].

Offspring1 = L × male + (1 − L)× female (7)

Offspring2 = L × female + (1 − L)× male (8)

where L is a random number with a Gaussian distribution. The procedure of the MA is
described in the flow chart shown in Figure 1 below [36].
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3. Switching Characteristics of the CMOS Inverter

The fundamental technology of any digital IC relies on the inverter. The inverter
serves as the basic block. Its switching characteristics play a critical role in describing
the technology. The performance speed of a digital system is contingent on the switching
characteristics of the logic gates. This study employs the MA technique to derive the
optimal switching characteristics of CMOS inverters. By analyzing the switching operation
of the CMOS inverter, the fall and rise time (tf and tr) and propagation delay times (tPHL
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and tPLH) are determined [11–16,18]. Figure 2 shows the CMOS inverter, while Figure 3
displays the voltage waveforms.
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To determine the fall time, one must measure the duration necessary for the output
voltage to decrease from 90% to 10% levels. Conversely, the rise time pertains to the time
required for the output voltage to increase from 10% to 90% levels. These values can be
calculated using Equations (9) and (10), respectively [11–16,18].

tf =
CL

µnCOX

(
W
L

)
n(VDD − Vtn)

[
2(Vtn − 0.1VDD)

(VDD − Vtn)
+ ln

(
(2(VDD − Vtn))− 0.1VDD

0.1VDD

)]
(9)

tr =
CL

µpCOX

(
W
L

)
p
(
VDD −

∣∣Vtp
∣∣)
[

2
(∣∣Vtp

∣∣− 0.1VDD
)(

VDD −
∣∣Vtp

∣∣) + ln

((
2
(
VDD −

∣∣Vtp
∣∣))− 0.1VDD

0.1VDD

)]
(10)

The duration between the 50% in the rising input voltage and the 50% in the falling
output voltage represents the high to low propagation delay. On the other hand, the low
to high propagation delay pertains to the time delay between the 50% transition of the
falling input voltage and the 50% transition of the rising output voltage. These values can
be determined using Equations (11) and (12), respectively [11–16,18].

tpHL =
CL

µnCOX

(
W
L

)
n(VDD − Vtn)

[
2Vtn

(VDD − Vtn)
+ ln(

(4(VDD − Vtn))

VDD
− 1)

]
(11)
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tpLH =
CL

µpCOX

(
W
L

)
p
(
VDD −

∣∣Vtp
∣∣)
[

2
∣∣Vtp

∣∣(
VDD −

∣∣Vtp
∣∣) + ln(

(
4
(
VDD −

∣∣Vtp
∣∣))

VDD
− 1)

]
(12)

4. Problem Formulation

This paper presents three different case studies to obtain the optimal switching charac-
teristics and the optimal performance of the CMOS inverter. In the first one, the fall time
tf of the output voltage for the CMOS inverter is evaluated. The second case study aims
to design a CMOS inverter with a symmetrical output voltage where values for both rise
time’s tr and fall time’s tf are equal. In the third one, the CMOS inverter is designed to
achieve a symmetrical output voltage and also to obtain equal propagation delay times
(tPHL and tPLH).

4.1. Case I

In this case, the aim is to evaluate the fall time of the output voltage for the CMOS
inverter, as previously shown in 9, with the minimum values of the cost function CF. During
the design phase, the values of the design parameters—which include the output load
capacitance CL, the ratio between channel width and length W/L for both the NMOS
and the PMOS structures’ fall-time tf—should be within a specific range. The MA is
implemented to find the optimal design parameters CL, W/L, and the tf is needed to
minimize the cost function given in Equation (13). The fitness function can be written as in
Equation (14) [25–30,32].

CF =
∣∣∣µnCOX

(
W
L

)
n
tf

− CL
(VDD−Vtn)

[
2(Vtn−0.1VDD)
(VDD−Vtn)

+ ln
(
(2(VDD−Vtn))−0.1VDD

0.1VDD

)]∣∣∣ (13)

J = 10log10(CF) (14)

The TSMC 0.25 µm CMOS model in the three case studies. Table 1 shows the eight
different design sets which are considered in Case I.

Table 1. Lower and upper bounds for the eight design sets of Case I [25–30,32].

Set Number CL (pF) W/L Tf (ns)

1.0 0.10–2.40 0.30–3.30 0.50–6.70

2.0 0.20–5.60 0.40–2.30 0.30–6.00

3.0 0.60–3.40 0.90–5.00 0.60–8.60

4.0 0.50–3.60 1.20–4.10 0.90–11.00

5.0 0.70–1.80 0.70–4.90 1.20–15.00

6.0 0.30–2.40 2.20–3.20 1.40–12.00

7.0 0.70–2.30 0.70–3.00 1.60–5.70

8.0 0.60–1.90 1.50–3.50 1.00–8.150

4.2. Case II

To obtain an optimal symmetrical switching response, the fall time must equal the
rise time of the output voltage. The main objective, in this case, is to find the inverter
design parameters, CL, (W/L)p, and (W/L)n that minimize the cost function given in
Equation (15) [25–30,32]. This cost function measures the difference between the fall time
and rise times of the CMOS inverter.

CF =

∣∣∣∣(t f(CL,
(

W
L

)
n))− (t r(CL,

(
W
L

)
p))
∣∣∣∣ (15)
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Subject to the following constraints as in Equations (16)–(20) [25–30,32].

(tf)min ≤ tf ≤ (tf)max (16)

(tr)min ≤ tr ≤ (tr)max (17)

(CL)min ≤ CL ≤ (CL)max (18)

((
W
L

)
n

)
min

≤
(

W
L

)
n
≤
((

W
L

)
n

)
max

(19)

((
W
L

)
p

)
min

≤
(

W
L

)
p
≤
((

W
L

)
p

)
max

(20)

Table 2 shows the eight different design sets considered with the corresponding bound
constraints. In this case, the evaluation of the fall time (tf), and the rise time (tr) of the
output voltage is implemented for the eight different design sets of the parameters CL,
(W/L)p and (W/L)n.

Table 2. Lower and upper bounds for the eight design sets of Case II [25–30,32].

Set Number CL (pF) (W/L)n (W/L)p tf (ns) tr (ns)

1.0 0.33–2.3 1.0–3.0 2.0–18 1.0–12.0 1.0–12.0

2.0 0.6–1.5 0.5–2.5 1.60–19.3 0.5–7.6 0.5–7.6

3.0 0.3–3.0 0.3–1.9 1.76–7.56 0.56–8.7 0.56–8.7

4.0 0.11–1.34 1.5–3.5 2.65–18.9 0.77–7.89 0.77–7.89

5.0 0.5–1.5 1.0–2.5 2.0–13.75 0.1–15.0 0.1–15.0

6.0 0.5–1.5 1.0–3.0 2.0–21.0 0.1–15.0 0.1–15.0

7.0 1.0–3.0 1.5–3.5 3.75–21.0 0.1–15.0 0.1–15.0

8.0 1.5–3.5 1.5–3.0 3.0–19.2 0.1–10.0 0.1–10.0

4.3. Case III

In this case, the main objective is to obtain the symmetrical switching characteris-
tics for the CMOS inverter with equal fall time (tf) and rise time (tr), and equal propa-
gation delay times. The cost function that needs to be minimized is formulated as in
Equation (21) [25–30,32].

CF =
∣∣∣(t f(CL,

(
W
L

)
n))− (t r(CL,

(
W
L

)
p))
∣∣∣

+
∣∣∣(t pHL(CL,

(
W
L

)
n))− (t pLH(CL,

(
W
L

)
p))
∣∣∣ (21)

Subject to the following constraints as in Equations (16)–(20), (22) and (23) [25–30,32].(
tpHL

)
min ≤ tpHL ≤

(
tpHL

)
max (22)

(
tpLH

)
min ≤ tpLH ≤

(
tpLH

)
max (23)

The optimization problem depends on three variables: the load capacitance CL, the
ratio between the channel width and length of NMOS and PMOS transistor (W/L)p, and
(W/L)n. The eight different design sets are considered with the lower and upper bounds of
the constraints and they are shown in Table 3 for Case III.
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Table 3. Lower and upper bounds for the eight design sets of Case III [25–30,32].

Set Number CL (pF) (W/L)n (W/L)p tf (ns) tr (ns) tPHL (ns) tPLH (ns)

1.0 0.20–4.0 1.10–6.10 2.80–19.30 1.10–13.0 1.10–13.0 0.50–10.0 0.50–10.0

2.0 0.10–5.10 1.60–7.10 1.80–18.0 1.10–15.0 1.10–15.0 0.50–8.0 0.50–8.0

3.0 0.470–20 1.40–6.70 3.20–38.0 0.50–12.0 0.50–12.0 0.20–9.0 0.20–9.0

4.0 0.10–1.10 1.20–7.0 1.50–17.50 0.50–5.0 0.50–5.0 0.20–4.0 0.20–4.0

5.0 0.20–14.0 1.90–50 2.70–17.0 0.70–6.0 0.70–6.0 0.40–5.0 0.40–5.0

6.0 0.30–3.60 1.30–3.50 3.50–16.20 0.250–7.0 0.250–7.0 0.30–4.50 0.30–4.50

7.0 0.20–4.90 1.10–5.80 2.20–25.30 0.50–6.60 0.50–6.60 0.20–7.70 0.20–7.70

8.0 0.20–3.50 0.30–7.60 1.30–39.0 0.30–6.60 0.30–6.60 0.10–4.40 0.10–4.40

5. Results

In this section, the optimal switching characteristics of the CMOS inverter are obtained
using the Mayfly Optimization Algorithm. A total of eight different design sets are consid-
ered with the lower and upper bounds for the design parameters of each design set as seen
in Tables 1–3 for the three different case studies. TSMC 0.25 µm CMOS model is used in
the LT-Spice simulation to get simulation results. The model parameters are VDD = 2.5 V,
Vtn = 0.3655 V, Vtp = 0.5466 V, µpCox = 51.6 µA/V2 and µnCox = 243.6 µA/V2 [25–30,32].

For Case I, the MA is implemented using MATLAB to find the design parameters
needed to minimize the fall time of the output voltage for the CMOS inverter with an
identical size of PMOS and NMOS transistors. For each design set in Table 1, the MA
parameters are population size (males and females) equal 20 and number of iterations equal
50. The result of the MA gives the optimal design parameters, i.e., CL, (W/L) and (tf), for
the CMOS inverter with the minimum fall time. These results are summarized in Table 4.
The results show that the design parameters are within the limits given in Table 1.

Table 4. MA results for Case I.

Set Number CL (pF) W/L Tf (ns) CF (s)

1.0 0.6610313 3.2691838 1.122116 8.4500086 × 10−20

2.0 0.6817429 2.2553382 1.6775056 8.2739268 × 10−20

3.0 0.6 2.7507903 1.2104557 6.3245267 × 10−20

4.0 0.7064141 2.4468083 1.6021919 5.3510907 × 10−20

5.0 0.8389162 3.8796487 1.2 8.6812836 × 10−20

6.0 0.7272609 2.4489382 1.6480392 9.6705203 × 10−20

7.0 0.7122034 1.8113496 2.1820107 2.7473019 × 10−20

8.0 0.8179995 2.3458135 1.9351501 5.5974648 × 10−20

Figure 4 shows the convergence of the objective function, given in 13, with the iter-
ations for the seventh design set. In Figure 4, it can be seen that the objective function
reaches an optimal value of 2.7473019 × 10−20 s. The 7th design set wass chosen since it
has the lowest value of the cost function. Figures 5–7 show the convergence plots of the
inverter design parameters, CL, (W/L), and (tf), for the same design set. In Figure 5, the
optimum value for the load capacitance is 0.7122034 pF and it starts to converge after 24
iterations. The aspect ratio (W/L) optimum value for the seventh set is shown in Figure 3
to be equal to 1.8113496. The optimum value for the fall time is equal to 2.1820107 ns as
shown in Figure 7.
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The MA is stochastic by its nature. Therefore, different simulation runs will give
different design results. The MA has been run 50 times for the best design set of all
the case studies and the resulting CF values have been utilized for the box and whisker
plots. Figure 8 shows the box and whisker plot for the seventh design set of the MA; the
green square represents the maximum value, the purple star represents upper whisker,
the blue triangle represents median value, the red diamond represents the lower whisker,
and the orange circle represents the minimum value. The median value of the CF is
found to be equal to 5.95 × 10−20, the maximum value is 9.98 × 10−20, and the minimum
value is 2.75 × 10−20, the lower whisker is 4.32594 × 10−20 and the upper whisker is
7.8561 × 10−20.
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Table 5 shows the simulation results for each design set in case studies I. Spice sim-
ulation results show that the MA method is very accurate with small variations due to
MOSFET junction capacitance.

Table 5. Spice results for Case I.

Set Number CL (pF) W/L Tf (ns)

1.0 0.6610313 3.3 2.5000779

2.0 0.6817429 2.3 2.8601715

3.0 0.6 2.8 2.6132502

4.0 0.7064141 2.5 3.2513576

5.0 0.8389162 3.9 2.7435698

6.0 0.7272609 2.5 3.4637568

7.0 0.7122034 1.9 4.1925571

8.0 0.8179995 2.4 4.0108611

The fall time for the seventh design set of Case I using Spice simulation is shown in
Figure 9. As shown in Figure 9, using the values obtained using the MA, an optimum value
of the fall time equal to 4.1925571 ns is achieved.

For Case II, the optimal CMOS inverter design with symmetrical operation (fall time
equals rise time) is found using the MA for the eight different design sets in Table 2. The
MA gives the optimal design parameters needed to minimize the cost function in 15. Table 6
gives the optimal design parameters needed for the CMOS inverter with a symmetrical
operation for the eight design sets of Case II. It is apparent that in Table 6 the symmetry in
the fall time and rise time has been achieved.
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Table 6. MA results for Case II.

Set Number CL (pF) (W/L)n (W/L)p tr (ns) tf (ns) CF(s)

1.0 0.6596316 2.1756359 11.6161245 1.6825590 1.6825590 4.1359 × 10−25

2.0 0.7279563 2.4977102 13.3357389 1.6174035 1.6174035 8.2718 × 10−25

3.0 1.0019859 1.3927859 7.43634260 3.9923848 3.9923848 7.4446 × 10−25

4.0 0.6085469 2.4734372 13.206141 1.3653634 1.3653634 2.068 × 10−25

5.0 0.8989244 1.8138884 9.68468758 2.7502217 2.7502217 4.1359 × 10−25

6.0 1.0894291 2.3886778 12.7535949 2.5310252 2.5310252 4.1359 × 10−25

7.0 1.2756814 2.9565994 15.7858338 2.3944450 2.3944450 4.1359 × 10−25

8.0 1.7737612 2.8189517 15.0509072 3.4919065 3.4919065 8.2718 × 10−25

In Figure 10, a plot of the objective function convergence with MA iteration for
the fourth design set is shown; the objective function converges after 160 iterations.
Figures 10–12 show the convergence plots of the inverter design parameters, CL, (W/L)n,
and (W/L)p, for the same design set. In Figure 11, convergence is achieved after the 25th
iteration with an optimum value of 0.6085469 pF for the load capacitance. Figure 12 shows
the convergence of the NMOS transistor aspect ratio for the fourth set which is equal
to 2.4734372. On the other hand, the optimum value for PMOS aspect ratio is equal to
13.206141, as shown in Figure 13.
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Figure 14 shows the box and whisker plot for the fourth design set of Case II. The
green square represents the maximum value, the purple star represents upper whisker,
the blue triangle represents median value, the red diamond represents the lower whisker,
and the orange circle represents the minimum value. The median value is found to be
4.14 × 10−25, the maximum value is 9.31 × 10−25, the minimum value is 2.07 × 10−25, the
lower whisker is 2.6366 × 10−25, and the upper whisker is 8.2718 × 10−25.

Table 7 shows the simulation results for each design set in case studies II. Spice
simulation results show that the MA method is very accurate with small variations due to
MOSFET junction capacitance.
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Table 7. Spice results for Case II.

Set Number CL (pF) (W/L)n (W/L)p tr (ns) tf (ns) CF (ns)

1.0 0.6596316 2.2 11.6 2.8782002 3.4201091 0.5419089

2.0 0.7279563 2.5 13.3 2.7835531 3.4020265 0.6184734

3.0 1.0019859 1.4 7.4 6.7656613 6.6977397 0.0679216

4.0 0.6085469 2.5 13.2 2.3658613 2.8699922 0.5041309

5.0 0.8989244 1.8 9.7 4.6454616 5.2847168 0.6392552

6.0 1.0894291 2.4 12.8 4.3289372 5.2544608 0.9255236

7.0 1.2756814 3 15.8 4.1247077 5.1031808 0.9784731

8.0 1.7737612 2.8 15 5.9821567 6.9487975 0.9666408

The rise and fall times for the fourth design set of Case II using Spice simulation are
shown in Figure 15. Spice simulations in Figure 15 show that the designed inverter has a al
fall time and rise time with only fractions of nano second difference.
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In Case III, the optimal CMOS inverter design for each design set in Table 3 is found
using the MA with population size (males and females) equals 20 and 100 iterations. The
results give the optimal design parameters. (W/L)p, (W/L)n, and CL of the CMOS inverter,
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which minimizes the objective function given in Equation (21). Then, these optimal values
of the CMOS inverter parameters are used to calculate the fall time (tf), the rise time
(tr), and the propagation delay times (tPHL and tPLH). Table 8 summarizes the results
obtained using the MA for each design set in Case III, which satisfies the symmetrical
output waveform with equal rise and fall times, and the symmetrical propagation delay
time (tPHL equal tPLH).

Table 8. MA results for Case III.

Set Number CL (pF) (W/L)n (W/L)p tf (ns) tr (ns) tPHL (ns) tPLH (ns) CF (ps)

1.0 0.767635 3.61478 19.2999 1.17849 1.17849 0.5 0.518353 18.3537

2.0 0.715929 3.37130 18 1.17849 1.17849 0.5 0.518353 18.3537

3.0 0.603656 6.7 35.7725 0.5 0.5 0.212134 0.219921 7.78695

4.0 0.239064 2.65338 14.1668 0.5 0.5 0.212134 0.219921 7.78695

5.0 0.368314 2.16798 11.5752 0.942796 0.942796 0.4 0.414683 14.6830

6.0 0.386602 3.03417 16.2 0.707097 0.707097 0.3 0.311012 11.0122

7.0 0.414941 4.60544 24.5893 0.5 0.5 0.2121134 0.219921 7.78695

8.0 0.394871 7.30448 39 0.3 0.3 0.12728 0.131953 4.67217

Table 9 shows a comparison of the MA results with results obtained by different
optimization algorithms. The optimal value of the CF (in ps) of the MA is compared to the
optimal value of CF using PSOCFIWA [25], DE [26], ALC-PSO [29], CRPSO [27], PSO [30],
HS–DE [32], and SOS [32]. The results show that the suggested MA outperforms most of
the widely used optimization methods in finding the optimal CMOS inverter design with
the lowest CF value.

Table 9. Comparison of the MA results with other optimization methods for Case III.

Set Number MA HS–DE [32] SOS [32] DE [26] PSO-CFIWA [25] RGA [27] CRPSO [27] ALCPSO [29] PSO [30]

1.0 18.35 17.74 18.35 23.94 14.91 47.52 18.41 17.83 17.7

2.0 18.35 17.92 18.35 26.17 11.91 46.23 21.74 17.85 15.9

3.0 7.78 7.81 7.79 10.25 7.88 44.83 9.68 7.8 15.9

4.0 7.78 7.81 7.79 10.08 7.78 42.86 9.36 13.68 18.7

5.0 14.68 14.19 14.68 26.47 8.08 46.44 19.38 14.19 26.4

6.0 11.01 22.95 11.01 14.88 11.52 48.03 11.95 10.96 19.3

7.0 7.78 7.81 7.79 10.16 7.89 44.06 8.54 7.79 8

8.0 4.67 4.67 4.67 5.91 7.67 46.88 5.25 4.67 9.9

Figure 16 shows the convergence plot of the objective function for the eighth design
set. The optimum value of the objective function is 4.67217 ps and it converges after
18 iterations. Figures 17–19 show the convergence plots of the inverter design parameters:
CL, (W/L)n and (W/L)p for the same design set. Figure 17 shows that the capacitance load
optimum value for the eighth set is equal to 0.394871 pF. The aspect ratio for the NMOS
transistor converges at a value of 7.30448 after 16 iterations as shown in Figure 18. On the
other hand, Figure 19 shows that the optimum aspect ratio for the PMOS transistor is 39.
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Figure 20 shows the box and whisker plot for the eighth design set of the MA. The
green square represents the maximum value, the purple star represents upper whisker, the
blue triangle represents median value, the red diamond represents the lower whisker, and
the orange circle represents the minimum value.
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The median value is found to be 4.71 × 10−12, the maximum value is 5.04 × 10−12,
the minimum value is 4.67 × 10−12, the lower whisker is 4.67727 × 10−12, and the upper
whisker is 4.81995 × 10−12.

To verify the results obtained using MA optimization, the optimal values of the design
parameters are used in the inverter Spice simulations. The simulated circuit is shown in
Figure 21. Table 10 shows the simulation results for each design set in the three case studies.
Spice simulation results show that the MA method is very accurate with small variations
due to MOSFET junction capacitance.
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Spice simulations for the rise and fall times and the propagation delay times for the
eighth design set of Case III are shown in Figures 22 and 23, respectively. Rise time and
fall time in Figure 22 are 0.840474 ns and 0.6761915 ns with a difference less than 0.2 ns.
propagation delay high to low and low to high for the eighth set are shown in Figure 23 to
be equal to 0.565393 ns and 0.416783 ns, respectively.



Algorithms 2023, 16, 237 18 of 21

Table 10. Spice results for Case III.

Set Number CL (pF) (W/L)n (W/L)p tf (ns) tr (ns) tPHL (ns) tPLH (ns) CF (ns)

1.0 0.767635 3.6 19.3 2.664692 2.076923 1.556271 1.0675 1.076540

2.0 0.715929 3.4 18 2.638971 2.03107 1.543645 1.065625 1.043884

3.0 0.603656 6.7 35.8 1.275526 0.9818394 0.806703 0.570023 0.530366

4.0 0.239064 2.7 14.2 1.145440 0.9706936 0.738426 0.567141 0.346031

5.0 0.368314 2.2 11.6 1.946853 1.6663289 1.184149 0.884956 0.579717

6.0 0.386602 3 16.2 1.594699 1.301161 0.985 0.718125 0.472680

7.0 0.414941 4.6 24.6 1.234606 0.978176 0.785312 0.569062 0.472680

8.0 0.394871 7.3 39 0.840474 0.6761915 0.565393 0.416783 0.312893
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6. Conclusions

This paper employs the Mayfly Algorithm (MA), one of the latest optimization algo-
rithms, to find the optimal design of the CMOS inverter. The design problem is mathemati-
cally formulated as an optimization problem. Three case studies with different constraints
and design criteria are presented to illustrate the effectiveness of the proposed optimization
algorithm to find the global solution of the objective function. The results of the three case
studies were used in the spice simulations in order to verify the results. In Case I, estimating
of the fall time is found depending on the design parameters and 0.25 µm TSMC CMOS
technology manufacturing parameters. Case I is performed for eight different sets with
different ranges of design parameters and design criteria. The results show compatibility
between MA results and Spice results. The maximum fall time difference between Mayfly
Algorithm and Spice Simulation for all design sets is equal to 2.075711 ns. In the second
case, the goal is to design an inverter with symmetrical fall and rise times. In Case II, the
MA is performed for eight design sets. The difference between the fall time and rise time
is minimized as shown Spice simulations, where the maximum difference between fall
time and rise time is equal to 0.9784731 ns. In Case III, the CMOS inverter is designed to
achieve a symmetrical fall time and rise time and a symmetrical propagation delay time.
Spice simulations show that symmetry was achieved in Case III with minimum difference
equal to 0.312893 ns and maximum difference equal to 1.076540 ns. Negligible variations
between the MA outcomes and the spice results are observed due to more complicated
models used in Spice simulations compared to the theoretical mathematical equations used
in the optimization method. When comparing optimization methods, the MA contains
very simple approximate expressions, and it has fast convergence and a better chance to
find the global best solution of the cost function.

The values of the width to length ratio have to be slightly modified to meet design
rules for the process technology used in fabricating the circuit. This modification will
have an almost negligible effect on the rise and fall times. In the future, more work will
be conducted to identify the optimal width to length ratio of CMOS transistors used in
a CMOS inverter to achieve the minimum power dissipation and time delay. Achieving
this optimal ratio is critical for developing more energy-efficient and high-performance
electronic devices. The Mayfly Algorithm can not only help in optimizing the CMOS
inverter but can also be extended to optimize more complex circuits, such as Schmitt
trigger circuits. Schmitt trigger circuits are commonly used in applications such as signal
processing, noise filtering, and waveform generation.
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