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Abstract: During every Atlantic hurricane season, storms represent a constant risk to Texan coastal
communities and other communities along the Atlantic coast of the United States. A storm surge
refers to the abnormal rise of sea water level due to hurricanes and storms; traditionally, hurricane
storm surge predictions are generated using complex numerical models that require high amounts
of computing power to be run, which grow proportionally with the extent of the area covered by
the model. In this work, a machine-learning-based storm surge forecasting model for the Lower
Laguna Madre is implemented. The model considers gridded forecasted weather data on winds
and atmospheric pressure over the Gulf of Mexico, as well as previous sea levels obtained from a
Laguna Madre ocean circulation numerical model. Using architectures such as Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM) combined, the resulting model is capable
of identifying upcoming hurricanes and predicting storm surges, as well as normal conditions in
several locations along the Lower Laguna Madre. Overall, the model is able to predict storm surge
peaks with an average difference of 0.04 m when compared with a numerical model and an average
RMSE of 0.08 for normal conditions and 0.09 for storm surge conditions.

Keywords: machine learning; storm surge; hurricane; forecasting; CNN; LSTM

1. Introduction

The United States mainland has experienced around 280 hurricane strikes since the
1850s. Of these hurricane impacts, nearly a hundred have been classified in the Saf-
fir/Simpson Hurricane Wind Scale (SSHWS) as a category 3 or greater. The monetary
damage that such hurricane impacts have can ascend to billions of dollars, as was the case
with Hurricane Katrina in 2005 and Ike in 2008. The quantified damages are only a single
measure of how destructive a hurricane can be and serve as reminders of the importance of
preparation and adequate planning for such events [1,2]. The Laguna Madre, located in
South Texas, is one of the six hypersaline lagoons in the world. It is a unique ecological
system that provides the perfect environment for the proliferation of numerous species of
flora and fauna. This lagoon, and the surrounding region, is impacted by hurricanes that
affect the coastal population with flooding and storm surges. Although communities are
well aware of the risks that every hurricane season brings, the tools available to prepare and
plan are scarce. Storm surge research in this region is paramount to answer the needs of the
population. This study seeks to provide a tool that can be used for forecasting storm surge
conditions days ahead, without the usage of expensive resources and with automation
capabilities. The model proposed here can help first responders and emergency bodies
to assemble resources and develop plans ahead of a hurricane impact and subsequential
storm surge.

Coastal cities have experienced a boom in growth since the 2000s. The increase has
stayed constant at a rate of approximately one percent per year. Leisure has been one of the
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most cited reasons for growth, and as such, the need for infrastructure in coastal cities has
increased proportionately. There have been projects prompted from coastal growth, such
as the construction of transportation, water and electrical infrastructure. This has brought
many benefits to coastal communities and has allowed and aided their continuous growth,
but at the same time, it has also raised a major weakness point. All the infrastructure
necessary to sustain and expand communities in coastal areas are just new vulnerabilities.
One of the major drivers of hurricane damages in coastal cities are storm surges, due to
their proximity to the ocean. Storm surge refers to the abnormal rise in ocean levels beyond
the predicted astronomical tides as a result of sustained winds, among other factors [3].
The state of Texas has many coastal cities that could be potentially struck by hurricanes
and subsequent storm surges. Major hurricane impacts can bring destruction to vulnerable
infrastructure, creating a potential avenue for billions of dollars worth of damages [4]. It is
also important to mention that the danger of a hurricane storm surge is not only limited to
direct structural damages; it also represents a worrying environmental risk. Many of the
coastal cities that could be potentially damaged by hurricanes and storm surges also house
ports. These ports expose industrial complexes to catastrophic events. As an example,
Hurricane Ike brought USD 30 billion dollars in damages to the cities of Houston and
Galveston, where at least 112 deaths occurred. The Houston Ship Channel is one of the
busiest seaports in the world and is the host of many petrochemical complexes, which
heightens the potential for an environmental disaster [5,6].

Since storm surges have the potential to cause damages worth billions of dollars, as
well as cause deaths and possible environmental disasters, it is of the utmost importance
to plan accordingly when a major hurricane is approaching a coastal area. It is possible
to assess the potential risk that a hurricane poses in terms of storm surge by creating a
simulation of the interaction between winds, atmospheric pressure, tides, and waves. To
date, the problem of simulating hurricane storm surges has been solved through the usage
of computer models capable of capturing these interactions and producing fairly accurate
storm surge estimates. Some of the computer models that are available and are currently
being used to predict storm surges by agencies such as the Federal Emergency Management
Agency (FEMA) or the US Army Corps of Engineers (USACE) are Advanced CIRCulation
(ADCIRC), or the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model [7–9].
There exist other numerical models for different purposes, such as TxBLEND, developed
by the Texas Water Development Board (TWDB) used to estimate salinity conditions for
Texas estuaries [10]. The estimation of storm surges is not only a matter of accuracy; it is
also a problem of time. Emergency preparations are time-sensitive; numerical-based storm
surge models such as ADCIRC or SLOSH require a lot of time to be executed, especially
if there are not many resources available. Currently, high-performance computer clusters
(HPC) are employed to run such models on a large scale and provide enough resources
for their computations to be timely. It is important to mention that such models are often
coupled with wave models, which add another level of complexity, raising the resource
requirements of the models. Some examples of the wave models used in conjunction are
the Wave prediction Model (WAM), the Steady-State Spectral Wave Model (STWAVE),
and Simulating WAves Nearshore (SWAN) [7,11]. Models such as ADCIRC run their
computations based on an unstructured mesh containing bathymetry information of the
area to be simulated; this mesh is a discretization of the area that needs sufficient detail
near points of interest to better capture the physics involved. It is because of this that
there is always a tradeoff between mesh resolution and the time required to complete
computations. The ADCIRC code is optimized to scale and parallelize very efficiently, but
if, as mentioned, there is a coupled model meant to simulate waves, then the complexity
of the model scales vastly, which can hog the computational resources available. It is
easy to see how high-fidelity models such as ADCIRC are out of the reach of endeavors
without substantial funding, and the long runtime and high costs represent a limiting
factor for timely emergency notifications if resources are lacking. The prohibitive costs
of a numerical model and the demand for timely storm surge emergency notifications
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pushed the search for a way to develop an Artificial Intelligence (AI) model for accurately
predicting storm surges without the need for large amounts of computational resources.
In this study, a machine-learning-based storm surge forecasting model is proposed and
created for predicting storm surges at discrete points along the Laguna Madre in Texas.
The goal of the study is to create a machine learning model capable of predicting storm
surges by using only a fraction of the computational resources that numerical models use.

2. Materials and Methods

To create this study, a literature review was conducted first to gather information
on what previous attempts have been made to create machine-learning-based models for
storm surge prediction. The literature review shed a light on what types of models were
used as well as what predictors are employed.

Literature Review

Machine learning techniques have been employed extensively in the prediction of
weather and for the modeling of complex relationships, such as storm surges, precipitation,
and floods. Machine learning has proven itself to be a valuable tool in the creation of very
accurate, non-resource-intensive models that can capture very complex phenomena. For
example, Artificial Neural Networks (ANN) have been utilized for capturing the rainfall–
runoff relationship in basins where the declaration of the internal structure of the watershed
is not needed [12]. Neural networks have also been used to predict floods with fairly good
accuracy [13]. These initially reviewed papers reiterate the possibility of creating a machine
learning model for storm surges. Hurricane storm surges are an example of a complex
nonlinear relationship where the usage of machine learning methods can prove to be very
beneficial. Neural networks are a type of machine learning technique that have already been
proven successful for storm surge prediction. In the past, several studies have explored
the performance of neural network architectures when it comes to storm surge estimation.
Simple ANNs [12,14–21] have already succeeded in recognizing the relationship between
weather variables and the subsequent storm surge; however, some problems still remain.
For a better visualization, Table 1 contains a sample of 10 reviewed studies.

As it can be seen from Table 1, most of the studies utilized ANN to produce their
storm surge predictions. ANNs accept a fixed amount of predictor variables; the most
common predictor variables utilized in the studies reviewed are storm parameters. Some
of the parameters are the location of the storm, angle of approach, translation speed of the
storm, wind speeds, and radius of strong winds. The accuracies obtained by the studies are
good; however, there are limitations that could be improved upon.

Table 1. Sample of papers reviewed. Predictors, data types, and metrics used in each paper can be
easily referenced in the table.

Paper Predicted Model Predictors Data Type Metrics

[16] Storm surge ANN

Longitude, latitude at
landfall, heading
direction, central
pressure, moving
speed, maximum

wind speed, radius of
the strong wind

speeds

59 Historical storms CC
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Table 1. Cont.

Paper Predicted Model Predictors Data Type Metrics

[17] Normalized storm
surge ANN

Pressure, wind
velocity, wind

direction, estimated
astronomical tide

Historical storm
descriptive
parameters

RMSE and CC

[20] Storm surge RBF, GRNN, MLP3,
MLP4

Two experiments: (1)
daily mean sea level
from preceding day,
6 h forecast of wind
speed, direction. (2)

4–10 different
parameters

Historical storms
from 1950–1999 RMSE and CC

[22]
Max still-water

inundation, runup,
wave height

Stats.

Landfall location,
angle at landfall,
central pressure,

forward speed, radius
of maximum winds

1500 synthetic storms MSE

[15] Storm surge ANN Atmospheric
pressure and winds

Historical
NCEP-NCAR data RMSE and CC

[12] Tide, storm surge ANN, ANFIS

Wind speed, wind
direction, air

pressure, simulated
water level using

hydrodynamic model

Historical data MAE, RMSE and PE

[19] Storm tide, coastal
inundation ANN

Landfall location,
approach angle,

translation speed,
wind speed

Computed storm tide,
coastal inundation by

ADCIRC
CC

[14] Storm surge ANN, GPR, SVR

Storm parameters,
reference latitude and
longitude of storm as
well as coastal points

USACE NACCS
synthetic data MSE, RMSE, CC

[21] Tidal level SVR, ANN, CNN,
LSTM

Previous and current
tidal water level

21 years of historical
data from tide

stations
RMSE, MAPE

The study by [23] developed a multioutput artificial neural network model which
was used to predict storm surges in the North Carolinian coast. The authors mention a
couple limitations of ANNs; for example, they found out that ANNs often underestimate
peak surges. Furthermore, they concluded that the underestimations could be a result
of the memoryless approach of ANNs. Naturally, including memory in an ANN-based
machine learning model could help improve the results. The usage of memory in neural
networks for tidal prediction was explored by [21], where they compared many approaches
for predicting ocean water levels at 17 different stations in Taiwan. The model utilized a
type of neural network called Long-short Term Memory (LSTM). LSTMs provide a solution
to the memoryless problem mentioned by [23] and outperformed other methods. The
results of LSTM show their potential for usage in storm surge prediction. It is important to
mention that the study in [21] focused only on tidal levels, and no storm surge or weather
conditions were considered.

LSTMs are an example of Recurrent Neural Networks (RNNs). These types of neural
networks are often used for process control or time series predictions [24]. LSTMs can solve
one of the glaring problems that are found in most studies referenced in Table 1, where
the usage of ANNs limited the performance of the resulting models due to their lack of



Algorithms 2023, 16, 232 5 of 17

‘memory’. Improvement on time series prediction is expected with the usage of LSTMs in
comparison with ANNs, and that is why they were chosen for further exploration in this
study in comparison with regular ANNs.

Convolutional Neural Networks (CNNs) are another type of neural network archi-
tecture that are utilized in this study. CNNs are a very common and well-known neural
network architecture. Their structure, often comprised of convolutional, pooling, and fully
connected layers, has driven forward the field of computer vision in the past decades.
Modern iterations of CNNs were first introduced by [25]. AlexNet [26] brought a scaled-up
version of CNNs with around 60 million parameters. Since then, the usage of CNNs has
skyrocketed, and their applications in several disciplines have been popularized. In this
study, CNNs are used as part of the model to read and interpret weather information
obtained in gridded form.

3. Modeling Scenarios and Data Processing

The storm surge forecasting model developed requires two sources of data. The first is
a database of ADCIRC numerical model predictions. The second source of data corresponds
to forecasted gridded weather data.

3.1. ADCIRC Numerical Model Database

The details of the ADCIRC model utilized to create the database of results for the
Laguna Madre can be seen in the following study [27]. To execute ADCIRC and create
the dataset necessary for training the machine learning model, it is necessary to develop
two files for each simulation. The geometric properties of the model, as well as the nodal
parameters, remained constant for all simulations. One of the two files utilized is named
Model Parameter and Periodic Boundary Condition file, or ‘fort.15’ [28]. The ‘fort.15’ file is
used to set the parameters that configure the ADCIRC model for running. The date of the
simulation, duration, and tidal constituents are just some relevant parameters that were
changed as required, while other parameters remained constant for all simulations, such as
the type of input file used.

3.2. Forecasted Gridded Weather Data

The second and perhaps more critical file is ‘fort.22’, or Meteorological Forcing
Data [28]. The machine learning model and the ADCIRC numerical model utilize the
same input source: a gridded forecasted weather dataset named the North American
Mesoscale Forecast System (NAM) [29]. The NAM dataset provides continuous forecasted
gridded atmospheric conditions over the continental United States. The model is dis-
tributed by the National Centers for Environmental Information (NCEI) and consists of
a 12 km-resolution grid with a forecasting range of up to 84 h. This forecasted gridded
dataset is utilized in two forms. First, a set of input files for the ADCIRC numerical model
is created; at the same time, the dataset is converted into image files to serve as input for
the machine learning storm surge model.

To create both ADCIRC’s and the machine learning storm surge model input, the NAM
dataset is trimmed to the domain of interest; in this case, the Gulf of Mexico. After the NAM
data are trimmed spatially, only the variables that will be used are kept, which includes the
U and V components of winds at 10 m elevation and atmospheric pressure. The data is
then projected into a regularly spaced grid over the Gulf of Mexico. The resulting grid can
be directly used for input in ADCIRC and is also leveraged for the creation of images for
their use in the machine learning model. To create the input images, each variable in the
data is normalized and its values mapped into the range of an unsigned byte, from 0 to
255, for the creation of PNG stills with three color channels. The resulting composite can be
seen below in Figure 1.
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Figure 1. Image showing hurricane Hanna (2020) over the Gulf of Mexico as it is approaching the
coast of Texas on the morning of July 25th. The image was constructed from retrieved NAM forecasts,
where the color channels represent U and V components of winds and atmospheric pressure.

To test the machine learning storm surge forecasting model, a total of five scenarios
were prepared from the available data. These five scenarios were selected as representative
of the presence and lack of storm surge conditions. Three of the five scenarios are repre-
sentative of hurricanes that impacted the Laguna Madre directly or caused fluctuations in
the ocean levels in the Laguna Madre; the remaining two scenarios provide everyday or
normal conditions, meaning no major weather event occurred near the Laguna Madre.

3.2.1. Hurricane Dolly (2008)

Dolly made landfall as a category 1 hurricane on the Saffir–Simpson Hurricane Wind
Scale at South Padre Island, Texas, with estimated maximum winds of 86 mph. The storm
reached peak intensity at around 1400 UTC on 23 July, 4 h before landfall, centered less
than 20 nautical miles east of the Rio Grande River. Part of Hurricane Dolly’s track can be
seen in Figure 2 below.

3.2.2. Hurricane Alex (2010)

Alex made landfall as a category 2 hurricane on the Saffir–Simpson Hurricane Wind
Scale near Soto la Marina, Tamaulipas in northeastern Mexico. At landfall, Alex had an
estimated maximum wind speed of 109 mph at around 0200 UTC on 1 July. The path
followed by Hurricane Alex as it made landfall can be seen on Figure 2 below.

3.2.3. Hurricane Hanna (2020)

Hanna made landfall as a category 1 hurricane at Padre Island, Texas. The hurricane
reached a peak intensity of 92 mph as it was located off the coast of South Texas at 1800 UTC
on 25 July. Hanna weakened to a tropical storm by 0600 UTC on 26 July and dissipated at
1800 UTC on 26 July as it neared Monterrey, Mexico. The path Hurricane Hanna took can
be seen in Figure 2.

3.2.4. Normal Conditions: June 2008

During this month, precipitation for the southern region of the United States was
below normal, with some regions receiving lower than 5% of the average June rainfall. A
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single tropical storm named Arthur formed on May 30th near the shore of Belize and, after
two days, dissipated over the Yucatan Peninsula in Mexico.

3.2.5. Normal Conditions: June 2020

This month was especially dry with a precipitation total for the contiguous U.S. of
about 0.21 inches below average. Two tropical storms were recorded in the Atlantic,
Amanda and Cristobal. Amanda made landfall in Guatemala and its remnants developed
to form Cristobal, which eventually made landfall in Louisiana, just east of Grand Isle.

Figure 2. Paths followed by Hurricane Alex, Dolly, and Hanna as they made landfall in Texas. The
white line depicts the U.S.–Mexico border.

It is important to note that while data are abundant, a bias was identified, and its
impact on the performance is later discussed at the end of the paper. The root of the bias
comes from the data available in the area where the study was conducted. Data from
NAM provided a total of 13 hurricane seasons for training. Each season translates to six
months of data, meaning a total of more than 6 years of continuous data was available.
During this period of time, the Lower Laguna Madre saw the impact of around 20 abnormal
sea-level conditions due to weather events. On average, the duration of such abnormal
events was one week. This translates to 6% of the data being representative of storm
surge conditions. This is problematic, since it evidences a bias in the data towards normal
conditions; however, this was expected since disastrous impacts of hurricanes are scarce on
a local level in the South Texas region.

4. Forecasting Model

There are three forecasting models that were created during this study. The differences
between them relies mainly on the machine learning architectures used and their coupling.
The two types of architectures used in the models created are CNN, LSTM and CNN+LSTM.

As explained before, CNNs are a type of artificial neural network architecture special-
ized in the analysis of image data. CNNs are inspired in the biology of the visual cortex of
animals. They are great at extracting relevant features out of images and, given that the
type of data used for the realization of this study can be interpreted as an image, the usage
of CNNs suits the type of problem at hand. The first model created only considers image
data as its input and produces a time series of ocean elevations corresponding to a specific
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time interval in the future. There are a total of 4 CNN-LSTM layers, with pooling operations
in between them that accept the time series of images of future weather conditions. Their
output is then fed to a series of regular densely connected neural network layers where the
final time series output prediction is generated. Training parameters are the same across
the CNN and LSTM models: 50 epochs, 6 samples per batch, and a validation split of 25%.

The second model to be evaluated is based on the LSTM neural network architecture.
It is composed of 50 LSTM units that connect to a series of regular neural network layers
where the output is generated. The training parameters are the same as the CNN model
above. The model will not utilize image data for its input; instead, it will use time series
data corresponding to past conditions of water surface elevation. Using this information,
the model will create a prediction of future conditions.

The third model is a combination of both architectures and can be thought of as
the final forecasting model. The two previously described models are simply a set of
preliminary attempts to judge the capabilities of the architectures to establish a connection
between past ocean surface elevations and weather and future ocean surface elevations. The
final surrogate model combines both architectures to take more information into account
for the generation of storm surge predictions. The model can be classified as a mixed-input
model with two heads. The first head corresponds to the CNN model, using the same
architecture discussed in the CNN-only model and accepting the same time series input of
images. The second head of the model is the LSTM-only model, with the same architecture
and input of time series elevations. Their outputs are then concatenated and fed to a series
of densely connected neural network layers that produce the final output. This final model
was trained on 100 epochs with a smaller batch size of 3 samples to accommodate the size
of the model in the GPU. All three models were trained on the same hardware, an RTX 3060
NVIDIA GPU with 12 GB of VRAM. The training time for the CNN model took around an
hour, while the LSTM model only took 5 min to train; however, the CNN+LSTM mixed-
input model’s total training time was around 7 h. Mixed precision was also leveraged to
achieve speed ups.

To train the respective models, two sets of data were utilized. First, a set to train
the preliminary models to evaluate their performance based on data from a recording
station. Second, a set to train the final surrogate model based on synthetic data generated
with the ocean circulation numerical model. Both sets of data have corresponding water
surface elevation and forecasted weather conditions data. The first, or preliminary training
dataset, contains water surface elevation data coming from the Center for Operational
Oceanographic Products and Services (CO-OPS) Port Isabel recording station in Texas,
with ID: 8779770. The data obtained from the Port Isabel recording station has the same
coverage as the forecasted weather information.

The data obtained from the Port Isabel recording station was leveraged as part of the
initial investigation into the feasibility of predicting storm surges with the LSTM and CNN
architectures both separately and combined. As part of a pilot, the Port Isabel recordings
were used to iterate models by tuning the hyperparameters and their architecture to find
the best performance. The best-performing architecture obtained from the Port Isabel pilot
models was used in the first iterations of the final model trained on the synthetic water
surface elevation data. Subsequent iterations changed the size of the model, integrated
mixed precision, and modified training parameters to find the best performance for the
final CNN+LSTM model.

The second set of data used to train the final storm surge model comes from the
execution of numerical model simulations corresponding to each Atlantic hurricane season
from 2008 to 2020. To force the simulations, the forecasted weather information was
used. This provides a training dataset for the surrogate model to learn and replicate the
performance of the numerical simulations. To evaluate the machine learning model, a set
of 10 virtual buoy stations were selected from the numerical model finite element mesh.
These virtual stations correspond to points of interest in the Lower Laguna Madre. The set
of virtual buoy stations and their location can be seen in Table 2.
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Table 2. Table detailing the locations of virtual buoy stations used in the study.

Name Latitude Longitude Numerical Model Mesh ID

South Padre Island (SPI) 26.0854 −97.1562 42195

Laguna–SPI 26.0862 −97.2007 59162

Ship Channel 26.0423 −97.2071 61388

Laguna Heights 26.0854 −97.2518 55382

Laguna Vista 26.1007 −97.2815 52698

Port Isabel 26.062 −97.215 60551

Port Mansfield Inside 26.5588 −97.4201 5684

Port Mansfield Outside 26.564 −97.2593 10629

Arroyo Colorado Inside 26.3616 −97.3266 29783

Arroyo Colorado Outside 26.3814 −97.1979 18356

To better visualize the location of the stations, a map of the Lower Laguna Madre with
the virtual stations can be seen below in Figure 3.

Figure 3. Map for the location of the 10 virtual buoy stations in the study.
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5. Results

Two different sets of results are presented. First is the preliminary set of results which
corresponds to three different models trained on data recorded by the single Port Isabel
station. The first model only utilizes weather information and CNNs to preform storm
surge prediction; it is expected that these results are far from accurate since there is no
input with relevant information regarding tide harmonics, only weather conditions. The
second preliminary model takes into consideration only previous water surface elevations
to perform predictions without the influence of weather information using only LSTM.
This model was expected to outperform the CNN model in at least normal conditions,
since having information about previous tide elevations is sometimes sufficient to predict
future conditions. The third preliminary model corresponds to a CNN+LSTM coupled
model with mixed input. The third model accepts future weather information in the form
of images, as well as past surface elevations as time series data.

The second set of results corresponds to the final machine learning model created for
each of the 10 virtual buoy stations with training and validation data generated by the
numerical model simulations.

To evaluate the performance of the models, the set of scenarios previously discussed
in Section 3 was used.

5.1. Preliminary Modeling Results

These results help to illustrate the influence that the CNN and LSTM architectures
have on the final model. The Root Mean Squared Error (RMSE) metric was used to compare
their performance.

5.1.1. CNN-Only Model

As previously discussed, the CNN model is expected to be the weakest of the three.
This model only takes into consideration weather information, completely ignoring previ-
ous water surface elevations. In the case of June 2008, where no major hurricane occurred,
the results exhibit a pattern that does not follow water surface elevations, as seen in
Figure 4. This period of time was chosen to better illustrate the importance of considering
tide harmonics in the model.

Figure 4. Preliminary CNN-only model prediction for the month of June 2008.

The CNN model does not encounter fluctuations during this month that could hint at a
storm surge event. It defaults to an oscillation pattern to maximize its score. The inability of
the model to predict the elevation might be due to its lack of knowledge of ocean elevations.
It is working, in this case, as a detector of storm surge weather conditions rather than a
storm surge predictor. The ability of the model to detect storm surge triggering conditions
is reflected in Figure 5.
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Figure 5. Preliminary CNN-only model prediction for the month of July 2008.

Here, the model defaults to a pattern which is disrupted by the detection of a storm
surge triggering weather event. While the estimation is completely inaccurate, the detection
of a storm is reflected as a change in the pattern, which hints at the ability of the model to
detect storms in image data.

5.1.2. LSTM-Only Model

The LSTM preliminary model only considers past water surface elevations for its
prediction and ignores weather information. The month of June 2010 saw the impact of
Hurricane Alex in Mexico. The extent of the storm affected the water surface elevation of
the Laguna Madre, which can be seen in the peak of the blue line in Figure 6.

Figure 6. Preliminary LSTM-only model prediction for the month of June 2010.

It can be seen from the prediction that when the storm hits, the model tries to replicate
what happened but is delayed in its prediction. This is because the model only considers
past elevations to construct its prediction, and since storm surges are produced by weather
fluctuations, the model has no information to anticipate the surge. Subsequently, the model
tries to continue the surge but cannot estimate it accurately.

Even in storm surge conditions, the LSTM architecture outperforms the CNN model
in its overall score but fails to detect the storm as it hits and can only produce a de-
layed response.

5.1.3. CNN+LSTM Model

This model is expected to perform better than both individual models since it is
considering critical information on weather and previous water surface elevations to
produce a prediction. The month of June 2008, when there were no storms hitting the
Laguna Madre area, can be seen in Figure 7.
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Figure 7. Preliminary CNN+LSTM model prediction for the month of June 2008.

It can be seen from this plot that the model is able to follow the trends closely; however,
it still struggles in some places by underestimating both highs and lows. The CNN+LSTM
model prediction for the month of June 2010 when the impact of Hurricane Alex was felt
in the Laguna Madre is a very good example of the performance of the machine learning
model, as shown in Figure 8.

Figure 8. Preliminary CNN+LSTM model prediction for the month of June 2010.

In this case, the model is able to follow the surge correctly but still struggles at some
points where normal conditions were expected. However, as it can be seen in the figures,
the RMSE was reduced from a maximum of 0.1555 in the LSTM-only model in the month
of June 2010 (when Hurricane Alex hit) to 0.0860 during the same period of time in the
preliminary model that combines CNN and LSTM.

5.2. Machine Learning Storm Surge Forecasting Model Results

This set of results was produced by the finalized model trained on the full set of virtual
buoy stations. For each of the five testing scenarios, a sample of four buoy stations is pre-
sented as a scatter plot. The four buoy stations selected represent important socioeconomic
areas in the Laguna Madre.

The results are presented as two separated groups: a group that only considers normal
conditions and a second group that includes storm surge conditions.

5.2.1. Normal Conditions

The predictions of the final CNN+LSTM model during normal conditions in June 2008
can be seen in Figure 9.
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Figure 9. Scatter plot for four nodes in the CNN+LSTM final machine learning model for the month
of June 2008.

The RMSEs for the four nodes, Port Isabel, South Padre Island, Laguna-SPI, and
Brownsville Ship Channel, during the month of June 2008 are 0.1058, 0.0980, 0.0634, and
0.0990, respectively.

In a similar manner, the RMSE for each virtual buoy station for normal conditions in
the month of June 2020 is 0.0730, 0.0832, 0.0541, and 0.0743. The scatter plot can be seen in
Figure 10 below.
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Figure 10. Scatter plot for four nodes in the CNN+LSTM final machine learning model for the month
of June 2020.

5.2.2. Storm Surge Conditions

Hurricane Dolly predictions can be seen in Figure 11. The RMSEs for the different
stations during Hurricane Dolly are 0.1312, 0.1632, 0.0462, and 0.1430 for nodes 60551,
42195, 59162, and 61388, respectively. There is more spread in these predictions; however,
the peak surges observed and predicted do not differ greatly. On average, there is a 0.1183 m
difference between the peak observed and the one predicted.

In the case of Hurricane Alex in 2010, the RMSEs for the four stations that can be seen
in Figure 12 are 0.065, 0.0822, 0.0549, and 0.075, respectively. The model performed much
better during this event than for Hurricane Dolly. The average difference between the
observed and predicted peaks is much smaller compared with that of Dolly, being 0.0422 m.

Finally, for Hurricane Hanna in 2020, the RMSE for each of the buoy stations in
Figure 13 is 0.1142, 0.1105, 0.0835, and 0.1268, respectively. Interestingly, the peak observed
and predicted average difference is −0.0337 m, meaning, the model tended to overestimate
storm surge peaks.
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Figure 11. Scatter plot for four nodes in the CNN+LSTM final machine learning model for the month
of July 2008.
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Figure 12. Scatter plot for four nodes in the CNN+LSTM final machine learning model for the month
of June 2010.
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Figure 13. Scatter plot for four nodes in the CNN+LSTM final machine learning model for the month
of July 2020.

For most cases, the model was able to produce better estimations for everyday con-
ditions in comparison with storm surge conditions. Limitations in data availability con-
tributed to these results. Data representative of normal conditions constitute nearly 94%
of the samples, with the rest corresponding to storm surge conditions. The limitation in
data is attributed to the area that the study was conducted in, where, since 2008, around
20 abnormal ocean elevations due to weather were recorded. To improve results without
modifying the model, the amount of samples representative of storm surge conditions must
be increased. To accomplish this, in the field of image recognition, there are a couple of
techniques that allow for the creation of more samples for training. There is no use for these
algorithms for the perturbation of existing gridded weather forecasts, since the information
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contained in the samples is the result of complex atmospheric phenomena, and without
a numerical model it is not feasible to perturb the information contained in the samples
with traditional image data augmentation algorithms. Nonetheless, the generation of new
samples for the improvement of the described machine learning storm surge model is out
of the scope of this study. Other possible improvements to the model could come from the
input considered which, in essence, is the same type of input used in the numerical model
but transformed into a different format. Perhaps the application of feature engineering
techniques to the features in the input data could yield better results and a different model
architecture that considers a new type of input. Another possible route could be creating
an ensemble of models whose output is averaged, which could be achievable without
changing the underlying architecture of the model or the input.

6. Conclusions

Throughout the set of experiments that were set up for testing the performance of the
model, a very noticeable pattern emerged. The machine learning storm surge forecasting
model created in this study was able to constantly provide an accurate estimation of every-
day conditions with an average RMSE of 0.0813 among the buoy stations presented. Let us
recall that these conditions refer to the absence of any impactful weather event that could
change the water surface elevations from the expected astronomical tide harmonics. That is,
the model was able to capture the harmonic future oscillations from previous observations
while considering normal conditions of winds and pressure. This accomplishment is mainly
due to the presence of the LSTM architecture. Ref. [21] demonstrated that LSTM networks
are capable of predicting tidal levels effectively with superior performance when compared
with other methodologies. Being able to correctly predict tidal levels is imperative to
predicting storm surges, since the oscillation of tides have an additive or subtracting effect
on the final elevations, as it was noted in Section 5.1. Once this baseline was accomplished
during the modeling phase, it was important to build upon it. The next logical step was
to attempt to incorporate weather information into the model. The inclusion of the CNN
architecture improved everyday conditions and allowed for the estimation of storm surge
conditions due to the consideration of input from weather events.

On a more specific note, in the preliminary model results presented in Section 5.1.3,
a view of the overall performance of the final storm surge model and the importance of
the inclusion of both CNN and LSTM architectures can be seen. The result for normal
conditions in the Port Isabel recording station is greatly improved in the CNN+LSTM
preliminary model from Figure 7 when compared directly with the CNN model prediction
from Figure 4, highlighting the importance of the inclusion of the LSTM architecture, as
mentioned. There was a reduction in RMSE from 0.3231 for the CNN-only model to 0.1037
for the CNN+LSTM model. The contribution of the CNN architecture to the final model
is also important. Figure 6 shows a delayed response of the predicted storm surge in the
presence of a storm event and an RMSE of 0.1555. For storm surge conditions, the inclusion
of forecasted weather gridded data as input for the CNN head of the model provides
a considerable improvement not only in peak prediction but in its timing, as it is seen
in Figure 8. This change further reduced the RMSE to 0.0860 during the same period of
predicted time.

In Section 5.2, the prediction of normal conditions and storm surge conditions for
the final model shows an important point. Overall, normal condition predictions have
a maximum RMSE of 0.1058 and an average RMSE of 0.0813. In the case of storm surge
conditions, the maximum RMSE is 0.1632 and the average is 0.0996. From this, we can note
that the predictions for storm surge conditions are worse than for normal conditions in the
final model. This is important, as it shows a limitation in the storm surge forecasting model
presented. However, this limitation in accuracy can be directly attributed to the lack of
storm surge data training samples in comparison with normal conditions. The objective
of the model presented was to be a storm surge forecasting tool, as such, forecasting-type
data were used to train it. These data were obtained from NAM [29] forecasts on winds
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and atmospheric pressure. This limited the amount of data available, and while there are
big collections of parametric data, such as HURDAT2 [30], they were not used in the study
because the data are generated after an event and not as a forecast, which could not be
directly leveraged in this storm surge forecasting model. Another constraint in data comes
from the focus on the Lower Laguna Madre area. A greater model domain will provide
better data and plentiful storm events to improve the performance of the model. The logical
step is to include a bigger domain and hence more data, which could drive performance
further without changing the underlying model architecture. Another approach is data
augmentation, which would entail generating synthetic samples of storms.

Overall, the model provided a reliable estimation of storm surge peaks, with the
average error between observed and predicted peaks being in the realm of centimeters.
The model also tended to underestimate the storm surge peaks, except for the case of
Hurricane Dolly, where the model overshot the observed peak by about 0.033 cm on average.
Considering the data limitations in this study, a machine learning approach to storm surge
prediction using forecasted weather gridded datasets with the inclusion of CNNs is a viable
approach. As data continue to be collected and generated, the performance of CNN-based
models will continue to improve. This will allow for the possibility of deploying forecasted
weather image-based storm surge forecasting solutions that utilize small computational
resources during prediction.
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