
Citation: Konstantinov, A.;

Kirpichenko, S.; Utkin, L.

Heterogeneous Treatment Effect with

Trained Kernels of the

Nadaraya–Watson Regression.

Algorithms 2023, 16, 226. https://

doi.org/10.3390/a16050226

Academic Editors: Mohammad Ali

Moni and Khondokar Fida Hasan

Received: 8 March 2023

Revised: 20 April 2023

Accepted: 24 April 2023

Published: 27 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Heterogeneous Treatment Effect with Trained Kernels
of the Nadaraya–Watson Regression
Andrei Konstantinov † , Stanislav Kirpichenko † and Lev Utkin *,†

Institute of Computer Science and Technology, Peter the Great St. Petersburg Polytechnic University,
Polytechnicheskaya, 29, 195251 St. Petersburg, Russia; konstantinov_av@spbstu.ru (A.K.);
kirpichenko.sr@edu.spbstu.ru (S.K.)
* Correspondence: utkin_lv@spbstu.ru
† These authors contributed equally to this work.

Abstract: A new method for estimating the conditional average treatment effect is proposed in this
paper. It is called TNW-CATE (the Trainable Nadaraya–Watson regression for CATE) and based on
the assumption that the number of controls is rather large and the number of treatments is small.
TNW-CATE uses the Nadaraya–Watson regression for predicting outcomes of patients from control
and treatment groups. The main idea behind TNW-CATE is to train kernels of the Nadaraya–Watson
regression by using a weight sharing neural network of a specific form. The network is trained on
controls, and it replaces standard kernels with a set of neural subnetworks with shared parameters
such that every subnetwork implements the trainable kernel, but the whole network implements
the Nadaraya–Watson estimator. The network memorizes how the feature vectors are located in the
feature space. The proposed approach is similar to transfer learning when domains of source and
target data are similar, but the tasks are different. Various numerical simulation experiments illustrate
TNW-CATE and compare it with the well-known T-learner, S-learner, and X-learner for several
types of control and treatment outcome functions. The code of proposed algorithms implementing
TNW-CATE is publicly available.

Keywords: treatment effect; Nadaraya–Watson regression; neural network; shared weights;
meta-learner; regression

1. Introduction

The efficient treatment for a patient with her/his clinical and other characteristics [1,2]
can be regarded as an important goal of the real personalized medicine. The problem is that
patients differ not only in their background characteristics, but also in how they respond
to a particular treatment [3]. Therefore, we need to draw inferences about individual-
level treatment effects, as opposed to inferring treatment effects on average across a set of
patients [4,5]. The goal of personalized medicine, which takes into account the difference
between patients, can be achieved by using machine learning methods due to the increasing
amount of available electronic health records which are a basis to develop accurate models.
To estimate the treatment effect, patients are divided into two groups called treatment and
control, and then patients from the different groups are compared. One of the popular
measures of efficient treatment used in machine learning models is the average treatment
effect (ATE) [6], which is estimated on the basis of observed data regarding the mean
difference between outcomes of patients from the treatment and control groups. Due to the
difference between characteristics of patients and the difference between their responses
to a particular treatment, the treatment effect is measured by the conditional average
treatment effect (CATE) or the heterogeneous treatment effect (HTE) that is defined as ATE,
which is conditional on a patient feature vector [7–10].

Two main problems can be observed when CATE is estimated. The first one is that the
control group is usually larger than the treatment group. Hence, we meet the problem of a

Algorithms 2023, 16, 226. https://doi.org/10.3390/a16050226 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16050226
https://doi.org/10.3390/a16050226
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-1542-6480
https://orcid.org/0000-0003-2275-1473
https://orcid.org/0000-0002-5637-1420
https://doi.org/10.3390/a16050226
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16050226?type=check_update&version=1

Algorithms 2023, 16, 226 2 of 25

small training dataset, which does not allow us to apply many efficient machine learning
methods directly. Aoki and Ester [11] consider an example of the difficulties in collecting
corresponding information about patients and to explore the side effects of drugs adopted
on certain pediatric cancer treatments for several reasons, including the sensitivity of issues
for the families, the rarity of the disease, and the effort required between hospitals and
doctors to refer their patients. The authors propose to use a transfer learning approach,
implemented by means of a neural network, to estimate treatment effects on small datasets.
This is an efficient and interesting approach. However, it may encounter difficulties when
training the neural network that models the regression functions for controls and treatments.
The same problem has been pointed out in [4,12]. Therefore, we need to develop a similar
approach where the neural networks should be rather simple and play a secondary role in
the modeling the regression functions.

The second problem is that each patient cannot be simultaneously in the treatment
and control groups, i.e., we either observe the patient outcome under treatment or control,
but never both [13]. This is a fundamental problem of computing the causal effect. This
problem is solved by the explicit or implicit construction of regression functions for the
control and treatment patients. For instance, we can train neural networks [14], which
predict outcomes for a new patient under condition that this patient belongs to one of the
control or treatment groups. However, this method requires one to have large datasets to
train the corresponding machine learning models. We thus return to the first problem of
the treatment group size.

In addition to the above two problems, there are many difficulties facing machine
learning model development concerning noisy data, especially with the high dimension of
the patients’ health records, etc. [15]. One of the difficulties is a complex data structure. A lot
of methods have some assumptions about the model parameters and the data structure.
For instance, a Gaussian mixture for outcomes is proposed for use in [11]. In some cases,
these assumptions are correct, and they correspond to the real structure of the treatment
and control data. However, they can lead to errors in other cases where the data structure
is rather complex. Dorie et al. [16] note that the analysis of observations, having a
grouped structure, shows that the impact of the treatment exposure will vary across these
groups. In this case, most current machine learning approaches ignore these varying effects.
Therefore, it is necessary to develop models that take into account these problems.

Many methods for estimating CATE have been proposed and developed due to impor-
tance of the problem in medicine and other applied areas [12,17–29]. This is only a small
part of all publications which are devoted to the CATE estimation problem solution. Various
approaches were used for solving the problem, including the support vector machine [30],
tree-based models [15], neural networks [2,13,31,32], and transformers [33–36].

It should be noted that most approaches to estimating CATE are based on constructing
regression models for handling the treatment and control groups. However, the problem
of the small treatment group motivates us to develop various tricks that at least partially
resolve the problem.

We propose a method based on using the Nadaraya–Watson kernel regression [37,38]
which is widely applied to machine learning problems. The method is called TNW-CATE
(the Trainable Nadaraya–Watson regression for CATE). The Nadaraya–Watson estimator
can be seen as a weighted average of outcomes (patient responses) by means of a set of
varying weights called attention weights. The attention weights in the Nadaraya–Watson
regression are defined through kernels that measure distances between training feature
vectors and the target feature vector, i.e., kernels in the Nadaraya–Watson regression
conform with relevance of a training feature vector to a target feature vector. If we have
a dataset {(x1, y1), . . . , (xn, yn)}, where xi ∈ Rm is a feature vector (key) and yi ∈ R is its

Algorithms 2023, 16, 226 3 of 25

target value or its label (value), then the Nadaraya–Watson estimator for a target feature
vector z ∈ Rm (query) can be defined by using weights α(z, xi) as

f̂ (z) =
n

∑
i=1

α(z, xi)yi, (1)

where

α(z, xi) =
K(z, xi, γ)

∑n
j=1 K(z, xj, γ)

, (2)

K(z, xi, γ) is a kernel and γ > 0 is a bandwidth parameter.
Standard kernels widely used in practice are the Gaussian, uniform, or Epanechnikov

kernels [39]. However, the choice of a kernel and its parameters significantly impact on
results obtained from the Nadaraya–Watson regression usage. Moreover, the Nadaraya–
Watson regression also requires a large number of training examples. Therefore, we propose
a quite different way for implementing the Nadaraya–Watson regression. The method is
based on the following assumptions and ideas. First, each kernel is represented as a part of
a neural network implementing the Nadaraya–Watson regression. In other words, we do
not use any predefined standard kernels such as the Gaussian one. Kernels are trained as
the weight sharing neural subnetworks. The weight sharing is used to identically compute
kernels under the condition that the pair (z, xi) of examples is fed into every subnetwork.
The neural network kernels become more flexible and sensitive to a complex location
structure of feature vectors. In fact, we propose to replace the definition of weights through
the kernels with a set of neural subnetworks with shared parameters (the neural network
weights) such that every subnetwork implements the trainable kernel, but the whole
network implements the Nadaraya–Watson estimator. At that, the trainable parameters
of the kernels are nothing else but the weights of each neural subnetwork. The above
implementation of the Nadaraya–Watson regression by means of the neural network leads
to an interesting result when the treatment examples are considered as a single example
whose “features” are the whole treatment feature vectors.

It should be noted that several authors [40–43] proposed to use the Nadaraya–Watson
kernel regression with standard kernels having the bandwidth parameter to construct
the CATE estimator. However, they did not propose to learn the kernels. Moreover,
they did not propose to use the kernels in the framework of transfer learning where the
kernels are trained on controls, but they are used for treatments. The Nadaraya–Watson
kernel regression in these works has a relative disadvantage. It requires one to define a
certain kernel for computing weights of examples, for example, the Gaussian kernel. We
overcome the above difficulty by replacing the standard kernel with a neural network
which implements the kernel.

The second assumption is that the feature vector domains of the treatment and control
groups are similar. For instance, if some components of the feature vectors from the control
group are logarithmically located in the feature space, then the feature vectors from the
treatment group have the same tendency to be located in the feature space. Figure 1
illustrates the corresponding location of the feature vectors. Vectors from the control
and treatment groups are depicted by small circles and triangles, respectively. It can be
seen from Figure 1 that the control examples as well as the treatment ones are located
unevenly along the x-axis. Many standard regression methods do not take into account
this peculiarity. It should be noted that this assumption is often fulfilled because patients
are treated after they were in the control group with a particular disease. A treatment is
usually studied for patients with a specific disease. Therefore, feature vector domains of
patients from the control and treatment groups are close to each other. Another illustration
is shown in Figure 2 where the feature vectors are located on spirals, but the spirals have
different values of the patient outcomes. Even if we were to use a kernel regression, it
would be difficult to find such standard kernels satisfying the training data. However,
the assumption of the similarity of domains allows us to train kernels on examples from

Algorithms 2023, 16, 226 4 of 25

the control group because the kernels depend only on the feature vectors. In this case,
the network memorizes how the feature vectors are located in the feature space. By using
assumption about similarity of the treatment and control domains, we can apply the
Nadaraya–Watson regression with the trained kernels to the treatment group changing the
patient outcomes. TNW-CATE is similar to the transfer learning [44–46] when domains
of source and target data are the same, but tasks are different. Therefore, the abbreviation
TNW-CATE can be also read as the transferable kernels of the Nadaraya–Watson regression
for the CATE estimating.

Figure 1. Illustration of the logarithmical location of feature vectors corresponding to patients from
the treatment group (small triangles) and from the control group (small circles).

Figure 2. Illustration of the location of feature vectors corresponding to patients from the treatment
group (small triangles) and from the control group (small circles) on spirals.

Our contributions can be summarized as follows:

1. We propose to use the Nadaraya–Watson kernel regression which does not rely on
specific regression functions and estimates regression values (outputs of controls and
treatments) without any assumptions about the functions. The main feature of the
model is that kernels of the Nadaraya–Watson regression are implemented as neural
networks, i.e., the kernels are trained on the control and treatment data. In contrast to
many CATE estimators based on neural networks, the proposed model uses simple
neural networks which implement only kernels, but not the regression functions.

2. The proposed model and the neural network architecture allow us to solve the problem
of the small numbers of patients in the treatment group. This is a crucial problem

Algorithms 2023, 16, 226 5 of 25

especially when new treatments and new drugs are tested. In fact, the proposed
model can be considered in the framework of the transfer learning when controls can
be viewed as source data (in terms of the transfer learning), but the treatments are
target data.

3. Neural networks implementing the kernels amplifies the model flexibility. In con-
trast to the standard kernels, the neural kernels allow us to cope with the possi-
ble complex data structure because they are adapted to the structure due to many
trainable parameters.

4. A specific algorithm of training the neural kernels is proposed. It trains networks
on controls and treatments simultaneously in order to memorize the treatment data
structure. We show by means of numerical examples that there is an optimal linear
combination of two loss functions corresponding to the controls and treatments.

Various numerical experiments study peculiarities of TNW-CATE and illustrate the
outperformance of TNW-CATE in comparison with the well-known meta-models: the T-
learner, the S-learner, and the X-learner for several control and treatment output functions.
The code of the proposed algorithms can be found at https://github.com/Stasychbr/TNW-
CATE (accessed on 19 April 2023).

The paper is organized as follows. Section 2 can be viewed as a review of existing
models for estimating CATE. Applications of the Nadaraya–Watson regression in machine
learning also are considered in this section. A formal statement of the CATE estimation
problem is provided in Section 3. TNW-CATE and the main ideas and algorithms for
implementing TNW-CATE are described in Section 4. Numerical experiments illustrating
TNW-CATE and comparing it with other models are presented in Section 5. Concluding
remarks are provided in Section 6.

2. Related Work

Estimating CATE. Computing CATE is a very important problem which can be
regarded as a tool for implementing personalized medicine [47]. This fact motivated
researchers to develop many efficient approaches solving the problem. An approach
based on the Lasso model for estimating CATE was proposed by Jeng et al. [48]. Several
interesting approaches using the SVM model were presented in [30,49]. A “honest”
model for computing CATE was proposed by Athey and Imbens [18]. According to
the model, the training set is split into two subsets such that the first one is used to
construct the partition of the data into subpopulations that differ in the magnitude of
their treatment effect, and the second subset is used to estimate treatment effects for each
subpopulation. A unified framework for constructing fast tree-growing procedures solving
the CATE problem was provided in [50,51]. A modification of the survival causal tree
method for estimating the CATE based on censored observational data was proposed
in [52]. Xie et al. [53] established the CATE detection problem as a false positive rate
control problem, and they discussed in detail the importance of this approach for solving
large-scale CATE detection problems. Algorithms for estimating CATE in the context of
Bayesian nonparametric inference were studied in [12]. Bayesian additive regression trees,
causal forest, and causal boosting were compared under condition of binary outcomes
in [15]. An orthogonal random forest as an algorithm that combines orthogonalization
with generalized random forests for solving the CATE estimation problem was proposed
in [54]. Estimating CATE as the anomaly detection problem was studied in [55]. Many
other approaches can also be found in [3,47,56–64].

A set of meta-algorithms or meta-learners, including the T-learner [25], the S-learner [25],
the O-learner [65], and the X-learner [25] were investigated and compared in [25].

Neural networks can be regarded as one of the efficient tools for estimating CATE. As a
result, many models based on using neural networks have been proposed [2,13,14,31,32,66–73].

Transformer-based architectures using attention operations [74] were also applied
to solving the CATE estimating problem [33–36]. Ideas of applying the transfer learning
technique to CATE estimation were considered in [11,13,75]. Ideas of using the Nadaraya–

https://github.com/Stasychbr/TNW-CATE
https://github.com/Stasychbr/TNW-CATE

Algorithms 2023, 16, 226 6 of 25

Watson kernel regression in CATE estimation were studied in [76,77] where it was shown
that the Nadaraya–Watson regression can be used for CATE estimation. However, the small
number of training examples in the treatment group does not allow us to efficiently apply
this approach. Therefore, we aim to overcome this problem by introducing a neural
network of a special architecture, which implements the trainable kernels in the Nadaraya–
Watson regression.

The Nadaraya–Watson regression in machine learning. There are several machine
learning approaches based on applying the Nadaraya–Watson regression [78–84]. Proper-
ties of the boosting with kernel regression estimates as weak learners were studied in [85].
A metric learning model with the Nadaraya–Watson kernel regression was proposed in [86].
The high-dimensional nonparametric regression models were considered in [87]. Models
taking into account the available correlated errors were proposed in [88]. An interesting
work discussing a problem of embedding the Nadaraya–Watson regression into the neural
network as a novel trainable CNN layer was presented in [89]. Applied machine learn-
ing problems solved by using the Nadaraya–Watson regression were considered in [90].
A method of approximation using the kernel functions made from only the sample points
in the neighborhood of input values to simplify the Nadaraya–Watson estimator is pro-
posed in [91]. An interesting application of the Nadaraya–Watson regression to improving
the local explanation method SHAP is presented in [92] where the authors find that the
Nadaraya–Watson estimator can be expressed as a self-normalized importance sampling
estimator. An explanation of how the Nadaraya–Watson regression can be regarded as a
basis for understanding the attention mechanism from the statistics point of view can be
found in [74,93].

In contrast to the above works, we pursue two goals. The first one is to show how
kernels in the Nadaraya–Watson regression can be implemented and trained as neural
networks of a special form. The second goal is to apply the whole neural network imple-
menting the Nadaraya–Watson regression to the problem of estimating CATE.

3. A Formal Problem Statement

Suppose that the control group of patients is represented as a set of c examples of
the form C = {(x1, y1), . . . , (xc, yc)}, where xi = (xi1, . . . , xid) ∈ Rd is the d-dimensional
feature vector for the i-th patient from the control group; yi ∈ R is the i-th observed
outcome, for example, time to death of the i-th patient from the control group or the blood
sugar level of this patient. The similar notations can be introduced for the treatment group
containing t patients, namely, T = {(z1, h1), . . . , (zt, ht)}. Here zi = (zi1, . . . , zid) ∈ Rd and
hi ∈ R are the feature vector and the outcome of the i-th patient from the treatment group,
respectively. We will also use the notation of the treatment assignment indicator Ti ∈ {0, 1}
where Ti = 0 (Ti = 1) corresponds to the control (treatment) group.

Let Y and H denote the potential outcomes of a patient if T = 0 and T = 1 for the
patient, respectively. Let X be the random feature vector from Rd. The treatment effect
for a new patient with the feature vector x, which shows how the treatment is useful and
efficient, is estimated by the Individual Treatment Effect (ITE) defined as H −Y. Since the
ITE cannot be observed, then the treatment effect is estimated by means of CATE which is
defined as the expected difference between two potential outcomes as follows [94]:

τ(x) = E[H −Y | X = x]. (3)

The fundamental problem of computing CATE is that, for each patient in the training
dataset, we can observe only one of outcomes y or h. To overcome this problem, the im-
portant assumption of unconfoundedness [95] is used to allow the untreated units to be
used to construct an unbiased counterfactual for the treatment group [76]. According to
the assumption of unconfoundedness, the treatment assignment T is independent of the
potential outcomes for Y or H conditional on x = z, respectively, which can be written as

T ⊥ {Y, H} | x. (4)

Algorithms 2023, 16, 226 7 of 25

Another assumption called the overlap assumption regards the joint distribution of
treatments and covariates. According to this assumption, there is a positive probability of
being both treated and untreated for each value of x. It is of the form:

0 < Pr{T = 1 | x} < 1. (5)

If we are to accept these assumptions, then CATE can be represented as follows:

τ(x) = E[H | X = x]−E[Y | X = z]. (6)

The motivation behind unconfoundedness is that nearby observations in the feature
space can be treated as having come from a randomized experiment [10].

If we suppose that outcomes of patients from the control and treatment groups are
expressed through the functions g0 and g1 of the feature vectors X, then the corresponding
regression functions can be written as

y = g0(x) + ε, x ∈ C, (7)

h = g1(z) + ε, z ∈ T . (8)

Here, ε is a Gaussian noise variable such that E[ε] = 0. Hence, there holds under
condition x = z

τ(x) = g1(x)− g0(x). (9)

An example illustrating sets of controls (small circles), treatments (small triangles),
and the corresponding unknown function g0 and g1 are shown in Figure 1.

4. The TNW-CATE Description

It has been mentioned that the main idea behind TNW-CATE is to replace the Nadaraya–
Watson regression with the neural network of a specific form. The whole network consists
of two main parts. The first part implements the Nadaraya–Watson regression for training
the control function g0(x). In turn, it consists of n identical subnetworks such that each
subnetwork implements the attention weight α(x, xi) or the kernel K(x, xi) of the Nadaraya–
Watson regression. Therefore, the input of each subnetwork is two vectors x and xi, i.e., two
vectors x and xi are fed to each subnetwork. The whole network consisting of n identical
subnetworks and implementing the Nadaraya–Watson regression for training the control
function will be called the control network. In order to train the control network, for every
vector xi, i = 1, . . . , c, N subsets of size n are randomly selected from the control set C
without example (xi, yi). The subsets can be regarded as N examples for training the
network. Hence, the control network is trained on N · c examples of size 2d · n. If we
have a feature vector x for estimating ỹ,, i.e., for estimating function g0(x), then it is fed
to each trained subnetworks jointly with each xi, i = 1, . . . , c, from the training set. In this
case, the trained subnetworks or kernels of the Nadaraya–Watson regression are used to
estimate ỹ. The number of subnetworks for testing is equal to the number of training
examples n in every subset. Since the trained subnetworks are identical and have the same
weights (parameters), their number can be arbitrary. In fact, a single subnetwork can be
used in practice, but its output depends on the pair of vectors x and xi.

The same network called the treatment network is constructed for the treatment group.
In contrast to the control network, it consists of m subnetworks with inputs in the form of
pairs (z, zi). In the same way, M subsets of size m are randomly selected from the training
set of treatments without the example (zj, hj), j = 1, . . . , t. The treatment network is trained
on M · t examples of size 2d ·m. After training, the treatment network allows us to estimate
h̃ as function g1(z). If z = x, then we obtain an estimate of CATE τ(x) or τ(z) as the
difference between estimates h̃ and ỹ obtained by using the treatment and control neural
networks. It is important to point out that the control and treatment networks are jointly
trained by using the loss function defined below.

Algorithms 2023, 16, 226 8 of 25

Let us formally describe TNW-CATE in detail. Consider the control group of patients
C = {(x1, y1), . . . , (xc, yc)}. For every i from set {1, . . . , c}, we define N subsets Ci,r, r =
1, . . . , N, consisting of n examples randomly selected from C\(xi, yi) as:

Ci,r = {(x
(r)
1 , y(r)1), . . . , (x(r)n , y(r)n)},

r = 1, . . . , N, (10)

where x(r)j is a randomly selected vector of features from the set {x1, . . . , xc}\xi, which

forms Ci,r; y(r)j is the corresponding outcome.
Each subset Ci,r jointly with (xi, yi) forms a training example for the control network

as follows:

a(r)i =
(

x(r)1 , . . . , x(r)n , xi, y(r)1 , . . . , y(r)n , yi

)
,

i = 1, . . . , c, r = 1, . . . , N. (11)

If we feed this example to the control network, then we expect to obtain some approxi-
mation ỹ(r)i of yi. The number of the above examples for training is N · c.

Let us consider the treatment group of patients T = {(z1, h1), . . . , (zt, ht)} now. For ev-
ery j from set {1, . . . , t}, we define M subsets Tj,s and s = 1, . . . , M, consisting of m examples
randomly selected from T \(zj, hj) as:

Tj,s = {(z
(s)
1 , h(s)1), . . . , (z(s)m , h(s)m)},

s = 1, . . . , M, (12)

where z(s)l is a randomly selected vector of features from the set {z1, . . . , zt}\zj, which

forms Tj,s; h(s)j is the corresponding outcome.
Each subset Tj,s jointly with (zj, hj) forms a training example for the control network

as follows:

b(s)
j =

(
z(s)1 , . . . , z(s)m , zj, h(s)1 , . . . , h(s)m , hj

)
,

j = 1, . . . , t, s = 1, . . . , M. (13)

If we feed this example to the treatment network, then we expect to obtain some
approximation h̃(s)j of hj. Indices r and s are used to distinguish subsets of controls and treat-
ments.

The architecture of the joint neural network consisting of the control and treatment
networks is shown in Figure 3. One can see from Figure 3 that normalized outputs α

(r)
i,j

and δ
(s)
j,l of the subnetworks in the control and treatment networks are multiplied by y(r)j

and h(s)l , respectively, and then the obtained results are summed. Here α
(r)
i,1 + . . . + α

(r)
i,n = 1

and δ
(s)
j,1 + . . . + δ

(s)
j,m = 1. It should be noted again that the control and treatment networks

have the same parameters (weights). Every network implements the Nadaraya–Watson
regression with this architecture, i.e.,

ỹ(r)i = g0(xi) =
n

∑
j=1

α
(r)
i,j y(k)j ,

h̃(s)j = g1(zj) =
n

∑
j=1

δ
(s)
i,j h(s)j , (14)

Algorithms 2023, 16, 226 9 of 25

Figure 3. The weight sharing neural network consisting of n subnetworks for training on the controls
and m subnetworks for training on the treatments, which implement two models of the Nadaraya–
Watson regression.

Here,

α
(r)
i,j = α(xi, x(r)j) =

K
(

xi, x(r)j

)
∑n

k=1 K
(

xi, x(r)k

) , (15)

δ
(s)
i,j = δ(zj, z(s)i) =

K
(

zj, z(s)i

)
∑m

k=1 K
(

zj, z(s)k

) . (16)

If we consider the whole neural network, then the training examples are of the form:(
a(r)i , b(s)

j

)
, i = 1, . . . , c, j = 1, . . . , t,

r = 1, . . . , N, s = 1, . . . , M. (17)

Algorithms 2023, 16, 226 10 of 25

The standard expected L2 loss function for training the whole network is of the form:

L =
1

N · c
N

∑
r=1

c

∑
i=1

(
ỹ(r)i − yi

)2

+ θ
1

M · t
M

∑
s=1

t

∑
j=1

(
h̃(s)j − hj

)2

=
1

N · c
N

∑
r=1

c

∑
i=1

(
g0

(
a(r)i

)
− yi

)2

+ θ
1

M · t
M

∑
s=1

t

∑
j=1

(
g1

(
b(s)

j

)
− hj

)2
. (18)

Here, θ is the coefficient that controls how the treatment networks impact on the
training process. In particular, if θ = 0, then only the control network is trained on the
controls without the treatments.

In sum, we achieve our first goal to train subnetworks implementing the kernels in the
Nadaraya–Watson regression by using examples from the control and treatment groups.
The trained kernels take into account the structures of the treatment and control data.
The next task is to estimate CATE by using the trained kernels for some new vectors x
or z. It should be noted that all subnetworks can be represented as a single network due
to the shared weights. In this case, arbitrary batches of pairs (x, xi) and pairs (z, zj) can
be fed to the single network. This implies that we can construct testing neural networks
consisting of c and t trained subnetworks in order to estimate ỹ and h̃ corresponding to
z and x, respectively, under condition z = x. Figures 4 and 5 show the trained neural
networks for estimating ỹ and h̃, respectively. It is important to point out that the testing
networks are not trained. Sets of c pairs (x, x1), . . . , (x, xc) and t pairs (z, z1), . . . , (z, zt) are
fed to the subnetworks of the control and treatment networks, respectively. The whole
examples for testing taking into account the outcomes are

a(x) = (x1, . . . , xc, x, y1, . . . , yc), (19)

and
b(z) = (z1, . . . , zc, z, h1, . . . , ht). (20)

Figure 4. The trained neural network for computing ỹ in accordance with the Nadaraya–Watson
regression.

Algorithms 2023, 16, 226 11 of 25

Figure 5. The trained neural network for computing h̃ in accordance with the Nadaraya–Watson
regression.

In sum, the networks implement the Nadaraya–Watson regressions:

ỹ = g0(x) =
c

∑
j=1

α(x, xj)yj,

h̃ = g1(z) =
t

∑
i=1

δ(z, zi)hi. (21)

Finally, CATE τ(x) or τ(z) is estimated as τ(x) = τ(z) = h̃− ỹ.
The phases of the neural network training and testing are schematically shown as

Algorithms 1 and 2, respectively.

Algorithm 1 The algorithm implementing TNW-CATE in the training phase.

Require: Datasets C of c controls and T of t treatments, numbers N and M of generated
subsets of C and T , numbers of examples in generated subsets n and m

Ensure: The trained weight sharing neural network implementing the Nadaraya–Watson
regressions for control and treatment data

1: for i = 1, i ≤ c do
2: for r = 1, r ≤ N do
3: Generate subset Ci,r ⊂ C\(xi, yi) (see (10))

4: Form example a(r)i (see (11))
5: end for
6: end for
7: for j = 1, j ≤ t do
8: for s = 1, s ≤ M do
9: Generate subset Tj,s ⊂ T \(zj, hj) (see (12))

10: Form example b(s)
j (see (13))

11: end for
12: end for
13: Train the weight sharing neural network with the loss function given in (18) on the set

of pairs (a(r)i , b(s)
j)

Algorithms 2023, 16, 226 12 of 25

Algorithm 2 The algorithm implementing TNW-CATE in the testing phase.

Require: Trained neural control and treatment networks implementing the Nadaraya–
Watson regressions; datasets C and T ; testing example x = z

Ensure: CATE τ(x)
1: Form the testing example a(x) in accordance with (19)
2: Form the testing example b(z) in accordance with (20)
3: Feed a(x) to the control network and b(z) to the treatment network and obtain the

corresponding predictions ỹ and h̃
4: τ(x) = h̃− ỹ

It is important to point out that the neural networks shown in Figures 4 and 5 are
not trained on datasets C and T . These datasets are used as testing examples. This
is an important difference between the proposed approach and other classification or
regression models.

Let us return to the case θ = 0 when only the control network is trained on the
controls without the treatments. This case is interesting because it clearly demonstrates
the transfer learning model when domains of source and target data are the same, but the
tasks are different. Indeed, we train the kernels of the Nadaraya–Watson regression on the
controls under the assumption that the domains of the controls and treatments are the same.
Kernels learn the feature vector location. Actually, kernels are trained on controls by using
outcomes yi. However, nothing prevents us from using the same kernels with different
outcomes hi if the structures of the feature vectors in the control and treatment groups are
similar. We often use the same standard kernel with the same parameters, for example,
the Gaussian one with the temperature parameter in machine learning tasks. The proposed
method does the same, but with a more complex kernel.

5. Numerical Experiments

In this section, we provide simulation experiments evaluating the performance of meta-
models for CATE estimation. In particular, we compare the T-learner, the S-learner, the X-
learner, and the proposed method in several simulation studies. Numerical experiments
are based on a random generation of the control and treatment data in accordance with
different predefined controls and treatment outcome functions because the true CATEs are
unknown due to the fundamental problem of the causal inference for real data [13].

5.1. General Parameters of Experiments
5.1.1. CATE Estimators for Comparison

The following models are used for their comparison with TNW-CATE.

1. The T-learner [25] is a simple procedure based on estimating the control g0(x) and
treatment g1(z) outcome functions by applying a regression algorithm, for exam-
ple, the random forest [96]. The CATE in this case is defined as the difference
g1(z)− g0(x).

2. The S-learner was proposed in [25] to overcome difficulties and disadvantages of the
T-learner. The treatment assignment indicator Ti in the S-learner is included as an
additional feature to the feature vector x. The corresponding training set in this case
is modified as D∗ = {(x∗1 , y1), . . . , (x∗c+t, yc+t)}, where x∗i = (xi, Ti) ∈ Rd+1 if Ti = 0,
i = 1, . . . , c, and x∗c+i = (zi, Ti) ∈ Rd+1 if Ti = 1, i = 1, . . . , t. Then the outcome
function g(x, T) is estimated by using the training set D∗. The CATE is determined in
this case as τ(x) = g(x, 1)− g(x, 0).

3. The X-learner [25] is based on computing the so-called imputed treatment effects and
is represented in the following three steps. First, the outcome functions g0(x) and g1(z)

Algorithms 2023, 16, 226 13 of 25

are estimated using a regression algorithm, for example, the random forest. Second,
the imputed treatment effects are computed as follows:

D1(zi) = hi − g0(zi),

D0(xi) = g1(xi)− yi. (22)

Third, two regression functions τ1(z) and τ0(x) are estimated for imputed treatment
effects D1(zi) and D0(xi), respectively. CATE for a point x = z is defined as a weighted
linear combination of the functions τ1(z) and τ0(x) as τ(x) = κτ0(x) + (1−κ)τ1(x),
where κ ∈ [0, 1] is a weight which is equal to the ratio of treated patients [13].

5.1.2. Base Models for Implementing Estimators

Two models are used as the base regressors g0(x) and g1(z), which realize different
CATE estimators for comparison purposes.

1. The first one is the random forest. It is used as the base regressor to implement the
other models for two main reasons. First, we consider the case of the small number of
treatments, and usage of neural networks does not allow us to obtain the desirable
accuracy of the corresponding regressors. Second, we deal with tabular data for which
it is difficult to train a neural network and the random forest is preferable. Parameters
of the random forests used in the experiments are as follows:

• Numbers of trees are 10, 50, 100, and 300;
• Depths are 2, 3, 4, 5, 6, and 7;
• The smallest values of examples which fall in a leaf are 1 example, 5%, 10%, and

20% of the training set.

The above values for the hyperparameters are tested, choosing those leading to the
best results.

2. The second base model used for realization different CATE estimators is the Nadaraya–
Watson regression with the standard Gaussian kernel. This model is used because
it is interesting to compare it with the proposed model that is also based on the
Nadaraya–Watson regression but with the trainable kernel in the form of the neural
network of the special form. Values 10i, i = −8, . . . , 10, and values 0.5, 5, 50, 100, 200,
500, and 700 of the bandwidth parameter γ are tested, choosing those leading to the
best results.

We use the following notation for different models depending on the base models
and learners:

• T-RF, S-RF, and X-RF are the T-learner, the S-learner, and the X-learner with random
forests as the base regression models;

• T-NW, S-NW, and X-NW are the T-learner, the S-learner, and the X-learner with
the Nadaraya–Watson regression using the standard Gaussian kernel as the base
regression models.

5.1.3. Other Parameters of Numerical Experiments

The mean squared error (MSE) as a measure of the regression model accuracy is
used. For estimating MSE, we perform several iterations of the experiments such that
each iteration is defined by the randomly selected parameters of experiments. MSE is
computed by using 1000 points. In all the experiments, the number of treatments is 10% of
the number of controls. For example, if 100 controls are generated for an experiment, then
10 treatments are generated in addition to controls such that the total number of examples
is 110. After generating the training examples, their responses y are normalized, but the
corresponding initial mean and the standard deviation of responses are used to normalize
responses of the test examples. This procedure allows us to reduce the variance among
results at different iterations. The generated feature vectors in all experiments consist
of 10 features. To select optimal hyperparameters of all regressors, additional validation

Algorithms 2023, 16, 226 14 of 25

examples are generated such that the number of controls is 20% of the training examples
from the control group.

5.1.4. Functions for Generating Datasets

The following functions are used to generate synthetic datasets:

1. Spiral functions: The functions are named spiral because when using two features
vectors they are located on the Archimedean spiral. For even d, we write the vector of
features as

x = (t sin(t), t cos(t), . . . ,

t sin(t · d/2), t cos(t · d/2)). (23)

For odd d, there holds

x = (t sin(t), t cos(t), . . . , t sin(t · dd/2e)). (24)

The responses are generated as a linear function of t, i.e., they are computed as
y = at + b.
Values of parameters a, b, and t for performing numerical experiments with spiral
functions areas follows:

• The control group: parameters a, b, and t are uniformly generated from intervals
[1, 4], [1, 4], and [0, 10], respectively.

• The treatment group: parameters a, b, and t are uniformly generated from
intervals [8, 10], [8, 10], and [0, 10], respectively.

2. Logarithmic functions: Features are logarithms of the parameter t, i.e., there holds

x = (a1 ln(t), a2 ln(t), . . . , ad ln(t)). (25)

The responses are generated as a logarithmic function with adding an oscillating term
b sin(t) to y, i.e., there holds y = b(ln(t) + sin(t)).
Values of parameters a1, . . . , ad, b for performing numerical experiments with loga-
rithmic functions are as follows:

• Each parameter from the set {a1, . . . , ad} is uniformly generated from intervals
[−4,−1] ∪ [1, 4] for controls as well as for treatments.

• Parameter b is uniformly generated from interval [1, 4] for controls and from
interval [−4,−1] for treatments.

• Values of t are uniformly generated in interval [0.5, 5].

3. Power functions: Features are represented as powers of t. For arbitrary d, the vector
of features is represented as

x = (t1/
√

d, t2/
√

d, . . . , td/
√

d). (26)

However, features which are close to linear ones, e.g., xi = ti/
√

d for 0.8 < i/
√

d < 1.6,
are replaced with the Gaussian noise having the unit standard deviation and the zero
expectation, i.e., xi ∼ N (0, 1). The responses are generated as follows:

y = a · exp
(
− (t− s)2

b

)
. (27)

Values of parameters a, b, s, and t for performing numerical experiments with power
functions are as follows:

• The control group: parameters a and b are uniformly generated from intervals
[1, 2] and [0.25, 1], respectively; parameter s is 2.5.

Algorithms 2023, 16, 226 15 of 25

• The treatment group: parameters a and b are uniformly generated from intervals
[2, 4] and [1, 2], respectively; parameter s is 2.5.

• Values of t are uniformly generated in interval [0, 5].

4. Indicator functions [25]: The functions are expressed through the indicator function
I taking value 1 if its argument is true.

• The function for controls is represented as

g0(x) = xTβ + 5I(x1 > 0.5). (28)

• The function for treatments is represented as

g1(x) = xTβ + 5I(x1 > 0.5)

+8I(x2 > 0.1). (29)

• Vector β is uniformly distributed in interval [−5; 5]d; values of features xi =
1, . . . , d,are uniformly generated from interval [−1, 1].

The indicator function differs from other functions considered in numerical examples.
It is taken from [25] in order to study TNW-CATE when the assumption of specific and
similar domains for the control and treatment feature vectors can be violated.

In numerical experiments with the above functions, we take parameter θ to be equal to
0.1, 0.5, 0.5, and 0.5 for the spiral, logarithmic, power, and indicator functions, respectively,
except for experiments which study how parameter θ impacts the MSE.

5.2. Study of the TNW-CATE Properties

In all figures illustrating dependencies of CATE estimators on parameters of models,
dotted curves correspond to the T-learner, the S-learner, and the X-learner implemented by
using the Nadaraya–Watson regression (triangle markers correspond to T-NW and S-NW;
the circle marker corresponds to X-NW). Dashed curves with the same markers correspond
to the same models implemented by using random forests. The solid curve with cross
markers corresponds to TNW-CATE.

5.2.1. Experiments with Numbers of Training Data

Let us compare different CATE estimators using different numbers of the control and
treatment examples. We study the estimators by numbers c of controls: 100, 250, 500, 750,
and 1000. Each number of treatments is determined as 10% of each number of controls.
Value n is 80 and 100; value m is 50% of t. Figure 6 illustrates how MSE of the CATE values
depends on the number c of controls for different estimators when different functions are used
for generating examples. In fact, these experiments study how MSE depends on the entire
number of the controls and treatments because the number of the treatments increases with
the number of the controls. For all functions, the increase in the amount of training examples
improves most estimators including TNW-CATE. These results are expected because the larger
size of training data mainly leads to the better accuracy of models. It can be seen from Figure 6
that the proposed model provides better results in comparison with other models. The best
results are achieved when the spiral generating function is used. The models different from
TNW-CATE cannot cope with the complex structure of data in this case. However, TNW-
CATE shows comparative results with the T-learner, the S-learner, and the X-learner when
the indicator function is used for generating examples. The X-learner outperforms TNW-
CATE in this case. The indicator function does not have a complex structure. Moreover,
the corresponding outcomes linearly depend on most features (see (28) and (29)), and random
forests implementing X-RF are trained better than the neural network implementing TNW-
CATE. One can also see from Figure 6 that models T-NW, S-NW, and X-NW based on
the Nadaraya–Watson regression with the Gaussian kernel provide close results when the
logarithmic generating function is used by larger numbers of training data. This is caused

Algorithms 2023, 16, 226 16 of 25

by the fact that the Gaussian kernel is close to the neural network kernel implemented in
TNW-CATE.

Figure 6. MSE of the CATE values as a function of the number of controls when spiral, logarithmic,
power, and indicator functions are used for generating examples.

Figure 7 illustrates how the number of controls separately impacts the control (the
left plot) and treatment (the right plot) regressions when the power function is used for
generating data. It can also be seen from Figure 7 that MSE provided by the control network
is much smaller than MSE of the treatment neural network.

Figure 7. MSE of the control (the left plot) and treatment (the right plot) responses as functions of
the number of controls when the power function is used for generating examples.

5.2.2. Experiments with Different Values of the Treatment Ratio

Another question is how the CATE estimators depend on the ratio of numbers of
treatments and controls in the training set. We study the case when the number of controls c
is 200 and the ratio takes values from the set {0.1, 0.2, 0.3, 0.4, 0.5}. The coefficient θ is taken
in accordance with the certain function as described above.

Algorithms 2023, 16, 226 17 of 25

Similar results are shown in Figure 8 where plots of MSE of the CATE values as a
function of the ratio of numbers of treatments in the training set by different generating
functions are depicted. We again see from Figure 8 that the difference between MSE of
TNW-CATE and other models is the largest when the spiral function is used. TNW-CATE
also provides better results in comparison with other models, except for the case of the
indicator function when is TNW-CATE inferior to the X-RF.

Figure 8. MSE of the CATE values as a function of the ratio of numbers of treatments in the training
set when spiral, logarithmic, power, and indicator functions are used for generating examples.

Figure 9 illustrates how the ratio of numbers of the treatments separately impacts
the control (the left plot) and treatment (the right plot) regressions when the logarithmic
function is used for generating data. It can be seen from Figure 9 that MSE of the treatment
network is very close to MSE of other models for almost all values of the ratio, but the
accuracy of the control network significantly differs from other models.

Figure 9. MSE of the control (the left plot) and treatment (the right plot) responses as functions
of the ratio of numbers of treatments in the training set when the logarithmic function is used for
generating examples.

5.2.3. Experiments with Different Values of θ

The next experiments allow us to investigate how the CATE estimators depend on
the value of hyperparameter θ which controls the impact of the control and treatment

Algorithms 2023, 16, 226 18 of 25

networks in the loss function (18). The corresponding numerical results are shown in
Figures 10 and 11. It should be noted that other models do not depend on θ. One can see
from Figures 10 and 11 that there is an optimal value of θ minimizing MSE of TNW-CATE
for every generating function. For example, the optimal θ for the spiral function is 0.1. It
can be seen from Figure 10 that TNW-CATE can be inferior to other models when θ is not
optimal. For example, the case θ = 0 for the logarithmic function leads to worse results for
TNW-CATE in comparison with T-RF and S-RF.

Figure 10. MSE of the CATE values as a function of the coefficient θ when spiral (the first plot) and
logarithmic (the second plot) functions are used for generating examples.

Figure 11. MSE of the CATE values as a function of the coefficient θ when power (the first plot) and
indicator (the second plot) functions are used for generating examples.

Algorithms 2023, 16, 226 19 of 25

Numerical results are also presented in Table 1 where the MSE values and standard
deviations corresponding to different models using different generating functions are given.
The best results for every function are shown in bold. It can be seen from Table 1 that
TNW-CATE provides the best results for the spiral, logarithmic, and power functions.
Moreover, the improvement is sufficient. TNW-CATE is comparable with the X-NW and
X-RF from the logarithmic and power generating functions. At the same time, the proposed
model is inferior to X-RF for the indicator function.

Table 1. The best MSE values and standard deviations of CATE for different models and by different
generating functions.

Functions

Model Spiral Logarithmic Power Indicator

T-NW 3.806± 0.734 0.377± 0.163 1.722± 0.482 0.650± 0.208
S-NW 3.629± 0.605 0.341± 0.057 1.719± 0.287 0.549± 0.092
X-NW 3.279± 0.547 0.542± 0.090 0.632± 0.105 0.353± 0.059
T-RF 2.278± 0.380 0.051± 0.019 2.743± 0.457 0.337± 0.056
S-RF 2.575± 0.409 0.060± 0.018 0.839± 0.140 0.434± 0.072
X-RF 1.385± 0.231 0.202± 0.074 0.805± 0.134 0.061± 0.010

TNW-CATE 0.232± 0.069 0.026± 0.008 0.353± 0.089 0.257± 0.043

We can find many successful applications of neural networks for medical and bio-
logical tasks [97,98]. Neural networks also are used in the CATE estimation, for example,
DRNet [72], DragonNet [14], FlexTENet [66], and VCNet [69]. However, it is important to
point out that many models based on neural networks have not been successful when they
are trained on small datasets because the aforementioned neural networks require a large
amount of data for training. Thus, the considered small datasets have led to the network
overfitting. Therefore, we have studied models for comparison that are based on methods
dealing with small data.

5.3. Real Dataset

We perform numerical experiments on the popularly used datasets from the “The
Infant Health and Development Program”(IHDP), which are designed to understand the
effect of home visits by specialist doctors on the future cognitive test scores of premature
infants [8]. The dataset can be regarded as a common benchmarking dataset for estimating
HTE. It contains 747 subjects and 25 features (6 continuous and 19 binary features) that
describe both the characteristics of the infants and the characteristics of their mothers.
The datasets can be accessed at https://github.com/vdorie/npci (accessed on 19 April
2023). The number of treatments is 139. Results of numerical experiments (the MSE
values and standard deviations) with IHDP by using the same models as in the previous
experiments are presented in Table 2. We also show the MSE values and standard deviations
of different numbers of treatments (70 and 35) by randomly removing a part of treatments
from the dataset. We randomly split the dataset into three subsets: training, validation,
and testing. We use 40% of the examples for testing. The threefold validation based on
20% of examples is used to tune the model parameters during training. It can be seen from
Table 2 that TNW-CATE provides the smallest values of the MSE. It is important to note
that the models with the Gaussian kernel (T-NW, S-NW, and X-NW) provide the worst
results. This example illustrates a case when the data structure is too complex to model by
means of the standard Gaussian kernel.

https://github.com/vdorie/npci

Algorithms 2023, 16, 226 20 of 25

Table 2. The best MSE values and standard deviations of CATE for different models by studying the
dataset IHDP.

Number of Treatments

Model 139 70 35

T-NW 0.482± 0.172 0.511± 0.138 0.696± 0.209
S-NW 0.277± 0.138 0.177± 0.079 0.304± 0.108
X-NW 0.276± 0.014 0.240± 0.096 0.348± 0.139
T-RF 0.099± 0.039 0.218± 0.082 0.231± 0.057
S-RF 0.062± 0.028 0.067± 0.015 0.075± 0.037
X-RF 0.046± 0.021 0.063± 0.014 0.079± 0.034

TNW-CATE 0.010± 0.006 0.021± 0.007 0.038± 0.019

After analyzing the obtained numerical results, we can summarize the following:

1. The results significantly depend on the structure of the control and treatment data.
The most complex structure among the considered ones is produced by the spiral
function, and we observe that TNW-CATE outperforms the results in comparison with
other models, especially when the number of controls is rather large. The large number
of controls prevents the neural network from overfitting. The worst results provided
by TNW-CATE and models based on the Gaussian kernels (T-NW, S-NW, and X-NW)
for the indicator function are caused by the fact that the random forest can be regarded
as one of the best models for the functions such as the indicator. The neural network
cannot cope with this structure due to the properties of its training.

2. It can be seen from the experiments that the difference between TNW-CATE and other
models increases as the number of treatments decreases. It does not mean that the
MSE of TNW-CATE is increased. The MSE is decreased. However, this decrease is not
as significant as in other models. This is caused by joint use of controls and treatments
in training the neural network. It follows from the above that the co-training of the
neural network on treatments corrects the network weights when the domain of the
treatment group is shifted relative to the control domain.

3. The main conclusion from the experiments using the dataset IHDP is that the neural
network is perfectly adapted to the data structure which is totally unknown. In other
words, the neural network tries to implement is own distance function and a form
of the kernel to fit the data structure. This is an important distinction of TNW-CATE
from other approaches.

6. Conclusions

A new method (TNW-CATE) for solving the CATE problem has been studied. The main
idea behind TNW-CATE is to use the Nadaraya–Watson regression with kernels that are
implemented as neural networks of the considered specific form and are trained on many
randomly selected subsets of the treatment and control data. With the proposed method,
we aimed to avoid constructing the regression function g1 based only on the treatment
group because it may be small. Moreover, we aimed to avoid using standard kernels,
for example, Gaussian ones, in the Nadaraya–Watson regression. By training kernels on
controls (or controls and treatments), we aimed to transfer knowledge of the feature vector
structure in the control group to the treatment group.

The proposed model and the learning algorithm can be used in many applications,
for example, for drug development and related steps such as clinical trials and study design
or selection of the optimal dose of medicine for a patient, etc. This model, along with
other models, can be regarded as a basis for personalized medicine where the need for
personalized treatment is tremendous. Taking into account all the characteristics of patients
can make the treatment of many diseases more successful. When new treatments or new
drugs are tested, the number of treatments may be very small. In this case, the proposed
model can be effective. Another application of the model is a case when the feature vectors

Algorithms 2023, 16, 226 21 of 25

characterizing patients have a complex structure which cannot be appropriately represented
by typical regression functions or kernels. One of the sources of the complex structure is
the multimodal information about patients, for example, computer tomography, electronic
health records, etc.

The main limitation of the proposed model is the need to tune the hyperparameters
of the neural network, which requires significant time spent on network training and
validation. There are no strict heuristics that can significantly speed up this stage. However,
this time is not crucial. For instance, the time of training TNW-CATE on the dataset IHDP
(see Section 5.3) is 1704 s, whereas the times of training the models T-RF, S-RF, and X-RF
are 49 s, 68 s, and 114 s, respectively. With this time complexity, we pay for the accuracy of
the results. In spite of the apparent complexity of the whole neural network for training,
TNW-CATE is actually simple because it can be realized as a single small subnetwork
implementing the kernel.

The numerical simulation experiments have illustrated the outperformance of TNW-
CATE for several datasets.

We used neural networks to learn kernels in the Nadaraya–Watson regression. How-
ever, different models can be applied to the kernel implementation, for example, the random
forest [96] or the gradient boosting machine [99]. The study of different models for esti-
mating CATE is a potential direction for further research. We also assumed the similarity
between structures of control and treatment data. This assumption can be violated in
some cases. Therefore, it would be interesting to modify TNW-CATE to account for these
violations. This is another potential direction for further research. Another interesting
direction for potential future research is to incorporate robust procedures and imprecise
statistical models to deal with small datasets into TNW-CATE. The incorporation of the
models can provide estimates for CATE, which are more robust than estimates obtained by
using TNW-CATE.

Author Contributions: Conceptualization, L.U. and A.K.; methodology, L.U. and A.K.; software, S.K.;
validation, S.K. and A.K.; formal analysis, L.U. and A.K; investigation, A.K. and S.K.; resources, L.U.
and S.K.; data curation, A.K. and S.K.; writing—original draft preparation, L.U. and S.K.; writing—
review and editing, A.K.; visualization, S.K.; supervision, L.U.; project administration, L.U.; funding
acquisition, L.U. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Russian Science Foundation under grant 21-11-00116.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express their appreciation to the anonymous referees
whose very valuable comments have improved the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lu, M.; Sadiq, S.; Feaster, D.; Ishwaran, H. Estimating Individual Treatment Effect in Observational Data Using Random Forest

Methods. arXiv 2017, arXiv:1701.05306v2.
2. Shalit, U.; Johansson, F.; Sontag, D. Estimating individual treatment effect: Generalization bounds and algorithms. In Proceedings

of the 34th International Conference on Machine Learning (ICML 2017), Sydney, Australia, 6–11 August 2017; Volume PMLR 70,
pp. 3076–3085.

3. Xie, Y.; Brand, J.; Jann, B. Estimating Heterogeneous Treatment Effects with Observational Data. Sociol. Methodol. 2012, 42, 314–347.
[CrossRef] [PubMed]

4. Caron, A.; Baio, G.; Manolopoulou, I. Estimating Individual Treatment Effects using Non-Parametric Regression Models: A
Review. J. R. Stat. Soc. Ser. A Stat. Soc. 2022, 185, 1115–1149. [CrossRef]

5. Zhou, X.; Xie, Y. Heterogeneous Treatment Effects in the Presence of Self-Selection: A Propensity Score Perspective. Sociol.
Methodol. 2020, 50, 350–385. [CrossRef] [PubMed]

http://doi.org/10.1177/0081175012452652
http://www.ncbi.nlm.nih.gov/pubmed/23482633
http://dx.doi.org/10.1111/rssa.12824
http://dx.doi.org/10.1177/0081175019862593
http://www.ncbi.nlm.nih.gov/pubmed/34121778

Algorithms 2023, 16, 226 22 of 25

6. Fan, Y.; Lv, J.; Wang, J. DNN: A Two-Scale Distributional Tale of Heterogeneous Treatment Effect Inference. arXiv 2018,
arXiv:1808.08469v1.

7. Green, D.; Kern, H. Modeling heterogeneous treatment effects in survey experiments with Bayesian additive regression trees.
Public Opin. Q. 2012, 76, 491–511. [CrossRef]

8. Hill, J. Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Stat. 2011, 20, 217–240. [CrossRef]
9. Kallus, N. Learning to personalize from observational data. arXiv 2016, arXiv:1608.08925.
10. Wager, S.; Athey, S. Estimation and inference of heterogeneous treatment effects using random forests. arXiv 2017, arXiv:1510.0434.
11. Aoki, R.; Ester, M. Causal Inference from Small High-dimensional Datasets. arXiv 2022, arXiv:2205.09281.
12. Alaa, A.; van der Schaar, M. Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design.

In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 129–138.
13. Kunzel, S.; Stadie, B.; Vemuri, N.; Ramakrishnan, V.; Sekhon, J.; Abbeel, P. Transfer Learning for Estimating Causal Effects using

Neural Networks. arXiv 2018, arXiv:1808.07804v1.
14. Shi, C.; Blei, D.; Veitch, V. Adapting Neural Networks for the Estimation of Treatment Effects. In Proceedings of the Advances in

Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Curran Associates, Inc.: Red Hook, NY,
USA, 2019; Volume 32, pp. 1–11.

15. Wendling, T.; Jung, K.; Callahan, A.; Schuler, A.; Shah, N.; Gallego, B. Comparing methods for estimation of heterogeneous
treatment effects using observational data from health care databases. Stat. Med. 2018, 37, 3309–3324. [CrossRef]

16. Dorie, V.; Perrett, G.; Hill, J.; Goodrich, B. Stan and BART for Causal Inference: Estimating Heterogeneous Treatment Effects
Using the Power of Stan and the Flexibility of Machine Learning. Entropy 2022, 24, 1782. [CrossRef] [PubMed]

17. Acharki, N.; Garnier, J.; Bertoncello, A.; Lugo, R. Heterogeneous Treatment Effects Estimation: When Machine Learning meets
multiple treatment regime. arXiv 2022, arXiv:2205.14714.

18. Athey, S.; Imbens, G. Recursive partitioning for heterogeneous causal effects. Proc. Natl. Acad. Sci. USA 2016, 113, 7353–7360.
[CrossRef]

19. Deng, A.; Zhang, P.; Chen, S.; Kim, D.; Lu, J. Concise Summarization of Heterogeneous Treatment Effect Using Total Variation
Regularized Regression. arXiv 2016, arXiv:1610.03917.

20. Fernandez-Loria, C.; Provost, F. Causal Classification: Treatment Effect Estimation vs. Outcome Prediction. J. Mach. Learn. Res.
2022, 23, 1–35.

21. Fernandez-Loria, C.; Provost, F. Causal Decision Making and Causal Effect Estimation Are Not the Same. . . and Why It Matters.
INFORMS J. Data Sci. 2022, 1, 4–16. [CrossRef]

22. Gong, X.; Hu, M.; Basu, M.; Zhao, L. Heterogeneous treatment effect analysis based on machine-learning methodology. CPT
Pharmacomet. Syst. Pharmacol. 2021, 10, 1433–1443. [CrossRef]

23. Hatt, T.; Berrevoets, J.; Curth, A.; Feuerriegel, S.; van der Schaar, M. Combining Observational and Randomized Data for
Estimating Heterogeneous Treatment Effects. arXiv 2016, arXiv:2202.12891.

24. Jiang, H.; Qi, P.; Zhou, J.; Zhou, J.; Rao, S. A Short Survey on Forest Based Heterogeneous Treatment Effect Estimation Methods:
Meta-learners and Specific Models. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando,
FL, USA, 15–18 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 3006–3012.

25. Kunzel, S.; Sekhona, J.; Bickel, P.; Yu, B. Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning.
Proc. Natl. Acad. Sci. USA 2019, 116, 4156–4165. [CrossRef] [PubMed]

26. Utkin, L.; Kots, M.; Chukanov, V.; Konstantinov, A.; Meldo, A. Estimation of Personalized Heterogeneous Treatment Effects Using
Concatenation and Augmentation of Feature Vectors. Int. J. Artif. Intell. Tools 2020, 29, 2050005. [CrossRef]

27. Wu, L.; Yang, S. Integrative learner of heterogeneous treatment effects combining experimental and observational studies. In
Proceedings of the First Conference on Causal Learning and Reasoning (CLeaR 2022), Eureka, CA, USA, 11–13 April 2022;
pp. 1–23.

28. Yadlowsky, S.; Fleming, S.; Shah, N.; Brunskill, E.; Wager, S. Evaluating Treatment Prioritization Rules via Rank-Weighted
Average Treatment Effects. arXiv 2021, arXiv:2111.07966.

29. Zhang, W.; Li, J.; Liu, L. A Unified Survey of Treatment Effect Heterogeneity Modelling and Uplift Modelling. ACM Comput.
Surv. 2022, 54, 1–36. [CrossRef]

30. Zhao, Y.; Zeng, D.; Rush, A.; Kosorok, M. Estimating Individualized Treatment Rules Using Outcome Weighted Learning. J. Am.
Stat. Assoc. 2012, 107, 1106–1118. [CrossRef]

31. Bica, I.; Jordon, J.; van der Schaar, M. Estimating the effects of continuous-valued interventions using generative adversarial
networks. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Virtual, 6–12 December 2020;
Volume 33, pp. 16434–16445.

32. Curth, A.; van der Schaar, M. Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning
Algorithms. In Proceedings of the International Conference on Artificial Intelligence and Statistics, PMLR, Virtual, 13–15 April
2021; pp. 1810–1818.

33. Guo, Z.; Zheng, S.; Liu, Z.; Yan, K.; Zhu, Z. CETransformer: Casual Effect Estimation via Transformer Based Representation
Learning. In Proceedings of the Pattern Recognition and Computer Vision, PRCV, Beijing, China, 29 October–1 November 2021;
Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 13022, pp. 524–535.

http://dx.doi.org/10.1093/poq/nfs036
http://dx.doi.org/10.1198/jcgs.2010.08162
http://dx.doi.org/10.1002/sim.7820
http://dx.doi.org/10.3390/e24121782
http://www.ncbi.nlm.nih.gov/pubmed/36554187
http://dx.doi.org/10.1073/pnas.1510489113
http://dx.doi.org/10.1287/ijds.2021.0006
http://dx.doi.org/10.1002/psp4.12715
http://dx.doi.org/10.1073/pnas.1804597116
http://www.ncbi.nlm.nih.gov/pubmed/30770453
http://dx.doi.org/10.1142/S0218213020500050
http://dx.doi.org/10.1145/3466818
http://dx.doi.org/10.1080/01621459.2012.695674

Algorithms 2023, 16, 226 23 of 25

34. Melnychuk, V.; Frauen, D.; Feuerriegel, S. Causal Transformer for Estimating Counterfactual Outcomes. arXiv 2022,
arXiv:2204.07258.

35. Zhang, Y.F.; Zhang, H.; Lipton, Z.; Li, L.E.; Xing, E.P. Can Transformers be Strong Treatment Effect Estimators? arXiv 2022,
arXiv:2202.01336.

36. Zhang, Y.F.; Zhang, H.; Lipton, Z.; Li, L.E.; Xing, E.P. Exploring Transformer Backbones for Heterogeneous Treatment Effect
Estimation. Available online: https://openreview.net/forum?id=NkJ60ZZkcrW (accessed on 19 April 2023).

37. Nadaraya, E. On estimating regression. Theory Probab. Its Appl. 1964, 9, 141–142. [CrossRef]
38. Watson, G. Smooth regression analysis. Sankhya Indian J. Stat. Ser. A 1964, 359–372.
39. Bartlett, P.; Montanari, A.; Rakhlin, A. Deep learning: A statistical viewpoint. Acta Numer. 2021, 30, 87–201. [CrossRef]
40. Gao, Z.; Han, Y. Minimax optimal nonparametric estimation of heterogeneous treatment effects. Proc. Adv. Neural Inf. Process.

Syst. 2020, 33, 21751–21762.
41. Hsu, Y.C.; Lai, T.C.; Lieli, R. Counterfactual treatment effects: Estimation and inference. J. Bus. Econ. Stat. 2022, 40, 240–255.

[CrossRef]
42. Padilla, O.; Yu, Y. Dynamic and heterogeneous treatment effects with abrupt changes. arXiv 2022, arXiv:2206.09092.
43. Sun, X. Estimation of Heterogeneous Treatment Effects Using a Conditional Moment Based Approach. arXiv 2022,

arXiv:2210.15829.
44. Lu, J.; Behbood, V.; Hao, P.; Zuo, H.; Xue, S.; Zhang, G. Transfer learning using computational intelligence: A survey. Knowl.-Based

Syst. 2015, 80, 14–23. [CrossRef]
45. Pan, S.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
46. Weiss, K.; Khoshgoftaar, T.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1–40. [CrossRef]
47. Powers, S.; Qian, J.; Jung, K.; Schuler, A.; Shah, N.; Hastie, T.; Tibshirani, R. Some methods for heterogeneous treatment effect

estimation in high-dimensions Some methods for heterogeneous treatment effect estimation in high-dimensions. arXiv 2017,
arXiv:1707.00102v1.

48. Jeng, X.; Lu, W.; Peng, H. High-dimensional inference for personalized treatment decision. Electron. J. Stat. 2018, 12, 2074–2089.
[CrossRef]

49. Zhou, X.; Mayer-Hamblett, N.; Khan, U.; Kosorok, M. Residual Weighted Learning for Estimating Individualized Treatment
Rules. J. Am. Stat. Assoc. 2017, 112, 169–187. [CrossRef]

50. Athey, S.; Tibshirani, J.; Wager, S. Solving heterogeneous estimating equations with gradient forests. arXiv 2017, arXiv:1610.01271.
51. Athey, S.; Tibshirani, J.; Wager, S. Generalized random forests. arXiv 2019, arXiv:1610.0171v4.
52. Zhang, W.; Le, T.; Liu, L.; Zhou, Z.H.; Li, J. Mining heterogeneous causal effects for personalized cancer treatment. Bioinformatics

2017, 33, 2372–2378. [CrossRef]
53. Xie, Y.; Chen, N.; Shi, X. False Discovery Rate Controlled Heterogeneous Treatment Effect Detection for Online Controlled

Experiments. arXiv 2018, arXiv:1808.04904v1.
54. Oprescu, M.; Syrgkanis, V.; Wu, Z. Orthogonal Random Forest for Heterogeneous Treatment Effect Estimation. arXiv 2019,

arXiv:1806.03467v2.
55. III, E.M.; Somanchi, S.; Neill, D. Efficient Discovery of Heterogeneous Treatment Effects in Randomized Experiments via

Anomalous Pattern Detection. arXiv 2018, arXiv:1803.09159v2.
56. Chen, R.; Liu, H. Heterogeneous Treatment Effect Estimation through Deep Learning. arXiv 2018, arXiv:1810.11010v1.
57. Grimmer, J.; Messing, S.; Westwood, S. Estimating Heterogeneous Treatment Effects and the Effects of Heterogeneous Treatments

with Ensemble Methods. Polit. Anal. 2017, 25, 413–434. [CrossRef]
58. Kallus, N.; Puli, A.; Shalit, U. Removing Hidden Confounding by Experimental Grounding. arXiv 2018, arXiv:1810.11646v1.
59. Kallus, N.; Zhou, A. Confounding-Robust Policy Improvement. arXiv 2018, arXiv:1805.08593v2.
60. Knaus, M.; Lechner, M.; Strittmatter, A. Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo

Evidence. arXiv 2018, arXiv:1810.13237v1.
61. Kunzel, S.; Walter, S.; Sekhon, J. Causaltoolbox—Estimator Stability for Heterogeneous Treatment Effects. arXiv 2019,

arXiv:1811.02833v1.
62. Levy, J.; van der Laan, M.; Hubbard, A.; Pirracchio, R. A Fundamental Measure of Treatment Effect Heterogeneity. arXiv 2018,

arXiv:1811.03745v1.
63. Rhodes, W. Heterogeneous Treatment Effects: What Does a Regression Estimate? Eval. Rev. 2010, 34, 334–361. [CrossRef]
64. Yao, L.; Lo, C.; Nir, I.; Tan, S.; Evnine, A.; Lerer, A.; Peysakhovich, A. Efficient Heterogeneous Treatment Effect Estimation with

Multiple Experiments and Multiple Outcomes. arXiv 2022, arXiv:2206.04907.
65. Wang, Y.; Wu, P.; Liu, Y.; Weng, C.; Zeng, D. Learning Optimal Individualized Treatment Rules from Electronic Health Record

Data. In Proceedings of the IEEE International Conference on Healthcare Informatics (ICHI), Chicago, IL, USA, 4–7 October 2016;
IEEE: Piscataway, NJ, USA, 2016; pp. 65–71.

66. Curth, A.; van der Schaar, M. On Inductive Biases for Heterogeneous Treatment Effect Estimation. In Proceedings of the 35th
Conference on Neural Information Processing Systems (NeurIPS 2021), Virtual, 6–14 December 2021; pp. 1–12.

67. Du, X.; Fan, Y.; Lv, J.; Sun, T.; Vossler, P. Dimension-Free Average Treatment Effect Inference with Deep Neural Networks. arXiv
2021, arXiv:2112.01574.

https://openreview.net/forum?id=NkJ60ZZkcrW
http://dx.doi.org/10.1137/1109020
http://dx.doi.org/10.1017/S0962492921000027
http://dx.doi.org/10.1080/07350015.2020.1800479
http://dx.doi.org/10.1016/j.knosys.2015.01.010
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1214/18-EJS1439
http://dx.doi.org/10.1080/01621459.2015.1093947
http://dx.doi.org/10.1093/bioinformatics/btx174
http://dx.doi.org/10.1017/pan.2017.15
http://dx.doi.org/10.1177/0193841X10372890

Algorithms 2023, 16, 226 24 of 25

68. Nair, N.; Gurumoorthy, K.; Mandalapu, D. Individual Treatment Effect Estimation Through Controlled Neural Network Training
in Two Stages. arXiv 2022, arXiv:2201.08559.

69. Nie, L.; Ye, M.; Liu, Q.; Nicolae, D. Vcnet and functional targeted regularization for learning causal effects of continuous
treatments. In Proceedings of the International Conference on Learning Representations (ICLR 2021), Virtual, 3–7 May 2021;
pp. 1–24.

70. Parbhoo, S.; Bauer, S.; Schwab, P. Ncore: Neural counterfactual representation learning for combinations of treatments. arXiv
2021, arXiv:2103.11175.

71. Qin, T.; Wang, T.Z.; Zhou, Z.H. Budgeted Heterogeneous Treatment Effect Estimation. In Proceedings of the 38th International
Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; Volume 139, pp. 8693–8702.

72. Schwab, P.; Linhardt, L.; Bauer, S.; Buhmann, J.; Karlen, W. Learning counterfactual representations for estimating individual
dose-response curves. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020;
Volume 34, pp. 5612–5619.

73. Veitch, V.; Wang, Y.; Blei, D. Using Embeddings to Correct for Unobserved Confounding in Networks. In Proceedings of the 33rd
Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; pp. 1–11.

74. Chaudhari, S.; Mithal, V.; Polatkan, G.; Ramanath, R. An attentive survey of attention models. arXiv 2021, arXiv:1904.02874.
75. Guo, W.; Wang, S.; Ding, P.; Wang, Y.; Jordan, M. Multi-Source Causal Inference Using Control Variates. arXiv 2021,

arXiv:2103.16689.
76. Imbens, G. Nonparametric estimation of average treatment effects under exogeneity: A review. Rev. Econ. Stat. 2004, 86, 4–29.

[CrossRef]
77. Park, J.; Shalit, U.; Scholkopf, B.; Muandet, K. Conditional Distributional Treatment Effect with Kernel Conditional Mean

Embeddings and U-Statistic Regression. In Proceedings of the 38th International Conference on Machine Learning, PMLR,
Virtual, 18–24 July 2021; Volume 139, pp. 8401–8412.

78. Ghassabeh, Y.; Rudzicz, F. The mean shift algorithm and its relation to kernel regression. Inf. Sci. 2016, 348, 198–208. [CrossRef]
79. Hanafusa, R.; Okadome, T. Bayesian kernel regression for noisy inputs based on Nadaraya–Watson estimator constructed from

noiseless training data. Adv. Data Sci. Adapt. Anal. 2020, 12, 2050004-1–2050004-17. [CrossRef]
80. Konstantinov, A.; Utkin, L.; Kirpichenko, S. AGBoost: Attention-based Modification of Gradient Boosting Machine. In Proceedings

of the 31st Conference of Open Innovations Association (FRUCT), Helsinki, Finland, 27–29 April 2022; IEEE: Piscataway, NJ, USA,
2022; pp. 96–101.

81. Liu, F.; Huang, X.; Gong, C.; Yang, J.; Li, L. Learning Data-adaptive Non-parametric Kernels. J. Mach. Learn. Res. 2020, 21, 1–39.
82. Shapiai, M.; Ibrahim, Z.; Khalid, M.; Jau, L.W.; Pavlovich, V. A Non-linear Function Approximation from Small Samples Based on

Nadaraya-Watson Kernel Regression. In Proceedings of the 2010 2nd International Conference on Computational Intelligence,
Communication Systems and Networks, Liverpool, UK, 28–30 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 28–32.

83. Xiao, J.; Xiang, Z.; Wang, D.; Xiao, Z. Nonparametric kernel smoother on topology learning neural networks for incremental and
ensemble regression. Neural Comput. Appl. 2019, 31, 2621–2633. [CrossRef]

84. Zhang, Y. Bandwidth Selection for Nadaraya-Watson Kernel Estimator Using Cross-Validation Based on Different Penalty
Functions. In Proceedings of the International Conference on Machine Learning and Cybernetics (ICMLC 2014), Lanzhou,
China, 13–16 July 2014; Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2014;
Volume 481, pp. 88–96.

85. Park, B.; Lee, Y.; Ha, S. L2 boosting in kernel regression. Bernoulli 2009, 15, 599–613. [CrossRef]
86. Noh, Y.K.; Sugiyama, M.; Kim, K.E.; Park, F.; Lee, D. Generative Local Metric Learning for Kernel Regression. In Proceedings of

the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30,
pp. 1–11.

87. Conn, D.; Li, G. An oracle property of the Nadaraya-Watson kernel estimator for high-dimensional nonparametric regression.
Scand. J. Stat. 2019, 46, 735–764. [CrossRef]

88. De Brabanter, K.; De Brabanter, J.; Suykens, J.A.K.; De Moor, B. Kernel Regression in the Presence of Correlated Errors. J. Mach.
Learn. Res. 2011, 12, 1955–1976.

89. Szczotka, A.; Shakir, D.; Ravi, D.; Clarkson, M.; Pereira, S.; Vercauteren, T. Learning from irregularly sampled data for
endomicroscopy super-resolution: A comparative study of sparse and dense approaches. Int. J. Comput. Assist. Radiol. Surg. 2020,
15, 1167–1175. [CrossRef]

90. Liu, X.; Min, Y.; Chen, L.; Zhang, X.; Feng, C. Data-driven Transient Stability Assessment Based on Kernel Regression and
Distance Metric Learning. J. Mod. Power Syst. Clean Energy 2021, 9, 27–36. [CrossRef]

91. Ito, T.; Hamada, N.; Ohori, K.; Higuchi, H. A Fast Approximation of the Nadaraya-Watson Regression with the k-Nearest
Neighbor Crossover Kernel. In Proceedings of the 2020 7th International Conference on Soft Computing & Machine Intelligence
(ISCMI), Stockholm, Sweden, 14–15 November 2020; pp. 39–44.

92. Ghalebikesabi, S.; Ter-Minassian, L.; Diaz-Ordaz, K.; Holmes, C. On Locality of Local Explanation Models. In Proceedings of the
35th Conference on Neural Information Processing Systems (NeurIPS 2021), Virtual, 6–14 December 2021; pp. 1–13.

93. Zhang, A.; Lipton, Z.; Li, M.; Smola, A. Dive into Deep Learning. arXiv 2021, arXiv:2106.11342.
94. Rubin, D. Causal inference using potential outcomes: Design, modeling, decisions. J. Am. Stat. Assoc. 2005, 100, 322–331.

[CrossRef]

http://dx.doi.org/10.1162/003465304323023651
http://dx.doi.org/10.1016/j.ins.2016.02.020
http://dx.doi.org/10.1142/S2424922X20500047
http://dx.doi.org/10.1007/s00521-017-3218-y
http://dx.doi.org/10.3150/08-BEJ160
http://dx.doi.org/10.1111/sjos.12370
http://dx.doi.org/10.1007/s11548-020-02170-7
http://dx.doi.org/10.35833/MPCE.2019.000581
http://dx.doi.org/10.1198/016214504000001880

Algorithms 2023, 16, 226 25 of 25

95. Rosenbaum, P.; Rubin, D. The central role of the propensity score in observational studies for causal effects. Biometrika 1983,
70, 41–55. [CrossRef]

96. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
97. Kha, Q.H.; Ho, Q.T.; Le, N.Q.K. Identifying SNARE Proteins Using an Alignment-Free Method Based on Multiscan Convolutional

Neural Network and PSSM Profiles. J. Chem. Inf. Model. 2022, 62, 4820–4826. [CrossRef] [PubMed]
98. Le, N.Q.K.; Ho, Q.T.; Ou, Y.Y. Using two-dimensional convolutional neural networks for identifying GTP binding sites in Rab

proteins. J. Bioinform. Comput. Biol. 2019, 17, 1950005. [CrossRef] [PubMed]
99. Friedman, J. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1093/biomet/70.1.41
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1021/acs.jcim.2c01034
http://www.ncbi.nlm.nih.gov/pubmed/36166351
http://dx.doi.org/10.1142/S0219720019500057
http://www.ncbi.nlm.nih.gov/pubmed/30866734
http://dx.doi.org/10.1016/S0167-9473(01)00065-2

	Introduction
	Related Work
	A Formal Problem Statement
	The TNW-CATE Description
	Numerical Experiments
	General Parameters of Experiments
	CATE Estimators for Comparison
	Base Models for Implementing Estimators
	Other Parameters of Numerical Experiments
	Functions for Generating Datasets

	Study of the TNW-CATE Properties
	Experiments with Numbers of Training Data
	Experiments with Different Values of the Treatment Ratio
	Experiments with Different Values of

	Real Dataset

	Conclusions
	References

