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Abstract: Multimodal functional near-infrared spectroscopy–functional magnetic resonance imaging
(fNIRS–fMRI) studies have been highly beneficial for both the fNIRS and fMRI field as, for example,
they shed light on the underlying mechanism of each method. However, several noise sources exist in
both methods. Motion artifact removal is an important preprocessing step in fNIRS analysis. Several
manual motion–artifact removal methods have been developed which require time and are highly
dependent on expertise. Only a few automatic methods have been proposed. AMARA (acceleration-
based movement artifact reduction algorithm) is one of the most promising automatic methods and
was originally tested in an fNIRS sleep study with long acquisition times (~8 h). However, it relies on
accelerometry data, which is problematic when performing concurrent fNIRS–fMIRI experiments.
Most accelerometers are not MR compatible, and in any case, existing datasets do not have this data.
Here, we propose a new way to retrospectively determine acceleration data for motion correction
methods, such as AMARA in multimodal fNIRS–fMRI studies. We do so by considering the individual
slice stack acquisition times of simultaneous multislice (SMS) acquisition and reconstructing high-
resolution motion traces from each slice stack time. We validated our method on 10 participants
during a memory task (2- and 3-back) with 6 fNIRS channels over the prefrontal cortex (limited field
of view with fMRI). We found that this motion correction significantly improved the detection of
activation in deoxyhemoglobin and outperformed up-sampled motion traces. However, we found no
improvement in oxyhemoglobin. Furthermore, our data show a high overlap with fMRI activation
when considering activation in channels according to both deoxyhemoglobin and oxyhemoglobin.

Keywords: fNIRS–fMRI; automatic motion correction; multimodal; AMARA; post-hoc analysis;
simultaneous multislice/multiband

1. Introduction

Functional near-infrared spectroscopy (fNIRS) [1] has gained interest in recent years as
a noninvasive neuroimaging technique to investigate cortical activity, along with techniques
such as functional magnetic resonance imaging (fMRI) and electroencephalography.

fNIRS is thought to indirectly reflect neural activity through neurovascular coupling
by detecting changes in light scattering and absorption within the tissue caused by changes
in the concentration of oxyhemoglobin (∆HbO) and deoxyhemoglobin (∆Hb). Besides
fNIRS’ many practical advantages such as portability, compatibility with other techniques,
no requirements for a special environment, and no restriction on the subject population,
its technical advantages lie in its temporal resolution (~25 to 100 Hz) of hemoglobin
concentration measurements (practically only restricted by the hemodynamic response
function itself) and the ability to distinguish between both chromophores, oxyhemoglobin,
and deoxyhemoglobin. However, major challenges include (1) relatively poor spatial
resolution (1 to 3 cm3) caused by the scattering of light in tissue and the geometry of
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the light sources and detectors on the surface of the head which can only be alleviated
with a dense cluster of overlapping channels; (2) the limited penetration depth (1 cm of
cerebral cortex [2]); and (3) contamination from noise sources including instrumental noise,
experimental noise, and physiological artifacts [3]. Hence, one of the greatest challenges in
fNIRS research is the accurate delineation of the masking effects of the noise sources from
the desired “neuronal” brain signal.

Functional magnetic resonance imaging (fMRI) has long been the gold standard of
non-invasive brain imaging due to its high spatial resolution over the whole head. Since the
development of multiband/simultaneous multislice (SMS) acquisition [4,5], simultaneous
high spatial (1–2 mm isotropic) and temporal resolution (~0.7 s) are now possible. fMRI
exploits the effect of blood oxygenation on the magnetic properties of hemoglobin, just
as fNIRS uses the effect on its optical properties, to make inferences about underlying
neuronal activity changes in the brain; however, it lacks the ability to separately quantify
oxyhemoglobin and deoxyhemoglobin changes and still struggles to approach the temporal
resolution of fNIRS (resulting in the poor quantification of cardiac effects). Due to the com-
plementary strengths of fNIRS and fMRI in temporal and spatial resolution, respectively,
multimodal studies often utilize fNIRS and fMRI simultaneously which has shed light on
various aspects of each method [6].

Since fNIRS optodes are directly positioned on the scalp of the participant, fNIRS
is in general considered less sensitive to head motion artifacts than fMRI, which depend
on stationary sensors. However, motion artifacts are still a problem for fNIRS because
the coupling between the optodes and the skin is altered when the optode is displaced.
This introduces a strong external noise which produces spurious differences that can mask
patterns arising from neural activity. Therefore, despite the relative insensitivity of fNIRS to
head motion, it is still necessary to apply processing strategies that eliminate these artifacts.
A wide variety of motion artifact elimination techniques have been proposed ([7,8]). These
techniques can be categorized based on the temporal or spatial characteristics of the signal
and methods that use external signals for movement artifact removal by adaptive filtering.

The motion-correction algorithms, which have been developed for fNIRS data, suffer
from different drawbacks. For example, some of the wavelet-based methods (e.g., [9,10])
are well equipped to remove motion spikes; however, exacerbate baseline shifts artifacts.
Especially, methods relying on global temporal characteristics (such as PCA-based methods)
require a certain number of channels to perform accurate delineation between the noise
and signal, as do spatially based methods. Other methods such as the Movement Artifact
Reduction Algorithm (MARA) [11] rely on several parameters that must be supplied by
the user to detect artifacts, which is usually disadvantageous. AMARA (acceleration-based
movement artifact reduction algorithm) [12] is one of those methods but also one of the most
promising automatic motion correction methods for fNIRS analysis. The method identifies
motion artifacts using an accelerometer and combines two previous motion detection and
removal methods, MARA [11] and ABAMAR [13]. It has been tested on long fNIRS sleep
study acquisitions (~8 h) and compares favorably to both MARA and ABAMAR.

Motion displacement parameters can be easily acquired from fMRI with FSL
MCFLIRT [14,15] or AFNI 3dvolReg [16,17], two standard pre-processing programs for
fMRI data. The second derivative of the motion time courses of fMRI can therefore be
used to determine the acceleration-based movement in fNIRS. However, here, the relatively
low temporal resolution of fMRI is problematic; it would be highly advantageous if the
acceleration time courses could be derived at the same, much higher temporal resolution of
the fNIRS data.

Here, we propose a new way to increase the temporal resolution of acceleration data
derived from the fMRI motion measurements. We do so by adapting and expanding a
method we developed for increasing the time resolution of motion data in fMRI by taking
into account the slice acquisition time and reconstructing high-resolution motion time
courses [18]. Similar techniques have been proposed using slice-wise motion correction [19]
and have been applied for real-time motion correction [20,21] with slice-to-volume registra-
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tion in which guided breath-hold at 0.34 Hz could be observed in one subject [20]. These
techniques, such as the one by Hoinkiss et al. [20], rely on advanced iterative algorithms.
Our technique was developed to reconstruct respiration, as a complement to our cardiac
waveform reconstruction method [22] using slice sorted averaging and a deep learning
reconstruction filter. Although a deep learning approach was highly successful in our
previous work and our current method might benefit from that, in this situation, unlike
the cardiac waveform generation, we did not have ground truth high-frequency motion
data. However, this method performs very well, reconstructing respiration, cardiac, and
high-resolution motion without requiring any advanced modeling and instead by simply
reorganizing slices according to their acquisition times [18]. Machine learning is especially
useful for extrapolating information which is not directly available in a particular dataset
by automatically finding patterns and interrelationships within datasets in the absence
of a model, and then applying this to fill in missing information. However, when there
are known characteristics of the system (in this case, that the head is a rigid structure and
motion of one part of the head means that the rest of the head undergoes similar motion), it
is always preferable to incorporate this information to minimize the degree to which the
other parts of the system need to “learn” these relationships.

Here, we incorporate this information into deriving a better motion time course, so
that AMARA is more firmly within the regime that it was developed to handle (that certain
types of motion cause transients in fNIRS data that can be removed). In the following,
we show how this method can be used in conjunction with automatic motion correction
methods in fNIRS such as AMARA in order to enhance signal detection.

2. Materials and Methods

We measured fNIRS and fMRI simultaneously in 10 participants during a 2- and 3-back
memory task (720 s, Figure 1e). All subjects gave their informed consent for inclusion
before they participated in the study. The McLean Hospital institutional review board
approved all human experimental acquisitions, and participants were compensated for
their participation.
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tion of the fNIRS probes with respect to the activations detected by fMRI (Figure 1a–c). 

All MR data were acquired on a Siemens TIM Trio 3T scanner (Siemens Medical Sys-
tems, Malvern, PA, USA). The multimodal probe included a 3-element receive-only 
phased array probe (8 × 4.5 cm with depth sensitivity of ~5 cm) [23] which was positioned 
over the prefrontal cortex and used to acquire high spatial (1.8 mm isotropic resolution 
over a 172 × 172 × 59.4 mm FOV) and temporal resolution fMRI data (TR = 0.72 s, Multi-
band Factor = 4). fNIRS data were acquired with an ISS Imagent (ISS, Champaign, IL, 
USA) at 6.25 Hz with six channels (~35, 27, and 13 mm source–detector separation, Table 
1) above the target area. 
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#5 37.8 27.0 12.2 14.6 29.1 37.8 
#6 35.4 25.1 12.1 13.7 29.0 37.0 
#7 34.1 25.5 11.4 13.1 28.6 42.2 
#8 35.4 28.5 12.6 13.2 29.6 37.3 
#9 35.6 25.6 11.9 18.0 26.9 36.6 
#10 38.0 24.6 12.9 16.4 30.2 39.6 

High-resolution motion traces were calculated using our previously described 
method (for a detailed description of the steps and commands see Hocke et al. [18]). In 
short, since multiband data have several spatially separated slices acquired at the same 

Figure 1. Set-Up. (a,b) Multimodal fNIRS–fMRI coil with six sources and one detector positioned
over the prefrontal cortex. (c) Sources and the detector could be easily localized on anatomical scans
and (d) the photon path of each channel was calculated. (e) The stimulation paradigm for the N-back
task (shown here) is shown.
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Six fNIRS source–detector fibers were directly integrated into purpose-built 3D printed
receive-only phased array RF coils [23], enabling close contact between the probe and the
head and thus the precise alignment between the modalities, facilitating localization of the
fNIRS probes with respect to the activations detected by fMRI (Figure 1a–c).

All MR data were acquired on a Siemens TIM Trio 3T scanner (Siemens Medical
Systems, Malvern, PA, USA). The multimodal probe included a 3-element receive-only
phased array probe (8 × 4.5 cm with depth sensitivity of ~5 cm) [23] which was positioned
over the prefrontal cortex and used to acquire high spatial (1.8 mm isotropic resolution over
a 172 × 172 × 59.4 mm FOV) and temporal resolution fMRI data (TR = 0.72 s, Multiband
Factor = 4). fNIRS data were acquired with an ISS Imagent (ISS, Champaign, IL, USA) at
6.25 Hz with six channels (~35, 27, and 13 mm source–detector separation, Table 1) above
the target area.

Table 1. Source–Detector Separation (in mm).

Subject Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6

#1 37.3 28.2 13.0 13.0 28.0 39.0
#2 35.9 27.3 11.8 15.5 28.6 40.2
#3 37.0 28.6 13.6 17.0 29.2 37.0
#4 35.9 26.2 10.4 14.3 24.4 34.7
#5 37.8 27.0 12.2 14.6 29.1 37.8
#6 35.4 25.1 12.1 13.7 29.0 37.0
#7 34.1 25.5 11.4 13.1 28.6 42.2
#8 35.4 28.5 12.6 13.2 29.6 37.3
#9 35.6 25.6 11.9 18.0 26.9 36.6
#10 38.0 24.6 12.9 16.4 30.2 39.6

High-resolution motion traces were calculated using our previously described method
(for a detailed description of the steps and commands see Hocke et al. [18]). In short, since
multiband data have several spatially separated slices acquired at the same time, the exact
acquisition time or slice timing information of each slice (indicated by different colors
in Figure 2a) can be used to split a single fMRI volume into “stacks” of simultaneously
acquired slices. In the simplified example of Figure 2, 20 slices are taken at 5 different
acquisition times with a multiband factor of 4, resulting in 5 stacks with the same acquisition
time, as illustrated in different colors in Figure 2a. Standard motion estimation programs for
fMRI data (e.g., FSL [24], MCFLIRT) are then applied to each new stack of acquisition–time
matched slices (Figure 2b). Lastly, the various motion traces (six directions for each stack)
can then be merged according to their respective slice timing (Figure 2c). A comparison
with simultaneously acquired physiological monitoring confirmed the accuracy of this
method, recovering even signals beyond the original frequency range such as cardiac
(Figure 2d). A software package deriving these high-resolution motion parameters, as
described above and in Hocke et al. [18], can be found as open source by P. Bloom [25]. A
notch filter at the original sampling rate was also applied.

Acceleration data were derived from the second derivative of the motion traces of
the high-resolution fMRI data. We used MCFLIRT (FSL [24], FLIRT [14,15]), a standard
fMRI preprocessing method to derive the six motion traces (x, y, z direction as well as
rotational motion of each). We used the six acceleration motion traces as inputs for AMARA
with window length of 8 min and window step size of 4 min (for our 12 min acquisition)
which were in the originally published study by Metz et al. set to 15 min and 5 min,
respectively [12].
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Figure 2. Calculation of the high-resolution motion traces. (a) Multiple slices (arrows in the same
color) are taken at different time points (arrows in different colors) according to the multiband factor.
(b) When calculating the motion parameters for each slice time ‘stack’ (the set of simultaneously
obtained images at a timepoint, e.g., those specified by the red arrows), the sampling rate can be
increased by the number of independent slice times and (c) their reorganization according to their
acquisition time (d) so that physiological signals (e.g., cardiac) can be resolved at higher frequencies
(software available by P. Bloom [25]). Figure replicated and slightly modified from Hocke et al. [18].

Raw fNIRS data were converted to oxyhemoglobin and deoxyhemoglobin with
HOMER2 [3]. The pathlength was corrected in accordance with the source–detector distance
calculated from the fMRI anatomical scans and also corrected for age [26]. We compared
three motion correction conditions: no motion correction (NoMC); simple up-sampled
motion correction (UpMC) in which the OrigRes motion time courses were up-sampled
to the effective sampling rate by using the scipy.interpolate’s UnivariateSpline routine
with the default smoothing (k = 3); and correction with high-resolution motion traces
(HighMC with AMARA–fMRI). The significance of the activation of each channel per
method was calculated with the NIRS Brain AnalyzIR Toolbox [27] which accounts for
multiple comparisons (q-stats). Significant task responses determined by fMRI (example
voxels in Figure 3a) were evaluated below the fNIRS channel in the photon paths calculated
using MCX [28,29]. We calculated the percentage of significant voxels present in the photon
path (banana-shaped) activation area below the fNIRS probes (Figure 4c) as well as the
z-statistics (Figure 4b) for comparison.

MRI data were processed in FSL FEAT [FMRIB Expert Analysis Tool, version 5.0.10
(http://www.fmrib.ox.ac.uk/fsl, accessed on 20 February 2023, Oxford University, United
Kingdom [24]). Standard preprocessing steps were applied to the data: temporal high-pass
filter (200 s to remove very slow instrumental drifts), spatial smoothing (2 mm), slice
time correction, motion correction, and FILM prewhitening. Contrasts for both the 2- and
3-back as well as only the 2-back and 3-back were evaluated for comparison (1st contrast:
2-back = 1, 3-back = 1; 2nd contrast: 2-back = 1, 3-back = 0; and 3rd contrast: 2-back = 0,
3-back = 1).

http://www.fmrib.ox.ac.uk/fsl
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time courses at ~0.015–0.1 Hz is shown. 

Figure 3. Example time courses. Example time course from subject #4 showing (a) an underlying
fMRI voxel activation pattern within the photon probability path (MCX) and (b–d) the fNIRS time
course filtered at ~0.0015–2 Hz (background magenta (oxyhemoglobin), cyan (deoxyhemoglobin)),
and ~0.015–0.1 Hz (black signal). Specifically, (b) the original fNIRS time course is shown without
motion correction (NoMC) as well as (c) the motion corrected with AMARA using the up-sampled
(UpMC) and (d) reconstructed high sample rate motion time courses (HighMC) from fMRI. T-statistics
are shown in the title (‘t’). (e) Lastly, the difference between the HighMC and UpMC fNIRS time
courses at ~0.015–0.1 Hz is shown.
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and without reaching significance (grey) or being excluded for data quality purposes (black). In
addition, (b) z-statistics distribution underneath channels one through to six within the photon
probability path (MCX) as well as (c) the percentage overlap of the photon path and significantly
activated voxels in fMRI (with 3 different contrasts) for each subject.

3. Results

We calculated high temporal resolution motion parameters by dividing the original
multiband fMRI brain images, taken with TR of 0.72 s, into the 9 sets, or ‘stacks’, of
simultaneously acquired images acquired within each TR at 9 “slice times” (72 slices with a
multiband factor of 8 corresponds to 9 sets of slices acquired at 9 different slice or acquisition
times), and merging the resulting time course of the 9 stacks for each motion parameter
(total 6) according to the slice timing (Figure 2) [18]. This resulted in an effective sample
rate of 12.5 Hz. Notably, even by using initial motion traces with a sample time of 0.72 s
(1.4 Hz sampling rate, with a Nyquist frequency of 0.7 Hz), for which the cardiac signal at
~1 Hz could not be resolved, we could now resolve the cardiac signal (Figure 2). Figure 3
shows an example of the resulting fNIRS time course with and without motion correction
(Figure 3b–d) as well as an example an fMRI time course in the sensitive region of the fNIRS
probe (Figure 3a).

We also compared our fNIRS results to the fMRI data (Figure 4 and for all subjects
see Figure A1) including the z-statistics in the photon probability path underneath the
channels (Figure 4b) as well as the overlap between the photon probability path and the
significantly activated voxels seen in fMRI (Figure 4c) for three contrasts of the N-back
task (1st contrast: 2-back = 1, 3-back = 1; 2nd contrast: 2-back = 1, 3-back = 0; 3rd contrast:
2-back = 0, 3-back = 1).

We found a high consensus in most subjects with high z-statistics (z > 10) in areas
with even a small percentage overlap with fMRI (~above 5%) when taking both oxyhe-
moglobin and deoxyhemoglobin into account (red boxes around channels below the x-axis
in Figure 4a), except in subject #4 and #5. Subject 5 was especially affected by motion which
may explain the improved t-statistics with motion correction (for deoxyhemoglobin). How-
ever, even though t-statistics were high for both oxyhemoglobin and deoxyhemoglobin for
Subject 5 channel 6, the significance threshold was not reached when multiple comparison
correction was applied (blue box around channel in which significance was reached without
multiple comparison correction).

Changes in the t-statistics of the task response with motion correction (with up-
sampled (UpMC) and reconstructed high sample rate (HighMC) motion parameters)
in comparison to without motion correction (NoMC) were compared in all 10 subjects
both for oxyhemoglobin and deoxyhemoglobin. For this evaluation, we considered the
18 non-significant channels (no significant changes in oxyhemoglobin or deoxyhemoglobin
changes with any method, Figure 5a,b) and the 9 significant channels (both significant
oxyhemoglobin and deoxyhemoglobin changes, Figure 5c,d) separately and disregarded
channels in which only oxyhemoglobin or deoxyhemoglobin showed significant activation
with any method.

Non-significant channels (N = 18) for oxyhemoglobin in the NoMc and UpMC con-
dition did not differ significantly from HighMC (one-sided t-test, p < 0.09 and p < 0.48,
respectively) (Figure 5a) and neither did non-significant channels for deoxyhemoglobin
(one-sided t-test, p < 0.56 and p < 0.11, respectively) (Figure 5b). Mean +/− Std t-statistics
for non-significant oxyhemoglobin channels in all three motion correction methods were
0.54 +/− 1.0 (NoMC), 0.81 +/− 1.0 (UpMC), and 0.81 +/− 1.0 (HighMC) (Figure 5a) and
for non-significant deoxyhemoglobin channels −0.17 +/− 1.1 (NoMC), −0.11 +/− 1.4
(UpMC), and −0.15 +/− 1.4 (HighMC) (Figure 5b).

Significant channels (N = 9) for oxyhemoglobin in the NoMc and UpMC condition
did not differ significantly from HighMC (one-sided t-test, p < 0.51 and p < 0.87, respec-
tively) (Figure 5c); however, significant channels for deoxyhemoglobin did (one-sided t-test,
p < 0.03 and p < 0.03, respectively) (Figure 5d). Mean +/− Std t-statistics for significant
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oxyhemoglobin channels in all three motion correction methods were 4.33 +/− 1.4 (NoMC),
4.42 +/− 1.2 (UpMC), and 4.3 +/− 1.4 (HighMC) (Figure 5c) and for significant deoxy-
hemoglobin channels were −3.08 +/− 1.3 (NoMC), −3.48 +/− 1.2 (UpMC), and −3.70
+/− 1.2 (HighMC) (Figure 5d).
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Figure 5. Comparison of motion correction methods. (a,b) T-statistics of channels without motion
correction (NoMC) and with up-sampled (UpMC) and reconstructed high sample rate motion
correction (HighMC) in all non-significant channels (* no significant changes in oxyhemoglobin or
deoxyhemoglobin changes with any method, N = 18) and (c,d) significant channels (** significant
channels were only considered significant when both oxyhemoglobin and deoxyhemoglobin were
significant in any method, N = 9), over 10 participants. We only found a significant difference (one-
sided t-test with an alpha of 0.05) in the t-statistics for deoxygenated hemoglobin between NoMC
and UpMC in comparison to HighMC (p < 0.03 and p < 0.03) in the significant channels.

4. Discussion

In this study, we demonstrate a new way to use high-resolution motion time courses
extracted from fMRI to generate acceleration input data for the fNIRS motion correction
methods, such as AMARA (acceleration-based movement artifact reduction algorithm) [12]
in multimodal fNIRS–fMRI studies. We did so by increasing the effective temporal resolu-
tion of acceleration data derived from the fMRI motion measurements, by adapting and
expanding a method we developed to extract motion parameters at the slice acquisition
time resolution, rather than the volume acquisition time resolution [18]. We call this method
AMARA–fMRI. We tested this method on a small number of channels, with a window
length and step size representative of concurrent fNIRS/fMRI research datasets (~10 min),
rather than the parameters used in the original sleep study on long acquisition times with a
window length of 15 min [12].

We found that this high-resolution motion correction method (HighMC) significantly
improved the detection of activation in deoxyhemoglobin in comparison to no motion
correction (NoMC) in the channels with significant activation (significant channels were
only considered significant when both oxyhemoglobin and deoxyhemoglobin were sig-
nificant for any method—red boxes in Figure 4a) shown in Figure 5d; the method also
outperformed simple up-sampled motion traces converted into acceleration data (UpMC)
in these channels (Figure 5d). As expected, this was not true for channels showing no
activation pattern (defined as channels with neither oxyhemoglobin nor deoxyhemoglobin
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showing significant activation with any method). This fact, in conjunction with the fact
that we do not see “significant activation patterns” in any of the very small source–detector
distances (e.g., channels 3 and 4) which are considered to probe only more superficial layers
of the brain (e.g., [30,31]), is encouraging. This suggests that this motion correction does not
simply increase the t-statistics in all the channels it is applied to or introduce patterns re-
sembling activation; rather, it specifically unmasks patterns of underlying neuronal activity,
increasing only the t-statistics for these channels.

Notably, in most channels AMARA–fMRI performed very well on deoxyhemoglobin
measures, even rendering channels significant, which would not have been significant
without correction (see Figure 4a, Subject #2, channel 1). Studies have demonstrated that
changes in the deoxyhemoglobin concentration detected in fNIRS provide a more accurate
reflection of underlying neuronal activation, particularly in the spatial domain. This is
in comparison to the calculation of activation maps using oxyhemoglobin. As a result,
improving the signal quality of deoxyhemoglobin can greatly enhance the accuracy of
fNIRS results [32–34].

Furthermore, the fNIRS results were mostly in accordance with the underlying pattern
of neuronal activity revealed by the fMRI data (Figure 4 and for all subjects Figure 1A),
in accordance with previously reported overlaps between both techniques [6,23,35–38].
It also showed that even spatially small activation patterns, in combination with high
z-statistics in fMRI, predicted fNIRS activation patterns in the channels above the activation
site. However, we did see that in Subject #5 the motion effects could not be completely
resolved with AMARA–fMRI to reveal the underlying neuronal activation shown with
fMRI. This subject had a very high amount of motion in all channels, and although motion
correction increased t-statistics in deoxyhemoglobin, it did not meet the significance thresh-
old when corrected for multiple comparisons. This does suggest limitations on the amount
of motion that can removed; however, these limitations are relevant only with very strong
motion artifacts.

Besides these limitations, there are also additional limiting factors to our method.
Namely, since our method relies on extracting the maximum amount of motion information
possible from the fMRI data by measuring motion in sub-timepoints of the TR, our method
will fail in cases where (1) the fMRI acquisition method does not allow for three-dimensional
sub-TR motion estimation, for example if a non-multiband acquisition is used; (2) the
multiband factor is too low to get good motion estimates from the subsampled data (the
slice stacks are too coarse to estimate motion reliably); or (3) the multiband factor is too
high, so the degree of subsampling within a TR is too low to give an effective boost to the
sample rate.

Lastly, these results are based on a very small number of channels, making this method
well adapted to multimodal experiments in which only a small number of channels are used
due to the set-up time, subject comfort, and head position when lying down among other
reasons. Motion correction methods based on global temporal filtering may perform poorly
in these instances. Though these are very promising results, we did not observe a significant
improvement in the oxyhemoglobin activations. This is most likely due to the higher initial
signal-to-noise ratio of oxyhemoglobin; in voxels with significant activation, the signal
was most likely already detected, so improved motion correction would not be expected
to make a large difference (Figure 3e). There may also be an influence attributable to the
window length and step size chosen. AMARA was originally designed for extremely long
free-moving studies, with window length and step size of 15 min and 5 min, respectively.
The multimodal fMRI studies are restricted in terms of their motion and are of much
shorter duration (e.g., commonly used paradigm times of approximately 10 min), so we
would expect them to require significantly different tuning parameters than the original
reference. We arrived at the chosen values using an exhaustive hyperparameter search
on a single subject in a preliminary study [39]. Incidentally, we saw here that a higher
window length of 10, with step size of 5 min, was more advantageous for oxyhemoglobin.
While the values we selected are clearly effective at improving the power of task detection
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in an existing dataset, repeating the procedure in a larger, more heterogeneous dataset
encompassing more subjects and a variety of tasks will be required to tune these values
optimally. However, this was beyond the scope and power of the current study.
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