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Abstract: Deception in computer-mediated communication represents a threat, and there is a growing
need to develop efficient methods of detecting it. Machine learning models have, through natural
language processing, proven to be extremely successful at detecting lexical patterns related to
deception. In this study, four selected machine learning models are trained and tested on data
collected through a crowdsourcing platform on the topics of COVID-19 and climate change. The
performance of the models was tested by analyzing n-grams (from unigrams to trigrams) and by
using psycho-linguistic analysis. A selection of important features was carried out and further
deepened with additional testing of the models on different subsets of the obtained features. This
study concludes that the subjectivity of the collected data greatly affects the detection of hidden
linguistic features of deception. The psycho-linguistic analysis alone and in combination with n-grams
achieves better classification results than an n-gram analysis while testing the models on own data,
but also while examining the possibility of generalization, especially on trigrams where the combined
approach achieves a notably higher accuracy of up to 16%. The n-gram analysis proved to be a more
robust method during the testing of the mutual applicability of the models while psycho-linguistic
analysis remained most inflexible.

Keywords: deception detection; machine learning; natural language processing

1. Introduction

In today’s world of fast-growing technology and an inexhaustible amount of data,
there is a great need to control and verify data validity due to the possibility of fraud.
Therefore, the need for a reliable form of detection of such content is not surprising. Some
of the ways in which deception manifests itself on the Internet are using identity deception,
mimicking data and processes for the purpose of stealing credit card numbers or other
private information, charging false invoices for services not performed, hacking sites,
offering false excuses and promises, false advertising, spreading propaganda and false
information, and other forms of fraud. Therefore, detecting deception, whether in face-to-
face interaction or while communicating through a certain medium, is of great importance.

The great need to find a reliable method for deception detection is even more em-
phasized due to the fact that people tell approximately two lies per day [1]. Lying is
undoubtedly a skill that is deeply rooted in the human existence, and it has been perfected
over the years to a level that is difficult to recognize by even the most experienced pro-
fessionals. The question is what makes the distinction between truth and lies/deception,
especially in the verbal aspect, and if it exists, what is the best way to determine it? Do
most of the information lie in non-verbal behavior, or are there certain linguistic patterns
that can serve as sufficiently precise indicators of deception? Is there a difference in decep-
tion during face-to-face and computer-mediated communication, whether synchronous or
asynchronous, verbal or non-verbal?
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Research so far has led to the conclusion that verbal behavior hides a deep amount of
information that can be used in the detection of deception, almost more accurately than
in the case of non-verbal analysis. Due to the inapplicability of the polygraph method to
deception detection in computer-mediated communication, there is an increasing emphasis
on research in methods for analyzing the syntactic and semantic properties of written text
and finding indicators of deception in various forms of digital interaction. So far, the most
commonly used methods of deception detection in the text are machine learning models.
There is a great need for further research into syntactic, semantic, and other properties of
natural languages in order to create software that will detect deception with high accuracy.

Current research covers deception detection in computer-mediated communication [2,3];
detection of fake reviews on social platforms [4,5]; deception detection collected from
public trials [6,7]; the use of crowdsourcing platforms, such as Amazon Mechanical Turk,
for generating deception datasets [5,8]; etc. In their work, Feng and colleagues [5] also
analyzed the deep syntax of the data using the principles of probabilistic context-free
grammar (PCFG), independently and in combination with the aforementioned methods. In
addition to the above, the LIWC tool was also used for deception detection by leveraging
insight into the psycho-linguistic characteristics of the analyzed text.

In this paper, several different machine learning models were used and their perfor-
mance in differentiating deceptive and true text was tested. Two sets of data were collected
using the crowdsourcing platform Clickworker and the survey tool Qualtrics Survey. For
data processing, n-grams, LIWC, and a combination of the two approaches were used. A
selection of essential features for each model was carried out over the LIWC dimensions
using the WEKA tool in order to obtain subsets of features with which the models provide
the highest accuracy. Since two distinct datasets on two topics were created, they were
used to train their own separate models. These models were then tested on their own data,
but they were also cross-tested on the data they were not trained with. Furthermore, both
datasets were combined to create a joint dataset on deceptive text, which was then used to
test both models. The performance of the models was examined in order to gain insight
into the possibility of model generalization and its applicability to different datasets. This
gave insight into model parameters with the highest accuracy in predicting deception. The
possibility of deception detection using natural language processing methods was also
tested in order to ascertain which methods give the best performance in a generalization or
applicability to other datasets than the ones they were trained upon; additionally, it was to
decide which method gives the best predictions in general.

2. Theoretical Background
2.1. Lie and Deception

To deceive means “to lie, mislead or otherwise hide or distort the truth”. Although
the term lie is often regarded similar to the term deception, there is a certain distinction
between the two. Lying is just one of many forms of deception, which does not only
mean uttering an untrue claim, but also manifests itself in “omitting the truth or more
complicated covering-up the truth” commonly with the intention to mislead or deceive
someone [8]. The traditional definition states that to deceive means “to cause to believe
what is false”, which naturally leads to the question of whether this includes the case of
mistakenly or unintentionally deceiving another person, on which many have conflicting
views [9]. However, the majority believes that lying and deception necessarily manifest
themselves with intent, so the definition itself has been modified to define deception as
“intentionally causing to have a false belief that is known or believed to be false” [9].
The definition also implies the success of the act of deception since otherwise, the goal
of creating a “false belief” in another person is not fulfilled. This is precisely one of the
differences between deception and lying, where lying does not necessarily mean convincing
another person was done successfully; it only refers to “making a false statement with the
intention of deceiving”.
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A slightly broader, generally accepted definition of lying is the following: “A lie is a
statement made by one who does not believe it with the intention that someone else shall be
led to believe it” [10]. According to the stated statement, four main conditions are defined
that must be fulfilled in order for a certain statement to be identified as a lie: the person
should make the statement (statement condition), the person making the statement should
believe that the statement is false (untruthfulness condition), an untrue statement must be
given to another person—the recipient of the statement (addressee condition)—and lastly,
the person making the statement must lie with the intention to convince the recipient of the
statement to believe the untruthful statement to be true (intention to deceive the addressee
condition) [9]. Here, too, there are debates regarding the very definition of “lying”, and they
concern the intention with which a person lies; these debates lead to two opposing groups,
namely the theories of Deceptionism and Non-Deceptionism. The former group believes
that intention is necessary for lying while the latter believe the opposite. The theory
of Deceptionism is further divided into Simple Deceptionism, Complex Deceptionism,
and Moral Deceptionism. Simple Deceptionists believe that for lying, it is necessary to
make an untrue statement with the intention of deceiving another person while Complex
Deceptionists additionally believe that the intention to deceive must be manifested in the
form of a breach of trust or belief. Moral Deceptionism state that lying not only requires
making an untrue statement with the intention of deceiving, but also violating the moral
rights of another person. On the other hand, the theory of Non-Deception dictates that
lying is a necessary and sufficient condition to make an untrue claim, and it is further
divided into the theory of Simple Non-Deceptionism and Complex Non-Deceptionism [9].

Unlike lying, deception itself does not only involve verbal communication, but also
manifests itself through various non-verbal signs, such as leading another person to the
wrong conclusion by certain behavior, using non-linguistic conventional symbols or sym-
bols that determine similarity (icons), etc. It is also possible to deceive someone with
an exclamation, a question, a command, an omission of an important statement, and
even silence [9].

This leads to the conclusion that the statement condition does not apply to deception.
In the same way, the condition of untruthfulness does not apply because it is possible
to deceive someone by making a true statement that intentionally implies a falsehood
(e.g., using true statements to create a false belief). Sarcasm and irony are also weapons of
deception that violate the condition of untruthfulness, given that a person states an obvious
truth with the intention of leading another person to the opposite (false) conclusion. In
addition, the stated definition of deception [9] does not define the subject of deception as a
“person”, but refers to anything that is capable of having beliefs, like infants or animals,
which violates the addressee condition, which is constant in the definition of a lie. This
condition is also violated, for example, in the case when a person is being eavesdropped
on, which they are aware of, and uses this fact to deceive the eavesdroppers (e.g., deceiving
secret service agents) [9]. An interesting case of deception, which is not manifested in lying,
is when a person, by deliberately avoiding or not accepting the truth, deceives himself
or herself.

2.2. Deception in Computer-Mediated Communication (CMC)

Deception happens every day and in all forms of interaction, through face-to-face
communication or through certain media such as mobile phones, computers, television,
etc. A common assumption is that detecting deception in face-to-face interaction is an
easier task given that a person has much more information at their disposal, unlike verbal
“online” communication, which lacks non-verbal signs such as gestures, body posture, facial
expressions, etc. In addition, as mentioned in previous research in asynchronous computer-
mediated communication, the sender has more time, which makes it “easier for senders
to construct and/or harder for receivers to detect relative to face to-face interactions” [3].
Nevertheless, in a study conducted on a group of people who participated in face-to-
face interactions and computer-mediated communication, it was determined that human
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performance in detecting deception in computer-mediated communication exceeded that
in face-to-face interaction and that the truth bias and deception rate in both cases did not
differentiate [11]. However, human prediction accuracy still did not exceed chance.

Zhou and colleagues [2] believe that the sender in CMC distances himself from the
message that “reduces their accountability and responsibility for what they say, and an
indication of negative feelings associated with the act of deceiving”. Likewise, one of
the important indicators of why people are better at detecting deception via computers
is precisely the fact that they lack certain information about the other person, so they are
much more suspicious and will suspect deception sooner.

Research in CMC examines the influence of Linguistic Style Matching (LSM) and
Interpersonal Deception Theory (IDT) on the linguistic characteristics of conversations
during honest and fake conversations [2,12]. The LSM theory explains how people in
a conversation adapt each other’s linguistic style to match their partner’s. According
to the LSM theory, deception in a conversation can be detected by analyzing the verbal
characteristics of the interlocutor (who is unaware of the deception) and not exclusively
those of the speaker (who is lying) given that their linguistic styles match [12]. In the
study conducted during synchronous computer-mediated communication, correlation was
recorded in the linguistic style of the interlocutors. More precisely, the correlation was
achieved when using first, second, and third person pronouns and negative emotions. An
interesting conclusion was that the linguistic profiles of both interlocutors coincided to a
greater extent during false communication compared to true communication, especially
in a case when the speaker was motivated to lie [12]. There is a possibility that speakers
deliberately use LSM when trying to deceive in order to appear more credible to the partner,
which is what the IDT theory deals with. IDT studies the context of the speaker (who is
lying) and the interlocutor (who is not aware of the deception) and the changes in their
linguistic styles through honest or false communication, with the difference that it under-
stands these changes as strategic behavior that the speaker uses to facilitate the deception
process [13]. “Deceivers will display strategic modifications of behavior in response to a
receiver’s suspicions, but may also display non-strategic (inadvertent) behavior, or leakage
cues, indicating that deception is occurring ” [2]. On the other hand, interlocutors in the
case of non-strategic behavior may become suspicious and ask more questions, thus forcing
the speaker to change his linguistic style and adapt to the interlocutor.

So far, the best known method of detecting deception precisely is the use of a poly-
graph, which provides insight into a series of autonomous and somatic psycho-physiological
activities that are invisible to the human eye, but which strongly signal deception. The
polygraph relies on the analysis of peripheral activities related to emotions and excitement
while the traditional measures used are most often of a cardiovascular nature (i.e., changes
in heart rate), electrodermal (changes in the electrical properties of the skin), and respi-
ratory (i.e., rapid and uneven breathing) [14]. Although a polygraph is one of the more
accurate methods, it still provides rather limited insight into complex brain processes that
may hide deeper and more precise indicators of deception, so it is not surprising that this
area of research is on the rise. There are other methods of detecting fraud from behavior
through observing a person using the usual human senses without physical contact; by
interpreting subtle signals in behavior by analyzing gestures, linguistics, tone of voice, and
handwriting; etc. [14]. Although some of these approaches give quite satisfactory results,
such as the polygraph, their limitation lies in their inapplicability to computer-mediated
communication. It is for this reason that there exists an increasing interest in methods for
analyzing the syntactic and semantic properties of written text and finding indicators of
deception in various forms of digital interaction.

2.3. Tools and Methods in Deception Detection
2.3.1. Natural Language Processing

Natural language processing (NLP) is a multidisciplinary field of linguistics, computer
science, and artificial intelligence that focuses on the processing and analysis of large
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amounts of natural language data with the aim of developing software that will understand
the content and context of text and speech. By analyzing different aspects of language,
such as syntax, semantics, pragmatics, and morphology, machine learning models learn
the rules used to solve given problems. NLP is commonly applied for filtering spam and
generally classifying it with search engines for automatic text correction, sentiment analysis
of different products, classification of customer feedback, and automation of customer
support as part of virtual assistants, but it is also for many other tasks, including fraud
detection. NLP converts input text data into vectors of real numbers that machine learning
models support. Some of the feature extraction methods for natural language analysis are:

• The BOW (Bag of Words) approach extracts features from the text and represents
them as the occurrence of words used in the text. The BOW analysis consists of the
vocabulary of the used words and the measure of the occurrence of each individual
word. It should be noted that the word structure and the order of words are ignored.

• N-grams are strings of N symbols or words (tokens) in the analyzed document. Unlike
BOW, n-grams preserve the order of tokens. Different types of n-grams are suitable for
solving different types of problems, so it is necessary to test the models on a wider
range of n-grams.

• TF-IDF (Term Frequency—Inverse Document Frequency) specifies how important a
certain word is for the analyzed document, but it is not as naive as BOW. In BOW,
frequent words can easily dominate while less frequently used words that carry much
more information lose their importance. TF-IDF, in addition to the frequency of word
occurrence in the current document, also records the inverse frequency; that is, for
each word, it calculates how rarely it appears in all documents. By combining the
above, TF-IDF solves the problem of a dominance of frequent words in relation to less
frequent but more important ones.

• POS (Part of Speech) are categories of words with similar grammatical properties,
such as nouns, adjectives, verbs, etc. This type of analysis assigns a corresponding
category to each word.

• Lemming and stemming are text normalization techniques used in natural language
processing, and their main function is to reduce words to their canonical or root form.
Lemming is a canonical dictionary-based approach and, unlike rooting, takes into
account the meaning of words. Stemming is based on rules and is simpler to implement
and is faster because it does not consider the context when shortening words, which is
why it also does not give as good of a prediction accuracy as lemmatization.

• Stop-words are words of a certain language that do not contribute much information to
the sentence, and they have a highly frequent occurrence in the text. This is why they
are often removed from the text when classifying or grouping using machine learning
models. Removing them can greatly increase the prediction accuracy and reduce
model training and testing time, but they should be chosen carefully to preserve the
text meaning.

2.3.2. Machine Learning

Machine learning (ML) is a field of artificial intelligence that deals with the study
of methods that independently learn from data and use it for the purpose of improving
performance when solving given problems. The models are built on the training data
and used to make predictions. Today, machine learning is used across all fields, such as
medicine, computer vision, text classification/grouping, speech recognition, etc. The base
steps of machine learning are data collection, data preprocessing, model selection, model
training and model evaluation, parameter tuning, and prediction. The process of data
collection and preprocessing is of great importance given that the models rely on the given
data when making decisions. Due to the general lack of labeled data, these are also the
most difficult tasks.

Machine learning models are one of the methods that can be used in deception de-
tection. Prior to the actual model training, the data is filtered, cleaned, and analyzed
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using natural language processing methods, and then, it is transformed into a form that
is acceptable to a certain machine learning model. The models used in this are based on
logistic regression, naïve Bayes, SVM (Support Vector Machine), and Random forest:

• Logistic regression is a statistical model of machine learning that is used for classifica-
tion and belongs to supervised machine learning techniques. It outputs a probabilistic
value between 0 and 1.

• SVM is a machine learning model that is often used for classification, but it is also
used for regression. It belongs to supervised machine learning techniques. Its task is
to separate N-dimensional data into classes by selecting the best decision boundary
(discriminant function).

• Naive Bayes also belongs to supervised learning techniques. It is based on Bayes theo-
rem, which naively assumes that the value of a certain variable/feature is independent
of other variables/features.

• The Random Forest model is used for the classification and regression problem. It is
based on the construction of a large number of decision trees, each of which makes
decisions on the outcome of the prediction. In the case of classification, the prediction
with the majority of votes is selected while in the case of regression, the average value
of all predictions is taken as the output of the model.

K-fold cross validation is used as a method of evaluating the obtained machine learning
models. The parameter k determines the number of groups into which a given data set
is divided to separate the training from the testing data. Specifically, one set is taken to
test the model while the other k-1 datasets are used to train the model. The accuracy of
the model is calculated by taking the average value of the model’s prediction through k
iterations. This method provides a less optimistic but less biased assessment of model
performance than other methods.

2.3.3. Linguistic Inquiry and Word Count (LIWC)

LIWC (Linguistic Inquiry and Word Count) is a software for text analysis designed
for the purpose of studying natural language. It consists of two key components: the
word processing component and the LIWC dictionary. The dictionary forms the core of the
application itself, as it connects psychosocial with linguistic constructs and consists of over
12,000 words, root words, and phrases. Groups of words from the LIWC vocabulary that
specify a particular domain are referred to as “categories” or “dimensions”. Each LIWC
entry can belong to several LIWC categories and are mostly arranged hierarchically. Origi-
nally, the categories were cognitive and emotional while with the increasing understanding
of the psychology of verbal behavior, the number and depth of categories increased [15].
LIWC receives text records in various formats of input, which it then sequentially analyzes
and compares with the dictionary. The software counts the words in a given text and
calculates the percentage of total words represented in all LIWC subcategories.

The latest version of the LIWC-22 offers some improvements over previous versions.
The dictionary has been upgraded to handle numbers, punctuation marks, short phrases,
and regular expressions in order to extend the use of LIWC (for example, to the analysis
of content from social networks (Facebook, Twitter, Instagram, Snapchat) where such
linguistic style is often present). In LIWC-22, the psychometric abilities of the dictionary
were improved, and several new categories were added [16].

The construction of the LIWC began with the intention of analyzing verbal speech to
extract psychological processes described through the use of style words and the content
of what is written or spoken (content words). It was soon concluded that these are quite
different categories with different psychometric properties. Style words, which are also
called function words, “make up only 0.05% of the total set of words in the English language,
and are contained in a total of 55% of all words that we hear, speak or read”. They represent
the way people communicate and offer a greater insight into the psychosocial aspect of
speech compared to content words, which describe only the content of communication [17].



Algorithms 2023, 16, 221 7 of 34

Function words have proven to be very successful in the analysis of the emotional
and biological state, status, sincerity, and individual differences; therefore, the emphasis
is placed precisely on their deeper analysis in order to give insight into psychological
processes that other methods of text analysis simply cannot detect. On the other hand, LIWC
is a probabilistic system that does not take context into account linguistic constructs such
as irony, sarcasm, and idioms; therefore, absolute conclusions about human psychology by
using only LIWC analysis cannot be drawn [17].

Research proves LIWC to be successful in detecting deception. “Deceptive statements
compared with truthful ones are moderately descriptive, distanced from self, and more
negative” [17]. Such a description is not surprising considering that more information
carries a greater risk of uncovering the truth. By analyzing deception in synchronous
computer-mediated communication, it was shown how the linguistic style of the sender
(who lies) and the receiver (who is unaware of the deception) changes. Both respondents
were using more words overall (especially sensory) and fewer 1st person pronouns during
deception compared to honest interaction [2,3]. Thus, it is obvious that linguistic style
hides patterns that are specific to true and false communication, which can to some extent
be successfully detected using the LIWC approach. Since LIWC software lacks context
analysis, it is recommended to combine it with other natural language processing methods.
Based on previous research, LIWC, together with an analysis combined with n-grams,
achieved satisfactory results [4,5]. Given the large number of dimensions that LIWC
possesses, a selection of important features needs to be done in order to prevent overfitting
and maximize the performance of the machine learning model.

2.3.4. WEKA

Weka (Waikato Environment for Knowledge Analysis) is a software that contains tools
for visualization, data analysis, and predictive modeling. Implemented within Waikato
University, New Zealand, Weka was originally a tool for analyzing data from the agricul-
tural domain but is used today in various fields of research, especially for educational
purposes. Weka provides support for certain data mining methods, data preprocessing,
clustering, regression, classification, data visualization, and feature selection.

2.4. Related Work on Deception Detection

A notable work in deception detection during public trials included analyzing verbal
and non-verbal behavior of suspects and witnesses [6]. Videos of witnesses and suspects
were collected during testimonies on public trials and were used to build a reliable machine
learning model that can distinguish truth from lies by analyzing verbal and non-verbal
characteristics and thus provide assistance in making key decisions in the judiciary. The
models based on n-grams were tested individually on different sets of verbal and non-
verbal features and in combination. A further analysis of a subset of features revealed
that the model gives better results when it is trained on non-verbal features, mostly by
analyzing facial expressions, which are then followed by unigrams. Human performance
in deception detection was tested by analyzing text, sound, noiseless video, and video with
sound, which achieved worse results compared to the used machine learning models.

In another study, three different approaches were used when analyzing data on false
and true positive hotel reviews [4]. Truthful reviews were collected from the TripAdvisor
platform while fake reviews were generated using the Amazon Mechanical Turk platform,
containing opinions created with the intention of deceiving another person. The text was
analyzed using POS and n-gram techniques and psycho-linguistic analysis using LIWC
software. The models were tested individually and in combination, and only those with
the best performance were selected. Data processing led to the conclusion that bigrams
generally give the best results while the combination of bigrams and psycho-linguistic
analysis gives a slightly better result. In addition, all tested methods outperform humans
on the same dataset. In the same paper, by comparing the features obtained using POS
analysis, LIWC, and a combination of analysis with n-grams and LIWC, it was noted that
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people hardly fake spatial information. Through the analysis of POS, the authors came
to the conclusion that some of the language structures that are most often used in honest
(informative) reviews are nouns, adjectives, prepositions, conjunctions, and verbs while
fake (imaginary) reviews mostly use verbs, adverbs, and pronouns. Verbs and adverbs
are common features in both types of reviews, but with an important difference: in the
informative text, the past participle is mostly used while in the imaginary text, a much
wider range of different verb tenses is used.

Somewhat better results on the same TripAdvisor hotel reviews dataset were achieved
with a deep syntax analysis (that is, by using features derived from the analysis of parsed
trees obtained from probabilistic context-free grammar (PCFG)) [5]. The mentioned ap-
proach is combined with shallow syntax (i.e., POS tags) but still gives the best results in
combination with n-grams, proving that the analysis of deep syntax offers information not
present in the learned POS features and that it can serve as a more reliable method when
detecting deception. The models were tested on 4 different datasets, from the domain of
fake reviews from the TripAdvisor and Yelp platforms and sets of essays collected through
Amazon Mechanical Turk on the topics “abortion”, “best friend”, and “death penalty”.

The same set of essays was analyzed using LIWC software in the work of Mihalcea
& Strapparava [8], showing slightly less favorable results. In fake essays, references to
other people (“you”, “others”, “people”) and words related to certainty are mostly present
while in true essays the person confidently connects with the statements made using more
references on oneself (“I”, “friends”, “self”) and presents several attitudes based on belief
(“think”, “feel”, believe”) [8]. In addition to TripAdvisor, the analysis of fake reviews was
also conducted on social platforms, such as Twitter [18].

The answer to the question of which machine learning model best differentiates the
true from false data is not easy to come by given that each model works specifically
concerning the specific problem and dataset on which it is trained and tested, which is also
often conceptualized by the specific context by the researchers in the area [19]. Zhou and
colleagues in their research [2] deal with the deception detection in asynchronous computer-
mediated communication by examining four machine learning models on data collected
through two experimental studies. The research is based on the detection of deception from
the point of view of interaction, not individual analysis. A similar study was conducted in
order to understand changes in the linguistic behavior of people participating in a deceptive
or truthful discussion during synchronous computer-mediated communication [3]. The
research was conducted by dividing respondents into groups of two people who were
given the task of talking to each other via e-mail and, thus, getting to know each other.
All respondents were given several topics to discuss in such a way that one respondent
(sender) was randomly selected from each group and assigned a task to deceive the person
(recipient) by giving a false opinion on two of the five given topics. Likewise, the importance
of motivation in deception was examined in such a way that the senders were randomly
assigned the additional task of being highly or lowly motivated while lying. The data were
analyzed using the LIWC software in order to extract statistically significant features related
to false or true communication and to test the hypotheses based on LSM and IDT. Based on
LSM and IDT, changes in the behavior of the interlocutor (recipient) were also analyzed in
order to examine whether deception can be detected from changes in his behavior. It was
also investigated the extent to which motivation changes the linguistic style of a person
who lies/deceives in synchronous computer-mediated communication. The results show
that senders statistically use more words during deception, more references to other people
and less to themselves, and more emotional words. Motivated senders avoid causal terms
like “because”, “hence”, and “effect” while unmotivated ones use more simple negations.
According to LSM and IDT theories, recipients use more words and ask more questions
during deception, especially when the sender is not motivated [3].

Previous research focused on detecting deception using and combining a few machine
learning algorithms and models, mostly Naïve Bayes and SVM and to a certain extent
analysis on a small range of n-grams. This paper extends the state of the art by employing
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a wider set of machine learning algorithms and models and uses wider combinations of
n-grams. Specifically, prior research was exclusively done on bigrams while this study uses
n-grams ranging from unigrams to trigrams. Such an extended set of models, algorithms,
and n-grams was further combined with a specific analysis using LIWC, examining its
operation on different datasets. The study contributes to the discussion on models’ ap-
plicability in terms of generalization, where n-grams were found to be the most robust
method for deception detection and the analysis using LIWC the least flexible. The best
opportunity for generalization were noted with the use of combinations of n-grams and
analysis using LIWC.

The literature review presented in this chapter is summarized in a table form as part
of Appendix A.

3. Methodology
3.1. Problem Statement: Creating a Reliable Deception Detector

Given that human capabilities for detecting lies are very limited, machine learning
models that have proven to be the best tool for predicting deception in computer-mediated
communication were used. However, the first problem that arose in model use was the lack
of labeled input data with truthful and deceptive statements. In a majority of prior work,
data were collected using crowdsourcing platforms [4,5,8] while other research was done
on “real” data collected through social experiments [2,3] by analyzing public trials [6,7] or
by some other method.

Another problem was the choice of text processing methods and machine learning
models that gave the best prediction. By analyzing the choice of machine learning models in
previous research, it could be concluded that Naive Bayes and SVM classifiers have proven
to be very successful in solving this type of a problem [4,5,8], so they represent the choice
of methods in this study as well. Logistic regression [2] and Random forest [6] were used
somewhat less often, but they achieved acceptable results, so they were also included in the
set of models for this study as additional methods. Due to the performance of computational
linguistics methods used in previous research, in this study, data were analyzed using
n-grams as opposed to POS analysis because it gave more precise results [4,5]. Another
reason for choosing n-gram analysis lay in the fact that it worked very well in combination
with other methods. In a previous study, the highest precision was achieved by combining
n-grams and deep syntax analysis when analyzing four different datasets [5] while or by
combining LIWC analysis and bigrams [4]. LIWC has also served as a relatively good
deception detector in other studies [3] because it provided insight into the psychological–
lexical characteristics of words, which was not given with n-gram analysis. To increase
model reliability, important LIWC features needed to be selected since the use of redundant
features could greatly reduce the predictive power of machine learning models.

Based on the aforementioned research, in this paper, it was decided to use a combina-
tion of analysis with n-grams and LIWC with individual approaches as verification. Deep
syntax analysis was not examined in this paper because of the complexity of extracting
important features from the data parsed using PCFG and the complex choice of production
rules. The complete process of the methods applied in this study is given in Figure 1.
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3.2. Data Collection and Cleansing

The Clickworker platform and the Qualtrics Survey were chosen in this study as
tools to collect two separate datasets on the topics of “Climate Change” and “COVID-19”.
The first topic concerned the issue of climate change and read: “What is your opinion
on climate change? What do you think caused it and how will it impact our lives in the
future?”. The second topic consisted of the question: “How did the COVID-19 pandemic
impact your life? Share some of the challenges or new experiences during the COVID-19
pandemic”. 150 survey participants were selected, each of whom was paid $1.50 for
completing a defined task, and the task itself was scheduled to last up to ten minutes. The
selection of research participants was limited to residents of North America with English
as a native language. The gender and age of the participants were not mandated. For each
topic, the respondents had to answer ideally 4 to 5 sentences (the range was limited to
200–500 characters). The time limit was set to 30 days from the start of the survey.

All received responses had to be reviewed manually. Partial records were also taken
into account, in which the participants gave their opinion on only one of the two topics
offered. A total of 150 records were recorded, each record consisting of a true and a false
answer to both topics. An additional 18 partial records were collected, all of which were
related to the first topic “Climate change”. Bot detection excluded 11 records from both
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datasets. In the “Climate change” dataset (DS1), 25 records were manually labeled as
invalid due to inadequate response syntax or semantics while in the second “COVID-19”
dataset (DS2), 21 records were flagged as invalid. The final number of records in both
datasets was 132 (DS1) and 118 (DS2), respectively, which made a total of 264 and 236 true
and false answers. For 58 records, minor syntactic errors were manually corrected, but the
semantics were maintained (Table 1). Complete overview of the data cleaning process is
given in Figure 2.

Table 1. Statistical overview of the records obtained through the Clickworker platform.

DS1: Climate Change DS2: COVID-19

The initial number of records 168 150
Number of invalid records 25 21
Number of BOT detections 11 11
The final number of records

(including corrected) 132 118
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The collected data were then pre-processed using natural language processing tech-
niques and used to train and test machine learning models based on n-grams and psycho-
linguistic analysis using LIWC.

3.3. Applying Natural Language Processing (NLP) and Creating Models

Data collection was followed by cleaning and pre-processing so that the models that
would be subsequently applied analyze and predict more precisely. The first step consisted
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of removing special characters and numbers from the text, followed by decontraction (i.e.,
reduction of shortened and connected words to their long form). Word segmentation
(tokenization) and lemmatization were performed to reduce the words to their normalized
form. Stemming was not used because compared to lemmatization, it gives less favorable
results, which was expected considering that it does not rely on a dictionary. The method
of removing stop words was not used because they were an important factor in the pre-
diction of deception. By comparing the performance of the models tested using TF-IDF
vectorization and the classic BOW approach, the TF-IDF technique was chosen due to more
accurate prediction.

Four different models were chosen: logistic regression, SVM, Naive Bayes, and Ran-
dom Forest. The models were trained and tested individually and on combined data to
gain insight into the possibility of mutual applicability of the models and the possibility
of generalization by comparing the natural language processing approaches. The models
were tested on a wider range and combination of n-grams and a varying number of features
to identify the models with the highest prediction accuracy. The performance of models
based on n-grams, LIWC analysis, and a combination of the two mentioned approaches
were compared. All models were tested using 10-fold cross-validation. In the process, the
most important features were selected from the LIWC analysis using the WEKA tool.

Feature Selection and LIWC

The models tested on all LIWC features did not give results comparable with those
obtained by n-gram analysis, warranting them for feature selection. Important LIWC
features for both datasets (DS1 and DS2) and the combined dataset (DS3) were selected
with the use of the WEKA tool. Two different feature selection approaches were used:
Attribute Correlation Evaluation and Attribute Subset Evaluation. The following three
classes were selected:

The CorrelationAttributeEval class evaluated features by measuring the Pearson
correlation coefficient between the features and the class. The Ranker search method was
used to rank the attributes according to their evaluations.

The CfsSubsetEval class belonged to attribute subset evaluators and was based on the
evaluation of feature subset values with regard to the degree of redundancy among features
and the predictive ability of each individual feature. This approach prefered subsets of
features that had a high correlation with the class and low correlation with each other. The
search method used with CfsSubsetEval was BestFirst.

The WrapperSubsetEval class also belonged to the attribute subset evaluators and
used a learning scheme to evaluate feature sets and their accuracy by cross-validation. The
search method used in conjunction with WrapperSubsetEval was also BestFirst.

The models tested on the selected features did not achieve the expected precision,
so it was decided to narrow down the set of selected features. The models were tested
on different subsets of the selected set of features (only subsets of size 4 to 11 features
were considered due to the time complexity of checking all existing combinations of sets
larger than 11 features). After testing the models, it was concluded that the attribute
subset evaluators selected the features with which the models provided the most accurate
predictions, especially the WrapperSubsetEval class. The lists of the best subsets of selected
LIWC features for each model, for both DS1 and DS2 datasets and the combined dataset
DS3, can be found in Appendix B.

Table 2 shows LIWC subcategories (features), the category to which it belongs, abbre-
viations, descriptions, the most frequently used examples belonging to that subcategory
and internal consistency calculated using the alpha coefficient (Cronbach’s alpha), and the
Kuder–Richards (KR-20) formula.
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Table 2. LIWC-22 dimensions and reliability [16].

Category Abbrev.
Description/Most
Frequently Used

Examples

Words/
Entries in
Category

Internal
Consistency:
Cronbach’s α

Internal
Consistency:

KR-20

Summary
Variables

Word count WC Total word count - - -

Clout Clout Language of leadership,
status - - -

Authentic Authentic Perceived honesty,
genuineness - - -

Emotional tone Tone Degree or positive
(negative) tone - - -

Words per
sentence WPS Average words per

sentence - - -

Big words BigWords Percent words 7 letters
or longer - - -

Linguistic
Dimensions Linguistic 4933 0.36 1.00

1st person singular i I, me, my, myself 6/74 0.49 0.85
2nd person you you, your, u, yourself 14/59 0.37 0.82

3rd person plural they they, their, them,
themsel 7/20 0.36 0.69

Negations negate not, no, never, nothing 8/247 0.49 0.92
Conjunctions conj and, but, so, as 49/65 0.11 0.89

Psychological Processes
All-or-none allnone all, no, never, always 35 0.37 0.88
Cognitive
processes cogproc but, not, if, or, know 1365 0.67 0.99

Insight insight know, how, think, feel 383 0.43 0.96

Causation cause how, because, make,
why 169 0.21 0.90

Prosocial behavior prosocial care, help, thank, please 242 0.49 0.89
Social referents socrefs you, we, he, she 1232 0.35 0.97

Family family parent, mother, father,
baby 194 0.48 0.89

Expanded Dictionary

Culture Culture car, united states,
govern, phone 772 0.67 0.92

Politics politic
united states, govern,

congress,
senat

339 0.75 0.91

Work work work, school, working,
class 547 0.74 0.95

Motives
Risk risk secur, protect, pain, risk 128 0.28 0.86

Curiosity curiosity scien, look for, research,
wonder 76 0.26 0.79

Motion motion go, come, went, came 485 0.42 0.97

Time orientation
Time time when, now, then, day 464 0.50 0.97

Netspeak netspeak :), u, lol, haha 439 0.73 0.96

4. Results
4.1. Model Testing on DS1 (Climate Change Dataset)

Four selected machine learning models were tested on the collected datasets (DS1 and
DS2) and the combined dataset (DS3). Table 3 shows the results obtained from the analysis
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using LIWC, n-grams, and the combination of n-gram analysis with LIWC (by combining
LIWC with all n-gram sets ranging from unigrams to trigrams). The notation of n-gram
records indicates their range (e.g., 1,2-g represents unigrams and bigrams). Accuracy,
precision, and response were used to evaluate the performance of the models. For each
model, maximum accuracies obtained by employing LIWC analysis (green), n-grams (blue),
and the combined approach analysis (red) are indicated while the largest of the three values
is in bold (the same notation applied to the highest response and precision obtained using
all the models).

Table 3. Performance of selected machine learning models achieved by applying natural language
processing techniques to the climate change dataset (DS1).

LR SVM NB RF

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

LIWC 78.02 76.83 80.99 77.24 72.58 90.27 76.47 73.41 85.71 78.05 74.89 78.08

1,1
n-grams 75.00 73.11 80.44 72.74 71.05 78.13 76.15 73.84 82.64 72.71 74.67 71.17

n-grams +
LIWC 78.02 78.19 78.68 76.14 78.02 73.46 76.91 75.80 81.15 73.43 72.57 75.71

1,2
n-grams 79.16 76.96 83.52 78.80 76.31 83.52 81.47 78.77 86.48 74.62 74.05 73.41

n-grams +
LIWC 78.80 78.32 80.22 75.77 76.97 74.18 81.47 77.48 88.74 74.96 74.00 77.20

2,2
n-grams 78.79 76.72 81.98 76.52 75.02 79.67 79.56 77.67 82.69 72.38 70.80 69.73

n-grams +
LIWC 78.40 77.53 80.99 77.21 76.96 77.14 77.26 75.83 81.98 74.22 73.21 76.54

1,3
n-grams 80.68 78.89 83.52 76.13 74.82 78.96 79.94 77.94 83.57 75.04 73.31 72.53

n-grams +
LIWC 79.56 78.33 82.53 76.52 76.84 75.66 78.77 76.16 85.05 75.34 74.22 77.97

2,3
n-grams 76.14 74.19 79.62 76.14 75.61 77.36 78.42 75.97 83.46 71.25 75.01 68.30

n-grams +
LIWC 79.16 78.12 81.76 79.52 77.11 83.96 79.57 76.50 83.46 74.97 73.86 77.25

3,3
n-grams 68.99 67.07 74.34 68.59 67.79 72.75 70.11 69.69 72.03 67.08 64.05 65.99

n-grams +
LIWC 78.80 77.59 81.76 74.96 73.67 77.97 74.92 74.21 76.48 74.20 73.11 77.31

Analyzing the DS1 dataset with LIWC, the highest accuracy of 78.05% was achieved
using random forest. A slightly better performance of the models was obtained using
n-grams; more precisely, the maximum accuracy of 81.47% is given by the multinomial
Naive Bayes model on unigrams and bigrams. The logistic regression follows with 80.68%
accuracy in the analysis of unigrams, bigrams, and trigrams. Somewhat lower performance
is given by the SVM and random forest models with an accuracy of 78.8% and 75.04% on
the range of (1,2)-grams and (1,3)-grams. In addition, the accuracy of their predictions
through other combinations of n-grams is lower than that obtained with analysis using
LIWC for the same models while multinomial Naive Bayes and logistic regression gave
better results during an analysis with n-grams compared to an analysis with LIWC.

Furthermore, when analyzing DS1 by combining the n-gram and LIWC techniques,
the models mostly achieved better results compared to using the other two approaches.
The best performance is again given by the multinomial Naive Bayes model tested on (1,2)-
grams and LIWC with an accuracy of 81.47%, which was also achieved using exclusively
n-gram analysis. This is followed by logistic regression with an accuracy of 79.56% tested
on the range of n-grams from unigrams to trigrams, which is slightly lower performance
compared to the same model when analyzing n-grams, which achieved the maximum
accuracy of 80.68%.

By comparing the analysis of DS1 using n-grams and n-grams in combination with
LIWC, improvements in model performance have been achieved using the combined
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approach. All models provide maximum accuracy using the combined approach of data
analysis (except logistic regression), but the average accuracy of the model obtained by
the analysis using the combined approach (77.04%) surpasses the one obtained by the
analysis with n-grams exclusively (75.27%). The stated average values are given and
further elaborated upon in Section 4.5.

Table 4 shows models generally achieved much higher recall compared to precision.
The maximum precision of 78.89% was achieved using logistic regression on (1,3)-gram
analysis while the SVM analysis with LIWC achieved a response of 90.27%. The maximum
precision of 78.89% was achieved using a logistic regression with (1,2)-gram analysis while
the maximum response of 90.27% was obtained using SVM on LIWC analysis.

Table 4. Performance of selected machine learning models achieved by applying natural language
processing techniques to the COVID-19 dataset (DS2).

LR SVM NB RF

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

LIWC 74.62 75.13 76.36 73.32 72.37 77.27 74.58 74.75 75.53 69.98 70.88 69.32

1,1
n-grams 67.69 67.70 69.77 70.76 70.29 74.70 69.62 71.49 66.36 66.09 67.53 62.05

n-grams +
LIWC 75.05 75.72 77.27 73.37 73.98 73.94 72.55 75.45 69.77 71.68 67.82 69.70

1,2
n-grams 69.22 68.64 72.27 66.59 65.30 70.53 73.86 72.60 78.11 63.95 67.00 70.53

n-grams +
LIWC 73.79 74.05 75.53 74.64 75.23 75.61 76.39 76.17 78.18 71.67 72.51 71.44

2,2
n-grams 69.17 69.97 72.35 72.05 72.68 70.68 70.04 69.90 73.94 67.45 70.20 62.95

n-grams +
LIWC 73.80 73.81 76.36 76.34 77.35 77.20 70.87 69.59 74.77 72.97 72.54 70.61

1,3
n-grams 70.49 70.35 73.11 65.69 64.46 69.62 71.29 69.67 77.27 64.84 65.00 65.53

n-grams +
LIWC 74.64 75.16 76.44 74.64 75.59 74.77 73.82 73.22 76.52 71.25 70.29 69.70

2,3
n-grams 71.67 71.34 74.85 68.71 67.01 68.68 70.91 70.43 70.40 70.43 70.83 67.20

n-grams +
LIWC 74.66 74.88 77.20 74.64 74.17 77.20 69.20 67.82 75.76 72.93 70.79 73.03

3,3
n-grams 59.33 58.80 63.03 58.89 59.44 58.71 59.73 59.68 61.21 57.59 55.78 76.52

n-grams +
LIWC 73.77 74.52 75.53 72.48 73.29 73.71 65.20 64.04 69.47 69.98 70.81 75.53

4.2. Model Testing on DS2 (COVID-19 Dataset)

Table 4 shows the results obtained by testing the selected machine learning models
on the DS2 data set by analyzing LIWC, n-grams, and combining those two approaches.
The logistic regression model achieved the highest accuracy of 74.62% in the analysis using
LIWC while the multinomial Naive Bayes gave slightly worse results with 74.58%. SVM
using the same approach achieved an accuracy of 73.32% while the random forest model
tested using LIWC analysis gave the worst accuracy of 69.98%. Examining the model
through combinations of n-grams, Naive Bayes tested on a combination of unigrams and
bigrams leads with an accuracy of 73.86%. It is followed by SVM tested on bigrams with
72.05% and logistic regression tested on a set of bigrams and trigrams with the accuracy
of 71.67%. All models tested with the LIWC analysis achieved higher accuracy than the
maximum model performance obtained by the n-gram analysis. Using the combined analy-
sis of n-grams and LIWC, the maximum accuracy of 76.39% on the analysis of unigrams
and bigrams was achieved with the multinomial Bayes, followed by the SVM tested on
bigrams with an accuracy of 76.34%. The logistic regression and random forest also gave
satisfactory results of 75.05% on unigrams and 72.97% on bigrams.
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The maximum recall of 78.18% was achieved by combining an analysis of (1,2)-grams
and LIWC using multinomial Naive Bayes while the SVM model achieved the maximum
precision of 77.35% with the combined analysis of bigrams and LIWC.

4.3. Model Testing on the Combined Dataset (Climate Change and COVID-19 Datasets Combined)

The combined dataset DS3 was also analyzed with LIWC, n-grams, and their combina-
tion and was tested using the four machine learning models (Table 5). By testing the model
on the features obtained with the LIWC analysis, the SVM model achieved the highest
accuracy of 74.60%. It is followed by the logistic regression and random forest with 74.40%
while multinomial Naive Bayes achieved an accuracy of 72.20%. When comparing the
performance of the models achieved with the LIWC to the n-gram analysis, virtually all
models classify better using the LIWC approach except for the multinomial Naive Bayes
model, which achieved an accuracy of 74.00% by analyzing unigrams and bigrams, which
is an increase of 1.8% compared to the LIWC analysis. The logistic regression and SVM
achieved their maximum accuracy of 72.80% and 71.80% by testing on bigrams while the
least favourable results were obtained with classification using the random forest model
(69.60%). By combining analysis with n-grams and LIWC, the models achieved the best
performance. SVM tested on bigrams with the maximum accuracy of 77.00%, followed
by logistic regression with 76.20% and random forest with 75.40%. In this analysis, the
multinomial Naive Bayes model (75.20%) achieved slightly worse results by analyzing
data using the combined techniques (n-grams and LIWC). By comparing the results by
testing the model on different sets of n-grams, it was found that the models mostly perform
better using an analysis combining n-grams and LIWC as opposed to an analysis using
LIWC only.

Table 5. Performance of selected machine learning models achieved by applying natural language
processing techniques on the combined climate change and COVID-19 datasets (DS3).

LR SVM NB RF

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

LIWC 74.40 73.90 76.40 74.60 73.94 77.60 72.20 70.34 78.00 74.20 74.09 71.60

1,1
n-grams 70.40 69.57 72.80 69.00 68.71 71.20 72.20 72.72 71.20 69.00 67.18 69.20

n-grams +
LIWC 75.00 74.89 76.80 73.80 72.97 77.20 72.20 72.06 72.80 71.60 71.89 70.40

1,2
n-grams 72.00 70.71 76.00 70.60 69.83 73.60 74.00 69.79 72.80 69.20 66.36 66.40

n-grams +
LIWC 75.60 75.20 77.60 76.60 74.98 80.40 73.40 72.74 75.20 75.40 71.43 70.00

2,2
n-grams 72.80 72.29 75.60 71.80 71.05 75.20 72.80 73.06 73.20 69.60 70.51 69.20

n-grams +
LIWC 76.20 75.19 79.20 77.00 75.52 80.80 75.20 74.10 78.40 74.00 73.48 75.20

1,3
n-grams 71.60 70.70 74.40 70.40 70.34 71.60 73.40 72.39 76.00 68.60 70.93 70.40

n-grams +
LIWC 75.60 75.12 88.60 74.20 73.12 77.20 74.00 73.20 76.40 73.20 72.20 73.60

2,3
n-grams 70.20 69.46 73.60 70.20 69.09 74.00 71.40 70.43 74.40 67.20 68.75 72.80

n-grams +
LIWC 75.20 74.32 78.00 76.00 74.54 80.00 72.00 71.19 74.40 74.40 73.34 71.60

3,3
n-grams 65.80 65.08 69.60 64.80 63.40 71.20 65.00 64.59 68.00 63.20 60.49 85.20

n-grams +
LIWC 74.20 73.29 76.80 73.20 72.83 74.80 70.40 69.02 74.80 75.00 73.86 73.20

Likewise, the combined approach, compared to the n-gram analysis, gives better
results for each set of n-grams. The highest overall accuracy of 77.00% was achieved by
testing the SVM on the data analyzed with bigrams and LIWC, which is a 5.20% better
result compared to an analysis with bigrams only. The mentioned model also achieved
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the highest precision (75.52%) compared to the other models. The maximum accuracy
achieved using the logistic regression or random forest models is 76.20% and 75.40%,
respectively. The multinomial Naïve Bayes achieved a slightly less favourable accuracy of
75.20%, which is still better compared to those obtained using only the n-gram analysis
(74.00%) or LIWC (72.20%).

The maximum recall of 88.60% was achieved by using the logistic regression model
on the dataset analyzed with (1,3)-grams and LIWC.

Testing DS3 Models Individually on DS1 (Climate Change Dataset) and DS2
(COVID-19 Dataset)

Models trained on the combined dataset DS3 were tested individually on the DS1 and
DS2 datasets to gain insight into the possibility of model generalization and its applicability
to different datasets than the one they originate from. Table 6 shows a comparison of
the accuracies of the models trained on DS1 and DS3 and tested on DS1 using the LIWC
analysis, n-grams, and a combination of these techniques on all selected groups of n-grams.
The above data are shown graphically in Figures 3 and 4.

Table 6. Performance comparison of models trained and tested on DS1 (climate change dataset) with
the models trained on DS3 (combined dataset) and tested on DS1.

DS1 Models Tested on DS1 DS3 Models Tested on DS1

LR SVM NB RF LR SVM NB RF

LIWC 78.02 77.24 76.47 78.05 81.54 81.54 77.31 71.38

1,1
n-grams 75.00 72.74 76.15 72.71 71.92 69.62 70.77 68.85

n-grams +
LIWC 78.02 76.14 76.91 73.43 74.62 80.00 83.46 78.08

1,2
n-grams 79.16 78.80 81.47 74.62 73.85 72.31 73.46 68.85

n-grams +
LIWC 78.80 75.77 81.47 74.96 81.92 80.38 77.69 80.77

2,2
n-grams 78.79 76.52 79.56 72.38 73.46 67.69 73.85 69.62

n-grams +
LIWC 78.40 77.21 77.26 74.22 76.92 76.00 80.77 77.69

1,3
n-grams 80.68 76.13 79.94 75.04 72.69 72.69 72.69 76.15

n-grams +
LIWC 79.56 76.52 78.77 75.34 76.54 82.31 77.69 78.08

2,3
n-grams 76.14 76.14 78.42 71.25 77.31 77.31 76.92 68.46

n-grams +
LIWC 79.16 79.52 79.57 74.97 73.85 78.85 80.77 76.54

3,3
n-grams 68.99 68.59 70.11 67.08 67.69 68.08 67.31 65.38

n-grams +
LIWC 78.80 74.96 74.92 74.20 69.23 79.62 76.54 73.85
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The logistic regression and SVM models trained on the combined dataset (DS3) and
analyzed with LIWC achieved the highest accuracy of 81.45%, which is higher than for
those models trained on the DS1 dataset. The other models also achieved better results by
analyzing the data with LIWC. The models trained on DS3 and tested on the DS1 using
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the n-gram analysis and LIWC achieved better results compared to the n-gram analysis
only for all selected sets of n-grams. The maximum accuracy of 83.46% was achieved with
the multinomial Naive Bayes with unigram analysis and LIWC, followed by the SVM with
82.31% and the logistic regression with 81.92%. The random forest model also achieved the
best prediction using the combined approach analysis (80.77%). Examining the results of
the models trained on DS3 and tested on the DS1 dataset using the n-gram analysis, logistic
regression, and SVM on (1,3)-grams achieved the highest accuracy (77.31%).

Compared to the models trained on DS1, the models trained on DS3, during testing
on the DS1 dataset, achieved mostly less favorable results with the n-gram analysis. On the
other hand, the n-gram analysis in combination with the LIWC achieved higher prediction
maxima and slightly higher average results considering the performance of all models
during training on the combined dataset (78.01%) compared to training models on SP1
data (77.04%).

Models trained on DS3 and tested on the DS2 dataset with the LIWC analysis achieved
generally less favorable results compared to the models trained and tested on the DS2 data
(Table 7). In addition, a similar trend can be noticed in the analysis with n-grams or n-
grams in combination with LIWC, which mostly achieved less favorable results. However,
comparing the results obtained from the n-gram analysis in relation to the analysis using
the combined technique, it follows that the combined approach achieved a higher accuracy
on almost all selected sets of n-grams (while testing the models trained on DS3 on dataset
DS2). The maximum accuracy achieved by analyzing bigrams and trigrams using the
logistic regression is 75.42% while the Naive Bayes and random forest achieve a maximum
of 73.33% by analyzing (1,3)-grams and unigrams. The highest accuracy obtained using the
combined approach analysis (78.33%) was achieved with a classification using the random
forest model, followed by multinomial Naive Bayes with 77.50%.

Table 7. Performance comparison of models trained and tested on DS2 (COVID-19 dataset) with the
models trained on DS3 (combined dataset) and tested on DS2.

DS2 Models Tested on DS2 DS3 Models Tested on DS2

LR SVM NB RF LR SVM NB RF

LIWC 74.62 73.32 74.58 69.98 72.04 70.38 71.58 70.33

1,1
n-grams 67.69 70.76 69.62 66.09 61.67 61.67 62.92 73.33

n-grams +
LIWC 75.05 73.37 72.55 71.68 70.00 76.67 72.08 72.92

1,2
n-grams 69.22 66.59 73.86 63.95 66.67 66.25 72.08 65.83

n-grams +
LIWC 73.79 74.64 76.39 71.67 72.92 71.25 72.92 73.33

2,2
n-grams 69.17 72.05 70.04 67.45 75.42 72.92 68.75 59.17

n-grams +
LIWC 73.80 76.34 70.87 72.97 70.00 74.17 68.75 69.58

1,3
n-grams 70.49 65.69 71.29 64.84 65.83 64.58 73.33 63.33

n-grams +
LIWC 74.64 74.64 73.82 71.25 73.33 73.33 75.00 69.58

2,3
n-grams 71.67 68.71 70.91 70.43 66.25 65.83 66.25 62.08

n-grams +
LIWC 74.66 74.64 69.20 72.93 76.67 69.58 68.33 78.33

3,3
n-grams 59.33 58.89 59.73 57.59 60.83 62.08 59.17 53.75

n-grams +
LIWC 73.77 72.48 65.20 69.98 73.75 76.25 77.50 73.33
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Although the analysis with n-grams trained on DS3 on DS2 data during the testing
of the models achieved slightly less favorable results than the analysis with the combined
techniques, it also achieved slightly higher accuracy maxima than the analysis with LIWC
while the average value across all selected sets of n-grams was somewhat lower. The DS3
models tested on the DS1 dataset achieved a higher maximum accuracy of predictions
compared to the DS3 models tested on the same dataset by analyzing n-grams and LIWC.

Figures 5 and 6 graphically show the results obtained by analyzing n-grams and
n-grams with LIWC for the models trained on DS2 and DS3, respectively, and tested on
DS2 data. The difference in model performance when using different data processing
techniques, which was previously mentioned, is clearly shown from the figures.
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The accuracies obtained using the models trained on the combined DS3 data and tested
individually on DS1 and DS2 datasets given in Tables 6 and 7 are extracted and compared
for each model and shown in Table 8. For each column, representing the performance of a
specific model on a specific dataset, the maximum value achieved using the n-gram analysis
and LIWC is indicated in red, the maximum accuracy obtained with the n-gram analysis is
indicated in blue, and the highest accuracy achieved with the LIWC analysis is indicated in
green. Yellow horizontal lines indicate those results that exceed the average obtained using
a specific model on a given dataset through all combinations of n-grams (trend by model).
Yellow vertical lines indicate accuracies higher than the average obtained using all models
on a certain dataset (trend by method) for each individual set of n-grams. Predictions that
exceed the average defined by the trend by models and the trend by methods are colored
in red.
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Table 8. Accuracy comparison of DS3 (combined dataset) models tested on DS1 (climate change
dataset) and DS2 (COVID-19 dataset) using selected data processing techniques.

LR SVM NB RF

DS3
Models

Tested on
Dataset

DS1

DS3
Models

Tested on
Dataset

DS2

DS3
Models

Tested on
Dataset

DS1

DS3
Models

Tested on
Dataset

DS2

DS3
Models

Tested on
Dataset

DS1

DS3
Models

Tested on
Dataset

DS2

DS3
Models

Tested on
Dataset

DS1

DS3
Models

Tested on
Dataset

DS2

LIWC 81.54 72.04 81.54 70.38 77.31 71.58 71.38 70.33

1,1
n-grams 71.92 61.67 69.62 61.67 70.77 62.92 68.85 73.33

n-grams +
LIWC 74.62 70 80 76.67 83.46 72.08 78.08 72.92

1,2
n-grams 73.85 66.67 72.31 66.25 73.46 72.08 68.85 65.83

n-grams +
LIWC 81.92 72.92 80.38 71.25 77.69 72.92 80.77 73.33

2,2
n-grams 73.46 75.42 67.69 72.92 73.85 68.75 69.62 59.17

n-grams +
LIWC 76.92 70 76 74.17 80.77 68.75 77.69 69.58

1,3
n-grams 72.69 65.83 72.69 64.58 72.69 73.33 76.15 63.33

n-grams +
LIWC 76.54 73.33 82.31 73.33 77.69 75 78.08 69.58

2,3
n-grams 77.31 66.25 77.31 65.83 76.92 66.25 68.46 62.08

n-grams +
LIWC 73.85 76.67 78.85 69.58 80.77 68.33 76.54 78.33

3,3
n-grams 67.69 60.83 68.08 62.08 67.31 59.17 65.38 53.75

n-grams +
LIWC 69.23 73.75 79.62 76.25 76.54 77.5 73.85 73.33
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The SVM and Naive Bayes models achieved the highest number of above-average
predictions according to the trend by models and methods (11/24) (considering only the n-
grams and analysis using a combined approach). The logistic regression gives slightly less
favorable performance (9/24) while when examining the generalization possibilities, the
random forest model ended as the least favorable with only 6/24 above-average predictions
according to the trend by models and methods. When analyzing using LIWC, the logistic
regression and SVM achieved the best above-average predictions by testing DS3 models
on the DS1 data (81.54%), which is higher than the average results obtained by training
and testing the same models on the DS1 dataset (77.45%). Logistic regression also achieved
above-average results by testing models trained on DS3 on the DS2 dataset using the LIWC
analysis, which are higher than the average results obtained by training and testing models
on DS2 (73.13%).

4.4. Comparing Models
4.4.1. Comparing Model Performance across Datasets

In Table 8, the accuracies of the selected machine learning models obtained from
testing the three collected datasets DS1, DS2, and DS3 using LIWC, n-grams, and the
combining n-gram analysis with LIWC. For each model and each dataset in the table,
the maximum achieved with the n-gram analysis is marked in blue while the maximum
obtained by the combined technique analysis is marked in red. The maximum accuracy
given by the LIWC analysis is marked in green. For each model, the average accuracy
obtained by analysis with LIWC, n-grams and the combined approach was calculated for
each of the given datasets (trend by model). In Table 9, values that exceed the average
accuracy for a specific model (trend by models) or for a specific data processing method
(trend by methods) are colored in yellow while values that exceed both trends are colored
in red.

Table 9. Comparison of model accuracies on DS1 (climate change dataset), DS2 (COVID-19 dataset),
and DS3 (combined dataset) using the selected data processing techniques.

LR SVM NB RF

DS1 DS2 DS3 DS1 DS2 DS3 DS1 DS2 DS3 DS1 DS2 DS3

LIWC 78.02 74.62 74.40 77.24 73.32 74.60 76.47 74.58 72.20 78.05 69.98 74.20

1,1
n-grams 75.00 67.69 70.40 72.74 70.76 69.00 76.15 69.62 72.20 72.71 66.09 69.00

n-grams +
LIWC 78.02 75.05 75.00 76.14 73.37 73.80 76.91 72.55 72.20 73.43 71.68 71.60

1,2
n-grams 79.16 69.22 72.00 78.80 66.59 70.60 81.47 73.86 74.00 74.62 63.95 69.20

n-grams +
LIWC 78.80 73.79 75.60 75.77 74.64 76.60 81.47 76.39 73.40 74.96 71.67 75.40

2,2
n-grams 78.79 69.17 72.80 76.52 72.05 71.80 79.56 70.04 72.80 72.38 67.45 69.60

n-grams +
LIWC 78.40 73.80 76.20 77.21 76.34 77.00 77.26 70.87 75.20 74.22 72.97 74.00

1,3
n-grams 80.68 70.49 71.60 76.13 65.69 70.40 79.94 71.29 73.40 75.04 64.84 68.60

n-grams +
LIWC 79.56 74.64 75.60 76.52 74.64 74.20 78.77 73.82 74.00 75.34 71.25 73.20

2,3
n-grams 76.14 71.67 70.20 76.14 68.71 70.20 78.42 70.91 71.40 71.25 70.43 67.20

n-grams +
LIWC 79.16 74.66 75.20 79.52 74.64 76.00 79.57 69.20 72.00 74.97 72.93 74.40

3,3
n-grams 68.99 59.33 65.80 68.59 58.89 64.80 70.11 59.73 65.00 67.08 57.59 63.20

n-grams +
LIWC 78.80 73.77 74.20 74.96 72.48 73.20 74.92 65.20 70.40 74.20 69.98 75.00
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Statistically, multinomial Naïve Bayes (22/36) achieved the most above-average results
per model with the n-gram analysis and with the combination of n-gram analysis and
LIWC while the logistic regression competes with 21/36 above-average predictions. By
classifying using the random forest model, 20/36 above-average values were obtained
while the SVM achieved 19/36.

Analyzing the results with n-grams and a combined approach on each dataset and
for each set of n-grams, the logistic regression achieved most of the above-average values
(33/36), followed by Naive Bayes with 25/36 and SVM with 22/36. The least favorable
results were achieved with the random forest model with only 5/36 above-average predic-
tions obtained for each dataset and n-gram.

Considering the overall trends by models and methods by analyzing n-grams and
n-grams and LIWC, the logistic regression model also achieved the maximum compared to
the other models with a total of 20/36 above-average predictions for both the model and
the method.

By comparing the performance of the models on the results obtained from the LIWC
analysis, the logistic regression model statistically achieved the best results with the above-
average predictions given for each of the three datasets, DS1, DS2, and DS3, while the other
models predicted somewhat less favorable with 2/3 above-average predictions. Statistically,
the datasets on which the LIWC analysis achieved the most above-average results using all
models are DS2 and DS3 with 3/4 above-average predictions.

4.4.2. Applicability of Models Trained on DS1 (Climate Change Dataset) to DS2
(COVID-19 Dataset)

Machine learning models trained on the DS1 were tested on the DS2 dataset in order
to test the applicability of the trained models to deception data on another topic (Table 10).
The table shows accuracies obtained using the machine learning models for each of the
selected data processing methods. The data is also presented graphically in Figure 7. For
each model, the maximum achieved accuracy obtained with the LIWC analysis (green),
n-gram analysis (blue), and combined analysis with n-grams and LIWC (red) is indicated.
The maximum of the three listed values is bold for each model.
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Table 10. Performance comparison of models trained on DS1 (climate change dataset) and tested on
DS1 and DS2 (COVID-19 dataset).

DS1 Models Tested on Dataset DS1 DS1 Models Tested on Dataset DS2

LR SVM NB RF LR SVM NB RF

LIWC 78.02 77.24 76.47 78.05 67.34 64.37 64.38 63.08

1,1
n-grams 75.00 72.74 76.15 72.71 67.92 69.57 67.95 65.67

n-grams +
LIWC 78.02 76.14 76.91 73.43 69.89 67.79 71.72 70.74

1,2
n-grams 79.16 78.80 81.47 74.62 69.66 70.00 72.21 65.40

n-grams +
LIWC 78.80 75.77 81.47 74.96 70.29 67.79 73.44 67.84

2,2
n-grams 78.79 76.52 79.56 72.38 69.58 68.28 71.70 71.30

n-grams +
LIWC 78.40 77.21 77.26 74.22 67.34 68.61 67.88 65.25

1,3
n-grams 80.68 76.13 79.94 75.04 69.66 70.49 73.04 65.67

n-grams +
LIWC 79.56 76.52 78.77 75.34 69.86 68.62 73.82 69.93

2,3
n-grams 76.14 76.14 78.42 71.25 70.02 68.73 70.04 64.47

n-grams +
LIWC 79.16 79.52 79.57 74.97 68.59 68.99 68.30 66.12

3,3
n-grams 68.99 68.59 70.11 67.08 59.75 60.18 61.92 57.59

n-grams +
LIWC 78.80 74.96 74.92 74.20 67.74 67.32 64.80 66.03

Considering the performance of models trained on DS1 and tested on the DS2 data,
the maximum prediction was achieved with the multinomial Naive Bayes (73.82%) with the
analysis using the combined approach. The random forest model gave the most accurate
results (71.30%) analyzing n-grams. The results obtained with the LIWC analysis are
generally less favorable than those obtained using other data processing approaches. When
using models trained on DS1 and tested on DS2 data, a drop in the model’s performance
was recorded with all three approaches compared to training and testing the models on the
DS1 data.

4.4.3. Applicability of Models Trained on DS2 (COVID-19 Dataset) to DS1 (Climate
Change Dataset)

Table 11 shows the accuracies of all models trained on DS2 and tested on the DS2
and DS1 datasets for each of the selected data processing methods (also Figure 8). For
each model, the highest value obtained with the LIWC analysis is indicated in green, the
maximum value obtained with the n-gram analysis in blue, and the maximum obtained
using the combined approach analysis is indicated in red. At the same time, for each
model, the largest of the three listed values is bold. By testing the performance of the
models trained on DS2 and tested on the DS1 data set, the best results were achieved
with the multinomial Naive Bayes models (81.44%), SVM (81.05%) and logistic regression
(79.90%) by analyzing (1,3)-grams, while the analysis using combined approach achieved
the maximum only using random forest (76.88%). By comparing the accuracy of models
trained on DS2 and tested on DS1 dataset compared to DS2, an improvement in model
performance was observed using n-gram analysis across all selected sets of n-grams. Also,
the analysis with the combined approach achieved more favorable results on almost all sets
of n-grams, while LIWC achieved slightly less favorable results.
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Table 11. Performance comparison of models trained on DS2 (COVID-19 dataset) and tested on DS2
and DS1 (Climate change dataset).

DS2 Models Tested on Dataset DS2 DS2 Models Tested on Dataset DS1

LR SVM NB RF LR SVM NB RF

LIWC 74.62 73.32 74.58 69.98 66.99 65.47 65.57 64.02

1,1
n-grams 67.69 70.76 69.62 66.09 75.00 72.74 76.15 70.11

n-grams +
LIWC 75.05 73.37 72.55 71.68 72.66 73.79 76.18 74.97

1,2
n-grams 69.22 66.59 73.86 63.95 78.40 78.79 80.68 72.29

n-grams +
LIWC 73.79 74.64 76.39 71.67 73.79 78.73 80.71 73.43

2,2
n-grams 69.17 72.05 70.04 67.45 78.77 78.40 79.17 71.94

n-grams +
LIWC 73.80 76.34 70.87 72.97 71.54 74.91 77.28 75.71

1,3
n-grams 70.49 65.69 71.29 64.84 79.90 81.05 81.44 72.71

n-grams +
LIWC 74.64 74.64 73.82 71.25 74.57 74.94 79.96 76.11

2,3
n-grams 71.67 68.71 70.91 70.43 76.88 76.54 77.66 70.80

n-grams +
LIWC 74.66 74.64 69.20 72.93 71.54 73.76 79.93 76.88

3,3
n-grams 59.33 58.89 59.73 57.59 69.36 69.34 70.50 64.00

n-grams +
LIWC 73.77 72.48 65.20 69.98 71.54 71.21 71.27 73.46
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4.5. Statistics and Trends
4.5.1. Overview of the Trends by Model

In order to get a better insight into the performance of the used machine learning
models, average values of each model obtained by testing on three selected datasets using
LIWC analysis, n-grams and by combining n-gram analysis with LIWC was extracted
(Table 12). The same was done with the models trained on the combined dataset DS3, and
tested individually on the DS1 and DS3 datasets, which is shown in Table 13.

Table 12. Overview of trends by model for the 3 datasets collected (yellow color: maximum average
accuracy obtained for each individual model and dataset; red color: maximum average accuracy
obtained using all models on each individual dataset).

LR SVM NB RF All Models

DS1 DS2 DS3 DS1 DS2 DS3 DS1 DS2 DS3 DS1 DS2 DS3 DS1 DS2 DS3

LIWC 78.02 74.62 74.4 77.24 73.32 74.6 76.47 74.58 72.20 78.05 69.98 74.20 77.45 73.13 73.85

n-grams 76.46 67.93 70.47 74.82 67.12 69.47 77.61 69.24 71.47 72.18 65.06 67.80 75.27 67.34 69.80

n-grams +
LIWC 78.79 74.29 75.30 76.69 74.35 75.13 78.15 71.34 72.87 74.52 71.75 73.93 77.04 73.33 74.31

Table 13. Overview of trends by model for combined dataset DS3 tested individually on datasets DS1
and DS2 (yellow color: maximum average accuracy obtained for each individual model and dataset;
red color: maximum average accuracy obtained using all models on each individual dataset).

LR SVM NB RF All Models

DS3
Models
Tested
on DS1

Data

DS3
Models
Tested
on DS2

Data

DS3
Models
Tested
on DS1

Data

DS3
Models
Tested
on DS2

Data

DS3
Models
Tested
on DS1

Data

DS3
Models
Tested
on DS2

Data

DS3
Models
Tested
on DS1

Data

DS3
Models
Tested
on DS2

Data

DS3
Models
Tested
on DS1

Data

DS3
Models
Tested
on DS2

Data

LIWC 81.54 72.04 81.54 70.38 77.31 71.58 71.38 70.33 77.94 71.08

n-grams 72.82 66.11 71.28 65.56 72.50 67.08 69.55 62.92 71.54 65.42

n-grams
+ LIWC 75.51 72.78 79.53 73.54 79.49 72.43 77.50 72.85 78.01 72.90

The average accuracy of all models obtained with the analysis using a combination
of n-grams and LIWC is higher than that of the one using only the n-gram analysis for
each of the three datasets, DS1, DS2, and DS3. The analysis based on LIWC alone also
achieves higher accuracy compared to the average results obtained by testing all models
on different sets of n-grams. The average accuracy of predictions obtained for all models
using the LIWC analysis generally gave less favorable results compared to the analysis
with a combined approach (n-grams and LIWC) on datasets DS2 and DS3 and a maximum
average accuracy of 77.45% when tested on dataset DS1.

Table 13 compares average prediction accuracies obtained using all selected models
and natural language processing techniques by training the model on the combined dataset,
DS3, and testing individually on datasets DS1 and DS2. In this case as well, the analysis
with n-grams on average gives less favorable results compared to the other data processing
techniques used. The highest average accuracy for both datasets was achieved with the
n-gram analysis combined with LIWC while the LIWC analysis also gives favorable results
when tested on both datasets.

The maximum average accuracies, considering the results of all DS3 models tested on
the DS1 and DS2 datasets, were achieved using the analysis combining n-gram and LIWC
and are 78.01% and 72.90%, respectively.
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4.5.2. Overview of the Trends by Methods

The average accuracy of all models trained and tested on the collected datasets ob-
tained with the analysis with LIWC, n-grams, or the analysis by combining these techniques
for all selected sets of n-grams are shown in Table 14.

Table 14. Overview of trends by methods on 3 selected datasets (colored values indicate the maximum
accuracy obtained using a particular data processing method on each of the given datasets).

All Models

DS1 DS2 DS3 The Average Accuracy Obtained by Training and
Testing Models on Datasets DS1, DS2 and DS3

LIWC 77.45 73.13 73.85 74.81

1,1
n-grams 74.15 68.54 70.15 70.95

n-grams + LIWC 76.13 73.16 73.15 74.15

1,2
n-grams 78.51 68.41 71.45 72.79

n-grams + LIWC 77.75 74.12 75.25 75.71

2,2
n-grams 76.81 69.68 71.75 72.75

n-grams + LIWC 76.77 73.50 75.60 75.29

1,3
n-grams 77.95 68.08 71.00 72.34

n-grams + LIWC 77.55 73.59 74.25 75.13

2,3
n-grams 75.49 70.43 69.75 71.89

n-grams + LIWC 78.31 72.86 74.40 75.19

3,3 n-grams 68.69 58.89 64.70 64.09

n-grams + LIWC 75.72 70.36 73.20 73.09

Analysis combining n-grams and LIWC achieved better average results for almost
all selected sets of n-grams compared to the analysis using n-grams only. Consequently,
the overall average accuracy obtained by this approach is also higher than the average
results obtained by the n-gram analysis for each of the three datasets, DS1, DS2, and DS3.
Considering the average accuracies obtained for all sets of n-grams, the analysis with
n-grams and LIWC achieves the maximum on DS2 using the analysis of unigrams and
bigrams (74.12%) and with the analysis of bigrams on DS3 (75.60%). Dataset DS1 was best
classified using unigrams and bigrams (78.51%).

By comparing the average accuracies obtained using all machine learning models on
all selected sets of n-grams and LIWC, the analysis using a combination of (1,2)-grams and
LIWC gives the most accurate results (75.71%). This is followed by the analysis with 2-g
and LIWC and (2,3)-grams and LIWC with the average accuracy of 75.29% and 75.19%,
respectively, on all models and datasets. Table 14 also shows that the models trained and
tested on DS1 data give the best predictions compared to other datasets for each of the
chosen data processing methods.

Average model accuracies were also calculated for models trained on the combined
dataset DS3 and tested individually on DS1 or DS2 data, which is shown in Table 15.
The overall average results obtained by testing the DS3 model on DS1 or DS2 data are
also shown.
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Table 15. Overview of trends by method for models trained on combined dataset (DS3) and tested
individually on DS1 and DS2 data (colored values indicate maximum accuracy obtained using a
particular data processing method on each of the given datasets).

All Models

DS3 Models
Tested on Dataset

DS1

DS3 Models
Tested on Dataset

DS2

The Average Accuracy
Obtained by Training and Testing Models

on Datasets DS1, DS2 and DS3

LIWC 77.94 71.08 74.51

1,1
n-grams 70.29 64.90 67.59

n-grams + LIWC 79.04 72.92 75.98

1,2
n-grams 72.12 67.71 69.91

n-grams + LIWC 80.19 72.61 76.40

2,2
n-grams 71.16 69.07 70.11

n-grams + LIWC 77.85 70.63 74.24

1,3
n-grams 73.56 66.77 70.16

n-grams + LIWC 78.66 72.81 75.73

2,3
n-grams 75.00 65.10 70.05

n-grams + LIWC 77.50 73.23 75.37

3,3
n-grams 67.12 58.96 63.04

n-grams + LIWC 74.81 75.21 75.01

In this case as well, the combined analysis with n-grams and LIWC achieved the
highest average maximum for both datasets. When testing the DS3 models on DS1 data,
the average maximum of 80.19% was obtained by analyzing unigrams and bigrams and
LIWC. While testing these models on the DS2 data using the same method, the maximum
average accuracy of the models was achieved by analyzing LIWC and trigrams (75, 21%).
Considering the overall average obtained by the testing models trained on DS3 and tested
on DS1 and DS2 datasets, the best average accuracy was achieved using bigram and LIWC
(76.40%). The second best results were achieved by analyzing unigrams and LIWC (75.98%)
and (1,3)-grams and LIWC (75.73%). Analyses exclusively with LIWC or n-grams achieved
worse average results on all models compared to the combined analysis.

Models trained on DS3 and tested on DS1 data achieved better results than those
models tested on DS2 dataset for each of the data processing methods used.

5. Discussion
5.1. Datasets and Models

The best classifications of datasets DS1, DS2, and DS3, considering the average accu-
racies obtained using all the models presented in Table 12, were achieved with the LIWC
analysis and by combining n-grams and LIWC. The above two methods also generalize
best according to testing the combined dataset DS3 individually on the DS1 and DS2
data (Table 13).

The climate change dataset (DS1) proved to be more applicable to deception detection
compared to the COVID-19 dataset (DS2) and the combined dataset (DS3). Machine learn-
ing models achieved the best average results on DS1 using all data processing approaches
(Table 14). While examining the possibility of generalization by training models on the com-
bined dataset (DS3) and testing on individual datasets (DS1 and DS2), models also achieved
better performance tested on DS1 compared to the DS2 dataset. Consequently, models both
trained and tested on the combined set achieved better average results compared to the
training and testing on dataset DS2. It appears that DS2 data offers less information that
can be used in deception detection compared to other datasets. Given that DS2 (dataset
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for COVID-19) is based on answers related to partly more current and potentially more
personal experiences, there is a possibility that participants lied more successfully on a topic
that is closer to them and more subjective; therefore, the very distinction of lies using the
selected data analysis methods became more difficult. In addition, there is a possibility that
for the same reason participants were more motivated to lie more convincingly considering
the scope of experience they have about COVID-19 and consequently achieved a higher
success rate of deception. On the other hand, data collected on the topic of climate change
are potentially more objective, which leads to weaker results when trying to deceive.

During training and testing of the machine learning models on the DS2 dataset, it was
noted that the analysis with LIWC (73.13%) or the combined approach (73.33%) achieves
better average results than those obtained exclusively with n-grams (67.34%) (Table 12).
The analysis using the combined approach on the same dataset also achieves better average
results on all sets of n-grams compared to the analysis exclusively with n-grams (Table 14).
On the other hand, during the training and testing models on data DS1, there was no such
significant difference in the average accuracy of predictions using LIWC (77.45%) and the
combined approach analysis (77.04%) compared to the n-gram analysis (75.27%), but the
average results achieved using these methods are still more favorable than those obtained
with the n-gram analysis (Table 12). Given the above, it follows that n-grams better detect
patterns related to deception by analyzing the DS1 compared to the DS2 dataset.

A statistical consideration of the number of above-average predictions that exceed those
defined by trends by models (Tables 12 and 13) and trends by methods (Tables 14 and 15)
shows that logistic regression proved to be the most reliable model with the most above-
average values compared to other methods (Table 9). It also showed good performance
in combination with the LIWC analysis, where it achieved the highest number of above-
average predictions compared to other models tested with the LIWC analysis on the same
datasets. The random forest model achieved the least favorable above-average results
while training and testing on the same datasets (Table 9). Examining the possibility of a
generalization of the models by training them on DS3 and testing on DS1 and DS2 datasets,
the highest number of above-average predictions (in relation to the trend by models and
trend by methods) was achieved using the SVM and multinomial Naive Bayes models
while the random forest showed the lowest rate of above-average predictions. At this point,
it is difficult to conclude as to which model is generally most applicable to the problem of
deception detection given that all models have shown different performances on different
datasets using different data analysis methods.

It is important to note that the procedure for selecting important LIWC features is
limited to testing the models on all combinations of subsets up to the size of 11 features
obtained using the WEKA tool (due to the factorial time complexity). The feature selection
adopted in this study potentially needs to be improved by testing the model performance
on feature subsets larger than 11 features or by applying another feature selection method.

5.2. Generalization

The models trained on the DS3 dataset, when tested on DS1, achieved a less favorable
average accuracy with the n-gram analysis (71.54%) compared to the models trained and
tested on DS1 (75.27%). Conversely, by testing the models based on DS3 on the dataset DS1
with the analysis using a combined approach, better average results (78.01%) were obtained
compared to training and testing the models on the DS1 data using the same processing
technique (77.04%) (Tables 12 and 13). The same trend applies to the LIWC analysis, which
also achieved better results. For model DS2, the analysis with LIWC or a combination of
n-grams and LIWC generalizes better compared to an analysis exclusively with n-grams
since it achieves better performance during training models on several different datasets
from different domains.

On the other hand, by testing the models obtained based on the DS3 dataset on the data
DS2, an average drop in performance was recorded using all models and all data analyzing
methods compared to both training and testing the models on the dataset DS2, but by
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combining the analysis with n-grams and LIWC, all models achieved higher maximums
accuracies. The LIWC analysis on all models gives an average accuracy of 71.08%, which is
2.05% less than in the case of training the model on DS2 data. The analysis with n-grams
recorded an average drop in the accuracy of predictions of 1.92%, and the smallest average
drop was achieved with the analysis with a combined approach (0.43%) (Tables 12 and 13),
which, on the other hand, for certain n-grams, achieved higher maxima in relation to the
models trained on the DS2 dataset (Table 7). Although the average accuracy when training
all models on the combined DS3 dataset slightly drops, it again follows that combining the
analysis with n-grams and LIWC has somewhat greater generalization power compared
to exclusively using the n-gram analysis. In addition, the analysis with the combined
approach, unlike the analysis with n-grams, achieved better average results on almost all
sets of n-grams during the testing of the models based on the DS3 dataset on the DS1 and
DS2 data (Table 15). The biggest difference in the performance of the models obtained with
the n-gram analysis and the combined approach of analysis is visible during the testing
of models based on the DS3 on the DS2 data by analyzing trigrams where the combined
approach achieves a 16.24% higher accuracy.

5.3. Model Applicability

Examining the possibility of mutual applicability by testing the models obtained based
on the datasets DS1 and DS2 on the datasets DS2 and DS1, it was concluded that the n-gram
analysis gives the best average predictions compared to other data analyzing methods.
When testing models based on the DS2 on the DS1 data, the n-gram analysis even achieves
an increase in the average accuracy of all models compared to training and testing the
models on the DS1 data (7.77%). The LIWC analysis, on the other hand, shows the least
applicability to other datasets. As a result of the stated claims, the analysis by combining
n-grams and LIWC achieves less favorable applicability than the analysis with n-grams,
but it is still better than the analysis with LIWC. It can be concluded that n-grams are the
most robust analysis method that allows the greatest flexibility when applying models
trained on one dataset to another.

6. Conclusions

Deception detection has turned out to be quite a demanding problem considering
the various inherent limitations. The first problem encountered is finding validly labeled
true and false data. Given that there is no absolutely reliable method of verifying the
veracity of the same information, such a problem was approached in this study with
caution, taking into account the amount of motivation and sincerity the people demonstrate
when answering the defined survey questions during the data collection procedure.

Machine learning models proved to be successful when working on these collected
datasets, which once again confirmed the existence of hidden linguistic features of decep-
tion present in verbal communication. Natural language processing methods achieved
satisfactory results while LIWC analysis and the combined analysis of n-grams and LIWC
proved to be the most successful in deception detection. By examining the possibility of
generalization, the mentioned methods also achieved better performance compared to
the analysis with n-grams, especially on trigrams, where the analysis using a combined
approach achieved significantly better prediction compared to the analysis exclusively with
n-grams. Such detected generalization is in line with the recent research efforts leading
to conclusions that “deceptive text is more formulaic and less varied than truthful text”,
however more research in this area is warranted [20]. However, during the testing of the
mutual applicability of the models, the n-gram analysis proved to be a more robust method.
While testing the performance of the models obtained based on the DS1 dataset on the
DS2 data, the n-gram analysis achieved better results compared to training and testing the
models on own data (DS1). On the other hand, the LIWC analysis proved to be the most
inflexible when it came to its applicability to other datasets.



Algorithms 2023, 16, 221 31 of 34

Machine learning models with LIWC can be used independently in the detection of
deception with certain limitations, such as the fact that they are much less applicable to the
datasets on which they have not been trained. The combined approach with n-grams and
LIWC in most cases allows for even more successful differentiation between truth and lies.
Therefore, machine learning models and the approach to deception detection should be
carefully selected depending on the specifics of the given problem, such as the need for
applicability to other datasets or the possibility of generalization.

In addition to the scientific value of this study, the approach has practical advantages.
Unlike state-of-the-art deep learning models, which can be computationally intensive
and time-consuming, our approach requires less computational resources and is faster.
This makes it more accessible and feasible for researchers and practitioners who may
not have access to high-performance computing resources or who need to process large
amounts of data quickly. Moreover, the efficiency of our approach does not compromise its
effectiveness in detecting deception. By combining psycho-linguistic analysis and n-grams,
our study achieves high classification accuracy, especially on trigrams, which is comparable
to state-of-the-art models. Therefore, our approach not only provides a more practical
solution, but also delivers comparable results to more resource-intensive methods.

Furthermore, our study highlights the importance of considering the subjectivity of
the data when analyzing it for deception, which is a crucial factor in the effectiveness of any
machine learning model. By exploring the use of a psycho-linguistic analysis, our study
also demonstrates the potential benefits of incorporating linguistic features beyond just
n-grams, which could inspire further research in this area.
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Appendix A

Reference Main Findings

DePaulo et al., 1996 [1] Individuals lie frequently, with most of the lies being
minor and aimed at protecting the self or others.

Zhou et al., 2004 [2] SVM and NB classifiers performed the best in detecting
deception in computer-mediated communication.

Hancock et al., 2005 [3]
Deceptive and truthful messages can be distinguished
using linguistic features such as words, syntax,
and punctuation.

Ott et al., 2011 [4]
An algorithm that combines lexical, syntactic, and
discourse features can accurately identify deceptive
opinion spam.

Feng et al., 2012 [5] A method that uses syntax-based features can achieve
high accuracy in detecting deceptive language.
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Reference Main Findings

Pérez-Rosas et al., 2015 [6]
Linguistic cues can help identify deception in real-life trial
data, and combining different types of features can lead to
better performance.

Poesio and Fornaciari, 2018 [7] A combination of lexical, syntactic, and semantic features
can achieve high accuracy in identifying deceptive text.

Mihalcea and Strapparava, 2009 [8] Lexical, syntactic, and discourse features can be used to
automatically recognize the deceptive language.

Mahon, 2016 [9] The concepts of lying and deception are complex, and
different definitions have been proposed.

Van Swol et al., 2015 [11]
People are more likely to detect deception in face-to-face
communication than in
computer-mediated communication.

Hancock et al., 2008 [12] Deception involves more cognitive effort than truth-telling,
and deception can be detected using linguistic features.

Burgoon and Buller, 2015 [13]
This theory proposes that deception is a process that
involves both the deceiver and the receiver, and that
communication is a strategic game.

Alowibdi et al., 2015 [18] A machine learning approach can effectively detect
deceptive tweets.

Barsever et al., 2020 [19] BERT-based models can be effectively used for
lie detection.

Fornaciari et al., 2021 [20] The BERTective model integrates contextual information
and language models for improved deception detection.

Appendix B

LR SVM NB RF

DS1:
Climate change

Allnone Allnone Allnone Allnone
Culture Culture Culture Culture

I I I I
They They They They

BigWords Negate Negate Negate
Clout Insight Insight Insight
Conj Politic Conj Politic

curiosity WPS WPS WPS

DS2: COVID-19

Family Family Family Family
Exclam Exclam Exclam Exclam
Apostro Apostro Apostro Apostro

WPS WPS WPS WPS
Allnone Allnone Allnone Allnone
Comma Comma Comma Comma

BigWords BigWords Negate BigWords
Negate Work Negate
Cause Cause
Socrefs Socrefs
Time Time

netspeak netspeak
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LR SVM NB RF

DS3:
Climate change +

COVID-19

Tone Tone WC Tone
WPS BigWords

They WPS You WPS

Conj BigWords They BigWords
Negate Allnone
Insight Prosocial

Family
They Negate They

Politic Conj Allnone Conj
Work Curiosity
Motion Comma

Exclam
Negate Insight Negate

Allnone Family Allnone
Insight

Prosocial
Family

Insight

Politic Prosocial
Work Family

Curiosity Politic
Work

Curiosity
Motion
Comma
Exclam
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