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Abstract: The problem regarding the optimal placement and sizing of different FACTS (flexible
alternating current transmission systems) in electrical distribution networks is addressed in this
research by applying a master–slave optimization approach. The FACTS analyzed correspond to the
unified power flow controller (UPFC), the thyristor-controlled shunt compensator (TCSC, also known
as the thyristor switched capacitor, or TSC), and the static var compensator (SVC). The master stage is
entrusted with defining the location and size of each FACTS device using hybrid discrete-continuous
codification through the application of the black widow optimization (BWO) approach. The slave
stage corresponds to the successive approximations power flow method based on the admittance
grid formulation, which allows determining the expected costs of the energy losses for a one-year
operation period. The numerical results in the IEEE 33-, 69-, and 85-bus grids demonstrate that the
best FACTS device for locating in distribution networks is the SVC, given that, when compared to the
UPFC and the TCSC, it allows for the best possible reduction in the equivalent annual investment
and operating cost. A comparative analysis with the General Algebraic Modeling System software,
with the aim to solve the exact mixed-integer nonlinear programming model, demonstrated the
proposed BWO approach’s effectiveness in determining the best location and size for the FACTS in
radial distribution networks. Reductions of about 12.63% and 13.97% concerning the benchmark
cases confirmed that the SVC is the best option for reactive power compensation in distribution grids.

Keywords: black widow optimizer (BWO); flexible alternating current transmission systems (FACTS);
medium-voltage distribution networks; static var compensator (SVC); thyristor-controlled shunt
compensator (TCSC); unified power flow controller (UPFC)

1. Introduction
1.1. General Context

The electrical power system comprises the generation, transmission, and distribution
phases. In the distribution stage, the electrical energy finally reaches the consumer at
medium- and low-voltage levels [1]. Given the voltage levels, distribution networks take
up hundreds of kilometers in urban and rural grids, which implies that maintaining a high-
quality level during their operation is a difficult task for distribution companies [2]. One of
the key factors for distribution networks corresponds to the possibility of extending the
electrical service to new potential end users while ensuring low power levels [3,4]. In the
Colombian context, medium- and low-voltage distribution grids can have energy losses
between 14.5% and 21.8% [5]. However, regulatory entities only recognize distribution
companies through their energy pricing for an end-user transfer as a maximum 8% of
the total energy losses costs, which implies that improving the efficiency of distribution
systems is a pending task for Colombian distribution companies [6].
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1.2. Motivation

Energy losses in distribution networks are high in comparison with transmission
systems, as distribution grids operating at medium- and low-voltage levels are constructed
considering a radial topology (a connected tree with only one path between the substation
and each load node) [7]. These grids are built with a radial structure to reduce investment
costs and the complexities of coordinating protection devices [8]. To minimize energy loss
indices in radial distribution networks, the following strategies are typically employed:
(i) optimal grid reconfiguration using available tie-lines [9]; (ii) the optimal placement of
dispersed generators and energy storage systems [10,11], and (iii) the optimal siting and siz-
ing of shunt reactive power compensators [12]. This research aims at reducing the expected
energy losses costs by proposing the efficient integration of FACTS (flexible alternating
current transmission systems) devices in the grid. The FACTS analyzed correspond to the
unified power flow controller (UPFC), the thyristor-controlled shunt compensator (TCSC),
and the static var compensator (SVC) [13].

The main idea of integrating FACTS in distribution networks is to determine the
expected reductions that can be reached with different shunt reactive power compensators
based on power electronic interfaces regarding energy loss reductions. This is an alter-
native to classical fixed-step capacitor banks [14]. Therefore, in this research, our efforts
are focused on locating and sizing UPFCs, TCSCs, and SVCs in distribution networks
with radial or meshed topologies, because the current literature mainly deals with SVCs
(or distribution static compensators, D-STATCOMs) [15,16] and conventional fixed-step
capacitor banks [17].

1.3. Literature Review

With the advancements made in power electronics, different devices have been created
to maximize the use of existing transmission and distribution networks, as is the case of
FACTS devices. These not only allow increasing the changeability of the circuits but also
reducing losses, regulating voltage values, and improving the power quality and stability
of the system [18]. Several authors have focused on establishing different models that
enhance the performance of distribution networks via shunt reactive power compensators.
The authors of [19] proposed a particle swarm optimization model to determine the op-
timal location of various types of controlled FACTS devices and thus increase the power
transmission capacity of the lines. The study included selecting the optimal device among
three options (UPFC, TCSC, and SVC), as well as their location and selection of parameters.
The article aimed to maximize the cost–benefit, increase grid loadability, and reduce power
losses. The IEEE 30-bus grid was used to evaluate the effectiveness of this optimization
approach. The location and configuration of FACTS devices by means of the cross-entropy
method were presented in [20]. The main idea of integrating FACTS into power systems is
to reduce congestion and line losses by minimizing the number of devices used. A sim-
ulation of a 30-node IEEE test system was performed through the implementation of an
optimal power solution that considered an economic objective function.

In [21], the moth flame optimization algorithm was implemented to solve the optimal
power flow in power grids by including FACTS in the existing infrastructure. The objective
of this solution is achieving the reduction in the grid power losses and keeping the voltage
levels stable. Variable control was carried out by controlling the reactive power of the
generator, configuring the TAPs in the transformers, and setting the parameters of the
FACTS. Numerical validations were carried out in the IEEE 57-node test system using
SVCs, TCSCs, and thyristor-controlled phase angle regulators. In [22], the maximization of
the power system’s loadability was sought through the optimal location of FACTS devices.
For this case, TCSC and UPFC devices were used. The improved moth flame optimization
method was implemented to obtain the maximum objective function values, and numerical
simulations were implemented in the IEEE 30-bus system. It is worth noting that this study
aimed to maximize the loadability of the power system, reduce power losses, and minimize
voltage variations.
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A new multi-objective optimization algorithm was proposed in [13], known as a multi-
objective multiverse optimizer, which is employed to determine the location of FACTS in the
power system. Thus, it is possible to establish the optimal configurations of the FACTS in
order to improve the voltage profiles and reduce power losses. Numerical validations were
performed in the IEEE 57-node test system.

In the case of medium-voltage distribution networks, some of the applications regard-
ing FACTS are associated with the optimal integration of distribution static compensations
(D-STATCOMs), which essentially correspond to the use of SVC technology with regard
to voltage distribution levels [23]. The authors of [24] proposed the optimal integration of
D-STATCOMs in radial distribution networks to minimize the expected annual costs of
energy losses while considering the investments associated with reactive power compen-
sators. The IEEE 33- and IEEE 69-bus grids were employed as test systems. The resulting
mixed-integer nonlinear programming (MINLP) model was solved by implementing the
discrete-continuous version of the vortex search algorithm. Numerical results improved
the values reached with some exact MINLP solvers available in the General Algebraic
Modeling System (GAMS) software.

In [25], the discrete-continuous version of the vortex search algorithm was imple-
mented to define the optimal location and sizing of D-STATCOMs in radial distribution
networks. Numerical results in the IEEE 33- and IEEE 69-bus grids showed an efficient
numerical performance regarding processing times in comparison with the vortex search
algorithm. Additional works regarding the optimal placement of FACTS in electrical
distribution networks include sensitivity factors based on stability and power losses in-
dices [26], genetic algorithms [27], and convex approximations [16], among others. Note
that the main feature of these works is the use of an economic objective function that seeks
to minimize the expected energy loss costs, including the investments made in reactive
power compensators.

1.4. Contributions and Scope

Considering the above-presented review of the state of the art, this research makes the
following contributions:

i. The efficient integration of multiple FACTS into radial distribution networks, i.e., UPFC,
SVC, and TCSC, applying the black widow optimization algorithm (BWO) and using
discrete-continuous codification.

ii. A validation of the effectiveness of the proposed BWO while considering the exist-
ing literature reports regarding the optimal placement and sizing of D-STATCOMs
(modeled as an SVC device).

It is worth mentioning that in this research, all the FACTS considered are modeled
using cubic functions that represent the investment costs, as reported in [28]. In addition,
the multi-period power flow approach based on successive approximations is implemented
within the framework of a master–slave strategy, in order to quantify the expected energy
loss costs. The BWO approach is the master stage, entrusted with defining the optimal
location and size of the FACTS devices, which is then evaluated via the successive approxi-
mations power flow (SAPF) method. Regarding the UPFC, it is essential to mention that
this research only uses it for managing the reactive power injected into the connected node,
as its series component cannot control the active power flow in the distribution branch.
This is due to the radial structure of the distribution grid, where the active power flow
is only necessary to support the load consumptions downstream of the node and branch
where the UPFC is installed.

The selection of the master–slave approach, which is based on the hybridization of
the BWO (master stage) and the SAPF (slave stage) for dealing with the exact MINLP
model associated with the location and sizing of FACTS devices in distribution networks,
was based on the fact that the MINLP problem can be easily decoupled into two sub-
problems, i.e., the binary (integer) problem and the continuous problem. The solution
of the integer component of the model is easily reached with combinatorial optimization
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methods (such as the BWO approach), and the continuous part can be efficiently solved
with numerical methods applicable to the power flow problem in distribution networks
(i.e., the SAPF approach).

Note that the BWO approach is selected in this research as the master optimization
method, as it has been proven to be an excellent population-based optimization technique
to deal with continuous and integer optimization problems in the current literature [29].
This algorithm can be easily implemented, and its efficiency lies in its similarities with
classical genetic optimization algorithms regarding its evolution rules [30]. In addition,
after a complete review of the state of the art regarding the location and sizing of FACTS in
distribution networks, no evidence for the application of the BWO and its hybridization
with the SAPF was found, which constitutes a clear research opportunity.

1.5. Structure of the Document

The remainder of this research is structured as follows. Section 2 presents the exact
MINLP formulation regarding the optimal placement and sizing of FACTS in electrical
distribution networks. Section 3 describes the main aspects of the proposed solution
methodology based on the hybridization of the BWO with the SAPF using a master–slave
optimization strategy. Section 4 shows the main characteristics of the test feeders, i.e.,
the IEEE 33- and 69-bus grids with radial configuration, including the active and reactive
power curves and the parameters required for evaluating the objective function. Section 5
presents the numerical validations of the proposed BWO approach to the efficient location
and sizing of FACTS in radial distribution networks while performing a comparative
analysis with the existing literature reports. Finally, Section 6 lists the conclusions obtained
from this research and some possible future developments.

2. Mathematical Formulation

The problem regarding the optimal integration of shunt reactive power compensators
in medium-voltage distribution networks involves the minimization of the expected an-
nual grid operating costs associated with the energy losses and the investments made in
compensation devices. The main characteristic of the problem is a mixed-integer nonlinear
programming (MINLP) structure. The binary/integer part fits the variables associated with
the nodes where the compensator devices must be installed. The continuous component of
the model refers to the power generation inputs and the voltage magnitudes and angles,
as well as the sizes of the reactive power compensators, among others. The general MINLP
formulation of the studied problem is detailed below.

2.1. Objective Function Formulation

The main idea of integrating reactive power compensators in distribution networks is
to minimize the annual equivalent operating costs, corresponding to the sum of the expected
yearly costs of energy losses and the investment made in reactive power compensators.
The expected annual operating costs associated with the energy losses are defined in
Equation (1) [25].

z1 = CkWhT ∑
h∈H

∑
k∈N

∑
m∈N

Ykmvkhvmh cos(δkh − δmh − θkm)∆h, (1)

where z1 defines the objective function value regarding the annual grid power losses costs;
CkWh corresponds to the average energy losses costs; T is the number of days in a year;
Ykm is an element of the admittance matrix associated with the connection of the nodes k
and m; vkh defines the voltage magnitude at node k in the period h; vkh defines the voltage
magnitude at node m in the period h; δkh is the variable associated with the voltage angle at
node k in the period h; δmh is the variable associated with the angle of the voltage at node k
in the period h; θkm is a parameter associated with the angle of the impedance that relates
nodes k and m; and ∆h is a parameter associated with the number of periods in the daily
analysis, typically defined as an hour or fractions of it. In addition, N is the set containing
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all network nodes, andH is the set associated with the number of periods considered in
the daily analysis period.

Note that the objective function in (1) is the classical representation of the expected
power losses in all transmission/distribution lines, as a function of the nodal admittance
matrix, the voltage profiles, and the cosine function of the voltage and admittance an-
gles [25]. These power losses are summarized for the daily operation scenario under
analysis. With this information, the annual expected costs are also calculated, using the
average energy cost rate and the number of days in an ordinary year.

Equation (2) defines the investment costs regarding the reactive power compensators,
which is modeled as a cubic function, as reported by the authors of [28]. The distinctive
characteristic of the objective function (2) is its mathematical structure, i.e., it is a non-
convex cubic function. However, the main idea of this function structure is to consider a
linear component associated with the investment costs per capacity, in addition to the fact
that the quadratic and cubic terms are related to the variable reactive power production
costs, which can involve factors regarding the maintenance and degradation of the FACTS
devices during their useful life.

z2 = T
(

k1

k2

)
∑

k∈N

(
ω1

(
qcomp

k

)2
+ ω2qcomp

k + ω3

)
qcomp

k , (2)

where z2 defines the objective function value regarding the investment costs of the shunt
power compensators; k1 and k2 are positive constant parameters associated with the annu-
alization of the investment costs of the shunt compensators while considering a planning
period of 10 years [27]; qcomp

k is the nominal size of the shunt reactive power compensator
located at node k; and ω1, ω2, and ω3 are the cubic, quadratic, and linear coefficients
regarding the investment costs of the shunt reactive power compensators.

Note that z1 and z2 are defined as the objective function for the problem regarding the
optimal siting and sizing of FACTS in electrical distribution networks, i.e., the sum of the
investment and operating costs in zcost, as presented in Equation (3) [16].

min zcost = z1 + z2, (3)

Remark 1. The main characteristic of the objective function in (3) is that each one of its components
(i.e., z1 and z2) are non-convex objective functions due to the presence of trigonometric and cubic
functions. In order for them to be minimized, they require efficient optimization methodologies that
deal with nonlinear non-convex function spaces.

2.2. Set of Constraints

The constraints associated with the problem under study include active and reactive
power balance, voltage regulation bounds, and limitations regarding the reactive power
injected with the FACTS, among others. The set of considered constraints is listed from (4)
to (9).

Equations (4) and (5) represent the active and reactive power equilibrium per node
and period of time, which are obtained after combining Kirchhoff’s first and second laws
while using Tellegen’s theorem [25].

pg
kh − Pd

kh = ∑
kεN

∑
mεN

Ykmvkhvmh cos(δkh − δmh − θkm), {∀k ∈ N , h ∈ H}, (4)

qg
kh + qcomp

kh −Qd
kh = ∑

kεN
∑

mεN
Ykmvkhvmh sin(δkh − δmh − θkm), {∀k ∈ N , h ∈ H}, (5)

where pg
kh and Pd

kh represent the active power generation and the power demanded at k in
the period h; qg

kh corresponds to the reactive power generation at node k in the period h;
qcomp

kh represents the reactive power injection in the FACTS device connected at node k and
time h; and Qd

kh denotes the reactive power consumed at node k in the period h.
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The box-type constraint defined in (6) is known as the voltage regulation constraint
in the specialized literature, and it is typically imposed by regulatory entities in order to
ensure a service of good quality for all end users connected to the electrical system [31].

Vmin ≤ vkh ≤ Vmax, {∀k ∈ N , h ∈ H}, (6)

where Vmin and Vmin are the minimum and maximum voltage limits that can be assigned
to the variable vkh for each node and period.

To adequately integrate compensation devices into distribution networks, it is neces-
sary to define their nominal operating sizes within the typical ranges available. At medium-
voltage levels, distribution grids are typically designed to supply between 3 and 10 MVA.
The sizes of the FACTS are limited by the box-type constraint (7) [16].

ykQcomp
min ≤ qcomp

k ≤ ykQcomp
max , {∀k ∈ N}, (7)

where yk is a binary variable that defines the location (yk = 1) or not (yk = 0) of a shunt
reactive power compensator at node k; and Qcomp

min and Qcomp
max represent the minimum and

maximum sizes allowed for the FACTS devices in the distribution network, which are
typically between 0 and 2000 kvar [25].

Once the nominal sizes of the FACTS devices are defined, the next step in their optimal
operation is defining the power injection for each period of time. This box-type constraint
is defined in (8) [32]. In addition, the amount of FACTS devices available for installation is
defined in (9) [25].

−qcomp
k ≤ qcomp

kh ≤ qcomp
k , {∀k ∈ N , h ∈ H}, (8)

∑
k∈N

yk ≤ Ncomp
A , (9)

where Ncomp
A is a constant parameter that defines the number of FACTS available for

installation in the distribution network.

2.3. Model Interpretation and Characterization

The general MINLP model defined from (1) to (9) can be interpreted as follows:

i. The first component of the objective function, defined in (1), is associated with the
annualized expected costs of energy losses in all the branches of the distribution
network. The second component of the objective function, presented in Equation (2),
quantifies the expected investment in FACTS to be installed. In addition, the sum of
both components defines the objective function studied in this research, as presented
in Equation (3).

ii. Equation (4) and Equation (5) correspond to the power equilibrium restrictions per
node and period. These are nonlinear and non-convex constraints whose solution
requires the implementation of a numerical method.

iii. The voltage regulation constraint is defined in Equation (6). This is one of the most
typical operating conditions for electrical networks, as it is imposed by regulatory
entities at any voltage level in order to ensure the quality of the voltage service for all
end users [33].

iv. Equation (7) is a binary constraint that defines whether a FACTS device will be
installed at a particular node k. If yk = 1, the compensation device is sized; otherwise,
its size must be zero. Box-type constraint (8) sets the daily dispatch of a FACTS device
connected at node k by defining the reactive power injection per period. In addition,
inequality constraint (9) defines the maximum number of compensation devices
available for installation in the distribution network under analysis.
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Remark 2. Given the complexity of the optimization model (1)–(9) (i.e., the nonlinearities and
non-convexities of the objective function and the power balance constraints), and as recommended
by the authors of [25], one of the most suitable optimization approaches is the hybridization of
a combinatorial optimizer with an efficient power flow approach within a master–slave program-
ming structure.

To illustrate the complexity of the exact MINLP model defined in (1)–(9), Table 1
presents the number of variables and equality and inequality constraints that make up this
optimization model. Note that, in order to quantify the number of variables and constraints,
n represents the total number of nodes of the network, and h denotes the total periods
of analysis.

Table 1. Number of variables and equations that make up the MINLP model under analysis.

Equations Type Number

Energy losses costs (Equation (1)) Equality 1
Investment costs of FACTS devices (Equation (2)) Equality 1
Objective function (Equation (3)) Equality 1
Active power balance (Equation (4)) Equality nh
Reactive power balance (Equation (5)) Equality nh
Voltage regulation (Equation (6)) Inequality nh
FACTS nominal size (Equation (7)) Inequality n
FACTS daily operation (Equation (8)) Inequality nh
FACTS availability (Equation (9)) Inequality 1

Total equalities and inequalities (4h + 1)n + 4

Variables Type Number

Objective function Real 3
Active power Real nh
Reactive power Real (2h + 1)n
Voltage magnitudes Real nh
Voltage angles Real nh
FACTS location Binary n

Total variables (5h + 2)n + 3

Note that the number of equations and variables in Table 1 increases polynomially
with the number of nodes and periods of study. The number of equalities and inequalities
is (4h + 1)n + 4, and the number of variables is (5h + 2)n + 3. Note that, for the IEEE 33-,
69-, and 85-node test feeders, when 48 periods of 30 min are considered, the number of
equations is 6373, 13,321, and 16,409. In contrast, the number of variables for each test
feeder is 7989, 16,701, and 20,573, respectively. Considering the above, it is important to
mention that the expected processing times will increase as a function of the number of
nodes and periods of analysis when using exact algorithms or master–slave approaches.

This research proposes the hybridization of the black widow algorithm and the succes-
sive approximations power flow (SAPF) method as a new optimization approach to deal
with the problem regarding the optimal siting and sizing of FACTS in medium-voltage
distribution grids. The main details of the proposed solution methodology are presented in
Section 3.

3. Solution Methodology

This section presents the main aspects of the proposed master–slave optimization strat-
egy to deal with the studied problem via the hybridization of the black widow algorithm
and the SAPF method. In the master stage, the black widow optimizer (BWO) defines
the set of nodes and potential sizes of the FACTS to be installed. In turn, the successive
approximations power flow method is entrusted with solving the nonlinear constraints (4)
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and (5) and determining the annual expected costs of the energy losses in the slave stage.
The general aspects of the BWO and the SAPF method are presented below.

3.1. Black Widow Optimization Algorithm

The BWO is a bio-inspired combinatorial optimization algorithm based on the behavior
of the black widow spider [28]. Spiders are arthropods commonly recognized for having
eight legs and venomous fangs in some cases. Black widows belong to the group of
arachnids and are mainly nocturnal; it is at night when they build their webs. It is usual for
females to spend most of their lives in the same place, where they secrete certain hormones
that attract males. The name black widow stems from the cannibalistic practices that occur
during or after the fertilization of their eggs, where the female devours the male [34].
However, this is not the only time at which cannibalism has been observed in these spiders,
as their young devour each other—and even their mother in some cases. Therefore, in this
optimization method, only the most capable spiders survive, allowing to solve complex
problems by representing this behavior via evolution rules [35].

The main characteristics of the BWO are presented in Figure 1.

Start

Generate the ini-
tial population.

Evaluate the fitness
function (slave stage).

Is the
stopping
criteria

met?

End

Select the ran-
dom parents.

Procreation stage.

Cannibalism stage.

Mutation stage.

Update the population.

Evaluate the fitness
function (slave stage).

YES

NO

Figure 1. General flow diagram of the BWO approach for solving optimization problems.
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Each of the main evolution aspects of the BWO depicted in Figure 1 is presented below.

3.1.1. Initial Population

As is typical in combinatorial optimization algorithms, the BWO explores and exploits
the solution space by using a set of potential solutions known as the initial population [36].
An individual in the initial population takes the following form:

xt
i =

[
10, 25, · · · , k | 1.2570, 0.1985, · · · , qcomp

k

]
, i = 1, 2, . . . , Ns (10)

where xt
i is the ith potential solution (ith spider) at iteration t, and Ns is the number of

spiders in the initial population, i.e., the number of candidate solutions. Note that the
generation of the initial population is a random process, where the structure of each
potential solution in (10) was generated with a uniform distribution [37].

Remark 3. Each of the potential solution candidates defined by (10) is reviewed to ensure that the
first Ncomp

A positions are integer numbers between 2 and the number of nodes of the network (i.e., n,
which denotes the cardinality of the setN ). In addition, the remaining positions between Qcomp

min and
Qcomp

min are selected, using a uniform distribution with real numbers.

It is important to note that the codification employed in this research is discrete-
continuous, as the BWO generates the set of nodes where the FACTS must be installed with
their corresponding expected sizes [25].

3.1.2. Procreation Stage

This stage of the BWO emulates the generation of multiple solution individuals,
i.e., new spiders descending from the initial parents [35]. In the wild, each mating produces
about 1000 eggs, out of which only the strongest spiders survive. The general procreation
rule in the BWO is defined in (11).{

yt
i = α× xt

i + (1− α)× xt
j

yt
j = α× xt

j + (1− α)× xt
i

(11)

where yt
i and yt

j are two spiderlings obtained after the union of the two parents xt
i and xt

j
in the procreation stage. Note that the parents i and j must be different, and α is a vector
with values between 0 and 1 and a uniform distribution, which can be associated with the
percentage of importance of each parent’s position in the generation of new spiderlings.

Remark 4. The number of spiderlings generated with rule (11) is defined in the parametrization of
the BWO algorithm. In addition, each yt

i and yt
i must be checked to ensure that its structure fulfills

the conditions assigned in (10). This stage is crucial because it allows keeping all potential solutions
feasible in the master optimization stage.

3.1.3. Cannibalism Stage

One of the main characteristics of black widow spiders is their cannibalistic nature,
where only strong individuals survive [34]. In this stage, three different cannibalistic
behaviors must be analyzed.

i. Sexual cannibalism, where the females devour the males during or after the procre-
ation stage.

ii. Spiderlings eating each other: in the BWO, this behavior is established using the
cannibalism index (CR), which specifies the number of survivors, i.e., the best solutions
after evaluation in the slave stage [28].

iii. The possibility that the parents are devoured by their offspring. The BWO evalu-
ates the possibility of replacing the parents in the current population with the best
spiderlings.
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3.1.4. Mutation Stage

In this stage, some of the spiderlings will evidence some distinctive characteristics
regarding the parents, which correspond to the mutations occurring in the natural evolu-
tion of species within their living communities. The mutation procedure is illustrated in
Equation (12). [

10, 25, . . . , k | 1.2570, 0.1985, . . . , qcomp
k

]
↓

[
k, 25, . . . , 10 | 1.2570, 0.1985, . . . , qcomp

k

]
, (12)

Remark 5. Note that, in order to evaluate the feasibility of the spiderlings in the mutation stage,
the rotation of the gens in the solution vector must be applied, preserving the exact nature of the
decision variables, i.e., only between nodes or only between FACTS sizes.

3.1.5. Stopping Criteria

The exploration and exploitation of the solution space with the BWO ends as follows:

i. When the maximum number of iterations tmax is reached.
ii. If, after kmax iterations, the objective function does not exhibit any improvement (local

stopping criteria).
iii. When the desired convergence is reached.

For more details regarding the implementation of the BWO approach, the reader
should consult the references [29,38]

3.2. Slave Stage: Successive Approximation Power Flow Method

As observed in the BWO algorithm depicted in Figure 1, the evolution of the initial
population through the solution space, as well as the application of the cannibalism and
mutation stages, requires the evaluation of the potential solutions by the slave stage [36].
In this optimization model (1)–(8), the slave stage is used to evaluate each potential FACTS
location and size in the power balance constraints (4) and (5). To solve these equations, a nu-
merical method must be used in order to find a solution with adequate convergence [39].

This research adopts the SAPF method to solve the power flow problem in electri-
cal distribution networks due to its easy implementation and efficient convergence [40].
The general SAPF formula is defined in Equation (13).

Vm+1
dh = −Y−1

dd

(
diag−1(Vm,?

dh
)(

S?dh − S?comp

)
+ YdgVgh

)
, {∀h ∈ H} (13)

where m is the iteration counter; Vdh is a complex vector containing the voltage variables
in all the demand nodes per period; Vgh corresponds to a vector that contains the voltage
values in the slack source; Ydd is a square matrix associated with the admittance relations
between demand nodes; Ydg is a rectangular matrix that contains the complex relations
between the demand and slack nodes; Sdh is a vector containing the set of constant de-
mand power loads per node and period; and Scomp corresponds to the vector of complex
power injections at the nodes where the FACTS must be placed. Note that X? denotes the
application of the conjugate operator to the complex vector X.

Remark 6. Note that the vector Scomp contains the variables that relate the master stage to the slave
stage, as the former defines the set of nodes and FACTS sizes. This is fixed in the slave stage to solve
the power flow problem with the recursive Formula (13).
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The convergence criterion applied to the power flow formula in (13), as recommended
by the authors of [40], is the error between two consecutive voltage iterations, i.e.,

max
h∈H

{∣∣∣|Vm+1
dh | − |V

m
dh|
∥∥∥} ≤ ε, (14)

where V0
dh corresponds to the vector with the initial voltage values, which are set as equal

to the voltage at the substation bus (i.e., Vgh). In addition, ε is the maximum tolerance error,
set as 1× 10−10 [40].

Once power flow Formula (13) has reached the desired convergence in (14), the ex-
pected grid power losses can be calculated:

z1 = CkWhT ∑
h∈H

V>h (Y
?Vh)∆h, (15)

where Vh is the vector containing the voltage profiles in the distribution network, including

the slack source per period, i.e., Vh =
[
Vgh Vdh

]>
, and Y is the nodal admittance matrix of

the distribution network under analysis.

4. Test Feeder Characterization

To validate the proposed optimization methodology for locating and sizing FACTS in
electrical distribution networks, the IEEE 33- and 69-bus grids with radial configurations
are considered as test feeders. The electrical configuration of both distribution networks is
depicted in Figure 2. In addition, their electrical parametrization regarding impedances
and peak load consumptions are listed in Tables 2 and 3, respectively.

To illustrate the effect of the daily active and reactive power profiles on the expected
annual grid operating costs, i.e., the costs of the energy losses defined by z1 in (1), the active
and reactive power curves considered in the simulation scenarios are depicted in Figure 3.

To evaluate the objective function, each component must be parameterized (i.e., z1
and z2) in Equations (1) and (2). The parameters of these equations are listed in Table 4.
Note that the costs of the FACTS were adapted from [28].
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Figure 2. IEEE test feeders under analysis: (a) IEEE 33- and (b) 69-bus grids.



Algorithms 2023, 16, 225 12 of 22

Table 2. IEEE 33-bus system parameters.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0922 0.0477 100 60 17 18 0.7320 0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640 0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042 1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089 0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512 0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980 0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8960 0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030 0.1034 60 25

10 11 0.1966 0.0650 45 30 26 27 0.2842 0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590 0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042 0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075 0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744 0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105 0.3619 210 100
16 17 1.2860 1.7210 60 20 32 33 0.3410 0.5302 60 40

Table 3. IEEE 69-bus system parameters.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0005 000012 0.00 0.00 3 36 0.0044 0,0108 26.00 18.55
2 3 0.0005 0.0012 0.00 0.00 36 37 0.0640 0.1565 26.00 18.55
3 4 0.0015 0.0036 0.00 0.00 37 38 0.1053 0.1230 0.00 0.00
4 5 0.0251 0.0294 0.00 0.00 38 39 0.0304 0.0355 24.00 17.00
5 6 0.3660 0.1864 2.60 2.20 39 40 0.0018 0.0021 24.00 17.00
6 7 0.3810 0.1941 40.40 30.00 40 41 0.7283 0.8509 1.20 1.00
7 8 0.0922 0.0470 75.00 54.00 41 42 0.3100 0.3623 0.00 0.00
8 9 0.0493 0.0251 30.00 22.00 42 43 0.0410 0.0478 6.00 4.30
9 10 0.8190 0.2707 28.00 19.00 43 44 0.0092 0.0116 0.00 0.00

10 11 0.1872 0.0619 145.00 104.00 44 45 0.1089 0.1373 39.22 26.30
11 12 0.7114 0.2351 145.00 104.00 45 46 0.0009 0.0012 29.22 26.30
12 13 1.0300 0.3400 8.00 5.00 4 47 0.0034 0.0084 0.00 0.00
13 14 1.0440 0.3450 8.00 5.50 47 48 0.0851 0.2083 79.00 56.40
14 15 1.0580 0.3496 0.00 0.00 48 49 0.2898 0.7091 384.70 274.50
15 16 0.1966 0.0650 45.50 30.00 49 50 0.0822 0.2011 384.70 274.50
16 17 0.3744 0.1238 60.00 35.00 8 51 0.0928 0.0473 40.50 28.30
17 18 0.0047 0.0016 60.00 35.00 51 52 0.3319 0.1114 3.60 2.70
18 19 0.3276 0.1083 0.00 0.00 9 53 0.1740 0.0886 4.35 3.50
19 20 0.2106 0.0690 1.00 0.60 53 54 0.2030 0.1034 26.40 19.00
20 21 0.3416 0.1129 114.00 81.00 54 55 0.2842 0.1447 24.00 17.20
21 22 0.0140 0.0046 5.00 3.50 55 56 0.2813 0.1433 0.00 0.00
22 23 0.1591 0.0526 0.00 0.00 56 57 1.5900 0.5337 0.00 0.00
23 24 0.3463 0.1145 28.00 20.00 57 58 0.7837 0.2630 0.00 0.00
24 25 0.7488 0.2475 0.00 0.00 58 59 0.3042 0.1006 100.00 72.00
25 26 0.3089 0.1021 14.00 10.00 59 60 0.3861 0.1172 0.00 0.00
26 27 0.1732 0.0572 14.00 10.00 60 61 0.5075 0.2585 1244.00 888.00
3 28 0.0044 0.0108 26.00 18.60 61 62 0.0974 0.0496 32.00 23.00

28 29 0.0640 0.1565 26.00 18.60 62 63 0.1450 0.0738 0.00 0.00
29 30 0.3978 0.1315 0.00 0.00 63 64 0.7105 0.3619 227.00 162.00
30 31 0.0702 0.0232 0.00 0.00 64 65 1.0410 0.5302 59.00 42.00
31 32 0.3510 0.1160 0.00 0.00 11 66 0.2012 0.0611 18.00 13.00
32 33 0.8390 0.2816 14.00 10.00 66 67 0.0470 0.0140 18.00 13.00
33 34 1.7080 0.5646 19.50 14.00 12 68 0.7394 0.2444 28.00 20.00
34 35 1.4740 0.4873 6.00 4.00 68 69 0.0047 0.0016 28.00 20.00
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Figure 3. Active and reactive power demand in a Colombian electrical distribution grid.

Table 4. Parametrization of the objective function considering different FACTS devices.

Par. Value Unit Par. Value Unit

CkWh 0.1390 USD/kWh T 365 Days
∆h 0.50 h k1 6/2190 1/Days
k2 10 Years — — —

FACTS parameters

Device ω1 (USD/Mvar3) ω2 (USD/Mvar2) ω1 (USD/Mvar)

SVC 0.30 −305.10 127,380
TCSC 1.50 −713.00 153,750
UPFC 0.30 −269.10 188,220

5. Numerical Results

For the computational implementation of the proposed master–slave strategy, MAT-
LAB software, Mathworks, Natick, Massachusetts, USA (version 2021b) was employed on
a PC with an AMD Ryzen 7 3700 2.3 GHz processor and 16.0 GB RAM, running a 64-bit
version of Microsoft Windows 10 Single Language. The BWO and the successive approxi-
mations power flow method were implemented with our own scripts. The parametrization
of the BWO includes 100 repetitions, 10 individuals in the population, and 1000 iterations.

The following simulation scenarios were considered to validate the effectiveness of
our approach to locating and sizing FACTS in electrical distribution networks.

i. C1: The validation of the proposed optimization approach with respect to the liter-
ature reports in the case of the IEEE 33- and 69-bus grids regarding the installation
of SVCs, which the authors of [25] have denoted as D-STATCOMs. For comparison
purposes, this research uses the vortex search algorithm (VSA), the hybrid genetic
algorithm with the particle swarm optimizer (GA/PSO), and the solution of the exact
MINLP model in GAMS. In order to make fair comparisons, all the listed combi-
natorial optimizers were set with the same population sizes, number of iterations,
and stopping criteria.

ii. C2: The evaluation of the proposed optimization approach, considering all three
FACTS analyzed (i.e., VSC, UPFC, and TCSC devices) in the IEEE 33-, 69, and 85-
bus grids.

Regarding the optimization algorithms used for comparison, it is essential to mention
the following.

i. The VSA is a combinatorial method from the family of physics-inspired optimizers
that models the behavior of fluids being shaken in pipes [41]. This behavior is modeled
through Gaussian distributions that allow exploring and exploiting the solution space
in optimization problems, starting with the highest possible hyper-ellipse that covers
the entire multi-dimensional space, where the hyper-center represents the best current
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solution [42]. The main idea is that all solutions are uniformly distributed in this hyper-
ellipse with a Gaussian distribution. Then, during the exploration process, the radius
of the hyper-ellipse is continuously reduced via Gamma functions, which allows
starting to exploit the solution space in the most promising region of solutions [43].

ii. The GA/PSO approach is a combination of the classical genetic algorithm (GA) with
the particle swarm optimizer (PSO) in a master–slave connection, where the GA is
used to define the set of nodes where the FACTS must be installed (using discrete
codification). In contrast, the PSO approach is entrusted with exploring the solution
space to define the best FACTS sizes [25]. The main characteristic of this master–
slave optimizer is the use of two nature-inspired algorithms to address complex
combinatorial optimization problems, where the GA is selected due to its excellent
performance for discrete variables [44], and the PSO is chosen based on its effectiveness
in dealing with continuous variables [45].

iii. The exact MINLP solvers in GAMS (i.e., the COUENNE and the BONMIN solvers) are
optimization tools that deal with MINLP models by using a combination of interior-
point methods and branch-and-cut algorithms to explore and exploit the solution
space [46]. The main advantage of using the GAMS software for solving MINLP
models is that the researcher focuses their attention on the mathematical modeling
and the accuracy in representing the real analyzed phenomena with equations, not on
the solution technique itself [47].

5.1. Comparative Analysis with Literature Reports

Table 5 presents the numerical results obtained when D-STATCOMs (SVCs) are in-
stalled in the IEEE 33- and 69-bus grids.

Table 5. Numerical results in the IEEE 33- and 69- grids when compared to the proposed BWO
approach and the literature reports.

IEEE 33-Bus Grid

Method Location Size (Mvar) zcost (USD/Year) Reduction (%) Time (s)

Benchmark case — — 112,740.90 — —

COUENNE
[
16, 17, 18

] [
0.0109, 0.0224, 0.2065

]
107,589.50 4.56 3.03

BONMIN
[
17, 18, 30

] [
0.0339, 0.0227, 0.2395

]
102,447.29 9.13 7.59

GA/PSO
[
14, 30, 31

] [
0.1599, 0.3497, 0.1117

]
98,511.63 12.62 6417.91

VSA
[
14, 30, 32

] [
0.1599, 0.3591, 0.1072

]
98,497.90 12.63 59.64

BWO
[
14, 30, 32

] [
0.1599, 0.3591, 0.1072

]
98,497.90 12.63 44.08

IEEE 69-Bus Grid

Method Location Size (Mvar) zcost (USD/Year) Reduction (%) Time (s)

Benchmark case — — 119,715.63 — —

GA/PSO
[
21, 61, 64

] [
0.0839, 0.4600, 0.1139

]
102,990.79 13.97 9325.89

VSA
[
21, 61, 64

] [
0.0839, 0.4601, 0.1139

]
102,990.79 13.97 202.66

BWO
[
21, 61, 64

] [
0.0839, 0.4601, 0.1139

]
102,990.79 13.97 176.74

The numerical results in Table 5 show the following:

i. The VSA and the proposed BWO approach find the same optimal objective function
value for both test feeders, corresponding to reductions of about 12.63% and 13.97%
for the test feeders, respectively. However, the main advantage of the proposed BWO
approach is that it requires a lower processing time to solve the problem regarding the
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optimal location of D-STATCOMs in both test feeders, with values of about 44.08 s
and 176.74 s, respectively.

ii. The combination of the GA and PSO algorithms exhibited an adequate performance
in both test feeders, reaching the exact solution of the BWO approach in the case
of the IEEE 69-bus grid, as well as a near-optimal solution for the IEEE 33-bus grid.
However, the main complication of this approach lies in its required processing times,
which are higher than 6400 s in both simulation scenarios. This behavior is expected
given that the GA approach defines the nodes where the D-STATCOMs must be
located. In addition, the PSO approach is entrusted with solving the optimal reactive
power flow problem to determine their optimal sizes. This implies that there are two
combinatorial optimization methods working under a master–slave connection, thus
increasing the total processing times required to solve the studied problem.

iii. The exact solution of the MINLP model with BONMIN and COUENNE showed these
to be stuck in locally optimal solutions in the case of the IEEE 33-bus grid, and they
did not reach a possible solution point for the IEEE 69-bus grid. This behavior shows
the high complexity of the model that represents the problem under study, which is
due to its nonlinearities and non-convexities, thus confirming the need for efficient
master–slave optimizers, such as the proposed BWO approach.

5.2. Location and Sizing of FACTS in the IEEE 33- and 69-Bus Grids

This section presents the general objective function behavior and the nodes and sizes
of the different FACTS analyzed when implementing the BWO approach. Table 6 presents
the best numerical solutions with the proposed BWO approach in both test feeders.

Table 6. Results in the IEEE 33- and 69-bus grids regarding the integration of FACTS with the
proposed BWO approach.

IEEE 33-Bus Grid

FACTS Devices Location Size (Mvar) zcost (USD/Year) Reduction (%) Time (s)

Benchmark case — — 112,740.90 — —

UPFC
[
14, 30, 32

] [
0.1340, 0.2980, 0.1074

]
102,043.23 9.49 43.94

TCSC
[
14, 30, 32

] [
0.1486, 0.3337, 0.1064

]
100,093.29 11.22 43.97

SVC
[
14, 30, 32

] [
0.1599, 0.3591, 0.1072

]
98,497.90 12.63 44.08

IEEE 69-Bus Grid

FACTS Device Location Size (Mvar) zcost (USD/Year) Reduction (%) Time (s)

Benchmark case — — 119,715.63 — —

UPFC
[
21, 61, 64

] [
0.0397, 0.4008, 0.1142

]
106,679.88 10.89 177.72

TCSC
[
21, 61, 64

] [
0.0647, 0.4363, 0.1125

]
104,658.03 12.58 173.12

SVC
[
21, 61, 64

] [
0.0839, 0.4601, 0.1139

]
102,990.79 13.97 176.74

The numerical results in Table 6 show the following:

i. In the IEEE 33-bus grid, the selected nodes for installing FACTS are 14, 30, and 32,
with node 30 being the most sensitive regarding reactive power injection, given that
this node was assigned the largest FACTS size. In addition, the most efficient FACTS
element regarding the final objective function value corresponds to SVCs, with a
reduction of about 12.63% in the expected annual operating costs, followed by TCSCs
with a reduction of about 11.22% concerning the benchmark case.

ii. In the IEEE 69-bus grid, the BWO approach identifies nodes 21, 61, and 64 as the
most effective for optimal reactive power compensation, where node 61 is the most
sensitive to locate and size compensation devices, with values larger than 400 kvar for
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all the FACTS analyzed. As with the IEEE 33-bus grid, the most effective device for the
reduction in the objective function value corresponds to SVCs, which allow reaching a
reduction of about 13.97%, followed by the TCSCs with a reduction of about 12.58%

It is worth mentioning that the main result in Table 6 is that, regardless of the FACTS
analyzed, the BWO approach identifies the same set of nodes for the IEEE 33- and 69-
bus grids. This can be attributed to the fact that (2) is a cubic function with the same
numerical structure as that seen in Table 4, i.e., the same signs for the ω coefficients. In
addition, the variations in the final objective functions, as expected, are associated with the
ω coefficients in this objective function; the FACTS device with the most expensive linear
costs (i.e., the value of ω3) reaches the lowest reduction in the annual grid operating costs.
In this sense, the expected reductions regarding the general objective function are highly
dependent on the linear coefficient. In this regard, note that, in Table 6, these reductions are
ordered increasingly by the integration of the UPFC, the TCSC, and the SVC.

Finally, with respect to the processing times spent in locating the FACTS in the IEEE
33- and 69-bus grids, Table 6 shows that less than 45 s and 177 s are required to deal with
the efficient integration of reactive power compensators in both test feeders, respectively.
These processing times can be considered to be very fast, taking into account that the
dimensions of the solution spaces in both systems imply 4960 and 50,116 possible nodal
combinations for locating SVCs, UPFCs, and TCSCs, with the main issue that, for each
possible combination, the solution space of the nonlinear programming component of the
analyzed optimization model is infinite. This behavior regarding processing times confirms
the BWO method’s efficiency in solving the optimal reactive power compensation problem
in distribution grids.

5.3. Evaluating the Scalability of the Proposed Master–Slave Methodology

The IEEE 85-bus grid was used as a test feeder to demonstrate the proposed optimiza-
tion methodology’s effectiveness and robustness. This is a medium-voltage distribution
network operated with 11 kV at the substation bus. The electrical configuration and all
electrical parameters of this test feeder are presented in Figure 4 and Table 7.
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Figure 4. Grid configuration of the IEEE 85-bus system.
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Table 7. Electrical data on the IEEE 85-bus network.

k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW) k m Rkm (Ω) xkm (Ω) Pk (kW) Qk (kW)

1 2 0.108 0.075 0 0 34 44 1.002 0.416 35.28 35.99
2 3 0.163 0.112 0 0 44 45 0.911 0.378 35.28 35.99
3 4 0.217 0.149 56 57.13 45 46 0.911 0.378 35.28 35.99
4 5 0.108 0.074 0 0 46 47 0.546 0.226 14 14.28
5 6 0.435 0.298 35.28 35.99 35 48 0.637 0.264 0 0
6 7 0.272 0.186 0 0 48 49 0.182 0.075 0 0
7 8 1.197 0.820 35.28 35.99 49 50 0.364 0.151 36.28 37.01
8 9 0.108 0.074 0 0 50 51 0.455 0.189 56 57.13
9 10 0.598 0.410 0 0 48 52 1.366 0.567 0 0
10 11 0.544 0.373 56 57.13 52 53 0.455 0.189 35.28 35.99
11 12 0.544 0.373 0 0 53 54 0.546 0.226 56 57.13
12 13 0.598 0.410 0 0 52 55 0.546 0.226 56 57.13
13 14 0.272 0.186 35.28 35.99 49 56 0.546 0.226 14 14.28
14 15 0.326 0.223 35.28 35.99 9 57 0.273 0.113 56 57.13
2 16 0.728 0.302 35.28 35.99 57 58 0.819 0.340 0 0
3 17 0.455 0.189 112 114.26 58 59 0.182 0.075 56 57.13
5 18 0.820 0.340 56 57.13 58 60 0.546 0.226 56 57.13
18 19 0.637 0.264 56 57.13 60 61 0.728 0.302 56 57.13
19 20 0.455 0.189 35.28 35.99 61 62 1.002 0.415 56 57.13
20 21 0.819 0.340 35.28 35.99 60 63 0.182 0.075 14 14.28
21 22 1.548 0.642 35.28 35.99 63 64 0.728 0.302 0 0
19 23 0.182 0.075 56 57.13 64 65 0.182 0.075 0 0
7 24 0.910 0.378 35.28 35.99 65 66 0.182 0.075 56 57.13
8 25 0.455 0.189 35.28 35.99 64 67 0.455 0.189 0 0
25 26 0.364 0.151 56 57.13 67 68 0.910 0.378 0 0
26 27 0.546 0.226 0 0 68 69 1.092 0.453 56 57.13
27 28 0.273 0.113 56 57.13 69 70 0.455 0.189 0 0
28 29 0.546 0.226 0 0 70 71 0.546 0.226 35.28 35.99
29 30 0.546 0.226 35.28 35.99 67 72 0.182 0.075 56 57.13
30 31 0.273 0.113 35.28 35.99 68 73 1.184 0.491 0 0
31 32 0.182 0.075 0 0 73 74 0.273 0.113 56 57.13
32 33 0.182 0.075 14 14.28 73 75 1.002 0.416 35.28 35.99
33 34 0.819 0.340 0 0 70 76 0.546 0.226 56 57.13
34 35 0.637 0.264 0 0 65 77 0.091 0.037 14 14.28
35 36 0.182 0.075 35.28 35.99 10 78 0.637 0.264 56 57.13
26 37 0.364 0.151 56 57.13 67 79 0.546 0.226 35.28 35.99
27 38 1.002 0.416 56 57.13 12 80 0.728 0.302 56 57.13
29 39 0.546 0.226 56 57.13 80 81 0.364 0.151 0 0
32 40 0.455 0.189 35.28 35.99 81 82 0.091 0.037 56 57.13
40 41 1.002 0.416 0 0 81 83 1.092 0.453 35.28 35.99
41 42 0.273 0.113 35.28 35.99 83 84 1.002 0.416 14 14.28
41 43 0.455 0.189 35.28 35.99 13 85 0.819 0.340 35.28 35.99

Table 8 presents the numerical validations of the proposed BWO algorithm in the
optimal location and sizing of FACTS in the IEEE 85-bus grid.

Table 8. Location and sizing of FACTS in the IEEE 85-bus grid with the proposed BWO algorithm.

FACTS Devices Location Size (Mvar) zcost (USD/Year) Reduction (%) Time (s)

Benchmark case — — 154,651.95 — —
UPFC

[
12, 34, 67

] [
0.2093, 0.3760, 0.3069

]
119,288.35 22.87 265.98

TCSC
[
12, 34, 67

] [
0.2318, 0.3857, 0.3195

]
116,122.78 24.91 255.54

SVC
[
12, 34, 67

] [
0.2490, 0.3930, 0.3289

]
113,619.97 26.53 260.26
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The numerical results in Table 8 show the following:

i. The proposed BWO algorithm finds the exact nodal locations for each FACTS device,
i.e., nodes 12, 34, and 67. In addition, the maximum reactive power injection per node
is observed in the SVC, with values of 249, 393, and 328.9 kvar, respectively.

ii. The minimization of the annual operating costs varies from USD 35,363.6 (when
UPFCs are installed) to USD 41,031.98 (when SVCs are installed). These values imply a
difference of about 5668.38 USD per year of operation in favor of the SVC. In addition,
the expected annual costs reduction using FACTS in the IEEE 85-bus grid are 22.87,
24.91, and 26.53% when considering UPFCs, TCSCs, and SVCs, respectively.

iii. Regarding processing times, the proposed BWO approach takes between 255 and
266 s on average to reach an efficient solution to the problem under analysis. These
times can be considered to be efficient, in light of the fact that only the size of the
discrete component of the optimization model is about 95284 possible options, each
with infinite possibilities regarding the expected nominal size of the FACTS.

To confirm the effectiveness of the proposed BWO algorithm in siting and locating
FACTS, Figure 5 presents the reductions in the objective function value after 100 runs for
each compensation device.
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Figure 5. Percent improvement in the objective function with different FACTS.

Figure 5 shows the variations in the objective function with each compensation system
inside a little band. In the case of the UPFC, these variations are between 22.30% and
22.87%, i.e., a difference of about 0.57%. In the case of the TCSC, these margins are about
24.27% and 24.91%, which represents a difference of about 0.64%. In contrast, the reduction
margins with SVCs are between 25.91% and 26.53%, i.e., a difference of about 0.62%. Note
that the small difference between the best and the worst solution reached with the proposed
BWO algorithm per compensation device (lower than 0.64%) confirms that, in each run
of the solution methodology, an adequate solution for the studied problem is found,
ensuring an excellent annual expected operating costs reduction. This is very attractive for
distribution companies, as the BWO algorithm can be considered to be an adequate solution
methodology to establish their investment plans regarding reactive power compensation,
with different options for locating and sizing FACTS in their grids.

6. Conclusions and Future Work

Via a master–slave methodology, this research analyzed the problem regarding the
optimal integration of FACTS in electrical distribution networks in order to minimize
the expected annual costs of energy losses, added with the investments in compensation
devices. Discrete-continuous codification was employed to represent the set of nodes where
the FACTS must be placed and their corresponding size. The exact MINLP model was
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solved using a decoupling methodology, where the BWO approach defines the location
and size of the FACTS, and a power flow solution based on the SAPF approach evaluates
the multi-period power flow to determine the expected annual costs of the energy losses.

A comparative analysis with the BONMIN and COUENNE solvers and the VSA
and GA/PSO approaches was carried out in two test feeders, considering the existing
literature reports with respect to D-STATCOMs (SVCs in this research), which showed that
the BWO approach reaches the exact numerical solution found with the VSA in both test
feeders, with the main advantage being that the expected processing times are minimal
in comparison with the methods used for comparison. On the other hand, the GAMS
solvers, due to the complexity of the exact MINLP formulation, converged to locally
optimal solutions in the IEEE 33-bus grid and did not provide any feasible solution for
the IEEE 69-bus grid. In addition, the GA/PSO approach, even though it efficiently dealt
with the solutions of the exact MINLP model in both test feeders, required very long
processing times (more than 6400 s), thus affecting the expected trade-off between the
objective function value and the computational resources.

The optimal location of the FACTS with the proposed BWO approach, evaluated in
the IEEE 33-, 69-, and 85-bus grids, yielded the same set of nodes regardless of the FACTS
device analyzed. In the case of the IEEE 33-bus grid, the set of nodes with the best numerical
performance included 14, 30, and 32. Node 30 exhibits the most sensitive performance
regarding the reactive power required for installation. As for the IEEE 69-bus grid, the set
of nodes identified for the optimal location of FACTS included 21, 61, and 64, where node
61 was the most sensitive for installing reactive power compensators. Regarding the IEEE
85-bus grid, the set of nodes identified for the optimal location of FACTS included 12, 34,
and 67, where node 34 was the most sensitive.

As for the final objective function value, it was observed that the best FACTS corre-
sponded to SVCs. In the IEEE 33-bus grid, the final reduction obtained by SVCs in the
objective function was about 12.63%, followed by TCSCs with a value of 11.22%. In the
case of the IEEE 69-bus grid, these reductions were about 12.58% and 13.97%. UPFCs
ranked last, with reductions of about 9.49% and 10.89% in the IEEE 33- and 69-bus grids,
respectively. For the IEEE 85-bus grid, these reductions were 22.87% with UPFCs, 24.91%
using TCSCs, and 26.53% with SVCs.

The processing times required by the proposed BWO for the optimal location of FACTS
in the IEEE 33-, 69-, and 85-bus grids (i.e., about 45 s, 177 s, and 266 s, respectively) con-
firmed the effectiveness of the master–slave approach proposed in this research, considering
the infinite dimensions of the solution space for each possible nodal combination.

For future works, the following works can be conducted: (i) the reformulation of
the exact MINLP model through a mixed-integer convex formulation to ensure solution
uniqueness in each execution, as well as the possibility of finding the best possible solution,
i.e., the global optimum, and (ii) the combination of the FACTS analyzed with renewable
generation and energy storage systems to reduce the energy purchasing costs in isolated
electrical networks fed by diesel sources.
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